LATTICES: MATHEMATICAL BACKGROUND

PHONG NGUYEN http://www.di.ens.fr/~pnguyen

September 2024

- Interaction: please ask questions during my talks; interruptions are welcome.
- Implementation: to understand an algorithm, it is helpful to implement it: sage, NTL, fplll, etc.

MATH REFERENCES

• Siegel's Lectures on the Geometry of Numbers (Springer).

• Venkatesh's Stanford lecture notes on geometry of numbers

TODAY: LATTICES MATHEMATICAL BACKGROUND

- What is a lattice?
- Characterization of lattices

• Counting lattice points

WHAT IS LATICE?

WHAT IS A LATTICE?

• An infinite arrangement of "regularly spaced" points

WHAT IS A LATTICE?

- A linear deformation of **Z**ⁿ.
 - ► Let B be a non-singular n x n matrix.
 - ► The lattice spanned by the basis B is $L=Z^n B$.

2	0	0	0	0
0	2	0	0	0
0	0	2	0	0
0	0	0	2	0
1	1	1	1	1

EUCLIDEAN LATTICES

- Consider \mathbb{R}^n as a Euclidean space: let $\langle u, v \rangle$ be the dot product $\|\overrightarrow{w}\|$ be the norm.
- A lattice is a discrete subgroup L of \mathbb{R}^n : $\forall v \in L \exists r > 0 \text{ s.t. } L \cap Ball(v,r) = \{v\}$ $\dim(L) = rank(L) = \dim(span(L))$

• Ex: **Z**ⁿ and its subgroups.

EXERCISES

- Show that for any lattice L of **R**ⁿ:
 - ► $\exists r > 0 \text{ s.t. } \forall v \in L, L \cap Ball(v,r) = \{v\}.$
 - \blacktriangleright L is closed.
 - Yr>0 and x∈Rⁿ, L∩Ball(x,r) is finite. In particular, L has shortest non-zero vectors.
 - ► L is countable.

EXAMPLES

- Let L and L' be lattices in **R**ⁿ.
- Let E be a subspace of **R**ⁿ.
 - ► Is $E \cap L$ a lattice?
- Let E be a subspace of **R**ⁿ.
 - ► Is $L \cap L'$ a lattice?
 - ► Is $L \cup L'$ a lattice?

NOTATION: LINEAR COMBINATIONS

- For any vectors b₁,...,b_n∈ R^m,
 let L(b₁,...,b_n) denote their Z-span.
- $L(b_1,...,b_n) = Zb_1 + ... + Zb_n = \{ x_1b_1 + ... + x_nb_n \text{ where each } x_i \in Z \}$

QUESTION 1

• If $b_1, \ldots, b_n \in \mathbb{Z}^m$, is $L(b_1, \ldots, b_n)$ a lattice?

- If $b_1, \ldots, b_n \in \mathbb{Z}^m$, is $L(b_1, \ldots, b_n)$ a lattice?
- Yes, because it is a subgroup of Z^m, therefore a discrete subgroup of R^m.

QUESTION 2

• If $b_1, \ldots, b_n \in \mathbb{Q}^m$, is $L(b_1, \ldots, b_n)$ a lattice?

- If $b_1, \ldots, b_n \in \mathbb{Q}^m$, is $L(b_1, \ldots, b_n)$ a lattice?
- ➤ Yes, because it is can be reduced to the previous question.

QUESTION 3

• If $b_1, \ldots, b_n \in \mathbb{R}^m$, is $L(b_1, \ldots, b_n)$ a lattice?

- If $b_1, \ldots, b_n \in \mathbb{R}^m$, is $L(b_1, \ldots, b_n)$ a lattice?
- Not necessarily, even for n=2 and m=1: L(1,√2) is not a lattice because it is dense in **R**.
- ➤ Yet, L(1,√2) can also be "viewed" as a lattice: it is the ring of integers of Q(√2).

