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o Lattice Analogues of:

o RSA: Encryption with Trapdoors
o Diffie-Hellman

o El Gamal: Encryption without Trapdoors



Lattice
Cryptography:
Design




Lattice-based Crypto
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o Two Types of Techniques

o Cryptography using trapdoors, i.e. secret
short basis of a lattice. Similarities with
RSA/Rabin cryptography.

o Cryptography without trapdoors. Similarities
with DL cryptography.

o Case study: Encryption.



Trapdoor-based Encryption:
GGH and NTRU
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RSA

SECURITY?

Remember
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o N=pq product of two large random primes.
o ed=1 (mod & (N)) where ¢ (N)=(p-1)(g-1).

oe is the public exponent
od is the secret exponent

o Then m—me® is a trapdoor one-way

permutation over Z/NZ, whose inverse is
c—cC.



Bounded Distance Decoding (BDD)
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o Input: a basis of a la’r’rlce L of dim d, and

a target vector t very close to L.

o Qutput: veL minimizing |lv-tll. Easy if one

knows a nearly-orthogonal basis.




Reducing Modulo a Lattice
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o If L is an integer lattice, the quotient Z"/L
is a finite group, with many representations:
lattice crypto works modulo a lattice.

o We call L-reduction any efficiently

computable map f from Z"s.t. f(x)=f(y)
iff x-yeL.



One-Way Functions from BDD
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o If BDD is hard over a ball, any public L-
reduction f is a one-way function over the
same ball.

olLet (L) be a BDD instance: t=v+e where
vel and e is very short.

o Then f(t)=f(e) because t-e=vel: if f is not
one-way, then given f(e), one can recover
e and also the BDD solution v=t-e.



Bulldlng L-Reductions
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o Any basis provides two L-reductions,
thanks to Babais nearest plane algorithm
and rounding-off algorithm.

o NTRU encryption implicitly uses a
L-reduction.



Ex: Babai’s rounding off
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Choose f(t) in the basis parallelepiped s.t. t-f(t)eL



Ex: Babai’s rounding off
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olLet tin Z".
o Let B the lattice basis.

o Solve t=uB where u in Q".
o Return f(t)=(u- | u | )B



Ex: Babai’s nearest plane algorithm
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olLet tin Z".

oLet B the lattice basis and B* its
Gram-Schmidt orthoganlization.

o Find v=uB where u in Z"s.t. t-v = xB*
where each coordinate of x is < 1/2 in
absolute valute

o Return f(t)=t-v.



Solvmg BDD by L-reduction
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o The L-reductions derived from Babai's
algorithms leave some set invariant:

there exists D(B)CZ"s.t. f(x)=x for all
xeD(B). This allows to solve BDD when
the erroreD(B).

o The largest ball inside D(B) depends
on the quality of the basis.



Deterministic Public-Key Encryption
|[GGHY7-MiccO1 |
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o Secret key = Good basis

o Public key = Bad basis - \ : :
o Message = Short vector

o Encryption = L-reduction with the public key
o Decryption = L-reduction with the secret key

o Optimization:



Encryption
with the Hardest Lattlces
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SIS Trapdoors
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o [Ajtail999 AlwenPeikert2010,Micciancioeik
ert2012] showed that it is possible to
generate gi,...,gme(Z/q)" with distribution
statistically close to uniform, together
with a short basis of the SIS lattice

L={x=(x1,...,.Xxm)eZ™ s.t. X xi gi = 0}.



Optlmlzlng Encryptlon NTRU




e Optimization: NTRU Encryption
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o Ring R=Z[X]/(XN-1), secret key (f,g)eR?, public
key h=g/f (mod q).
o Encryption can be viewed [MiOl] as L-reducing

a short vector with the Hermite normal form,
where L={(u,v)eR? s.t. u=pv*h (mod q)}.

o Decryption is a special BDD algorithm using
the secret key (f,g).



NTRU Encryptlon
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o Invented by Hoffstein, Pipher and
Silverman in 1996 (CRYPTO rump session):

o First published in 1998

o First cryptanalysis (Coppersmith-
Shamir) in 1997!

o Perhaps the fastest public-key
encryption scheme known, and one of
the most studied.



