
To appear in Recent Trends in Cryptography, I. Luengo (Ed.), Contemporary Mathematics series, AMS-RSME,
2008.

Public-Key Cryptanalysis

Phong Q. Nguyen

Abstract. In 1976, Diffie and Hellman introduced the revolutionary concept
of public-key cryptography, also known as asymmetric cryptography. Today,

asymmetric cryptography is routinely used to secure the Internet. The most

famous and most widely used asymmetric cryptosystem is RSA, invented by
Rivest, Shamir and Adleman. Surprisingly, there are very few alternatives

known, and most of them are also based on number theory. How secure are

those asymmetric cryptosystems? Can we attack them in certain settings?
Should we implement RSA the way it was originally described thirty years

ago? Those are typical questions that cryptanalysts have tried to answer

since the appearance of public-key cryptography. In these notes, we present
the main techniques and principles used in public-key cryptanalysis, with a

special emphasis on attacks based on lattice basis reduction, and more gen-

erally, on algorithmic geometry of numbers. To simplify our exposition, we
focus on the two most famous asymmetric cryptosystems: RSA and Elgamal.

Cryptanalysis has played a crucial rôle in the way cryptosystems are now im-
plemented, and in the development of modern security notions. Interestingly,

it also introduced in cryptology several mathematical objects which have since

proved very useful in cryptographic design. This is for instance the case of
Euclidean lattices, elliptic curves and pairings.

1. Introduction

Public-key cryptography, also called asymmetric cryptography, was invented by
Diffie and Hellman [DH76] more than thirty years ago. In public-key cryptography,
a user U has a pair of related keys (pk, sk): the key pk is public and should be
available to everyone, while the key sk must be kept secret by U . The fact that sk
is kept secret by a single entity creates an asymmetry, hence the name asymmetric
cryptography, to avoid confusion with symmetric cryptography where a secret key
is always shared by at least two parties, whose roles are therefore symmetric. The
alternative (and perhaps more common) name public-key cryptography comes from
the very existence of a public key: in conventional cryptography, all keys are secret.

1991 Mathematics Subject Classification. Primary 94A60, 11T71; Secondary 11H06, 14G50,
68P25.

Key words and phrases. Cryptanalysis, Security, Public-Key Cryptography, Asymmetric

Cryptography, Euclidean Lattices, Geometry of Numbers.

c©0000 (copyright holder)

1

2 PHONG Q. NGUYEN

Today, public-key cryptography offers incredibly many features ranging from
zero-knowledge to electronic voting (see the handbook [MOV97]), but we will
restrict to its main goals defined in [DH76], which are the following two:

• Asymmetric encryption (also called public-key encryption): anyone can
encrypt a message to U , using U ’s public key pk. But only U should be
able to decrypt, using his secret key sk.

• Digital signatures: U can sign any message m, using his secret key sk.
Anyone can check whether or not a given signature corresponds to a given
message and a given public key.

Such basic functionalities are routinely used to secure the Internet. For instance,
digital signatures are prevalent under the form of certificates (which are used every-
day by Internet browsers), and asymmetric encryption is used to exchange session
keys for fast symmetric encryption, such as in the TLS (Transport Layer Security)
protocol.

1.1. Hard problems. Both keys pk and sk are related to each other, but it
should be computationally hard to recover the secret key sk from the public key
pk, for otherwise there would be no secret key. As a result, public-key cryptog-
raphy requires the existence of hard computational problems. But is there any
provably hard computational problem? This is a very hard question underlying
the famous P 6= NP conjecture from complexity theory. Instead of trying to set-
tle this major open question, cryptographers have adopted a more down-to-earth
approach by trying various candidates over the years: if a computational problem
resists the repeated assaults of the research community, then maybe it should be
considered hard, although no proof of its hardness is known or sometimes, even ex-
pected. Furthermore, it is perhaps worth noting that the P 6= NP conjecture refers
to worst-case hardness, while cryptography typically requires average-case hard-
ness. The (potentially) hard problems currently in consideration within public-key
cryptography can be roughly classified into two families.

