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EASY PROBLEMS

> We restrict to integer lattices: a basis is represented by an
integer matrix.

» Given a basis of an integer lattice L and a target v, decide if v€L
and if so, output its basis coefficients.

> Given bases of two integer lattices L and M, decide if L=M,
compute a basis of LnM.

> Given bases of an integer lattice L and a subspace E, compute a
basis of LNE.
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FULL-RANK INTEGER LATTICES

» Let L be a full-rank lattice in Z".

» Then the quotient Z"/L is a finite Abelian group of order
covol(L).

» In particular, covol(L)Z" C L.
» L has a full-rank family of orthogonal vectors.

> But this family is usually not a Z-basis of L.



LOWER-TRIANGULAR BASES

» By multiplying the canonical vectors by covol(L), we can
derive a Z-basis of L which spans the same subspaces, and is
therefore lower-triangular.

» This triangular form can be made unique if we ensure that:
» The diagonal is > 0.

» In each column, all coefficients > 0 and < the diagonal
coetficient.

» This is the Hermite normal form.



COMPUTING THE HNF

» (Given a basis by,..., b, of a full-rank lattice L in Zn, we can
compute in deterministic polynomial time the Hermite normal
form of L.

» First, we compute D=covol(L) = I det(by,...,bn)!.

» Then DI is the Hermite normal form of DZ".



INCREMENTAL HNF

» Input: the HNF of a full-rank integer lattice M and an integer
vector b.

» Output: the HNF of the lattice M + Zb.
> Let a be the last row of M.

» Consider the lattice L = Za + Zb.

» We can compute a@’and b’such that L = Za’'+ Zb’ and the
last coordinate a’ of is zero: how?

» What's next?



INCREMENTAL HNF

» Consider the lattice L = Za + Zl_;

» Let a and f be the last coordinates of a and b.

» Using Euclid's XGCD, compute integers u and v s.t.
au + pv = gcd(a, )

> Compute @' = (f/gcd(a, B))d — (algcd(a, f))b and b’ = ud + vb.
Then L = Za' 4+ Zb’ and the last coordinate of a’ is zero.

> By subtracting suitable multiples of the first n-1 rows of M, make all
the coordinates of a’and b’ between 0 and D.

» Apply recursively Incremental-HNF to the first n-1 rows of M, and
a’', by ignoring their last coordinate (which is zero).

» Use the new HNF to reduce b'.



TAKE AWAY

* Key ideas:

> Projecting to simplify the problem.

» Reducing with the diagonal to make sure that vectors do not
get too big.
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THE BASIS ALGORITHM

» INPUT: by,...,bn EZm s.t. b0
» OUTPUT: a basis of the lattice L(by,...,bn) spanned by the b;’s.

» We may assume that by, ..., bn1 are linearly independent: by
iterating this algorithm n times, we solve the original problem.



THE ITERATIVE BASIS ALGORITHM

» INPUT: by,...,bn €Zm s.t. by, ...,bn1 are linearly independent.
» OUTPUT: a basis of the lattice L(bj,...,bn) spanned by the by’s.
» This means that n-1 < rank(L(by,...,bn)) < n.

» We need tools:

» How can we decide linear independence efficiently?

» How can we compute projections?






THE DUAL LATTICE

> Let L be a lattice.
» The dual lattice of L is Lx={y&span(L) s.t. {x,y>€Z for all x€L}
» What is the dual of Z"?
» Show that Lx is a lattice.
> If B is a basis of L, then (BB")~'B is a basis of Lx.
» rank(L)=rank(Lx) and covol(L)covol(Lx)=1

» Lx/Lis a finite group of order covol(L)?.



EX: KERNEL LATTICES

> Let n,m,gEN.
» et A be an mxn matrix over Z.

» The kernel La={x€Zm s.t. xA =0 mod q} is a full-rank lattice in
Zms.t. covol(La) | gn.

> Its dual lattice is (1/q)L’a where L' s is the «<image» i.e.
L'a=lyEZ™ s.t. y=zAtmod q for some zEZn}



COMPUTATIONAL
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GRAM-SCHMIDT

> Let bl, - o .,bnERm.

> [ts Gram-Schmidt Orthogonalization is by’,...,b,"ER™ defined
A1

» b1 =D

> For 2<i<n, b;" = projection of b;over span(by,...,bi1):

» (Classical tool to show the existence of orthonormal bases in
Euclidean spaces.