Key Generation
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oLet N be a prime number, e.g. 251

o Consider the ring R=Z[X]/(XN-1)

oLet p and q be two small coprime
integers:

o p=3 and q a small power of 2
(128 or 256)

o p=2 and q a small prime number



Key Generation
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o The secret key is two polynomials f and g
in R with very small coefficients:

o f and g could be ternary (O, 1, -1) or
binary (0, 1).

o f must be invertible mod q and p. Let
fp and fq be the inverse.

o The public key is h=g*f, mod q
so h*f = g mod q.



Encryptlon
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o To encrypt a message m (a polynomial in
R having small coefficients):

o Choose at random a sparse polynomial
r in R with very small coefficients.

o The ciphertext is c = m + p r*h mod q.

o Encryption is probabilistic.



Decryptlon
ON\uI’rlplylng by ’rhe secre’r key F we can
get:
o c*f = m*f + p r*g (mod q).
o If we could get the exact value of m*f

+ p r¥g over the integers, we could
easily recover m mod p.

o Note: both products m*f and r*g
involve only polynomials with small
coefficients, possibly sparse.



Products of Small Polynomials

olLet f and g be two polynomials in R such
that

o f only has 0,1-coefficients.

o g has small coefficients with identical
distribution.

o Then any coeff of f*g is just a sum of
coeffs of g: the distribution should
approximately be Gaussian with small
standard deviation.



Impact on Decryption
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o This means that the coefficients of
both m*f and r*g lie in a short
interval, so that the coefficients of
m*f + p r*g lie in an interval of length
possibly <= q.

o Then, one could recover the exact
value of m*f + pr*g from its value
mod q.



Efﬁ01ency of Encryptlon
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o One needs to compute p r*h mod g, where
h has mod g coefficients and r is sparse
with coefficients 0,+1,-1: each coefficient of
p r*h is just a sum/difference of
coefficients of p*h.

o Overall, this is O(N2) additions mod g,
possibly less since r is “sparse”.



Efﬁ01ency of Decryptlon
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o The computation of ¢c*f mod g: again, f only
has 0,+1,-1 coefficients. This is O(N?)
additions mod q.

o Multiplication by the inverse of f mod p.

o If we choose a special form for f, this
can be negligible.

o Otherwise, it is O(N?) mults mod p.



Security

, . ‘ ] 4 ST P Peop e P S & 2 ‘ . 2 o i
Wm&mmymm.uﬁm " IR e L ST .ad»\..u\c,,\&“;t’,w R P Sy Bl I T %

o The main security parameter is N, but
other parameters are important.

o Key-recovery attacks
o Brute force over f and g.
o Square-root attack by Odlyzko.

o Lattice attack by
[CoppersmithShamirl997]. NTRU claims
that this attack takes exponential time.



[attice Attack on NTRU
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o The equation h*f = g mod q can be
interpreted in terms of lattice.

o The set L of all polynomials u and v in R
such that h*u = v mod q is a lattice of

ZN, of dimension 2N.
o The pair (f,g) belongs to the lattice L and

it is very short because f and g have
small coefficients: its norm is O(NY2).



Lattice Interpretation
of NTRU Encryptlon
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o The encryption equation ¢ = m + p r*h
(mod gq) means that the vector (0,c) in

ZN is close to the lattice vector
(pr, pr*h mod q) in L, because the
difference is (pr,m).

o This is a BDD problem like in GGH
encryption.



Trapdoor—less Encryptlon
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r\‘?- Diffie-Hellman Key Exchange
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olet G= (g) be genera’red by g of dider qg.
Bob

o Both can compute the shared key g®°.

o This key exchange is the core of E| Gamal
public-key encryption.
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olLet G be a cyclic group (g) of order q.

o Secret key xer Z/qZ. Public key y=g* €G.
o Encrypt meG as (a,b)eG®.

o a=g“ €G where ker Z/qZ
o b=my* €G

o Decrypt (a,b) by recovering y*=g“*=a*.
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El Gamal Encryptlon
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o Behind El Gamal, there is the Diffie-Hellman
key exchange.

o Alice has a secret key xer Z/qZ and
discloses y=g* €G

o Bob selects a one-time key ker Z/qZ and
discloses g“eG

o Both can compute the shared key g**.



Abstractmg DH
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olLet e: (ab) ~ g“b Thls map is a pairing: it
ZyoX Zg > G is bilinear.

