Lattice-based Encryption

Phong Nguyễn

October 2020

Today

Lattice Analogues of: RSA: Encryption with Trapdoors Diffie-Hellman El Gamal: Encryption without Trapdoors

Lattice Cryptography: Design

Lattice-based Crypto

Two Types of Techniques

 Cryptography using trapdoors, i.e. secret short basis of a lattice. Similarities with RSA/Rabin cryptography.

 Cryptography without trapdoors. Similarities with DL cryptography.

• Case study: Encryption.

Trapdoor-based Encryption: GGH and NTRU

• N=pq product of two large random primes. $\circ ed = 1 \pmod{\phi(N)}$ where $\phi(N) = (p-1)(q-1)$. o e is the public exponent od is the secret exponent \circ Then m \rightarrow m^e is a trapdoor one-way permutation over Z/NZ, whose inverse is $c \rightarrow c^d$

Bounded Distance Decoding (BDD)

Input: a basis of a lattice L of dim d, and a target vector t very close to L.
Output: v∈L minimizing ||v-t||. Easy if one knows a nearly-orthogonal basis.

Reducing Modulo a Lattice

If L is an integer lattice, the quotient Zⁿ/L
 is a finite group, with many representations:
 lattice crypto works modulo a lattice.

 We call L-reduction any efficiently computable map f from Zⁿ s.t. f(x)=f(y) iff x-y∈L.

One-Way Functions from BDD

- If BDD is hard over a ball, any public Lreduction f is a one-way function over the same ball.
 - Let (t,L) be a BDD instance: t=v+e where
 v∈L and e is very short.
 - Then f(t)=f(e) because t-e=v∈L: if f is not one-way, then given f(e), one can recover e and also the BDD solution v=t-e.

Building L-Reductions

 Any basis provides two L-reductions, thanks to Babai's nearest plane algorithm and rounding-off algorithm.

 NTRU encryption implicitly uses a L-reduction.

Ex: Babai's rounding off

Choose f(t) in the basis parallelepiped s.t. $t-f(t) \in L$

Ex: Babai's rounding off

Let t in Zⁿ.
Let B the lattice basis.
Solve t=uB where u in Qⁿ.
Return f(t)=(u- Lu)B

Ex: Babai's nearest plane algorithm

- \circ Let t in Z^n .
- Let B the lattice basis and B* its
 Gram-Schmidt orthoganlization.
- Find v=uB where u in Zⁿ s.t. t-v = xB*
 where each coordinate of x is ≤ 1/2 in absolute valute

 \circ Return f(t)=t-v.

Solving BDD by L-reduction

The L-reductions derived from Babai's algorithms leave some set invariant: there exists D(B)⊆Zⁿ s.t. f(x)=x for all x∈D(B). This allows to solve BDD when the error∈D(B).

 The largest ball inside D(B) depends on the quality of the basis.

Deterministic Public-Key Encryption [GGH97-Micc01]

- Secret key = Good basis
 Public key = Bad basis
- Message = Short vector

Encryption = L-reduction with the public key
Decryption = L-reduction with the secret key
Optimization: Ntrū

Encryption with the Hardest Lattices

States & p. - W

SIS Trapdoors

 [Ajtai1999,AlwenPeikert2010,Micciancioeik ert2012] showed that it is possible to generate g₁,...,g_m∈(Z/q)ⁿ with distribution statistically close to uniform, together with a short basis of the SIS lattice L={x=(x₁,...,x_m)∈Z^m s.t. Σ_i x_i g_i = 0}.

Optimizing Encryption: NTRU

and the second second

the state of the second of the state of the

a son was to man we can present a state - on

Ntrū Optimization: NTRU Encryption

Card a second for the second and the

- Ring R=Z[X]/(X^N-1), secret key (f,g)∈R², public key h=g/f (mod q).
- Encryption can be viewed [Mi01] as L-reducing a short vector with the Hermite normal form, where L={(u,v)∈R² s.t. u=pv*h (mod q)}.
- Decryption is a special BDD algorithm using the secret key (f,g).

NTRU Encryption

 Invented by Hoffstein, Pipher and Silverman in 1996 (CRYPTO rump session): o First published in 1998 • First cryptanalysis (Coppersmith-Shamir) in 1997! Perhaps the fastest public-key encryption scheme known, and one of the most studied.

