FUNDAMENTAL LATTICE ALGORITHMS

PHONG NGUYEN http://www.di.ens.fr/~pnguyen

September 2024

EASY PROBLEMS

- We restrict to integer lattices: a basis is represented by an integer matrix.
- ➤ Given a basis of an integer lattice L and a target v, decide if v∈L and if so, output its basis coefficients.
- ➤ Given bases of two integer lattices L and M, decide if L=M, compute a basis of L∩M.
- ➤ Given bases of an integer lattice L and a subspace E, compute a basis of L∩E.

THE HERMITE NORMAL FORM

- ► Let L be a full-rank lattice in \mathbb{Z}^n .
- ➤ Then the quotient Zⁿ/L is a finite Abelian group of order covol(L).
- ► In particular, $\operatorname{covol}(L)\mathbb{Z}^n \subseteq L$.
 - ► L has a full-rank family of orthogonal vectors.
 - > But this family is usually not a \mathbb{Z} -basis of L.

- ➤ By multiplying the canonical vectors by covol(L), we can derive a Z-basis of L which spans the same subspaces, and is therefore lower-triangular.
- ► This triangular form can be made unique if we ensure that:
 - ► The diagonal is > 0.
 - ➤ In each column, all coefficients ≥ 0 and < the diagonal coefficient.</p>
- ➤ This is the Hermite normal form.

COMPUTING THE HNF

- Given a basis b₁,...,b_n of a full-rank lattice L in Zⁿ, we can compute in deterministic polynomial time the Hermite normal form of L.
- First, we compute $D=covol(L) = |det(b_1,...,b_n)|$.
- ➤ Then DI_n is the Hermite normal form of $D\mathbb{Z}^n$.

INCREMENTAL HNF

- Input: the HNF of a full-rank integer lattice M and an integer vector b.
- ► Output: the HNF of the lattice $M + \mathbb{Z}\vec{b}$.
- ► Let \vec{a} be the last row of M.
- ► Consider the lattice $L = \mathbb{Z}\vec{a} + \mathbb{Z}\vec{b}$.
 - ► We can compute \vec{a}' and \vec{b}' such that $L = \mathbb{Z}\vec{a}' + \mathbb{Z}\vec{b}'$ and the last coordinate \vec{a}' of is zero: how?
 - ► What's next?

INCREMENTAL HNF

- ► Consider the lattice $L = \mathbb{Z}\vec{a} + \mathbb{Z}\vec{b}$.
 - ► Let α and β be the last coordinates of \vec{a} and \vec{b} .
 - ► Using Euclid's XGCD, compute integers u and v s.t. $\alpha u + \beta v = \gcd(\alpha, \beta)$
 - ► Compute $\vec{a}' = (\beta/\gcd(\alpha, \beta))\vec{a} (\alpha/\gcd(\alpha, \beta))\vec{b}$ and $\vec{b}' = u\vec{a} + v\vec{b}$. Then $L = \mathbb{Z}\vec{a}' + \mathbb{Z}\vec{b}'$ and the last coordinate of \vec{a}' is zero.
- Solution By subtracting suitable multiples of the first n-1 rows of M, make all the coordinates of \vec{a}' and \vec{b}' between 0 and D.
- Apply recursively Incremental-HNF to the first n-1 rows of M, and *a*', by ignoring their last coordinate (which is zero).
- ► Use the new HNF to reduce \vec{b}' .

- Key ideas:
 - Projecting to simplify the problem.
 - Reducing with the diagonal to make sure that vectors do not get too big.

A NON-TRIVIAL LATTICE ALGORITHM

EUCLID WITH VECTORS

- If $b_1, \ldots, b_n \in \mathbb{Z}^m$, $L(b_1, \ldots, b_n)$ is a lattice: <u>can you efficiently find a</u> <u>lattice basis</u>?
 - This is our first non-trivial lattice algorithm.
 - If n=2 and m=1, this is exactly the gcd problem, so we are generalizing Euclid's algorithm to vectors.