OolLet f: a ~ g° be the DL one-way function
Z,— G

o e(a,b) can be computed using (f(a),b) or (a,f(b)),

i.e. even if a or b is hidden by f.

o Security = hard to distinguish (f(a),f(b),e(a,b))
from (f(a),f(b),random). This is called DDH.



DH with Lattices?
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o What would be the pairing?

o What would be the one-way function
to hide inputs?



The SIS One- Way Function
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olLet gi,..,.gm be unn‘ormly dlsfrlbufed
over G.

oThe input set is {-1,0,1}™ or any small
subset of Z™.

O fo(X1,-.., Xm)=2i Xi g €G.

oInversion is as hard as SIS.



The LWE One- Way Function

m%m&mm'ﬁpmm A Py v e R 40 2 "Lt ,&&“;t’,w W%m‘m

oLet gi,...,.gm be uniformly distributed
over G.

oThe input is a pair (s,e) where s is a
character in G* and e is smalle(R/Z)"

o Then f*4(s,e)= (s(gi),-...s(gm))+e €(R/Z)™)"

o Inversion is LWE.



P
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o Let gusgmin G. The dual group G~ induces
a palrlng G*xZ"—R/Z
bY 9 (S,(Xl,...,xm)) = S(Zi Xi gl)

Pairing from Lattices

olLet y=Ffy(x1,....xm)=2i xi gi €G where x;s small.

and b=f*y(s,e)= (s(g),....s(gm))+e €(R/Z)™, e small.
o Then € (s,(x1,...,.xm)) can be computed from (s,y) or
(b,(X1,-..,xm)) a@s s(Zi xi gi) =2 xi s(gi) ={(X1,...,Xm),b)

because the xis are small.



Noisy Key-Exchange
from Lattlces _
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olLet gi-...,.gm generafe G e
X
Alice b=f 9(5 e)= (5(91), ,S(gm))+e

ser G* q Bob

short (Xi,...,Xm)

o Both compute an approx of € (s,(x1,...,xm))=s(y):

Alice computes s(y)+e’and
Bob computes 2 x; b;.



# Diffie-Hellman:
The No1se
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o The two values computed by Alice and
Bob are elements of the torus (R/Z)
which are close to each other.

o But how can they extract a bit?
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Key Reconciliation
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o If Alices approxnma’rlon is ke(R/Z), Allce
agrees on the bit 1- | 2(k-1/2) | and sends

the quadrant-bit to help Bob correct his
approximation: this bit is uniformly
distributed.
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Key Reconciliation
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o More sophisticated key reconciliation
are possible using higher-dimensional
lattices: see NewHope and other NIST
submissions.

1/2 § » 0=1



El Gamal Encryption
from Lattlces
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o This key exchange gives rise to two El
Gamal-like public-key encryption schemes,
because the lattice pairing is not symmeftric.

o These El-Gamal-like schemes are IND-CPA-
secure under the hardness of LWE/SIS.

o Similarly, many LWE/SIS schemes can be
viewed as analogues of the RSA/DL world.
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2 Lattice El Gamal I [RegeVOS]
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olLet gi,....gm genera’re G.

o Secret key ser G*.
Public key b=f*4(s,e)= (s(qu),...,s(gm))+e.

o Encrypt me{0,1} as (y,c)eGx(R/Z)

oy = fy(Xy,....Xm)=2 Xi gi where (xi,...,xm) is short
oc = 2% bi+(m/2)

o Decrypt (y,c) as | 2(s(y)-c) | €{0,1}
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olLet gi,....gm genera’re G

o Secret key: short (xi,...,xm)eZ™.
Public key: y =fq(x1,...,.xm)=2i Xi gi
o Encrypt me{0,1} as (b,c)e(R/Z)"x(R/Z)
o b=f*4(s,e)= (s(qg1),...,5(gm))+e where ser G”
oc =5s(y) + e + (m/2)
o Decrypt (b,c) as [ 2(Zi xi bi-c) | €{0,1}



Homomorphic Encryption
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o El Gamal is well-known to be homomorphic
with respect to the group operation G: the
product of ciphertexts is a ciphertext of the
product.

© Our Lattice El Gamal are bounded-
homomorphic.

o How about our Trapdoor Encryption?



