
Lattice-based Encryption
 Phong Nguyễn

October 2020

Today

Lattice Analogues of:

RSA: Encryption with Trapdoors

Diffie-Hellman

El Gamal: Encryption without Trapdoors

Lattice
Cryptography:

Design

Lattice-based Crypto

Two Types of Techniques

Cryptography using trapdoors, i.e. secret
short basis of a lattice. Similarities with
RSA/Rabin cryptography.

Cryptography without trapdoors. Similarities
with DL cryptography.

Case study: Encryption.

Trapdoor-based Encryption:
GGH and NTRU

Remember

N=pq product of two large random primes.

ed≡1 (mod φ(N)) where φ(N)=(p-1)(q-1).

e is the public exponent

d is the secret exponent

Then m→me is a trapdoor one-way

permutation over Z/NZ, whose inverse is
c→cd.

Bounded Distance Decoding (BDD)

Input: a basis of a lattice L of dim d, and
a target vector t very close to L.

Output: v∈L minimizing ||v-t||. Easy if one
knows a nearly-orthogonal basis.

O

t
v

Reducing Modulo a Lattice

If L is an integer lattice, the quotient Zn/L
is a finite group, with many representations:
lattice crypto works modulo a lattice.

We call L-reduction any efficiently
computable map f from Zn s.t. f(x)=f(y)
iff x-y∈L.

One-Way Functions from BDD

If BDD is hard over a ball, any public L-
reduction f is a one-way function over the
same ball.

Let (t,L) be a BDD instance: t=v+e where
v∈L and e is very short.

Then f(t)=f(e) because t-e=v∈L: if f is not
one-way, then given f(e), one can recover
e and also the BDD solution v=t-e.

Building L-Reductions

Any basis provides two L-reductions,
thanks to Babai’s nearest plane algorithm
and rounding-off algorithm.

NTRU encryption implicitly uses a
L-reduction.

Ex: Babai’s rounding off

Choose f(t) in the basis parallelepiped s.t. t-f(t)∈L

t

b1

b2

t-f(t)
f(t)

Let t in Zn.

Let B the lattice basis.

Solve t=uB where u in Qn.

Return f(t)=(u-⎣u⎤)B

Ex: Babai’s rounding off

Let t in Zn.

Let B the lattice basis and B* its
Gram-Schmidt orthoganlization.

Find v=uB where u in Zn s.t. t-v = xB*
where each coordinate of x is ≤ 1/2 in
absolute valute

Return f(t)=t-v.

Ex: Babai’s nearest plane algorithm

Solving BDD by L-reduction

The L-reductions derived from Babai’s
algorithms leave some set invariant:
there exists D(B)⊆Zn s.t. f(x)=x for all
x∈D(B). This allows to solve BDD when
the error∈D(B).

The largest ball inside D(B) depends
on the quality of the basis.

Deterministic Public-Key Encryption
[GGH97-Micc01]

Secret key = Good basis

Public key = Bad basis

Message = Short vector

Encryption = L-reduction with the public key

Decryption = L-reduction with the secret key

Optimization:

O

Encryption
with the Hardest Lattices

SIS Trapdoors

[Ajtai1999,AlwenPeikert2010,Micciancioeik
ert2012] showed that it is possible to
generate g1,…,gm∈(Z/q)n with distribution
statistically close to uniform, together
with a short basis of the SIS lattice
L={x=(x1,...,xm)∈Zm s.t. Σi xi gi = 0}.

Optimizing Encryption: NTRU

Optimization: NTRU Encryption

Ring R=Z[X]/(XN-1), secret key (f,g)∈R2, public
key h=g/f (mod q).

Encryption can be viewed [Mi01] as L-reducing
a short vector with the Hermite normal form,
where L={(u,v)∈R2 s.t. u≡pv*h (mod q)}.

Decryption is a special BDD algorithm using
the secret key (f,g).

NTRU Encryption

Invented by Hoffstein, Pipher and
Silverman in 1996 (CRYPTO rump session):

First published in 1998

First cryptanalysis (Coppersmith-
Shamir) in 1997!

Perhaps the fastest public-key
encryption scheme known, and one of
the most studied.