Euclid's DATA.

Allo a Treatile of the Divilions of Superficies, afinibil to Madoret Bagheline, too paldified by Commandine, at the work of the David London; shot Pathier to the first Vientic

states & so fo de Worke of EV CLIBE, sie hader of fini ELENES 70.

Publiced by the Care and Industry of OHN LEEKE and GEORGE SERLE, Students is the MATHEMATICK'S.

LONDON: Printed, by R. & W. LEY BOURN for GEORGE SAWBRIDGE at the fish upon I plane bit

- ► INPUT: $b_1,...,b_n \in \mathbb{Z}^m$ s.t. $b_1 \neq 0$
- > OUTPUT: a basis of the lattice $L(b_1,...,b_n)$ spanned by the b_i 's.
- We may assume that b₁,...,b_{n-1} are linearly independent: by iterating this algorithm n times, we solve the original problem.

- ► INPUT: $b_1,...,b_n \in \mathbb{Z}^m$ s.t. $b_1,...,b_{n-1}$ are linearly independent.
- ► OUTPUT: a basis of the lattice L(b₁,...,b_n) spanned by the b_i's.
- ► This means that $n-1 \le \operatorname{rank}(L(b_1,...,b_n)) \le n$.

- ► We need tools:
 - How can we decide linear independence efficiently?
 - How can we compute projections?

DUALITY

THE DUAL LATTICE

- ► Let L be a lattice.
- ► The dual lattice of L is $L^x = \{y \in span(L) \text{ s.t. } \langle x, y \rangle \in \mathbb{Z} \text{ for all } x \in L\}$
 - ► What is the dual of \mathbb{Z}^n ?
 - ► Show that L^x is a lattice.
 - ► If B is a basis of L, then $(BB^t)^{-1}B$ is a basis of L^x.
 - rank(L)=rank(L^x) and covol(L)covol(L^x)=1
 - ► L^{x}/L is a finite group of order $covol(L)^{2}$.

EX: KERNEL LATTICES

- ► Let $n,m,q \in \mathbb{N}$.
- ► Let A be an mxn matrix over **Z**.
- ➤ The kernel L_A={x∈Z^m s.t. xA = 0 mod q} is a full-rank lattice in Z^m s.t. covol(L_A) | qⁿ.
- ► Its dual lattice is $(1/q)L'_A$ where L'_A is the «image» i.e. $L'_A = \{y \in \mathbb{Z}^m \text{ s.t. } y \equiv zA^t \mod q \text{ for some } z \in \mathbb{Z}^n\}$

COMPUTATIONAL GRAM-SCHMIDT

GRAM-SCHMIDT

- ► Let $b_1,...,b_n \in \mathbb{R}^m$.
- ➤ Its Gram-Schmidt Orthogonalization is b₁*,...,b_n*∈R^m defined as:
 - ► $b_1^* = b_1$

- ► For $2 \le i \le n$, $b_i^* = projection of b_i over span(b_1,...,b_{i-1})^{\perp}$
- Classical tool to show the existence of orthonormal bases in Euclidean spaces.

- ► $b_i^* \perp \text{span}(b_1,...,b_{i-1})$, i.e. $\langle b_i^*, b_j \rangle = 0$ if i > j
- ► $b_i^* b_i \in span(b_1, ..., b_{i-1}) = span(b_1^*, ..., b_{i-1}^*)$
 - ► Notation: $b_i b_i^* = \sum_{j < i} \mu_{i,j} b_j^*$.
- ► $||b_i^*|| = \text{distance of } b_i \text{ to } \text{span}(b_1, \dots, b_{i-1}).$

► $\langle b_i^*, b_j^* \rangle = 0$ if $i \neq j$

FORMULAS

► Let $b_1,...,b_n \in \mathbb{R}^m$ be **linearly independent**.

