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Lattice Algorithms

Input = integer matrix, whose rows span 
the lattice. Parameters:


Size of basis coefficients

Lattice dimension


Asymptotically:

dim increases

coeff-size polynomial in dim.



Euclid with Vectors

If b1,…,bn∈Zm, L(b1,…,bn) is a lattice: can you 
efficiently find a lattice basis?

This would be our first non-trivial lattice 
algorithm.


If n=2 and m=1, this is exactly the gcd 
problem, so we are trying to generalize 
Euclid’s algorithm. 



Hard Lattice Problems

Since 1996, lattices are very trendy in classical 
and quantum complexity theory. 

Depending on the dimension d:

NP-hardness

non NP-hardness (NP∩co-NP)

worst-case/average-case reduction

cryptography


subexp-time algorithms


poly-time algorithms
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Hard Lattice Problems
Input: a lattice L and an n-dim ball C.

Output: decide if L∩C is non-trivial, and 
find a point when applicable. Easy if L=Zn.

Two settings


Approx: L∩C has many points.                
Ex: SIS and ISIS.

Unique: only one non-trivial point.           
Ex: BDD.



The Shortest Vector Problem (SVP)

Input: a basis of a d-dim lattice L

Output: nonzero v∈L minimizing ||v|| i.e.   
||v||=λ1(L)
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Relaxing SVP

Input: a basis of a d-dim lattice L. 

Output: nonzero v∈L such that


Approximate-SVP: ||v||≤f(d) λ1(L)     [relative]


Hermite-SVP:     ||v||≤g(d) vol(L)1/d    [absolute]



Lattice Challenges



The Closest Vector Problem (CVP)

Input: a basis of a lattice L of dim d, and 
a target vector t.

Output: v∈L minimizing ||v-t||.


BDD (bounded distance decoding): special 
case when t is very close to L.
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Intuition

SVP is not harder than CVP: if one 
can solve exact CVP, one can solve 
exact SVP. 



Random Instances

Which distributions of integer lattices (SVP 
and CVP) and target (CVP/BDD)?



Regrouping Lattices

A full-rank integer lattice L⊆Zm defines a 
finite Abelian group Zm/L. Two different 
lattices can define the same quotient.

Reciprocally, for any finite Abelian group G, 
let Lm(G) = {lattices L⊆Zm s.t. Zm/L ∼ G }.

If L∈Lm(G), then rank(L)=m.



Remarks

L∈Lm(G) iff rank(G)≤m and                        
∃g1,…,gm∈G generating G s.t. 
L={(x1,...,xm)∈Zm s.t. Σi xi gi = 0}.


If you pick g1,…,gm∈G uniformly at random 
until they generate G, then 
L={(x1,...,xm)∈Zm s.t. Σi xi gi = 0} is 
uniformly distributed in Lm(G).



Remarks

G can decomposed as a product of n 
cyclic groups. If n > m, then Lm(G) =∅.

Lm(G) is finite because of the Hermite 
normal form.

The sets Lm(G) form a partition of the set 
of full-rank lattices in Zm.

Most lattices L have a low-rank         
quotient G.



The Hermite normal form

Any full-rank lattice ⊆Zm has a unique 
basis which is:


lower-triangular

has positive diagonal

in each column, all coefficients are ≥ 
0 and < the diagonal coefficient.



The SIS Problem (1996):
Small Integer Solutions

Let (G,+) be a finite Abelian group: G=(Z/qZ)n 
in [Ajtai96]. View G as a Z-module.

Pick g1,...,gm uniformly at random from G.

Goal: Find short (x1,...,xm)∈Zm s.t. Σi xi gi = 0, 
e.g. ||x|| ≤ m (#G)1/m.

This is essentially finding a short vector in a 
(uniform) random lattice of Lm(G) = { lattices 
L⊆Zm s.t. Zm/L ∼ G }. 



Ex: Cyclic G

Let G = Z/qZ

Pick g1,...,gm uniformly at random mod q.     

Goal: Find short x=(x1,...,xm)∈Zm                   
s.t. Σi xi gi ≡ 0 (mod q).


This is finding a short lattice vector for 
random lattices L such that Zm/L ∼ Z/qZ.



Worst-case to Average-case 
 Reduction

[Ajtai96]: If one can efficiently solve SIS  
for G=(Z/qnZ)n on the average, then one 
can efficiently find short vectors in every 
n-dim lattice. 

[GINX16]: This can be generalized to any 
sequence (Gn) of finite abelian groups, 
provided that #Gn is sufficiently large 
≥nΩ(max(n,rank(G))) and m too. Ex: (Z/2Z)n is not.



Application: Hash Function

Let (G,+) be a finite Abelian group: Pick 
g1,...,gm uniformly at random from G.

Let h(x)= Σi xi gi for x=(x1,...,xm) in {0,1}m.


Then finding collisions (x≠y s.t. h(x)=h(y)) is 
as hard as solving SIS on the average, 
which is as hard as worst-case lattice 
problems.



Remark

Inverting h is called the ISIS problem. 

It is the same as finding a lattice 
point inside a ball, where the center 
is defined by the input. 



Duality

Remember the SIS lattice:

g1,...,gm in some finite Abelian group (G,+) 

L={x=(x1,...,xm)∈Zm s.t. Σi xi gi = 0}


The dual lattice of L is related to the dual group Gv 
of (additive) characters of G: morphisms from G to 
T=R/Z


Lv={(y1,...,ym)∈Rm s.t. for some s ∈Gv, for all i 
yi≣s(gi) (mod 1)}



The LWE Problem:               
Learning (a Character) with Errors 

Let (G,+) be any finite Abelian group           
e.g. G=(Z/qZ)n in [Re05].