> bi" L span(by,...,bi1), i.e. (bi’,bp=0 if i>]
> bi"-b; Espan(by,...,bi.1)=span(bi’,...,bi1")
> Notation: bi-b;" = Yj«i Wi by .
> | Ibi*| | = distance of b;to span(by,...,bi1).
> (bi",bj»=0 if i#]



FORMULAS

» Letby,...,bnER™be linearly independent.
» Then all b;"=0.

> For Igj<i<n, let M4, = Hg*HZ -

. '
i B J — — —
» Then: bt = b, by =b;i— Y u; jb’]*.

» Thus: . . 1—1 . =1

|07 (1 = [1:1]° - Zu?,j Dl
1 ;= <b“ i)~ S‘k 1:% kM, kHb |7
(ZV
652

» This gives an algorithm, but not necessarﬂy efficient: we want
cheap operations on reasonably-sized numbers.



EFFICIENT COMPUTATIONS

» We only deal with integers, so assume that b, ..., b, € Z" and
let M = max;<j<,||D;]|-

» Define the following integers:

)dOzl

_ d;=Gram(b,,....b) = | [ I16¥] s0 1 < d; < M*
j=1

» Then y; ; and Hl_o);kH2 c Q, I;Z* c Q"



INTEGRAL GRAM-SCHMIDT

» Lemma: Let by, ..., bn€Zm be linearly independent. Then for all
Igj<a<n:

> d_b* € L(by, ...,b) C Z"with ||d,_b¥|| < M*~!
> dift; i € Z with |dip; ;| < M7
> Proof: Let L=L(by,...,bi) and denote by Lx its dual lattice. Then
[Lx:L]=covol(L)?=d.;.
> Note that b*/||b¥||> € L*

> Therefore [L* : L1b*/||b¥||* € L
ie.d_,b¥ € L(by,...,b) C Z".



GRAM-SCHMIDT ALGORITHM

» Induction formulas can be rewritten with integers, giving an

efficient algorithm.
1—1 2
> Let Aj=djuiEZ. x AL
T di:di—lubiHQ_Zd i
7%y —1

J=1
j—1

di_1 A kN k

o KOk —1

» Could also derive explicitly b;’, but usually not needed




> If by,...,bnEZm are linearly independent, we can compute

efficiently all the integers d; = Gram(lgl, e l;l-) = H Hl;]*l\z

- T 7 5112
and /Il-,j — dj,ui,j(bl-, I9J?‘<)/\|l9]?I< |

A-5




APPLICATION: LATTICE MEMBERSHIP

> Let by,...,bn&Zm be linearly independent: let L=L(bs;,...,bn).

> Given teZm™, decide if tEL, and if so, find its integer
coefficients in the decomposition t=xib1+...+Xnbn.

» Then <t,bny=Xn(bn,bn>=xn!| I by"| |2

> Letting bni=t, then Xn=Hn+1,n
» Derive x, from Gram-Schmidt over (by,...,bn,t),
> Repeat with t-xnbn and L(by,...,bn1), etc.

» We can find efficiently xn, Xn-1,... X1 EZ

> By checking if t=xib1+...+xnbn, we can decide if tEL.



APPLICATION: SIZE-REDUCTION

> B=(by,...,bq) is size-reduced if all i | < =

> Th: There is an efficient algorithm to size-reduce B, without
changing the Gram-Schmidt vectors.

» Fori=2tod
» For j=i-1 downto 1

> size-reduce b; with respect to b;: make | ;| <1/2 by b; :=
bi—round( i )bj

» Update all u;y for j'sj.

> The translation does not affect the previous iy where i’ <i, or i’=i
and j">j.



VISUALIZING SIZE-REDUCTION

> If we take an appropriate orthonormal basis, the matrix of the
lattice basis becomes triangular.

Hb H 0 0 0
P 0
sl Bilal11651 0

. Md d— 1Hb 1””19 H




THE ITERATIVE BASIS ALGORITHM

» INPUT: by,...,.bn €Z™m s.t. by, ...,bn1 are linearly independent.
» OUTPUT: a basis of the lattice L(by,...,bn) spanned by the by’s.
> Let d be the dimension of L(by, ..., bn): n-1 <d <n.

» Compute Integral Gram-Schmidt
> It by* =0
» Return (by,...,bn)

> Else...