- ► Then all $b_i^* \neq 0$. ▶ For 1≤j<i≤n, let $\mu_{i,j} = \frac{\langle \vec{b}_i, \vec{b}_j^* \rangle}{\|\vec{b}_j^*\|^2}$ ▶ Then: $\vec{b}_1^* = \vec{b}_1$ $\vec{b}_i^{\star} = \vec{b}_i - \sum_{i=1}^{l-1} \mu_{i,j} \vec{b}_j^{\star}$ $\|\vec{b}_i^*\|^2 = \|\vec{b}_i\|^2 - \sum_{i=1}^{i-1} \mu_{i,j}^2 \|\vec{b}_j^*\|^2$ ► Thus: $\mu_{i,j} = \frac{\langle \vec{b}_i, \vec{b}_j \rangle - \sum_{k=1}^{j-1} \mu_{j,k} \mu_{i,k} \| \vec{b}_k^* \|^2}{\| \vec{b}_j^* \|^2}$
- This gives an algorithm, but not necessarily efficient: we want cheap operations on reasonably-sized numbers.

EFFICIENT COMPUTATIONS

- ► We only deal with integers, so assume that $\vec{b}_1, ..., \vec{b}_n \in \mathbb{Z}^m$ and let $M = \max_{1 \le i \le n} \|\vec{b}_i\|$.
- Define the following integers:

INTEGRAL GRAM-SCHMIDT

► Lemma: Let b₁,...,b_n∈Z^m be linearly independent. Then for all 1≤j<i≤n:</p>

- Proof: Let L=L(b₁,...,b_i) and denote by L^x its dual lattice. Then [L^x:L]=covol(L)²=d_i.
 - ► Note that $\vec{b}_i^* / \|\vec{b}_i^*\|^2 \in L^{\times}$
 - ► Therefore $[L^{\times}:L]\vec{b}_i^*/\|\vec{b}_i^*\|^2 \in L$ i.e. $d_{i-1}\vec{b}_i^* \in L(\vec{b}_1,...,\vec{b}_i) \subseteq \mathbb{Z}^m$.

Induction formulas can be rewritten with integers, giving an efficient algorithm.

► Let
$$\lambda_{i,j} = d_j \mu_{i,j} \in \mathbb{Z}$$
.
 $d_i = d_{i-1} \|\vec{b}_i\|^2 - \sum_{j=1}^{i-1} \frac{\lambda_{i,j}^2}{d_j d_{j-1}}$
 $\lambda_{i,j} = d_{j-1} \langle \vec{b}_i, \vec{b}_j \rangle - \sum_{k=1}^{j-1} \frac{d_{j-1} \lambda_{j,k} \lambda_{i,k}}{d_k d_{k-1}}$

Could also derive explicitly b_i^{*}, but usually not needed

► If $b_1, ..., b_n \in \mathbb{Z}^m$ are linearly independent, we can compute efficiently all the integers $d_i = \operatorname{Gram}(\vec{b}_1, ..., \vec{b}_i) = \prod_{j=1}^i \|\vec{b}_j^*\|^2$ and $\lambda_{i,j} = d_j \mu_{i,j} \langle \vec{b}_i, \vec{b}_j^* \rangle / \|\vec{b}_j^*\|^2$

$$\vec{b}_i^* = \vec{b}_i - \sum_{j=1}^{i-1} \frac{\lambda_{i,j}}{d_j} \vec{b}_j^*$$
$$|\vec{b}_i^*||^2 = \frac{d_i}{d_{i-1}}$$

- ► Let $b_1,...,b_n \in \mathbb{Z}^m$ be linearly independent: let $L=L(b_1,...,b_n)$.
- ➤ Given t∈Z^m, decide if t∈L, and if so, find its integer coefficients in the decomposition t=x₁b₁+...+x_nb_n.
 - $\succ \text{ Then } \langle t, b_n^* \rangle = x_n \langle b_n, b_n^* \rangle = x_n ||b_n^*||^2$
 - ► Letting b_{n+1} =t, then $x_n = \mu_{n+1,n}$
 - Derive x_n from Gram-Schmidt over (b₁,...,b_n,t),
 - ► Repeat with $t-x_nb_n$ and $L(b_1,...,b_{n-1})$, etc.
 - ► We can find efficiently x_n , x_{n-1} ,..., $x_1 \in \mathbb{Z}$
 - ► By checking if $t=x_1b_1+...+x_nb_n$, we can decide if $t\in L$.

