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THE SIS PROBLEM (1996): SMALL INTEGER SOLUTIONS

* Let (G,+) be a finite Abelian group: G=(Z/qZ)" in [Ajtai96].
View G as a Z-module.

* Pick gi,...,gm uniformly at random from G.

 Goal: Find short (xi,...,Xxm)EZm s.t. Lix; gi =0,
e.g. | IxI'l <m (#G)l/m,

> This is essentially finding a short vector in a (uniform)
random lattice of Lw(G) = { lattices LCZm s.t. Zm /L ~ G }.
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WORST-CASE TO AVERAGE-CASE REDUCTION

* [Ajtai96]: If one can efficiently solve SIS for G=(Z/qnZ)" on the
average, then one can efficiently find short vectors in every n-dim

lattice.

* [GINX16]: This can be generalized to any sequence (Gn) of finite
abelian groups, provided that #G, is sufficiently large
>nQmax(nrank(G))) and m too. Ex: (Z/2Z)" is not.



WORST-CASE TO AVERAGE-CASE REDUCTION

Generating Hard Instances of Lattice Problems
Extended abstract
M. Ajtai
IBM Almaden Research Center
650 Harry Road, San Jose, CA, 95120

e-mail: ajtai@almaden.ibm.com

ABSTRACT. We give a random class of lattices in Z™ so that, if there is a
probabilistic polynomial time algorithm which finds a short vector in a random lattice
with a probability of at least % then there is also a probabilistic polynomial time
algorithm which solves the following three lattice problems in every lattice in Z™ with
a probability exponentially close to one. (1) Find the length of a shortest nonzero
vector in an n-dimensional lattice, approximately, up to a polynomial factor. (2) Find
the shortest nonzero vector in an n-dimensional lattice L where the shortest vector v
is unique in the sense that any other vector whose length is at most n¢||v|| is parallel
to v, where c is a sufficiently large absolute constant. (3) Find a basis b1, ..., b, in the
n-dimensional lattice L whose length, defined as max} ; ||b;]|, is the smallest possible

up to a polynomial factor.
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THE SIS ONE-WAY FUNCTION

* Let (G,+) be a finite Abelian group
* Pick gi,...,gm uniformly at random from G.
e Let f: short (x1,...xm)EZ™ — Y X; gi cG.

> fis many-to-one.

> Given h = X, yi g €G, finding a short (x,...,xm)EZ™m s.t.
h=X; x; g; €G is as hard as SIS.
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DUALITY

e Remember the SIS lattice:
> o1,...,&min some finite Abelian group (G,+)

> L={x=(x1,...Xm)EZ™ S.t. XiX; gi= 0}

 The dual lattice of L is related to the dual group Gx of
(additive) characters of G: morphisms from G to T=R/Z

> Lx={(y1,...,ym)ERM s.t. for some s EGX,
for all i yi=s(g;) (mod 1)}



> Let xEL: x=(x1,...,.xm)EZM s.t. i X; gi=0
> For any character s in Gx, we have s(Xi xi gi)=0 in T=R/Z so X xi s(gi)=0
> Hence, for any (yi,...,ym)ERms.t. for all i yi=s(gi) (mod 1), we have

m

Z x;y; € Z so (y1,...,ym)ELX
=1

, Reciprocally if Z x;y; € Z whenever L;x; gi = 0, there is s in Gxs.t. for all
i=1
i yi=s(gi) (mod 1). This defines s over the subgroup generated by the g;'s:
m m m m

it ) a8 = Z b.g; then s( Z a.8;) = ( Z b.g;) because
= = i=1 i=1

i=1 i=1



THE LWE PROBLEM: LEARNING (A CHARACTER) WITH ERRORS

* Let (G,+) be any finite Abelian group.

> e.g. G=(Z/qZ)"in [Re05]

* Pick gy,...,2m uniformly at random from G.

e Pick a random character s in Gx.



THE LWE PROBLEM: LEARNING (A CHARACTER) WITH ERRORS

* Let (G,+) be any finite Abelian group.

> e.g. G=(Z/qZ)"in [Re05]

* Pick gy,...,2m uniformly at random from G.

Pick a random character s in Gx.

* Goal: recover s given gi,...,gm and noisy approximations of

s(g1),---, s(gm)

» Ex: Gaussian noise
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GAUSSIAN NOISE OVER THE TORUS R/Z

When g increases, the distribution hecomes uniform




EX: CYCLIC G

. Let G=Z/gZ. Then G*= {x — Zmod 1}
q ac”Zlq

* Pick gi,...,gm uniformly at random mod q.

* Goal: recover s€Z given gj,...,gm and randomized
approximations of sg1 mod q,..., sgm mod q.