Key Generation

Let N be a prime number, e.g. 251

Consider the ring R=Z[X]/(XN-1)

Let p and q be two small coprime
integers:

p=3 and q a small power of 2
(128 or 256)

p=2 and q a small prime number

Key Generation

The secret key is two polynomials f and g
in R with very small coefficients:

f and g could be ternary (0, 1, -1) or
binary (0, 1).

f must be invertible mod q and p. Let
fp and fq be the inverse.

The public key is h=g*fq mod q
so h*f = g mod q.

Encryption

To encrypt a message m (a polynomial in
R having small coefficients):

Choose at random a sparse polynomial
r in R with very small coefficients.

The ciphertext is c = m + p r*h mod q.

Encryption is probabilistic.

Decryption

Multiplying by the secret key f, we can
get:

c*f = m*f + p r*g (mod q).

If we could get the exact value of m*f
+ p r*g over the integers, we could
easily recover m mod p.

Note: both products m*f and r*g
involve only polynomials with small
coefficients, possibly sparse.

Products of Small Polynomials

Let f and g be two polynomials in R such
that

f only has 0,1-coefficients.

g has small coefficients with identical
distribution.

Then any coeff of f*g is just a sum of
coeffs of g: the distribution should
approximately be Gaussian with small
standard deviation.

Impact on Decryption

This means that the coefficients of
both m*f and r*g lie in a short
interval, so that the coefficients of
m*f + p r*g lie in an interval of length
possibly <= q.

Then, one could recover the exact
value of m*f + pr*g from its value
mod q.

Efficiency of Encryption

One needs to compute p r*h mod q, where
h has mod q coefficients and r is sparse
with coefficients 0,+1,-1: each coefficient of
p r*h is just a sum/difference of
coefficients of p*h.

Overall, this is O(N2) additions mod q,
possibly less since r is “sparse”.

Efficiency of Decryption

The computation of c*f mod q: again, f only
has 0,+1,-1 coefficients. This is O(N2)
additions mod q.

Multiplication by the inverse of f mod p.

If we choose a special form for f, this
can be negligible.

Otherwise, it is O(N2) mults mod p.

Security

The main security parameter is N, but
other parameters are important.

Key-recovery attacks

Brute force over f and g.

Square-root attack by Odlyzko.

Lattice attack by
[CoppersmithShamir1997]. NTRU claims
that this attack takes exponential time.

Lattice Attack on NTRU

The equation h*f = g mod q can be
interpreted in terms of lattice.

The set L of all polynomials u and v in R
such that h*u = v mod q is a lattice of
Z2N, of dimension 2N.

The pair (f,g) belongs to the lattice L and
it is very short because f and g have
small coefficients: its norm is O(N1/2).

Lattice Interpretation
of NTRU Encryption

The encryption equation c = m + p r*h
(mod q) means that the vector (0,c) in
Z2N is close to the lattice vector
(pr, pr*h mod q) in L, because the
difference is (pr,m).

This is a BDD problem like in GGH
encryption.

Trapdoor-less Encryption

Diffie-Hellman Key Exchange

Let G=〈g〉be generated by g of order q.

Both can compute the shared key gab.

This key exchange is the core of El Gamal
public-key encryption.

Alice Boba∈R Z/qZ ga ∈G

b∈R Z/qZgb ∈G

El Gamal Encryption

Let G be a cyclic group 〈g〉 of order q.

Secret key x∈R Z/qZ. Public key y=gx ∈G.

Encrypt m∈G as (a,b)∈G2.

a=gk ∈G where k∈R Z/qZ

b=myk ∈G

Decrypt (a,b) by recovering yk=gkx=ax.

El Gamal Encryption

Behind El Gamal, there is the Diffie-Hellman
key exchange.

Alice has a secret key x∈R Z/qZ and
discloses y=gx ∈G

Bob selects a one-time key k∈R Z/qZ and
discloses gk∈G

Both can compute the shared key gkx.

Abstracting DH

Let e: (a,b) ↦ gab. This map is a pairing: it
ddd Zq x Zq ➝ G is bilinear.