CHARACTERIZ ATION OF LATTICES

A NON-TRIVIAL LATTICE THEOREM

STATEMENT

- Th: Let $L \subseteq \mathbb{R}^m$ be non-empty. There is equivalence between:
 - ► L is a lattice.
 - ➤ ∃b₁,...,b_n∈R^m linearly independent s.t. L=L(b₁,...,b_n): such (b₁,...,b_n) is called a basis of L and dim(L) := n.

- Let b₁, b₂,...b_n be linearly independent in **R^m**.
- Consider an injective sequence (v_i) of L=L(b₁,...,b_n) converging to 0.
 - ► $\exists !m_i \in \mathbb{Z}^n$ s.t. $v_i = m_i B$ where $B = (b_1, ..., b_n)$.
 - Then m_i=(v_iB^t) (BB^t)⁻¹ converges to 0 but Zⁿ is discrete: the m_i's must become 0.
- Thus L is discrete.

- Induction over n = dim(span(L)).
- If n=1:
 - ► Let b∈L be a shortest non-zero vector of L.
 - ► Then span(L)= $\mathbf{R}b$ and L= $\mathbf{Z}b$.

- Now, assume that dim(span(L))=n.
- Let $b \in L$ non-zero.
 - Then span(b) \cap L=**Z**b₁ because it is a 1-dim lattice.
- Let π be the projection over b_1^{\perp} .
 - ► Claim 1: π (L) is a lattice whose dim is n-1.
 - Claim 2: If $(\pi(b_2), ..., \pi(b_n))$ is a basis of $\pi(L)$, then $(b_1, ..., b_n)$ is a basis of L.

- Note: the projection of a lattice may not be a lattice! Why?
- span(b) \cap L=**Z**b₁ and π is the projection over b₁ \perp .
- Consider an injective sequence π(v_i) converging to 0, where v_i∈L.
- $|\langle v_i, b_1 \rangle| \le ||b_1||^2/2$ by lifting: $v_i = v_i \lfloor \langle v_i, b_1 \rangle / \langle b_1, b_1 \rangle \rfloor b_1$
- Then the v_i's are bounded: contradiction! Why?

PROOF OF CLAIM 2

- Let $(\pi(b_2), ..., \pi(b_n))$ is a basis of $\pi(L)$.
- Let v∈L.
 - ► Then $\pi(v)=x_2\pi(b_2)+\ldots+x_n\pi(b_n)$ for some $x_i\in \mathbb{Z}$.
 - ► And v-(x_2b_2 +...+ x_nb_n) $\in L \cap span(b_1)=Zb_1$
 - ► So $v=x_1b_1+...+x_nb_n$ where $x_i\in \mathbb{Z}$.
- Hence: $L = L(b_1, ..., b_n)$.

- Key ideas:
 - Projecting a lattice to decrease its dimension: quotient with a sublattice.
 - Lifting short projections into short lattice vectors.

∨ =
$$\pi(v)$$
 + $(v-\pi(v))$
∈lattice
Projection∈subspace⊥
Elattice

COUNTING LATTICE POINTS

- Gram $(b_1,...,b_n) = det(\langle b_i,b_j \rangle)_{1 \le i,j \le n} \ge 0.$
- Th: If B is a basis of a lattice L, then Gram(B) only depends on L: √Gram(B) is called the (co-)volume of L.
- Ex: $vol(\mathbf{Z}^n)=1$.

 $vol(L)vol(L^x)=1.$

THE GAUSSIAN HEURISTIC

- The volume measures the **density** of lattice points.
- For "nice" full-rank lattices L, and "nice" measurable sets C of **R**ⁿ:

VOLUME OF THE BALL

The n-dimensional volume of a Euclidean ball of radius R in n-dimensional Euclidean space is

$$V_n(R) = rac{\pi^{rac{n}{2}}}{\Gamma\left(rac{n}{2}+1
ight)}R^n,$$

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} \, \mathrm{d}x$$

The unit-volume ball has radius

$$\int \sqrt{\frac{n}{2\pi e}}$$

 \frown

VALIDITY OF THE GAUSSIAN HEURISTIC

- Fails for L= \mathbb{Z}^n , and C=Ball($0,\sqrt{(n/10)}$).
- Easy to prove for asymptotically large balls: $1/vol(L) = \lim_{r\to\infty} (number of lattice points of norm \le r)/vol(Ball(0,r))$