INTUITION

» Color in green the index i&{1,...,n} st. b*=0

> Initially 1 n-1 n

[T TTTTTTTTTT 119

» During the algorithm...we move the green cell to the left
without ever changing L(by,...,bn):

> At the end




THE ITERATIVE BASIS ALGORITHM

» INPUT: by,...,bn €EZ™ s.t. by,...,bng are linearly independent.
» OUTPUT: a basis of the lattice L(by,...,bn) spanned by the by’s.
» Let d be the dimension of L(by, ..., bn): n-1<d<n.

» Compute Integral Gram-Schmidt
> Ifby* =0
» Return (by,...,bn)
> FElse For j=n downto 2
» ColorSwap(b;.1,b;)

» Return (by,...,bn) because b1=0



COLOR-SWAP B,*=0 AND B,-1*+0
> Let m be the projection over span(by,...bj2)!.
» Then mt(bj.1) and 7t(b;) are linearly dependent.

> bi1* = m(bj1) and (b)EQDbi1* so m(bj)=(p/q)b;-1* with coprime p
and q.

» Then mt(pbj.1-qb;)=0: if we replace bj.1 by pbj.1-qb; then
NEW(bj-1*)=O, but what about bj?

» Using XGCD(p,q), find (u,v)EZ2 s.t. up+vg=1

> Replace (bj-1,b;) by (pbj-1-qb;, vbi.1+ub;): this transformation has
det=+1 so the lattice is preserved.

» Then NEW/(b;.1*)=0 and NEW (b;*)=0.



LIMITING SIZES

» We used XGCD to find a generator of the 1-dim lattice L(7t(bj.1), Tt(b;)), then

NEW (bj1*)=0 and NEW (b;*)=0.

> In particular, | INEW(b;*)| [<| |OLD(]

Dj*)| |

» So max; | |b;i*| | did not increase, but |

now about max; | I b;l | ? We can

keep it under control, using size-reduction.

> Now, bj.1*=0 and b;*#0
> b]’_lespan(bl, oc .,bj-2)=SpaH(b1*, .o -/bj-Z*)

> Subtract to bj.1 an element of L(by,...,bj2) so that b;.1is in a box: bj.1=y1b1"+...

+yiobj2” where |yil<1/2. Then | |bj|

» Similarly, we can make sure that| | b;|

> This is similar to lifting.

| < (Vd/2) max; | Ibi*I |.
| < (Vd/2)max; | Ibi*I |.



> Let m be the projection over span(by,...bj2)!L.

» Compute coprime p and q s.t. t(b;)=(p/q)bj-1™.

> Find (u,v)EZ2 s.t. up+vg=1 using XGCD(p,q).

» Replace (bj-1,b;) by (pbj-1-qb;, vbi.1+ub;):

» Size-reduce b1 and bj: make ||1;j_1|| and ||I;]|| < \/c_z’max,-||l_9)l?’<|| using
L(by,...,bj2).

» The BASIS algorithm runs in polynomial time and outputs a basis
of the lattice L which is ““short”:

> If By is the input generator, then the output B satisfies:
| IBI | <vdim(L) | IBgl | where | IBI | =max; | |b;l |



TAKE AWAY

* Key ideas:

> Projecting to simplify the problem.

> Lifting to make sure that vectors do not get too big.
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HARD LATTICE PROBLEMS

* Since 1996, lattices are very trendy in classical and quantum

complexity theory.
* Depending on the dimension d: Approx,facor

» NP-hardness O(1) /
» non NP-hardness (NPnco-NP) \/g
> worst-case/average-case reduction dlogd

O(1)
> cryptograph d

J/ PGty ) Jd
> subexp-time algorithms i log log d
log d

> poly-time algorithms



HARD LATTICE PROBLEMS

* Input: a lattice L and an n-dim ball C.

* Qutput: decide if LnC is non-trivial, and find a point when
applicable. Easy if L=Zr.

* Two settings

» Approx: LnC has many points.
Ex: SIS and ISIS.

» Unique: only one non-trivial point.

Ex: BDD.






THE SHORTEST VECTOR PROBLEM (SVP)

* Input: a basis of a d-dim lattice L.

* Qutput: nonzero veL minimizing | vl | ie. [ |vI|=A1(L)

~
—_ O O[O |
ol Hell ekl | \O ) Na
= O OO
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THE SHORTEST VECTOR PROBLEM (SVP): DECISIONAL VARIANT

* Input: a basis of a d-dim lattice L and a rational number 1

* Qutput: is there velL such that | |v] |<r?



EXERCISE

Show that given an oracle for Decisional-SVP, one can solve
SVP in polynomial in time.

Lagrange’s algorithm shows how to solve rank-2 SVP in
polynomial time.