EX: CYCLIC G

. Let G=Z/gZ. Then G*= {x — Zmod 1}
q ac”Zlq

* Pick gi,...,gm uniformly at random mod q.

* Goal: recover s€Z given gj,...,gm and randomized
approximations of sg1 mod q,..., sgm mod q.

» This is exactly a randomized variant of Boneh-Venkatesan’s
Hidden Number Problem from CRYPTO ’96.



HARDNESS OF LWE

* [Regev05]: If one can efficiently solve LWE for
G=(Z/gnZ)" on the average, then one can
quantume-efficiently find short vectors in every

n-dim lattice.

 [GINX16]: This can be generalized to any
sequence (Gn) of finite abelian groups,
provided that #G, is sufficiently large.
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DECISIONAL-LWE

Let (G,+) be any finite Abelian group.

> e.g. G=(Z/qZ)"in [Re05]

* Pick gy,...,2m uniformly at random from G.
 Pick a random character s in Gv.

 Goal: Distinguish (gy,...,gmnoisy approximations of s(g1),...,
s(gm)) and uniform samples of Gnx(R/Z)m
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SIS AND DECISIONAL-LWE

 Suppose that one finds a short (xi, ..., xm)EZ™m s.t. X x; gi = 0.
« What can you say about X x; yi
» Ifyi,...,ym are random in R/ Z.

» Ifyi,...,ym are approximations of s(gz1),..., s(gm) with a
small Gaussian noise
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VARIANTS OF SIS AND LWE

* Replace the Z-module by an R-module

 Change the distribution of:
> the LWE noise

> the secret character
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RING TRADEQFFS

« NTRU [HPS98] proposed to use special lattices: better
efficiency, yet stronger hardness assumption.

o Starting with [Mi02], one can obtain ‘restricted’
worst-case to average-case reductions:

> The worst-case now refers to a special class of
lattices, e.g. ideal lattices or module lattices.
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M-SIS: SIS OVER MODULES

* Let M be a finite R-module for some ring R: R=Z in SIS.
* Pick gi,...,gmEM uniformly at random.
 Goal: find short (x,...,xm)ERms.t. X x; gi = 0.

> [f Rm is a lattice, this is finding a short vector in some random
(module) sublattice of Rm.

> Ex: NTRU used m=2, R=Z[X]/(XN-1) and M=Z[X]/(q,XN-1)
but gi1=public key, go=-1.
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WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR MODULES

 [LaSt14]: If one can efficiently solve M-SIS for M=(R/qR)d
where R is the ring of integers of a cyclotomic field, then one
can efficiently find short vectors in every module lattice of Rd.

 This generalizes previous ideal-lattice reductions for
d=1 [Mi02,LyMi06].

* Similar results for M-LWE [LaSt14] generalizing Ring-
LWE hardness [LPR10].
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SHORT LATTICE VECTORS: MINKOWSKI'S INEQUALITY

e [Minkowski]: Any d-dim lattice L has at least one non-zero
vector of norm < T(1+d/2)/4

2 Covol(L)l/d <Vd covol(L)l/d
VT

» This is Minkowski’s inequality.

Hermann Minkowski
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FOUR PROOFS OF MINKOWSKI'S INEQUALITY

Blichfeldt’s proof: «continuous» pigeon-hole principle.

e Minkowski’s original proof: sphere packings.

» Siegel’s proof: Poisson summation.

* Mordell’s proof: pigeon-hole principle.
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REMEMBER BLICHFELDT'S PROOF

e The short lattice vector is some u-v where u,vEF for a well-
chosen convex (infinite) set F.

Hans Frederick Blichfeldt

* Mordell’s proof uses a finite F.



MORDELL'S PROOF (1933)

Bl; ‘\'[‘\‘ l‘“ F \\ORI |~ Lewis J. Mordel, a graduate of the
‘ V7 B 59 ad > V¥ ‘D .~ Central High School, brought additional
| T 3 o i e i ‘honors to his alma mater yesterday,
\ l : l ,\ l ” l4 7\1 \ l lCS | when he was awarded a three-year schol-
& J k& ) ¥y ] arship in mathematics by St. John's
- College, Cambridge, England. ’
“Mordel went to Cambridge with noth- |
ing but his High School training and
competed against graduates of schools
and colleges in every part of the world.
‘The examinations were open to alL com-
_petitors, but for the first time a ngh
School graduate was entered against col-
“|lege men. His entry created laughter in- i
:|atead of serious consideration, but at
zthé eoneluslon of the examinations, which |
lasted four days, he stood No. 1 of 250 |
applicants, with an avemge of a tnﬂe
‘below 100. :
At the Central ‘High School Mbrdel'
ty along mathematical lines was re-
ed by the members of the faculty
p enomenal. In his Sophomore year
_.completed ‘the ma.thema;tcal
the i

-EWIS J. MORDEL

Lewis J. Mordel, High School Grad-

* uate, Wins Scholarship in Cam-

- bridge Over Competltors from
Many Countries. :
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MORDELL'S PROOF (1933)

. ForgeN,letL =g 'Lthen[L: L] = g“
e Among >qd points vi,...,vm in L, 3i=j s.t. vi-viEL.

