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EASY PROBLEMS

➤ We restrict to integer lattices: a basis is represented by an 
integer matrix.

➤ Given a basis of an integer lattice L and a target v, decide if v∈L 
and if so, output its basis coefficients.

➤ Given bases of two integer lattices L and M, decide if L=M, 
compute a basis of L∩M.

➤ Given bases of an integer lattice L and a subspace E, compute a 
basis of L∩E.



THE HERMITE 
NORMAL FORM



FULL-RANK INTEGER LATTICES

➤ Let L be a full-rank lattice in .

➤ Then the quotient  is a finite Abelian group of order 
covol(L).

➤ In particular, .

➤ L has a full-rank family of orthogonal vectors.

➤ But this family is usually not a -basis of L.

ℤn

ℤn/L

covol(L)ℤn ⊆ L

ℤ



LOWER-TRIANGULAR BASES

➤ By multiplying the canonical vectors by covol(L), we can 
derive a -basis of L which spans the same subspaces, and is 
therefore lower-triangular.

➤ This triangular form can be made unique if we ensure that:
➤ The diagonal is  > 0.
➤ In each column, all coefficients ≥ 0 and < the diagonal 

coefficient.
➤ This is the Hermite normal form.

ℤ



COMPUTING THE HNF

➤ Given a basis b1,…,bn of a full-rank lattice L in Zn, we can 
compute in deterministic polynomial time the Hermite normal 
form of L.

➤ First, we compute D=covol(L) = |det(b1,…,bn)|.

➤ Then  is the Hermite normal form of .DIn Dℤn



INCREMENTAL HNF

➤ Input: the HNF of a full-rank integer lattice M and an integer 
vector b.

➤ Output: the HNF of the lattice .

➤ Let  be the last row of M.

➤ Consider the lattice .

➤ We can compute and   such that  and the 
last coordinate  of is zero: how?

➤ What's next?

M + ℤb⃗

⃗a

L = ℤ ⃗a + ℤb⃗

⃗a′￼ b⃗′￼ L = ℤ ⃗a′￼+ ℤb⃗′￼

⃗a′￼



INCREMENTAL HNF
➤ Consider the lattice .

➤ Let  and  be the last coordinates of  and .

➤ Using Euclid's XGCD, compute integers u and v s.t. 

➤ Compute  and . 
Then   and the last coordinate of  is zero.

➤ By subtracting suitable multiples of the first n-1 rows of M, make all 
the coordinates of   and  between 0 and D.

➤ Apply recursively Incremental-HNF to the first n-1 rows of M, and 
, by ignoring their last coordinate (which is zero).

➤ Use the new HNF to reduce .

L = ℤ ⃗a + ℤb⃗

α β ⃗a b⃗

αu + βv = gcd(α, β)

⃗a′￼= (β/gcd(α, β)) ⃗a − (α/gcd(α, β))b⃗ b⃗′￼= u ⃗a + vb⃗
L = ℤ ⃗a′￼+ ℤb⃗′￼ ⃗a′￼

⃗a′￼ b⃗′￼

⃗a′￼

b⃗′￼



TAKE AWAY

• Key ideas:

➤ Projecting to simplify the problem.

➤ Reducing with the diagonal to make sure that vectors do not 
get too big.



A NON-TRIVIAL 
LATTICE 

ALGORITHM



EUCLID WITH VECTORS

• If b1,…,bn∈Zm, L(b1,…,bn) is a lattice: can you efficiently find a 
lattice basis?

➤ If n=2 and m=1, this is exactly the gcd problem, so we are 
generalizing Euclid’s algorithm to vectors.

• This is our first non-trivial lattice algorithm.



THE BASIS ALGORITHM

➤ INPUT: b1,...,bn ∈Zm s.t. b1≠0

➤ OUTPUT: a basis of the lattice L(b1,...,bn) spanned by the bi’s.
➤ We may assume that b1,…,bn-1 are linearly independent: by 

iterating this algorithm n times, we solve the original problem.



THE ITERATIVE BASIS ALGORITHM

➤ INPUT: b1,...,bn ∈Zm s.t. b1,…,bn-1 are linearly independent.

➤ OUTPUT: a basis of the lattice L(b1,...,bn) spanned by the bi’s.
➤ This means that n-1 ≤ rank(L(b1,…,bn)) ≤ n.

