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Lattice Al gorlthms
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o Input = intfeger matrix, whose rows span
the lattice. Parameters:

o Size of basis coefficients
o Lattice dimension

o Asymptotically:
odim increases

o coeff-size polynomial in dim.



3 Euclid with Vectors
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oIf by,...,bneZ™, L(by,...,bn) is a lattice: can you
efficiently find a lattice basis?

o This would be our first non-trivial lattice
algorithm.

o If n=2 and m=l, this is exactly the gcd
problem, so we are frying to generalize
Euclids algorithm.



Hard Lattice Problems
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o Since 1996, lattices are very frendy in classical
and quantum complexity theory.

o Depending on the dimension d: approx. factor

o NP-hardness O(1) /
o non NP-hardness (NPnco-NP) \/&

o worst-case/average-case reduction dlogd

o cryptography dO(l)

o subexp-time algorithms 2\/3

d log log d \/

o poly-time algorithms 2 Togd co
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.’ Hard Lattice Problems
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o Input: a lattice L and an n-dim ball oy

o Qutput: decide if LnC is non-trivial, and
find a point when applicable. Easy if L=Z".

o Two settings RLLEEI LR
E ;

o Approx: LnC has many points.
Ex: SIS and ISIS.

o Unique: only one non-trivial point. E
Ex: BDD. i




The Shortest Vector Problem (SVP)
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o Input: a basis of a d-dim lattice L

o Qutput: nonzero veL minimizing |Ivl| i.e.
[Ivil= A 4(L)

»

— OO O |
— | O O | |O
— O OO
=N O O O
— O O O | O




Relaxing SVP
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o Input: a basis of a d-dim lattice L.

o Qutput: nonzero VEL such that

o Approximate-SVP: |Ivll<f(d) A (L) I[relative]

o Hermite-SVP: lIvli<g(d) vol(L)/d [absolute]



Lattice Challenges
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The Closest Vector Problem (CVP)
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o Input: a basis of a la’r’rlce L of dim d, and
a target vector T.

o Qutput: veL minimizing ||v-tll.

o BDD (bounded distance decoding): special
case when T is very close to L.



Intuition
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o SVP is not harder than CVP: if one
can solve exact CVP, one can solve
exact SVP.



@Q Random Instances
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o Which distributions of integer lattices (SVP
and CVP) and target (CVP/BDD)?



Regroupmg Lattices
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o A full-rank integer lattice LCZ™ defines a

finite Abelian group Z™/L. Two different
lattices can define the same quotient.

o Reciprocally, for any finite Abelian group G,
let Ln(G) = {lattices LcZ™ s.t. Z™/L ~ G }.

o If LeLn(G), then rank(L)=m.



Remarks
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o LeLm(G) iff rank(G)<m and
3g1,...,9gn€G generating G s.t.

L=1(X1,...,Xm)€Z™ s.t. X X; gi = O3.

o If you pick gi,....gneG uniformly at random
until they generate G, then

L={(x1,...,.Xm)EZ™ s.t. Xixigi= O is
uniformly distributed in Lm(G).



Remarks
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o G can decomposed as a product of n
cyclic groups. If n > m, then Ln(G) =2.

o Lm(G) is finite because of the Hermite
normal form.

o The sets Lm(G) form a partition of the set
of full-rank lattices in Z™.

o Most lattices L have a low-rank
quotient G.



o Any full-rank lattice €Z™ has a unique
basis which is:

o lower-triangular
o has positive diagonal

oin each column, all coefficients are >
O and < the diagonal coefficient.



The SIS Problem (1996):
Small Integer Solutlons
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oLet (G,+) be a finite Abelian group G=(Z/qZ)"
in [Ajtai96]. View G as a Z-module.

o Pick gy,....gm uniformly at random from G.

o Goal: Find short (xi,...,.xm)eZ™ s.t. 2ixigi =0,
e.g. lIxll <« m (#G)V/m.

o This is essentially finding a short vector in a
(uniform) random lattice of Ln(G) = § lattices

N ZOR SERZ /15 =5G ).



@ EX: Cychc G
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oLet G =Z/qz

o Pick gi,...,gm uniformly at random mod q.

o Goal: Find short x=(xi,...,Xm)eZ™
s.t. 2ixig =0 (mod q).

o This is finding a short lattice vector for
random lattices L such that Z"/L ~ Z/qZ.



Worst-case to Average-case
Reductlon
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o [Ajtai96]: If one can efficiently solve SIS

for G=(Z/qnZ)" on the average, then one
can efficiently find short vectors in every
n-dim lattice.

o [GINX16]: This can be generalized to any
sequence (Gy,) of finite abelian groups,
provided that #G, is sufficiently large

>n2max(nrank(G)) qnd m too. Ex: (Z/2Z)" is not.




Apphcatlon Hash Function
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olLet (G,+) be a finite Abelian group: Pick
gu,--.gm uniformly at random from G.

olLet h(x)= XZixig for x=(xi,....xm) in {O,1}M.

o Then finding collisions (x#y s.t. h(x)=h(y)) is
as hard as solving SIS on the average,
which is as hard as worst-case lattice
problems.