 There are enough points in a large ball of radius r (r is close to
Minkowski’s bound in L, but large for L)

> We obtain a short non-zero point in L: norm < 2r.
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the existence of short vectors in a special class of higher-
dimensional integer lattices.

Louis Joel Mordell



KEY POINT

* Mordell proved the existence of short lattice vectors by using
the existence of short vectors in a special class of higher-
dimensional integer lattices.

e Let distinct vy,...,.vmEL = g~ 'L. Louis Joel Mordel

 Consider the integer lattice L” formed by all (xi, ..., xm)EZ™m s.t. }.ix;viEL.

> If m>qd, Ai(L)<v?2.
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AN ALGORITHM FROM MORDELL'S PROOF

e Mordell’s proof gives an (inefficient) algorithm:

» Need to generate >qd lattice points in L.

> Among these exponentially many lattice points, find a
difference in L, possibly by exhaustive search.

> Both steps are expensive.

* |[BGJ14] and [ADRS15] are more efficient randomized variants
of Mordell’s algorithm: sampling over L may allow to sample
over L.
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WISHFUL THINKING

* To apply the pigeon-hole principle, we need an exponential
number m of lattice vectors in L.

« Can we get away with a small polynomial number m and
make the algorithm efficient? (unlike [BGJ14] and [ADRS15])

» Maybe if we could find short vectors in certain higher-
dimensional random lattices.
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REMEMBER SIS

* Let (G,+) be a finite Abelian group: G=(Z/qZ)" in [Ajtai96].
View G as a Z-module.

* Pick gi,...,gm uniformly at random from G.

 Goal: Find short (xi,...,Xxm)EZm s.t. Lix; gi =0,
e.g. | Ixl |l <m (#G)1/m.

> This is essentially finding a short vector in a (uniform)
random lattice of L(G) = { lattices LCZm s.t. Zm /L ~ G }.
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OVERLATTICES AND GROUPS

If Lis n-dim, L = ¢~ 'L and G=(Z/qZ)"then L/L ~ G.

» There is an exact sequence: a surjective morphism ¢ : L — G
such that L = Ker(¢)

O%L L 256G =0

¢ is efficiently computable: which ¢?

Let vi,....vm € L and define gj,...,.gmEG by gi=d(vi).

e Yixigi=0 for (xi,...,Xxm)EZmiff X x; v; € L.



WORST-T0-AVERAGE REDUCTION FROM MORDELL'S PROOF

o Sample short vi,...,.vim € L from a suitable distribution, so that
gi=((vi) has uniform distribution over G=(Z/qZ)"

* (Call the SIS-oracle on (gi,...,gm) to find a short x=(xi, ..., Xm)EZm
s.t. Zixigi=01n G, 1.e. Xixjvie L.

e Return X x;v;€ L.
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GENERALIZED SIS REDUCTION

* The SIS reduction is based on this crucial fact: If B is a reduced
basis of a lattice L, then q!B is a reduced basis of the
overlattice L = g~ 'L.

* Butif Gis an arbitrary finite Abelian group, we need to find a
reduced basis of some overlattice L D L s.t. L/L ~ G, so that we
can sample short vectors in L.
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STRUCTURAL LATTICE REDUCTION

* In classical lattice reduction, we try to find a good basis of a
given lattice.

* In structural lattice reduction [GINX16], given a lattice L and a
(sufficiently large) finite Abelian group G, we find a good basis
of some overlattice L s.t. L/L ~ G.
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EASY CASES

« If G=(Z/qZ), any basis B of a full-rank lattice L in Zn can be

transformed into a basis q'lB of L = q_lL, which is g=#G1/n
times shorter.

e If G=Zn/L, the canonical basis of L = Znis a short basis,
typically #G!/n times shorter than a short basis of L.
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KEYPOINT: FOURIER ANALYSIS

o Fourier analysis shows thatif v, ...,V € L are chosen from a
suitable (short) distribution, g; = ¢(v,) has uniform distribution
over G.

» Any probability mass function f over L s.t.

forany X € L, X+
y yeZLﬂ et

» Ex: discrete Gaussian distribution.



KEYPOINT: FOURIER ANALYSIS

o Fourier analysis shows thatif v, ...,V € L are chosen from a
suitable (short) distribution, g; = ¢(v,) has uniform distribution
over G.