Key Generation

Let N be a prime number, e.g. 251
Consider the ring R=Z[X]/(X^N-1)
Let p and q be two small coprime integers:

 p=3 and q a small power of 2 (128 or 256)

 $\circ p=2$ and q a small prime number

Key Generation

- The secret key is two polynomials f and g in R with very small coefficients:
 - o f and g could be ternary (0, 1, -1) or binary (0, 1).
 - f must be invertible mod q and p. Let f_p and f_q be the inverse.
- The public key is $h=g^{f_q} \mod q$ so $h^{f_q} = g \mod q$.

Encryption

 To encrypt a message m (a polynomial in R having small coefficients):

Choose at random a sparse polynomial
 r in R with very small coefficients.

• The ciphertext is $c = m + p r^*h \mod q$.

• Encryption is probabilistic.

Decryption

 Multiplying by the secret key f, we can get:

 $\circ c^{*}f = m^{*}f + p r^{*}g \pmod{q}$.

- If we could get the exact value of m*f
 + p r*g over the integers, we could
 easily recover m mod p.
- Note: both products m*f and r*g involve only polynomials with small coefficients, possibly sparse.

Products of Small Polynomials

- Let f and g be two polynomials in R such that
 - of only has 0,1-coefficients.
 - g has small coefficients with identical distribution.
- Then any coeff of f*g is just a sum of coeffs of g: the distribution should approximately be Gaussian with small standard deviation.

Impact on Decryption

 This means that the coefficients of both m*f and r*g lie in a short interval, so that the coefficients of m*f + p r*g lie in an interval of length possibly <= q.

Then, one could recover the exact value of m*f + pr*g from its value mod q.

Efficiency of Encryption

 One needs to compute p r*h mod q, where h has mod q coefficients and r is sparse with coefficients 0,+1,-1: each coefficient of p r*h is just a sum/difference of coefficients of p*h.

 Overall, this is O(N²) additions mod q, possibly less since r is "sparse".

Efficiency of Decryption

 The computation of c*f mod q: again, f only has 0,+1,-1 coefficients. This is O(N²) additions mod q.

• Multiplication by the inverse of f mod p.

• If we choose a special form for f, this can be negligible.

o Otherwise, it is $O(N^2)$ mults mod p.

Security

• The main security parameter is N, but other parameters are important. Key-recovery attacks • Brute force over f and q. Square-root attack by Odlyzko. Lattice attack by [CoppersmithShamir1997]. NTRU claims that this attack takes exponential time.

Lattice Attack on NTRU

 The equation h*f = g mod q can be interpreted in terms of lattice.

The set L of all polynomials u and v in R such that h*u = v mod q is a lattice of Z^{2N}, of dimension 2N.

 The pair (f,g) belongs to the lattice L and it is very short because f and g have small coefficients: its norm is O(N^{1/2}).

Lattice Interpretation of NTRU Encryption

The encryption equation c = m + p r*h (mod q) means that the vector (0,c) in Z^{2N} is close to the lattice vector (pr, pr*h mod q) in L, because the difference is (pr,m).

This is a BDD problem like in GGH encryption.

Trapdoor-less Encryption

The second share

white stant & shirts and the start and a start

Diffie-Hellman Key Exchange

Both can compute the shared key g^{ab}.
 This key exchange is the core of El Gamal public-key encryption.

El Gamal Encryption

• Let G be a cyclic group $\langle g \rangle$ of order q. o Secret key $x \in_R Z/qZ$. Public key y=g[×] ∈G. ◦ Encrypt m∈G as $(a,b) \in G^2$. $\circ a = q^k \in G$ where $k \in R Z/qZ$ o b=my^k ∈G Decrypt (a,b) by recovering y^k=g^{kx}=a^x.

El Gamal Encryption

 Behind El Gamal, there is the Diffie-Hellman key exchange.

• Alice has a secret key $x \in_R Z/qZ$ and discloses $y=g^x \in G$

 Bob selects a one-time key k∈_R Z/qZ and discloses g^k∈G

• Both can compute the shared key g^{kx}.

Abstracting DH

- Let e: (a,b) \mapsto g^{ab}. This map is a pairing: it $Z_q \times Z_q \rightarrow G$ is bilinear.
- Let f: $a \mapsto g^a$ be the DL one-way function $\mathbf{Z}_q \to \mathbf{G}$
- e(a,b) can be computed using (f(a),b) or (a,f(b)),
 i.e. even if a or b is hidden by f.
- Security = hard to distinguish (f(a), f(b), e(a, b))
 from (f(a), f(b), random). This is called DDH.