- ► Let $b_1,...,b_d \in \mathbb{Z}^m$ be linearly independent.
- ► $B=(b_1,...,b_d)$ is size-reduced if all

$$|\mu_{i,j}| \le \frac{1}{2}$$

- Th: There is an efficient algorithm to size-reduce B, without changing the Gram-Schmidt vectors.
- For i = 2 to d
 - For j = i-1 downto 1
 - ► size-reduce b_i with respect to b_j : make $|\mu_{i,j}| \le 1/2$ by $b_i := b_i$ -round $(\mu_{i,j})b_j$
 - ► Update all $\mu_{i,j'}$ for $j' \leq j$.
- ➤ The translation does not affect the previous µ_{i',j'} where i' < i, or i'=i and j'>j.

VISUALIZING SIZE-REDUCTION

► If we take an appropriate orthonormal basis, the matrix of the lattice basis becomes triangular.

- ► INPUT: $b_1,...,b_n \in \mathbb{Z}^m$ s.t. $b_1,...,b_{n-1}$ are linearly independent.
- > OUTPUT: a basis of the lattice $L(b_1,...,b_n)$ spanned by the b_i 's.
- Let d be the dimension of $L(b_1,...,b_n)$: $n-1 \le d \le n$.
- Compute Integral Gram-Schmidt
- ► If $b_n^* \neq 0$
 - ► Return $(b_1,...,b_n)$
- ► Else...

INTUITION

- ► Color in **green** the index $i \in \{1,...,n\}$ st. $b^*_i=0$
- ► Initially

 1
 n-1 n
- During the algorithm...we move the green cell to the left without ever changing L(b₁,...,b_n):

► At the end

THE ITERATIVE BASIS ALGORITHM

- ► INPUT: $b_1,...,b_n \in \mathbb{Z}^m$ s.t. $b_1,...,b_{n-1}$ are linearly independent.
- ► OUTPUT: a basis of the lattice L(b₁,...,b_n) spanned by the b_i's.
- ► Let d be the dimension of $L(b_1,...,b_n)$: $n-1 \le d \le n$.
- Compute Integral Gram-Schmidt
- ► If $b_n^* \neq 0$
 - ► Return $(b_1,...,b_n)$
- Else For j=n downto 2
 - ► ColorSwap(b_{j-1},b_j)
 - ► Return $(b_2,...,b_n)$ because $b_1=0$

- ► Let π be the projection over span(b_1, \dots, b_{j-2})[⊥].
- ► Then $\pi(b_{j-1})$ and $\pi(b_j)$ are linearly dependent.
- ► $b_{j-1}^* = \pi(b_{j-1})$ and $\pi(b_j) \in Qb_{j-1}^*$ so $\pi(b_j) = (p/q)b_{j-1}^*$ with coprime p and q.
- Then π(pb_{j-1}-qb_j)=0: if we replace b_{j-1} by pb_{j-1}-qb_j then NEW(b_{j-1}*)=0, but what about b_j?
 - ► Using XGCD(p,q), find $(u,v) \in \mathbb{Z}^2$ s.t. up+vq=1
 - Replace (b_{j-1},b_j) by (pb_{j-1}-qb_j,vb_{j-1}+ub_j): this transformation has det=+1 so the lattice is preserved.
 - ► Then NEW(b_{j-1}^*)=0 and NEW(b_j^*)≠0.