» Any probability mass function f over L s.t.

forany X € L, X+
y yeZLﬂ et

» Ex: discrete Gaussian distribution.

> This is a key step: transforming a worst-case into an average-case.



WHY FOURIER ANALYSIS?

» Recall Poisson's summation: if f : R — C is a "nice" function, then

+00
Zf (n) = Zf (n) where f(n) = J f(H)e~#™dt and more
ne/ ne/

generally Vx € R )’ f(x+n) = Z Fm)e2im

nez nez

» In arbitrary dimension, if f: R" — Cisa mce 'function and Lis a

full-rank lattice in R”, then Z f(x) = Z f(y) and more
= Covol(L) Ser”

generally Vi € R" ) f(i+35) = ) f(7)e »

yEL yeL*




WHY FOURIER ANALYSIS?

J We'd like Vx € R” Z fX+y) = Z f(3)e?753) to be nearly constant over X.
yeL yeL*

_ D G = foy+ Y, feHe? ™ sowewant Y f(7)e* ) to
yEL™ yeL™\{0} yEL™\{0}
be uniformly small.

> A,(L*) is related to 1/, (L)

» The Fourier transform of a Gaussian function is Gaussian with inverse
c - —lI2N2/2 PN __2nu=n2
parameter: if f(X) = e 75" then f(¥) = =™ Il

> If s is big enough, then f(¥) will be very small.
> ||Iyl| = A,(LX) > 1/4,(L) so we need s somewhat larger than 4 (L).



SAMPLING LATTICE VECTORS
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GAUSSIAN MEASURE

* Though lattices are infinite, there is a natural probability
distribution over lattice points, introduced by [Ba1993] for
transference.
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* Though lattices are infinite, there is a natural probability
distribution over lattice points, introduced by [Ba1993] for
transference.

 This Gaussian measure was implicitly used in [Klein00]'s

randomized variant of Babai’s nearest-plane algorithm to
solve BDD.

Philip N. Klein Wojciech Banaszczyk



GAUSSIAN MEASURE

* Though lattices are infinite, there is a natural probability
distribution over lattice points, introduced by [Ba1993] for
transference.

 This Gaussian measure was implicitly used in [Klein00]'s

randomized variant of Babai’s nearest-plane algorithm to
solve BDD.

* [Regev2005] noted that the Gaussian measure could sometimes
be sampled.

a M

Oded Regev



GAUSSIAN MEASURE

* Though lattices are infinite, there is a natural probability
distribution over lattice points, introduced by [Ba1993] for
transference.

 This Gaussian measure was implicitly used in [Klein00]'s

randomized variant of Babai’s nearest-plane algorithm to
solve BDD.

* [Regev2005] noted that the Gaussian measure could sometimes
be sampled.

« [GPV2008] rediscovered [Klein00] and showed that it samples
from the Gaussian measure.
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GAUSSIAN MEASURE

e Center ¢, parameter s

» Mass of xEL proportional to

:E’—E’H2

— || =5

Ps,é’(f) — €

 The distribution is independent of the basis.

 Introduced in [Ba93], then used in cryptography in
[Cai99,Regev03,MiRe(4,...]



INTUITION

* Beyond a so-called smoothing parameter, the discrete
Gaussian distribution behaves like a continuous Gaussian.

e This smoothing parameter is a bit larger than 4, (L).



BABAI'S NEAREST PLANE ALGORITHM

« Input: a basis (131, e Bn) of a lattice L and a target 7 in span(L).

n
. Output: a lattice point u such that f—ue { Z xbr¥,—1/2 <x; < 1/ 2} where the b's are the
i=1
Gram-Schmidt orthogonalization.
,
!
|
|
) -
/
./
* Return

U = i L] l;i
i=1



BABAI'S NEAREST PLANE ALGORITHM

« Input: a basis (131, e Bn) of a lattice L and a target 7 in span(L).

n
. Output: a lattice point u such that f—i€ { Z xbr¥,—1/2 <x; < 1/ 2} where the b's are the
i=1
Gram-Schmidt orthogonalization.
,
!
e For i=n downto 1 !
ST P
o, —k L2
ompute j; = ——  Return

U = i L] l;i
i=1
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RANDOMIZING BABAI'S NEAREST PLANE ALGORITHM

 Input: a basis (Zl, e l;n) of a lattice L and a target 7 in span(L).

. Output: a "random" lattice point i "close" to 7.

e Fori=n downto 1

o —%
o <t, bl >
Compute y; = ——— and * Return
15; 117 .
x; = RandomizedRounding(y,) = ShortElement(u, + Z) U4 = Z X;b;
=)



» We want to output u € L with probability proportional to
p i) = ¢~

n

- - _’*

, Here, t —u = Z (u; — x)b]
i=1