DH with Lattices?

• What would be the pairing?
• What would be the one-way function to hide inputs?

The SIS One-Way Function

- Let g₁,...,g_m be uniformly distributed over G.
- The input set is {-1,0,1}^m or any small subset of Z^m.
- $\circ f_g(\mathbf{x}_1,...,\mathbf{x}_m) = \Sigma_i \mathbf{x}_i \mathbf{g}_i \in \mathbf{G}.$
- oInversion is as hard as SIS.

The LWE One-Way Function

- Let g₁,...,g_m be uniformly distributed over G.
- The input is a pair (s,e) where s is a character in G[×] and e is small∈(R/Z)^m
 Then f[×]_g(s,e)= (s(g₁),...,s(g_m))+e ∈(R/Z)^m)^m
 Inversion is LWE.

Pairing from Lattices

- Let $g_1, ..., g_m$ in G. The dual group G^{\times} induces a pairing $G^{\times} \times \mathbb{Z}^m \to \mathbb{R}/\mathbb{Z}$ by $\varepsilon (s, (\chi_1, ..., \chi_m)) = s(\Sigma_i \chi_i g_i)$
- Let $y=f_g(x_1,...,x_m)=\Sigma_i x_i g_i \in G$ where x_i 's small. and $b=f^x_g(s,e)=(s(g_1),...,s(g_m))+e \in (\mathbb{R}/\mathbb{Z})^m$, e small. • Then ε (s,($x_1,...,x_m$)) can be computed from (s,y) or (b,($x_1,...,x_m$)) as s($\Sigma_i x_i g_i$) = $\Sigma_i x_i s(g_i) \approx \langle (x_1,...,x_m),b \rangle$
 - because the x_i 's are small.

Both compute an approx of ε (s,(x₁,...,x_m))=s(y):
 Alice computes s(y)+e' and
 Bob computes Σ_i x_i b_i.

≠ Diffie-Hellman: The Noise

The two values computed by Alice and Bob are elements of the torus (R/Z) which are close to each other.
But how can they extract a bit?

Key Reconciliation

If Alice's approximation is k∈(R/Z), Alice agrees on the bit 1- 2(k-1/2) and sends the quadrant-bit to help Bob correct his approximation: this bit is uniformly distributed.

Key Reconciliation

 More sophisticated key reconciliation are possible using higher-dimensional lattices: see NewHope and other NIST submissions.

El Gamal Encryption from Lattices

This key exchange gives rise to two El
 Gamal-like public-key encryption schemes,
 because the lattice pairing is not symmetric.

• These El-Gamal-like schemes are IND-CPAsecure under the hardness of LWE/SIS.

 Similarly, many LWE/SIS schemes can be viewed as analogues of the RSA/DL world.

Lattice El Gamal I [Regev05]

- ∘ Let g₁,...,g_m generate G.
- Secret key s∈_R G[×].
 Public key b=f[×]_g(s,e)= (s(g₁),...,s(g_m))+e.
- Encrypt $m \in \{0,1\}$ as $(y,c) \in Gx(R/Z)$
 - $\circ y = f_g(x_1,...,x_m) = \sum_i x_i g_i$ where $(x_1,...,x_m)$ is short
 - $\circ c = \sum_{i} \mathbf{x}_{i} \mathbf{b}_{i} + (m/2)$

◦ Decrypt (y,c) as $\lfloor 2(s(y)-c) \rceil \in \{0,1\}$

Lattice El Gamal II [GPV08]

- ∘ Let g₁,...,g_m generate G.
- Secret key: short (x₁,...,x_m)∈Z^m.
 Public key: y =f_g(x₁,...,x_m)=∑_i x_i g_i
- Encrypt m∈{0,1} as $(b,c)∈(R/Z)^mx(R/Z)$
 - \circ b=f[×]_g(s,e)= (s(g₁),...,s(g_m))+e where s∈_R G[×]
 - $\circ c = s(y) + e' + (m/2)$
 - Decrypt (b,c) as $\lfloor 2(\Sigma_i \times_i b_i c) \rceil \in \{0,1\}$

Homomorphic Encryption

 El Gamal is well-known to be homomorphic with respect to the group operation G: the product of ciphertexts is a ciphertext of the product.

 Our Lattice El Gamal are boundedhomomorphic.

• How about our Trapdoor Encryption?