Lattices: Mathematical Background

Phong Nguyễn

Duality

Let L be a lattice.
The dual lattice of L is
L[×]={y∈span(L) s.t. ⟨x,y⟩∈Z for all x∈L}
Show that it is a lattice.
Show that rank(L) = rank(L[×])

Ex: Kernel Lattices

◦ Let n,m,q∈N.

• Let A be an mxn matrix over Z.

The kernel L_A={x∈Z^m s.t. xA = 0 mod q} is a full-rank lattice in Z^m s.t. vol(L_A) | qⁿ.
Its dual lattice is (1/q)L'_A where L'_A is the «image» i.e. L'_A={y∈Z^m s.t. y=zA^t mod q for some z∈Zⁿ}

Counting Lattice Points

The Gaussian Heuristic

 The volume measures the density of lattice points.

 For "nice" full-rank lattices L, and "nice" measurable sets C of Rⁿ:

 $\operatorname{Card}(L \cap C) \approx \frac{\operatorname{vol}(C)}{\operatorname{vol}(L)}$

Volume of the Ball

The n-dimensional volume of a Euclidean ball of radius R in n-dimensional Euclidean space is:

and the stand of a state of the state of the

$$V_n(R) = rac{\pi^{rac{n}{2}}}{\Gamma\left(rac{n}{2}+1
ight)}R^n,$$

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} \, \mathrm{d}x$$

The unit-volume ball has radius $\sim \sqrt{\frac{n}{2\pi e}}$

Validity of the Gaussian Heuristic

Fails for L=Zⁿ, and C=Ball(0,√(n/10)).
 Easy to prove for asymptotically large balls: 1/vol(L) = lim_{r→∞} (number of lattice points of norm ≤ r)/vol(Ball(0,r))

Short Lattice Vectors

 Th: Any d-dim lattice L has exponentially many vectors of norm ≤ $O\left(\sqrt{d}\right) \operatorname{vol}(L)^{1/d}$ • Th: In a random d-dim lattice L, all non-zero vectors have norm > $\Omega\left(\sqrt{d}\right)\operatorname{vol}(L)^{1/d}$

Short Lattice Vectors

Lattices and Quadratic Forms

• Every lattice basis defines a positive definite quadratic form: $q(x_1, \dots, x_d) = \left\| \sum_{i=1}^d x_i \vec{b}_i \right\|^2$

Reciprocally: Cholesky factorization.
The squared volume is the discriminant of the form.

The First Minimum

• The intersection of a lattice with any bounded set is finite.

• In a lattice L, there are non-zero vectors of minimal norm: this is the first minimum $\lambda_1(L)$ or the minimum distance.

Lattice Packings

• Every lattice defines a sphere packing:

 The diameter of spheres is the first minimum of the lattice: the shortest norm of a non-zero lattice vector.

Minkowski's Minima

Denoted by: λ₁(L),...,λ_d(L)
 The k-th minimum is the radius of the smallest (centered) ball containing k linearly independent lattice vectors.

Note

 There exist linearly independent lattice vectors c₁,...,c_d such that ||c_i||= λ_i(L) for each 1≤i≤d.

Hermite's Constant (1850)

Hermite's Constant (1850)

 This is the "worst-case" for short lattice vectors.

Hermite showed the existence of this constant:

$$\sqrt{\gamma_d} = \max_L \frac{\lambda_1(L)}{\operatorname{vol}(L)^{1/d}}$$

• Here, $\lambda_1(L)$ is the minimal norm of a non-zero lattice vector.