Let f: a ↦ ga be the DL one-way function
ddd Zq ➝ G

e(a,b) can be computed using (f(a),b) or (a,f(b)),
i.e. even if a or b is hidden by f.

Security = hard to distinguish (f(a),f(b),e(a,b))
from (f(a),f(b),random). This is called DDH.

DH with Lattices?

What would be the pairing?

What would be the one-way function
to hide inputs?

The SIS One-Way Function

Let g1,...,gm be uniformly distributed
over G.

The input set is {-1,0,1}m or any small
subset of Zm.

fg(x1,...,xm)=Σi xi gi ∈G.

Inversion is as hard as SIS.

The LWE One-Way Function

Let g1,...,gm be uniformly distributed
over G.

The input is a pair (s,e) where s is a
character in Gx and e is small∈(R/Z)m

Then fxg(s,e)= (s(g1),...,s(gm))+e ∈(R/Z)m)m

Inversion is LWE.

Pairing from Lattices

Let g1,...,gm in G. The dual group Gx induces
a pairing GxxZm➝R/Z
by ε(s,(x1,...,xm)) = s(Σi xi gi)

Let y=fg(x1,...,xm)=Σi xi gi ∈G where xi’s small.

and b=fxg(s,e)= (s(g1),...,s(gm))+e ∈(R/Z)m, e small.

Thenε(s,(x1,...,xm)) can be computed from (s,y) or

(b,(x1,...,xm)) as s(Σi xi gi) =Σi xi s(gi) ≈⟨(x1,...,xm),b〉
because the xi’s are small.

Let g1,...,gm generate G.

Both compute an approx ofε(s,(x1,...,xm))=s(y):
Alice computes s(y)+e’and
Bob computes Σi xi bi.

Alice Bob s∈R Gx
b=fxg(s,e)= (s(g1),...,s(gm))+e

short (x1,...,xm)

y=fg(x1,...,xm)=Σi xi gi

Noisy Key-Exchange
from Lattices

 ≠ Diffie-Hellman:
 The Noise

The two values computed by Alice and
Bob are elements of the torus (R/Z)
which are close to each other.

But how can they extract a bit?

0≡11/2 01

 Key Reconciliation

If Alice’s approximation is k∈(R/Z), Alice
agrees on the bit 1-⎣2(k-1/2)⎤and sends
the quadrant-bit to help Bob correct his
approximation: this bit is uniformly
distributed.

0≡11/2
1

1

0

0 01

 Key Reconciliation

More sophisticated key reconciliation
are possible using higher-dimensional
lattices: see NewHope and other NIST
submissions.

0≡11/2
1

1

0

0

This key exchange gives rise to two El
Gamal-like public-key encryption schemes,
because the lattice pairing is not symmetric.

These El-Gamal-like schemes are IND-CPA-
secure under the hardness of LWE/SIS.

Similarly, many LWE/SIS schemes can be
viewed as analogues of the RSA/DL world.

El Gamal Encryption
from Lattices

Lattice El Gamal I [Regev05]

Let g1,...,gm generate G.

Secret key s∈R Gx.
Public key b=fxg(s,e)= (s(g1),…,s(gm))+e.

Encrypt m∈{0,1} as (y,c)∈Gx(R/Z)

y = fg(x1,...,xm)=Σi xi gi where (x1,…,xm) is short

c = Σi xi bi+(m/2)

Decrypt (y,c) as ⎣2(s(y)-c)⎤∈{0,1}

Lattice El Gamal II [GPV08]
Let g1,...,gm generate G.

Secret key: short (x1,…,xm)∈Zm.
Public key: y =fg(x1,...,xm)=Σi xi gi

Encrypt m∈{0,1} as (b,c)∈(R/Z)mx(R/Z)

b=fxg(s,e)= (s(g1),…,s(gm))+e where s∈R Gx

c = s(y) + e’ + (m/2)

Decrypt (b,c) as ⎣2(Σi xi bi-c)⎤∈{0,1}

Homomorphic Encryption

El Gamal is well-known to be homomorphic
with respect to the group operation G: the
product of ciphertexts is a ciphertext of the
product.

Our Lattice El Gamal are bounded-
homomorphic.

How about our Trapdoor Encryption?