➤ We need tools:
➤ How can we decide linear independence efficiently?
➤ How can we compute projections?



DUALITY



THE DUAL LATTICE

➤ Let L be a lattice.

➤ The dual lattice of L is Lx={y∈span(L) s.t. ⟨x,y⟩∈Z for all x∈L}

➤ What is the dual of ?

➤ Show that Lx is a lattice.

➤ If B is a basis of L, then  is a basis of Lx.

➤ rank(L)=rank(Lx) and covol(L)covol(Lx)=1

➤ Lx/L is a finite group of order .

ℤn

(BBt)−1B

covol(L)2



EX: KERNEL LATTICES

➤ Let n,m,q∈N.

➤ Let A be an mxn matrix over Z.

➤ The kernel LA={x∈Zm s.t. xA ≡ 0 mod q} is a full-rank lattice in 
Zm s.t. covol(LA) | qn.

➤ Its dual lattice is (1/q)L’A where L’A is the «image» i.e. 
L’A={y∈Zm s.t.  y≡zAt mod q for some z∈Zn}



COMPUTATIONAL 
GRAM-SCHMIDT



GRAM-SCHMIDT

➤ Let b1,…,bn∈Rm.

➤ Its Gram-Schmidt Orthogonalization is  b1*,…,bn*∈Rm defined 
as:
➤ b1* = b1

➤ For 2≤i≤n, bi* = projection of bi over  span(b1,…,bi-1)⊥

➤ Classical tool to show the existence of orthonormal bases in 
Euclidean spaces.



FACTS

➤ bi* ⊥ span(b1,…,bi-1), i.e. ⟨bi*,bj⟩=0 if i>j

➤ bi*-bi ∈span(b1,…,bi-1)=span(b1*,…,bi-1*)

➤ Notation: bi-bi* = ∑j<i μi,j bj* .
➤ ||bi*|| = distance of bi to span(b1,…,bi-1).
➤ ⟨bi*,bj*⟩=0 if i≠j



FORMULAS

➤ Let b1,…,bn∈Rm be linearly independent.  

➤ Then all bj*≠0.
➤ For 1≤j<i≤n, let                    .
➤ Then:  

➤ Thus:

➤ This gives an algorithm, but not necessarily efficient: we want 
cheap operations on reasonably-sized numbers.

µi,j =
h~bi,~b⇤j i
k~b⇤jk2

~b?
1 =~b1 ~b?

i =~bi�
i�1

∑
j=1
µi, j~b?

j

k~b⇤i k2 = k~bik2 �
i�1X

j=1

µ2
i,jk~b⇤jk2

µi,j =
h~bi,~bji �

Pj�1
k=1 µj,kµi,kk~b⇤kk2

k~b⇤jk2



EFFICIENT COMPUTATIONS

➤ We only deal with integers, so assume that  and 
let .

➤ Define the following integers:

➤

➤
 so 

➤ Then , 

b⃗1, …, b⃗n ∈ ℤm

M = max1≤i≤n∥b⃗i∥

d0 = 1

di = Gram(b⃗1, …, b⃗i) =
i

∏
j=1

∥b⃗*j ∥ 1 ≤ di ≤ M2i

μi,j and ∥b⃗*i ∥2 ∈ ℚ b⃗*i ∈ ℚm



INTEGRAL GRAM-SCHMIDT

➤ Lemma: Let b1,…,bn∈Zm be linearly independent.  Then for all 
1≤j<i≤n:

➤  with 

➤  with 

➤ Proof: Let L=L(b1,…,bi) and denote by Lx its dual lattice. Then 
[Lx:L]=covol(L)2=di.

➤ Note that  

➤ Therefore                                                                
i.e. .

di−1b⃗*i ∈ L(b⃗1, …, b⃗i) ⊆ ℤm ∥di−1b⃗*i ∥ ≤ M2i−1

djμi,j ∈ ℤ |djμi,j | ≤ M2j

b⃗*i /∥b⃗*i ∥2 ∈ L×

[L× : L]b⃗*i /∥b⃗*i ∥2 ∈ L
di−1b⃗*i ∈ L(b⃗1, …, b⃗i) ⊆ ℤm



GRAM-SCHMIDT ALGORITHM

➤ Induction formulas can be rewritten with integers, giving an 
efficient algorithm.

➤ Let λi,j=djμi,j∈Z.

