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Duality

Let L be a lattice.

The dual lattice of L is                             
Lx={y∈span(L) s.t. ⟨x,y⟩∈Z for all x∈L}


Show that it is a lattice.

Show that rank(L) = rank(Lx)



Ex: Kernel Lattices

Let n,m,q∈N.

Let A be an mxn matrix over Z.

The kernel LA={x∈Zm s.t. xA ≡ 0 mod q} is 
a full-rank lattice in Zm s.t. vol(LA) | qn.

Its dual lattice is (1/q)L’A where L’A is the 
«image» i.e. L’A={y∈Zm s.t.  y≡zAt mod q 
for some z∈Zn}



Counting Lattice Points



The Gaussian Heuristic

The volume measures the density of 
lattice points.

For “nice” full-rank lattices L, and “nice” 
measurable sets C of Rn:

Card(L ⇥ C) � vol(C)
vol(L)



Volume of the Ball
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Validity of the Gaussian Heuristic

Fails for L=Zn, and C=Ball(0,√(n/10)).

Easy to prove for asymptotically large 
balls: 1/vol(L) = limr⟶∞ (number of 
lattice points of norm ≤ r)/vol(Ball(0,r))



Short Lattice Vectors

Th: Any d-dim lattice L has 
exponentially many vectors of norm ≤


Th: In a random d-dim lattice L, all 
non-zero vectors have norm ≥
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Short Lattice Vectors



Lattices and Quadratic Forms

Every lattice basis defines a positive 
definite quadratic form:


Reciprocally: Cholesky factorization.

The squared volume is the discriminant 
of the form. 
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The First Minimum

The intersection of a lattice with any 
bounded set is finite.

In a lattice L, there are non-zero 
vectors of minimal norm: this is the 
first minimum         or the minimum 
distance.

λ1(L)

second minimum
O

first minimum



Lattice Packings
Every lattice defines a sphere packing:


The diameter of spheres is the first 
minimum of the lattice: the shortest 
norm of a non-zero lattice vector.

O



Minkowski’s Minima

Denoted by:

The k-th minimum is the radius of the 
smallest (centered) ball containing k 
linearly independent lattice vectors.   

λ1(L), . . . ,λd(L)

second minimum
O

first minimum



Note

There exist linearly independent 
lattice vectors c1,...,cd such that           
||ci||= λi(L) for each 1≤i≤d.



Hermite’s 
Constant 
(1850)



Hermite’s Constant (1850)

This is the “worst-case” for short 
lattice vectors.

Hermite showed the existence of this 
constant:


Here,       is the minimal norm of a 
non-zero lattice vector.
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Facts on Hermite’s Constant

Hermite’s constant is asymptotically linear:


The exact value of the constant is only 
known up to dim 8, and in dim 24 [2004].

γn 2/
p
321/3

p
2 81/5 (64/3)1/6641/7

dim n 2 3 4 5 6 7 8 24

2 4

approx 1.16 1.26 1.41 1.52 1.67 1.81 2 4

Ω(n) γn  O(n)



The existence of short lattice vectors

Hermite proved in 1850:

Minkowski’s theorem implies:


Thus, any lattice contains a non-zero 
vector of norm  
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Minkowski’s Theorem (1896)

Let L be a full-rank lattice of Rⁿ. Let C 
be a measurable subset of Rⁿ, convex, 
symmetric, and of measure > 2ⁿvol(L).

Then C contains at least a non-zero point 
of L.

O



Remarks

The volume bound is optimal in the 
worst case.

If C is furthermore compact, the > 
can be replaced by ≥.



Application to a ball

Let C be the n-dim ball of radius r. 
Then its volume is rⁿ multiplied by:


To apply Minkowski’s theorem, one 
can take:



Application to a ball

We obtain Minkowski’s linear bound 
on Hermite’s constant:


The unit-ball contains the 
hypercube [-1/√n,1/√n]n, therefore 
vn ≥ (2/√n)n, hence the upper bound 
implies: γn ≤ n.



Proving Minkowski

Blichfeldt’s lemma: 

Let L be a full-rank lattice of Rⁿ.

Let F be a measurable subset of Rⁿ, of 
measure > vol(L).


Then F contains at least two distinct 
vectors whose difference is in L. 

Take F=C/2 to prove Minkowski.



O

Lattice 
Reduction



Lattice Reduction

Euclidean spaces have orthogonal bases.

Lattices have reduced bases whose 
vectors are short and nearly-orthogonal.

O

35184372088891 0

8497214565171 1

-3219347 2033901
-5233012 -7622957

reduced 

non-reduced 



Bounding Minima

Thanks to Hermite’s constant, we can 
always upper bound the first minimum: 
λ1(L) ≤ √γd vol(L)1/d.


But the same bound does not apply in 
general for the other minima: they can 
be arbitrarily larger.

Yet, the geometric mean can be bounded 
similarly.



Minkowski’s second theorem

Let L be a d-rank lattice. 

Then: [λ1(L) λ2(L) ...  λk(L)]1/k ≤ √γd 
vol(L)1/d for 1≤k≤d.


Corollary:

vol(L) ≤ [λ1(L) λ2(L) ...  λd(L)] ≤ dd/2 
vol(L)



Minima ≠ Basis

As soon as d≥4, a free family reaching 
the minima is not necessarily a basis. 
Ex: the sublattice of Z⁴ formed by all 
vectors whose sum of coordinates is 
even. 

1 1 0 0
1 -1 0 0
0 0 1 1
0 0 1 -1

1 1 0 0
1 0 -1 0
0 0 1 1
0 0 1 -1

Basis Not a 
basis



Minimal Bases?

As soon as d≥5, there may not exist a 
basis reaching all the minima.

Ex: this lattice whose minima are all 
equal to 2.

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1



Reduced Bases

There is no basis which is “naturally” 
shorter than all others, as soon as 
d≥5.

But the first minimum can always be 
extended to a basis. 

A reduced basis is a basis close to 
the minima. There are many notions 
of reduction.