Remark
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o Inverting h is called the ISIS problem.

oIt is the same as finding a lattice
point inside a ball, where the center
is defined by the input.
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Dualit
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o Remember the SIS lattice:

O gy,....gm in some finite Abelian group (G,+)

o L={X=(X1,...,Xm)ezm SelP i gi = O}

o The dual lattice of L is related to the dual group G
of (additive) characters of G: morphisms from G to

T=R/Z

o LY={(y1,...,Ym)ER™ s.t. for some s €GY, for all i
vi=s(g)) (mod 1)}



"L The LWE Problem:
L Learning (a Character) with Errors
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oLet (G,+) be any finite Abelian group
e.g. G=(Z/qZ)" in [Re05].

o Pick gi,...,gm uniformly at random from G.
o Pick a random character s in G".

o Goal: recover s given g;,...,.gm and noisy
approximations of s(qgi),..., s(gm).
Ex: Gaussian noise.






n O increases, the distribution beComes




@ EX: Cychc G
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olLet G = Z/qZ

o Pick gy, ....gm uniformly at random mod q.

o Goal: recover seZ given gi,...,.gm and

randomized approximations of sgi mod gq,...,
sgm mod q.

o This is exactly a randomized variant of
Boneh-Venkatesans Hidden Number
Problem from CRYPTO 96.



Hardness of LWE
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o [RegevO5]: If one can efficiently solve LWE

for G=(Z/qnZ)" on the average, then one
can quantum-efficiently find short vectors
in every n-dim lattice.

o [GINX16]: This can be generalized to any
sequence (Gn) of finite abelian groups,
provided that #G, is sufficiently large.




A Glimpse of
Worst-case to Average-case
Reductions



f* Short Lattice Vectors:
42 Minkowski’s Inequahty
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o [Minkowski]: Any d d|m Icn“rlce L has

at least one non-zero vector of norm
£

I'(1+4d/2)/¢
ﬁ

o This is Minkowskis inequality on
Hermites cons’ran’r
F(l N )1/d

V7Yd < 1/d:2 ﬁ <Vd

Vg

2 covol(L)l/d <Vd covol(L)l/d




Four Proofs of "
M1nk0wsk1 S Inequahty A‘z
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o Blichfeldts proof: «continuous» pigeon-hole
principle. A :__

o Minkowskis original proof: sphere packings.

o Siegels proof: Poisson summation.

o Mordell’s proof: pigeon-hole principle.



Mordell’s
Proof

(1933)




- Mordell’s Proof (1933)
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o For geN, let L=g"'L then [I,:L]:qd.
Among >q° points vy,...,.vm in L, Ji#j s.t. vi-vjeL.

o There are enough points in a large ball of radius r
(r is close to Minkowskis bound in L, but large for L)

o We obtain a short non-zero point in L: norm < 2r.



Key Point
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o Mordell proved the existence of short lattice
vectors by using the existence of short
vectors in a special class of higher-
dimensional integer lattices.

o Let distinct vi,...,vm €L=q"'L.

o Consider the integer lattice L' formed by
all (xy,...,.Xxm)eZ™ s.t. Zixiviel.

o If m>qd, A (L)</2.



An Algorithm From
Mordell’s Proof
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o Mordells proof gives an (inefficient) algorithm:
o Need to generate >q° lattice points in L.

o Among these exponentially many lattice poinfts,
find a difference in L, possibly by exhaustive
search.

o Both steps are expensive.
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Wishtul Thmklng
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o To apply the pigeon-hole prmaple, we
need an exponential number m of lattice
vectors in L.

o Can we get away with a small polynomial
number m and make the algorithm
efficient?

o Maybe if we could find short vectors in
certain higher-dimensional random lattices.



Overlattices and Groups
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oIf L is n-dim, L=q"'L and G=(Z/qZ)" then L/L = G

o There is an exact sequence:

O%L%L G — 0

oL=Ker ® where ¢is efficiently computable.

oLet vi,..,.vmeL and define gi,...,.gneG by gi= & (vi).

oIf 2 Xi gi = O for (xl,...,xm)ezm then 2 Xi Vj € L.



Fourier Analysis
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o Fourier analysis shows 1‘hcnL if V1,...,VmEL are

chosen from a suitable (short) distribution,
gi= ® (vi) has uniform distribution over G.

o Any probability mass function f over L
s.t. for any xel, 3y f(x+y) = 1/#G.
Ex: discrete Gaussian distribution.

o This is a key step: transforming a worst-
case into an average-case.



Remember SIS
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olLet (G,+) be a ﬁnl’re Abellan group G=(Z/qZ)"
in [Ajtai96]. View G as a Z-module.

o Pick gy,....gm uniformly at random from G.

o Goal: Find short (xi,...,.xm)eZ™ s.t. 2ixigi =0,
e.g. lIxll <« m (#G)V/m.

o This is essentially finding a short vector in a
(uniform) random lattice of Ln(G) = § lattices
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Worst-to-average Reduction
from Mordell’s Proof
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o Sample short vi,...vmel from a suitable
distribution, so that gi=¢ (vi) has uniform

distrib. over G=(Z/qZ)"

o Call the SIS-oracle on (qy,...,gm) to find a
short x=(xi,...,.xm)eZ™ s.t. 2ixigi= 0 in G,

l.e. Zi Xi Vj € &r

oReturn 2 xiv; e L.



‘ﬁ" Generalized SIS Reduction
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o The SIS reduction is based on this crucial
fact: If B is a reduced basis of a lattice L,
then q'B is a reduced basis of the
overlattice L=qL.

o If G is an arbitrary finite Abelian group,
[GINX16] finds a reduced basis of some
overlattice LoL s.t. L/L = G, so that we

can sample short vectors in L.