➤ Could also derive explicitly bi*, but usually not needed

di = di�1k~bik2 �
i�1X

j=1

�2
i,j

djdj�1

�i,j = dj�1h~bi,~bji �
j�1X

k=1

dj�1�j,k�i,k

dkdk�1



RECAP

➤ If b1,…,bn∈Zm are linearly independent, we can compute 

efficiently all the integers  

and  

di = Gram(b⃗1, …, b⃗i) =
i

∏
j=1

∥b⃗*j ∥2

λi,j = djμi,j⟨b⃗i, b⃗*j ⟩/∥b⃗*j ∥2

~b⇤i = ~bi �
i�1X

j=1

�i,j

dj
~b⇤j

k~b⇤i k2 =
di

di�1



APPLICATION: LATTICE MEMBERSHIP

➤ Let b1,…,bn∈Zm be linearly independent: let L=L(b1,…,bn).

➤ Given t∈Zm, decide if t∈L, and if so, find its integer 
coefficients in the decomposition t=x1b1+…+xnbn.
➤ Then ⟨t,bn*⟩=xn⟨bn,bn*⟩= xn||bn*||2

➤ Letting bn+1=t, then xn=μn+1,n

➤ Derive xn from Gram-Schmidt over (b1,…,bn,t), 
➤ Repeat with t-xnbn and L(b1,…,bn-1), etc.

➤ We can find efficiently xn, xn-1,… x1 ∈Z

➤ By checking if t=x1b1+…+xnbn, we can decide if t∈L.



APPLICATION: SIZE-REDUCTION

➤ Let b1,…,bd∈Zm be linearly independent.

➤ B=(b1,…,bd) is size-reduced if all           
➤ Th: There is an efficient algorithm to size-reduce B, without 

changing the Gram-Schmidt vectors. 
➤ For i = 2 to d

➤ For j = i-1 downto 1
➤ size-reduce bi with respect to bj: make |μi,j| ≤ 1/2 by bi := 

bi-round(μi,j)bj

➤ Update all μi,j’ for j’≤j.
➤ The translation does not affect the previous μi’,j’ where i’ < i, or i’=i 

and j’>j.

|µi, j|
1
2



VISUALIZING SIZE-REDUCTION

➤ If we take an appropriate orthonormal basis,  the matrix of the 
lattice basis becomes triangular.

0

BBBBB@

k~b⇤1k 0 0 . . . 0
µ2,1k~b⇤1k k~b⇤2k 0 . . . 0
µ3,1k~b⇤1kµ3,2k~b⇤2kk~b⇤3k . . . 0

... . . . . . . . . . ...
µd,1k~b⇤1kµd,2k~b⇤2k . . . µd,d�1k~b⇤d�1kk~b⇤dk

1

CCCCCA



THE ITERATIVE BASIS ALGORITHM

➤ INPUT: b1,...,bn ∈Zm s.t. b1,…,bn-1 are linearly independent.

➤ OUTPUT: a basis of the lattice L(b1,...,bn) spanned by the bi’s.
➤ Let d be the dimension of L(b1,…,bn):        n-1 ≤ d ≤ n. 

➤ Compute Integral Gram-Schmidt
➤ If bn* ≠ 0

➤ Return (b1,…,bn)
➤ Else…



INTUITION

➤ Color in green the index i∈{1,...,n} st. b*i=0

➤ Initially

➤ During the algorithm…we move the green cell to the left 
without ever changing L(b1,…,bn):

➤ At the end

1 n-1 n

0



THE ITERATIVE BASIS ALGORITHM

➤ INPUT: b1,...,bn ∈Zm s.t. b1,…,bn-1 are linearly independent.

➤ OUTPUT: a basis of the lattice L(b1,...,bn) spanned by the bi’s.

➤ Let d be the dimension of L(b1,…,bn):        n-1 ≤ d ≤ n. 

➤ Compute Integral Gram-Schmidt

➤ If bn* ≠ 0

➤ Return (b1,…,bn)

➤ Else For j=n downto 2

➤ ColorSwap(bj-1,bj)

➤ Return (b2,…,bn) because b1=0



COLOR-SWAP BJ*=0 AND BJ-1*≠0

➤ Let π be the projection over span(b1,…bj-2)⟘.

➤ Then π(bj-1) and π(bj) are linearly dependent.