Pick g1,...,gm uniformly at random from G.

Pick a random character s in Gv.

Goal: recover s given g1,...,gm and noisy 
approximations of s(g1),..., s(gm).              
Ex: Gaussian noise.



Gaussian Noise over R



Gaussian Noise over R/Z

When σ increases, the distribution becomes uniform



Ex: Cyclic G

Let G = Z/qZ

Pick g1,...,gm uniformly at random mod q.     

Goal: recover s∈Z given g1,...,gm and 
randomized approximations of sg1 mod q,..., 
sgm mod q.

This is exactly a randomized variant of 
Boneh-Venkatesan’s Hidden Number 
Problem from CRYPTO ’96.



Hardness of LWE

[Regev05]: If one can efficiently solve LWE 
for G=(Z/qnZ)n on the average, then one 
can quantum-efficiently find short vectors 
in every n-dim lattice. 

[GINX16]: This can be generalized to any 
sequence (Gn) of finite abelian groups, 
provided that #Gn is sufficiently large.



A Glimpse of
 Worst-case to Average-case 

Reductions



Short Lattice Vectors: 
Minkowski’s Inequality

[Minkowski]: Any d-dim lattice L has 
at least one non-zero vector of norm 
≤ 


This is Minkowski’s inequality on 
Hermite’s constant:

p
�d  2

v1/dd

= 2
�(1 + d

2 )
1/d

p
⇡


p
d

2

�(1 + d/2)1/dp
⇡

covol(L)

1/d 
p
d covol(L)

1/d



Four Proofs of  
Minkowski’s Inequality

Blichfeldt’s proof: «continuous» pigeon-hole 
principle.


Minkowski’s original proof: sphere packings.

Siegel’s proof: Poisson summation. 

Mordell’s proof: pigeon-hole principle.



Mordell’s 
Proof
(1933)



Mordell’s Proof (1933)

For q∈N, let Ḹ=q-1L then [Ḹ:L]=qd.                 
Among >qd points v1,…,vm in Ḹ, ∃i≠j s.t. vi-vj∈L.

There are enough points in a large ball of radius r 
(r is close to Minkowski’s bound in L, but large for Ḹ)


We obtain a short non-zero point in L: norm ≤ 2r.



Key Point

Mordell proved the existence of short lattice 
vectors by using the existence of short 
vectors in a special class of higher-
dimensional integer lattices.


Let distinct v1,…,vm ∈Ḹ=q-1L.

Consider the integer lattice L’ formed by 
all (x1,…,xm)∈Zm s.t. ∑ixivi∈L.


If m>qd, λ1(L’)≤√2.




An Algorithm From  
Mordell’s Proof 

Mordell’s proof gives an (inefficient) algorithm:

Need to generate >qd lattice points in Ḹ.

Among these exponentially many lattice points, 
find a difference in L, possibly by exhaustive 
search.

Both steps are expensive.



Wishful Thinking

To apply the pigeon-hole principle, we 
need an exponential number m of lattice 
vectors in Ḹ.

Can we get away with a small polynomial 
number m and make the algorithm 
efficient? 


Maybe if we could find short vectors in 
certain higher-dimensional random lattices. 



Overlattices and Groups

If L is n-dim, Ḹ=q-1L and G=(Z/qZ)n then Ḹ/L ≃ G.

There is an exact sequence:


L=Kerφ where φis efficiently computable.


Let v1,...,vm∈Ḹ and define g1,...,gm∈G by gi=φ(vi).


If Σi xi gi = 0 for (x1,...,xm)∈Zm then Σi xi vi ∈ L.

0 �! L
1�! L̄

'�! G �! 0



Fourier Analysis

Fourier analysis shows that if v1,...,vm∈Ḹ are 
chosen from a suitable (short) distribution,                                 
gi=φ(vi) has uniform distribution over G. 


Any probability mass function f over Ḹ 
s.t. for any x∈Ḹ, ∑y∈Lf(x+y) ≈ 1/#G.            
Ex: discrete Gaussian distribution.


This is a key step: transforming a worst-
case into an average-case.



Remember SIS

Let (G,+) be a finite Abelian group: G=(Z/qZ)n 
in [Ajtai96]. View G as a Z-module.

Pick g1,...,gm uniformly at random from G.

Goal: Find short (x1,...,xm)∈Zm s.t. Σi xi gi = 0, 
e.g. ||x|| ≤ m (#G)1/m.

This is essentially finding a short vector in a 
(uniform) random lattice of Lm(G) = { lattices 
L⊆Zm s.t. Zm/L ∼ G }. 



Worst-to-average Reduction 
from Mordell’s Proof

Sample short v1,...,vm∈Ḹ from a suitable 
distribution, so that gi=φ(vi) has uniform 

distrib. over G=(Z/qZ)n 

Call the SIS-oracle on (g1,...,gm) to find a 
short x=(x1,...,xm)∈Zm s.t. Σi xi gi = 0 in G,          
i.e. Σi xi vi ∈ L.


Return Σi xi vi ∈ L.



Generalized SIS Reduction

The SIS reduction is based on this crucial 
fact: If B is a reduced basis of a lattice L, 
then q-1B is a reduced basis of the 
overlattice Ḹ=q-1L.

If G is an arbitrary finite Abelian group, 
[GINX16] finds a reduced basis of some 
overlattice Ḹ⊇L s.t. Ḹ/L ≃ G, so that we 
can sample short vectors in Ḹ.


