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Today

Lattice Analogues of:

RSA: Encryption with Trapdoors

Diffie-Hellman

El Gamal: Encryption without Trapdoors



Lattice 
Cryptography:

Design



Lattice-based Crypto

Two Types of Techniques

Cryptography using trapdoors, i.e. secret 
short basis of a lattice. Similarities with 
RSA/Rabin cryptography.

Cryptography without trapdoors. Similarities 
with DL cryptography.


Case study: Encryption.



Trapdoor-based Encryption: 
GGH and NTRU



Remember 

N=pq product of two large random primes.

ed≡1 (mod φ(N)) where φ(N)=(p-1)(q-1).


e is the public exponent

d is the secret exponent


Then m→me is a trapdoor one-way 

permutation over Z/NZ, whose inverse is 
c→cd.



Bounded Distance Decoding (BDD)

Input: a basis of a lattice L of dim d, and 
a target vector t very close to L.

Output: v∈L minimizing ||v-t||. Easy if one 
knows a nearly-orthogonal basis.

O

t
v



Reducing Modulo a Lattice

If L is an integer lattice, the quotient Zn/L 
is a finite group, with many representations: 
lattice crypto works modulo a lattice.

We call L-reduction any efficiently 
computable map f from Zn s.t. f(x)=f(y)       
iff x-y∈L.



One-Way Functions from BDD

If BDD is hard over a ball, any public L-
reduction f is a one-way function over the 
same ball.


Let (t,L) be a BDD instance: t=v+e where 
v∈L and e is very short.

Then f(t)=f(e) because t-e=v∈L: if f is not 
one-way, then given f(e), one can recover 
e and also the BDD solution v=t-e.



Building L-Reductions

Any basis provides two L-reductions, 
thanks to Babai’s nearest plane algorithm 
and rounding-off algorithm.

NTRU encryption implicitly uses a           
L-reduction.



Ex: Babai’s rounding off

Choose f(t) in the basis parallelepiped s.t. t-f(t)∈L

t
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b2

t-f(t)
f(t)



Let t in Zn.

Let B the lattice basis.

Solve t=uB where u in Qn.

Return f(t)=(u-⎣u⎤)B

Ex: Babai’s rounding off



Let t in Zn.

Let B the lattice basis and B* its 
Gram-Schmidt orthoganlization.

Find v=uB where u in Zn s.t. t-v = xB* 
where each coordinate of x is ≤ 1/2 in 
absolute valute

Return f(t)=t-v.

Ex: Babai’s nearest plane algorithm



Solving BDD by L-reduction

The L-reductions derived from Babai’s 
algorithms leave some set invariant: 
there exists D(B)⊆Zn s.t. f(x)=x for all 
x∈D(B). This allows to solve BDD when 
the error∈D(B).

The largest ball inside D(B) depends 
on the quality of the basis.



Deterministic Public-Key Encryption 
[GGH97-Micc01]

Secret key = Good basis

Public key = Bad basis

Message = Short vector

Encryption = L-reduction with the public key

Decryption = L-reduction with the secret key

Optimization:

O



Encryption 
with the Hardest Lattices



SIS Trapdoors

[Ajtai1999,AlwenPeikert2010,Micciancioeik
ert2012] showed that it is possible to 
generate g1,…,gm∈(Z/q)n with distribution 
statistically close to uniform, together 
with a short basis of the SIS lattice 
L={x=(x1,...,xm)∈Zm s.t. Σi xi gi = 0}.



Optimizing Encryption: NTRU



Optimization: NTRU Encryption

Ring R=Z[X]/(XN-1), secret key (f,g)∈R2, public 
key h=g/f (mod q).

Encryption can be viewed [Mi01] as L-reducing 
a short vector with the Hermite normal form, 
where L={(u,v)∈R2 s.t. u≡pv*h (mod q)}.

Decryption is a special BDD algorithm using 
the secret key (f,g).



NTRU Encryption

Invented by Hoffstein, Pipher and 
Silverman in 1996 (CRYPTO rump session):


First published in 1998

First cryptanalysis (Coppersmith-
Shamir) in 1997!

Perhaps the fastest public-key 
encryption scheme known, and one of 
the most studied.