LIMITING SIZES

- ► We used XGCD to find a generator of the 1-dim lattice $L(\pi(b_{j-1}), \pi(b_j))$, then NEW(b_{j-1}^*)=0 and NEW(b_j^*)≠0.
- ► In particular, $||NEW(b_j^*)|| \le ||OLD(b_j^*)||$.
- So max_i | |b_i*| | did not increase, but how about max_i | |b_i| |? We can keep it under control, using size-reduction.
- ► Now, $b_{j-1}^*=0$ and $b_j^*\neq 0$
- ► $b_{j-1} \in span(b_1,...,b_{j-2}) = span(b_1^*,...,b_{j-2}^*)$
- ► Subtract to b_{j-1} an element of $L(b_1,...,b_{j-2})$ so that b_{j-1} is in a box: $b_{j-1}=y_1b_1^*+...+y_{j-2}b_{j-2}^*$ where $|y_i| \le 1/2$. Then $||b_{j-1}|| \le (\sqrt{d}/2) \max_i ||b_i^*||$.
- Similarly, we can make sure that $|b_j| \leq (\sqrt{d/2}) \max_i |b_i^*|$.
- ► This is similar to lifting.

RECAP

- ► Let π be the projection over span(b_1, \dots, b_{j-2})[⊥].
- Compute coprime p and q s.t. $\pi(b_j)=(p/q)b_{j-1}^*$.
- Find $(u,v) \in \mathbb{Z}^2$ s.t. up+vq=1 using XGCD(p,q).
- ► Replace (b_{j-1}, b_j) by $(pb_{j-1}-qb_j, vb_{j-1}+ub_j)$:
- Size-reduce b_{j-1} and b_j : make $\|\vec{b}_{j-1}\|$ and $\|\vec{b}_j\| \leq \sqrt{d} \max_i \|\vec{b}_i^*\|$ using $L(b_1, \dots, b_{j-2})$.
- The BASIS algorithm runs in polynomial time and outputs a basis of the lattice L which is ``short'':
 - ► If B_0 is the input generator, then the output B satisfies: $||B|| \le \sqrt{\dim(L)} ||B_0||$ where $||B|| = \max_i ||b_i||$

- Key ideas:
 - Projecting to simplify the problem.
 - ► Lifting to make sure that vectors do not get too big.

LATTICE PROBLEMS

LATTICE ALGORITHMS

HARD LATTICE PROBLEMS

- Since 1996, lattices are <u>very trendy</u> in classical and quantum complexity theory.
- Depending on the dimension d:
 - NP-hardness
 - ➤ non NP-hardness (NP∩co-NP)
 - worst-case / average-case reduction
 - cryptography
 - subexp-time algorithms
 - poly-time algorithms

HARD LATTICE PROBLEMS

- Input: a lattice L and an n-dim ball C.
- Output: decide if $L \cap C$ is non-trivial, and find a point when applicable. Easy if $L = \mathbb{Z}^n$.
- Two settings
 - ► Approx: L∩C has many points.
 - Ex: SIS and ISIS.
 - Unique: only one non-trivial point.
 Ex: BDD.

THE SHORTEST VECTOR PROBLEM

THE SHORTEST VECTOR PROBLEM (SVP)

- Input: a basis of a d-dim lattice L.
- Output: nonzero v \in L minimizing ||v|| i.e. $||v|| = \lambda_1(L)$

2	0	0	0	0
0	2	0	0	0
0	0	2	0	0
0	0	0	2	0
1	1	1	1	1

THE SHORTEST VECTOR PROBLEM (SVP): DECISIONAL VARIANT

- Input: a basis of a d-dim lattice L and a rational number r
- Output: is there $v \in L$ such that $||v|| \leq r$?

EXERCISE

- Show that given an oracle for Decisional-SVP, one can solve SVP in polynomial in time.
- Lagrange's algorithm shows how to solve rank-2 SVP in polynomial time.