➤ bj-1* = π(bj-1) and π(bj)∈Qbj-1*  so π(bj)=(p/q)bj-1* with coprime p 
and q.

➤ Then π(pbj-1-qbj)=0: if we replace bj-1 by pbj-1-qbj then 
NEW(bj-1*)=0, but what about bj?

➤ Using XGCD(p,q), find (u,v)∈Z2 s.t. up+vq=1

➤ Replace (bj-1,bj) by (pbj-1-qbj,vbj-1+ubj): this transformation has 
det=+1 so the lattice is preserved.

➤ Then NEW(bj-1*)=0 and NEW(bj*)≠0.



LIMITING SIZES

➤ We used XGCD to find a generator of the 1-dim lattice L(π(bj-1), π(bj)), then 
NEW(bj-1*)=0 and NEW(bj*)≠0.

➤ In particular, ||NEW(bj*)||≤||OLD(bj*)||.

➤ So maxi ||bi*|| did not increase, but how about maxi ||bi||? We can 
keep it under control, using size-reduction.

➤ Now, bj-1*=0 and bj*≠0

➤ bj-1∈span(b1,…,bj-2)=span(b1*,…,bj-2*)

➤ Subtract to bj-1 an element of L(b1,…,bj-2) so that bj-1 is in a box: bj-1=y1b1*+…
+yj-2bj-2*  where |yi|≤1/2. Then ||bj-1|| ≤ (√d/2) maxi ||bi*||.

➤ Similarly, we can make sure that||bj|| ≤ (√d/2) maxi ||bi*||.

➤ This is similar to lifting.



RECAP

➤ Let π be the projection over span(b1,…bj-2)⟘.

➤ Compute coprime p and q s.t. π(bj)=(p/q)bj-1*.

➤ Find (u,v)∈Z2 s.t. up+vq=1 using XGCD(p,q).

➤ Replace (bj-1,bj) by (pbj-1-qbj,vbj-1+ubj):

➤ Size-reduce bj-1 and bj: make  and  using 
L(b1,…,bj-2).

➤ The BASIS algorithm runs in polynomial time and outputs a basis 
of the lattice L which is ``short’’:
➤ If B0 is the input generator, then the output B satisfies:                                                    

||B|| ≤ √dim(L) ||B0|| where ||B|| = maxi ||bi||

∥b⃗j−1∥ ∥b⃗j∥ ≤ dmaxi∥b⃗*i ∥



TAKE AWAY

• Key ideas:

➤ Projecting to simplify the problem.

➤ Lifting to make sure that vectors do not get too big.



LATTICE 
PROBLEMS



• Input = integer matrix, whose rows span the lattice. 
 Parameters:

➤ Size of basis coefficients

➤ Lattice dimension

• Asymptotically:
➤ dim increases

➤ coeff-size polynomial in dim.

LATTICE ALGORITHMS



HARD LATTICE PROBLEMS

• Since 1996, lattices are very trendy in classical and quantum 
complexity theory. 

O(1) 1

∞2
d log log d

log d

d log d

�
d

dO(1)

2
�

d

➤ NP-hardness

➤ non NP-hardness (NP∩co-NP)

➤ worst-case/average-case reduction

➤ cryptography

➤ subexp-time algorithms

➤ poly-time algorithms

• Depending on the dimension d: Approx. factor



HARD LATTICE PROBLEMS

• Two settings
➤ Approx: L∩C has many points.                

Ex: SIS and ISIS.

• Input: a lattice L and an n-dim ball C.

• Output: decide if L∩C is non-trivial, and find a point when 
applicable. Easy if L=Zn.

➤ Unique: only one non-trivial point.           

Ex: BDD.



THE SHORTEST 
VECTOR 

PROBLEM



THE SHORTEST VECTOR PROBLEM (SVP)

• Input: a basis of a d-dim lattice L.

• Output: nonzero v∈L minimizing ||v|| i.e.   ||v||=λ1(L)

O

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1



THE SHORTEST VECTOR PROBLEM (SVP): DECISIONAL VARIANT

• Input: a basis of a d-dim lattice L and a rational number r

• Output: is there v∈L such that ||v||≤ r ?



EXERCISE

• Show that given an oracle for Decisional-SVP, one can solve 
SVP in polynomial in time.

• Lagrange’s algorithm shows how to solve rank-2 SVP in 
polynomial time.