Key Generation

Let N be a prime number, e.g. 251

Consider the ring R=Z[X]/(XN-1)

Let p and q be two small coprime 
integers:


p=3 and q a small power of 2 
(128 or 256)

p=2 and q a small prime number



Key Generation

The secret key is two polynomials f and g 
in R with very small coefficients:


f and g could be ternary (0, 1, -1) or 
binary (0, 1).

f must be invertible mod q and p. Let 
fp and fq be the inverse.


The public key is h=g*fq mod q             
so h*f = g mod q.



Encryption

To encrypt a message m (a polynomial in 
R having small coefficients):


Choose at random a sparse polynomial 
r in R with very small coefficients.

The ciphertext is c = m + p r*h mod q.

Encryption is probabilistic.



Decryption

Multiplying by the secret key f, we can 
get:


c*f = m*f + p r*g (mod q).

If we could get the exact value of m*f 
+ p r*g over the integers, we could 
easily recover m mod p.

Note: both products m*f and r*g 
involve only polynomials with small 
coefficients, possibly sparse.



Products of Small Polynomials

Let f and g be two polynomials in R such 
that


f only has 0,1-coefficients.

g has small coefficients with identical 
distribution.


Then any coeff of f*g is just a sum of 
coeffs of g: the distribution should 
approximately be Gaussian with small 
standard deviation.



Impact on Decryption

This means that the coefficients of 
both m*f and r*g lie in a short 
interval, so that the coefficients of 
m*f + p r*g lie in an interval of length 
possibly <= q.

Then, one could recover the exact 
value of m*f + pr*g from its value  
mod q.  



Efficiency of Encryption

One needs to compute p r*h mod q, where 
h has mod q coefficients and r is sparse 
with coefficients 0,+1,-1: each coefficient of 
p r*h is just a sum/difference of 
coefficients of p*h.

Overall, this is O(N2) additions mod q, 
possibly less since r is “sparse”.



Efficiency of Decryption

The computation of c*f mod q: again, f only 
has 0,+1,-1 coefficients. This is O(N2) 
additions mod q.

Multiplication by the inverse of f mod p. 


If we choose a special form for f, this 
can be negligible.

Otherwise, it is O(N2) mults mod p.



Security

The main security parameter is N, but 
other parameters are important.

Key-recovery attacks


Brute force over f and g.

Square-root attack by Odlyzko.

Lattice attack by 
[CoppersmithShamir1997]. NTRU claims 
that this attack takes exponential time.



Lattice Attack on NTRU

The equation h*f = g mod q can be 
interpreted in terms of lattice.

The set L of all polynomials u and v in R 
such that h*u = v mod q is a lattice of 
Z2N, of dimension 2N.

The pair (f,g) belongs to the lattice L and 
it is very short because f and g have 
small coefficients: its norm is O(N1/2).



Lattice Interpretation 
of NTRU Encryption 

The encryption equation c = m + p r*h 
(mod q) means that the vector (0,c) in 
Z2N is close to the lattice vector       
(pr, pr*h mod q) in L, because the 
difference is (pr,m).

This is a BDD problem like in GGH 
encryption. 



Trapdoor-less Encryption



Diffie-Hellman Key Exchange

Let G=〈g〉be generated by g of order q.


Both can compute the shared key gab.

This key exchange is the core of El Gamal  
public-key encryption.

Alice Boba∈R Z/qZ ga ∈G

b∈R Z/qZgb ∈G



El Gamal Encryption 

Let G be a cyclic group 〈g〉 of order q.


Secret key x∈R Z/qZ. Public key y=gx ∈G.

Encrypt m∈G as (a,b)∈G2.


a=gk ∈G where k∈R Z/qZ

b=myk ∈G


Decrypt (a,b) by recovering yk=gkx=ax.



El Gamal Encryption 

Behind El Gamal, there is the Diffie-Hellman 
key exchange.


Alice has a secret key x∈R Z/qZ and 
discloses y=gx ∈G

Bob selects a one-time key k∈R Z/qZ and 
discloses gk∈G

Both can compute the shared key gkx.



Abstracting DH

Let e:   (a,b)   ↦ gab. This map is a pairing: it                  
ddd    Zq x Zq ➝ G   is bilinear.