SHORT LATTICE VECTORS

 Th: Any d-dim lattice L has exponentially many vectors of norm ≤

$$O\left(\sqrt{d}\right) \operatorname{vol}(L)^{1/d}$$

 Th: In a random d-dim lattice L, all non-zero vectors have norm ≥

$$\Omega\left(\sqrt{d}\right)\operatorname{vol}(L)^{1/d}$$

SHORT LATICE VECTORS

THE FIRST MINIMUM

- The intersection of a lattice with any bounded set is finite.
- In a lattice L, there are non-zero vectors of minimal norm: this is the first minimum $\lambda_1(L)$ or the minimum distance..

LATTICE PACKINGS

Every lattice defines a sphere packing:

The diameter of spheres is the first minimum of the lattice: the shortest norm of a non-zero lattice vector.

- ► Denoted by: $\lambda_1(L), \ldots, \lambda_d(L)$
- The k-th minimum is the radius of the smallest (centered) ball containing k linearly independent lattice vectors.

► There exist linearly independent lattice vectors $c_1,...,c_d$ such that $\|\vec{c}_i\| = \lambda_i(L)$ for each $1 \le i \le d$.

HERMITE'S CONSTANT

HERMITE'S CONSTANT (1850)

- ➤ This is the "worst-case" for short lattice vectors.
- Hermite showed the existence of:

$$\sqrt{\gamma_d} = \max_L \frac{\lambda_1(L)}{\operatorname{vol}(L)^{1/d}}$$

- ► Here, $\lambda_1(L)$ is the minimal norm of a non-zero lattice vector.
- Hermite's constant is asymptotically linear:

 $\Omega(n) \leq \gamma_n \leq O(n)$

The exact value of the constant is only known up to dim 8, and in dim 24.

THE EXISTENCE OF SHORT LATTICE VECTORS

Thus, any lattice contains a non-zero vector of norm

 $\leq \sqrt{d} \operatorname{vol}(L)^{1/d}$

- Let L be a full-rank lattice of Rⁿ. Let C be a measurable subset of Rⁿ, convex, symmetric, and of measure > 2ⁿvol(L).
- ➤ Then C contains at least a non-zero point of L.

- ► The volume bound is optimal in the worst case.
- ► If C is furthermore compact, the > can be replaced by \geq .

APPLICATION TO A BALL

- ► Let C be the n-dim ball of radius r. Then its volume is rⁿ multiplied by: $v_n = \frac{\pi^{\frac{n}{2}}}{\Gamma(1+\frac{n}{2})} \sim \left(\frac{2e\pi}{n}\right)^{\frac{n}{2}} \frac{1}{\sqrt{\pi n}}$
- To apply Minkowski's theorem, one can take:

$$r = \frac{2}{(v_n)^{\frac{1}{n}}} vol(L)^{\frac{1}{n}}$$

PROVING MINKOWSKI'S THEOREM

- Blichfeldt's lemma:
 - \succ Let L be a full-rank lattice of Rⁿ.

- ► Let F be a measurable subset of \mathbb{R}^n , of measure > vol(L).
- Then F contains at least two distinct vectors whose difference is in L.
- ► Take F=C/2 to prove Minkowski.

REDUCTION

LATTICE REDUCTION

- Euclidean spaces have orthogonal bases.
- Lattices have reduced bases whose vectors are short and nearly-orthogonal.

➤ As soon as d≥4, a free family reaching the minima is not necessarily a basis. Ex: the sublattice of Z⁴ formed by all vectors whose sum of coordinates is even.

MINIMAL BASES

- ➤ As soon as d≥5, there may not exist a basis reaching all the minima.
- ► Ex: this lattice whose minima are all equal to 2.

2	0	0	0	0
0	2	0	0	0
0	0	2	0	0
0	0	0	2	0
1	1	1	1	1

- ➤ There is no basis which is "naturally" shorter than all others, as soon as d≥5.
- ► But the first minimum can always be extended to a basis.
- A reduced basis is a basis close to the minima. There are many notions of reduction.