Facts on Hermite's Constant

• Hermite's constant is asymptotically linear: $\Omega(n) \leq \gamma_n \leq O(n)$

• The exact value of the constant is only known up to dim 8, and in dim 24 [2004].

dim n	2	3	4	5	6	7	8	24
Yn	$2/\sqrt{3}$	$2^{1/3}$	$\sqrt{2}$	$8^{1/5}$	$(64/3)^{1/6}$	$64^{1/7}$	2	4
approx	1.16	1.26	1.41	1.52	1.67	1.81	2	4

The existence of short lattice vectors

• Hermite proved in 1850: $\gamma_d \leq \left(\frac{4}{3}\right)^{(d-1)/2}$ • Minkowski's theorem implies: $\gamma_d \leq d$

 Thus, any lattice contains a non-zero vector of norm $\leq \sqrt{d} \operatorname{vol}(L)^{1/d}$

Minkowski's Theorem (1896)

Let L be a full-rank lattice of Rⁿ. Let C be a measurable subset of Rⁿ, convex, symmetric, and of measure > 2ⁿvol(L).

• Then C contains at least a non-zero point of L.

Remarks

 The volume bound is optimal in the worst case.

○ If C is furthermore compact, the > can be replaced by ≥.

Application to a ball

Let C be the n-dim ball of radius r.
 Then its volume is rⁿ multiplied by:

$$v_n = \frac{\pi^{\frac{n}{2}}}{\Gamma\left(1 + \frac{n}{2}\right)} \sim \left(\frac{2e\pi}{n}\right)^{\frac{n}{2}} \frac{1}{\sqrt{\pi n}}$$

• To apply Minkowski's theorem, one can take: $r = \frac{2}{(v_n)^{\frac{1}{n}}} vol(L)^{\frac{1}{n}}$

Application to a ball

 We obtain Minkowski's linear bound on Hermite's constant:

$$\sqrt{\gamma_n} \le \frac{2}{(v_n)^{\frac{1}{n}}} = 2 \frac{\Gamma\left(1 + \frac{n}{2}\right)^{\frac{1}{n}}}{\sqrt{\pi}} \sim 2 \sqrt{\frac{n}{2\pi e}}$$

The unit-ball contains the hypercube [-1/√n,1/√n]ⁿ, therefore v_n ≥ (2/√n)ⁿ, hence the upper bound implies: γ_n ≤ n.

Proving Minkowski

- Blichfeldt's lemma:
 - \circ Let L be a full-rank lattice of \mathbb{R}^n .
 - Let F be a measurable subset of Rⁿ, of measure > vol(L).
- Then F contains at least two distinct vectors whose difference is in L.
- Take F=C/2 to prove Minkowski.

Lattice Reduction

Lattice Reduction

- Euclidean spaces have orthogonal bases.
- Lattices have reduced bases whose vectors are short and nearly-orthogonal.

on-reduced	351843720	0	
on-reduced	8497214565171		1
reduced	-3219347	20339	901
	-5233012	-7622	957

Bounding Minima

• Thanks to Hermite's constant, we can always upper bound the first minimum: $\lambda_1(L) \leq \sqrt{\gamma_d} \text{ vol}(L)^{1/d}$.

 But the same bound does not apply in general for the other minima: they can be arbitrarily larger.

 Yet, the geometric mean can be bounded similarly.

Minkowski's second theorem

o Let L be a d-rank lattice. • Then: $[\lambda_1(L) \ \lambda_2(L) \dots \ \lambda_k(L)]^{1/k} \leq \sqrt{\gamma_d}$ vol(L)^{1/d} for $1 \le k \le d$. • Corollary: \circ vol(L) \leq [λ_1 (L) λ_2 (L) ... λ_d (L)] $\leq d^{d/2}$ vol(L)

Minima ≠ Basis

 As soon as d≥4, a free family reaching the minima is not necessarily a basis.
 Ex: the sublattice of Z⁴ formed by all vectors whose sum of coordinates is even.

Not a1100basis1-10000110011

Minimal Bases?

 As soon as d≥5, there may not exist a basis reaching all the minima.

• Ex: this lattice whose minima are all equal to 2.

2	0	0	0	0
0	2	0	0	0
0	0	2	0	0
0	0	0	2	0
1	1	1	1	1

Reduced Bases

 O There is no basis which is "naturally" shorter than all others, as soon as d≥5.

 But the first minimum can always be extended to a basis.

 A reduced basis is a basis close to the minima. There are many notions of reduction.