Let f: a  ↦ ga be the DL one-way function     
ddd   Zq ➝ G

e(a,b) can be computed using (f(a),b) or (a,f(b)), 
i.e. even if a or b is hidden by f.

Security = hard to distinguish (f(a),f(b),e(a,b)) 
from (f(a),f(b),random). This is called DDH.



DH with Lattices?

What would be the pairing?

What would be the one-way function 
to hide inputs?



The SIS One-Way Function

Let g1,...,gm be uniformly distributed 
over G.

The input set is {-1,0,1}m or any small 
subset of Zm.

fg(x1,...,xm)=Σi xi gi ∈G.

Inversion is as hard as SIS.



The LWE One-Way Function

Let g1,...,gm be uniformly distributed 
over G.

The input is a pair (s,e) where s is a 
character in Gx  and e is small∈(R/Z)m

Then fxg(s,e)= (s(g1),...,s(gm))+e ∈(R/Z)m)m

Inversion is LWE.



Pairing from Lattices

Let g1,...,gm in G. The dual group Gx induces              
a pairing      GxxZm➝R/Z                                     
by     ε(s,(x1,...,xm)) = s(Σi xi gi)


Let y=fg(x1,...,xm)=Σi xi gi ∈G where xi’s small.                      

and b=fxg(s,e)= (s(g1),...,s(gm))+e ∈(R/Z)m, e small.

Thenε(s,(x1,...,xm)) can be computed from (s,y) or 

(b,(x1,...,xm)) as s(Σi xi gi) =Σi xi s(gi) ≈⟨(x1,...,xm),b〉
because the xi’s are small.



Let g1,...,gm generate G.


Both compute an approx ofε(s,(x1,...,xm))=s(y): 
Alice computes s(y)+e’and                           
Bob computes Σi xi bi.


Alice Bob s∈R Gx
b=fxg(s,e)= (s(g1),...,s(gm))+e

short (x1,...,xm)

y=fg(x1,...,xm)=Σi xi gi

Noisy Key-Exchange 
from Lattices



 ≠ Diffie-Hellman:
 The Noise

The two values computed by Alice and 
Bob are elements of the torus (R/Z) 
which are close to each other.

But how can they extract a bit?

0≡11/2 01



 Key Reconciliation

If Alice’s approximation is k∈(R/Z), Alice 
agrees on the bit 1-⎣2(k-1/2)⎤and sends 
the quadrant-bit to help Bob correct his 
approximation: this bit is uniformly 
distributed.

0≡11/2
1

1

0

0 01



 Key Reconciliation

More sophisticated key reconciliation 
are possible using higher-dimensional 
lattices: see NewHope and other NIST 
submissions.

0≡11/2
1

1

0

0



This key exchange gives rise to two El 
Gamal-like public-key encryption schemes, 
because the lattice pairing is not symmetric. 

These El-Gamal-like schemes are IND-CPA-
secure under the hardness of LWE/SIS. 

Similarly, many LWE/SIS schemes can be 
viewed as analogues of the RSA/DL world.

El Gamal Encryption 
from Lattices



Lattice El Gamal I [Regev05]

Let g1,...,gm generate G.

Secret key s∈R Gx.                                       
Public key b=fxg(s,e)= (s(g1),…,s(gm))+e.

Encrypt m∈{0,1} as (y,c)∈Gx(R/Z)


y = fg(x1,...,xm)=Σi xi gi where (x1,…,xm) is short


c = Σi xi bi+(m/2)


Decrypt (y,c) as ⎣2(s(y)-c)⎤∈{0,1}



Lattice El Gamal II [GPV08]
Let g1,...,gm generate G.

Secret key: short (x1,…,xm)∈Zm.                                       
Public key: y =fg(x1,...,xm)=Σi xi gi 


Encrypt m∈{0,1} as (b,c)∈(R/Z)mx(R/Z)

b=fxg(s,e)= (s(g1),…,s(gm))+e where s∈R Gx

c = s(y) + e’ + (m/2)

Decrypt (b,c) as ⎣2(Σi xi bi-c)⎤∈{0,1}



Homomorphic Encryption

El Gamal is well-known to be homomorphic 
with respect to the group operation G: the 
product of ciphertexts is a ciphertext of the 
product.

Our Lattice El Gamal are bounded-
homomorphic.

How about our Trapdoor Encryption?