The first family of hard problems involves problems for which there are very few
unknowns, but the size of the unknowns must be rather large to guarantee hardness,
which makes the operations rather slow compared to symmetric cryptography. The
main members of this family are:

• Integer factorization, popularized by RSA [RSA78]. The current factor-
ization record for an RSA number (i.e. a product of two large primes) is
the following factorization [BBFK05] of a 200-digit number (663 bits),
obtained with the number field sieve (see the book [CP01]):

2799783391 1221327870 8294676387 2260162107 0446786955 4285375600
0992932612 8400107609 3456710529 5536085606 1822351910 9513657886
3710595448 2006576775 0985805576 1357909873 4950144178 8631789462
9518723786 9221823983 = 3532461934 4027701212 7260497819
8464368671 1974001976 2502364930 3468776121 2536794232 0005854795
6528088349 × 7925869954 4783330333 4708584148 0059687737
9758573642 1996073433 0341455767 8728181521 3538140930 4740185467

A related (and not harder) problem is the so-called e-th root problem,
which we will discuss when presenting RSA.

• The discrete logarithm problem in appropriate groups, such as:

PUBLIC-KEY CRYPTANALYSIS 3

– Multiplicative groups of finite fields, especially prime fields, like in the
DSA signature algorithm [Nat94]. The current record for a discrete
logarithm computation in a general prime field is 160 digits [Kle07],
obtained with the number field sieve.

– Additive groups of elliptic curves over finite fields. There are in fact
two kinds of elliptic curves in consideration nowadays:
∗ Random elliptic curves for which the best discrete logarithm

algorithm is the generic square root algorithm. It is therefore
no surprise that the current discrete logarithm record for those
curves is 109 bits [HDdL00].

∗ Special elliptic curves (e.g. supersingular curves) for which an
efficient pairing is available. On the one hand, this decreases
the hardness of the discrete logarithm to the case of finite fields
(namely, a low-degree extension of the base field of the curve),
which implies bigger sizes for the curves, but on the other hand,
it creates exciting cryptographic applications such as identity-
based cryptography (see [Men08] and the book [BSS04]).

Interestingly, these problems would theoretically not resist to large-scale quantum
computers (as was famously shown by Shor [Sho99]), but the feasibility of such
devices is still open.

The second family of hard problems involves problems for which there are
many small unknowns, but this number of small unknowns must be rather large to
guarantee hardness. Such problems are usually related to NP-hard combinatorial
problems for which no efficient quantum algorithm is known. The main examples
of this family are:

• Knapsacks and lattice problems. In the knapsack problem, the unknowns
are bits. The Merkle-Hellman cryptosystem [MH78], an early alterna-
tive to RSA, was based on the knapsack (or subset sum) problem. Al-
though knapsack cryptosystems have not been very successful (see the
survey [Odl90]) due to lattice attacks, they have in some sense enjoyed a
second coming under the disguise of lattice-based cryptosystems (see the
survey [NS01]). Of particular interest is the very efficient NTRU cryp-
tosystem [HPS98], which offers much smaller keys than other lattice-
based or knapsack-based schemes. Knapsacks and lattice problems are
tightly connected.

• Coding problems. The McEliece cryptosystem [McE78] is a natural
cryptosystem based on the hardness of decoding, which has several vari-
ants depending on the type of code used. The lattice-based Goldreich-
Goldwasser-Halevi cryptosystem [GGH97, Ngu99] can be viewed as a
lattice-based analogue of the McEliece cryptosystem.

• Systems of multivariate polynomial equations over small finite fields. The
Matsumoto-Imai cryptosystem [MI88] is the ancestor of what is now
known as multivariate cryptography (see the book [Kob98]). In order to
prevent general attacks based on Gröbner bases, the security parameter
must be rather large. All constructions known use a system of equations
with a very particular structure, which they try to hide. Like knapsack
cryptography, many multivariate schemes have been broken due to their

4 PHONG Q. NGUYEN

exceptional structure. The latest example is the spectacular cryptanaly-
sis [DFSS07] of the SFLASH signature scheme.

The main drawback with this second family of problems is the overall size of the
parameters. Indeed, apart from NTRU [HPS98], the size of the parameters for
such problems grows at least quadratically with the security parameter. NTRU
offers a smaller keysize than the other members of this family because it uses a
compact representation, which saves an order of magnitude.

1.2. Cryptanalysis. Roughly speaking, cryptanalysis is the science of code-
breaking. We emphasized earlier that asymmetric cryptography required hard com-
putational problems: if there is no hard problem, there cannot be any asymmetric
cryptography either. If any of the computational problems mentioned above turns
out to be easy to solve, then the corresponding cryptosystems can be broken, as
the public key would actually disclose the secret key. This means that one obvious
way to cryptanalyze is to solve the underlying algorithmic problems, such as integer
factorization, discrete logarithm, lattice reduction, Gröbner bases, etc. Here, we
mean a study of the computational problem in its full generality.

Alternatively, one may try to exploit the special properties of the cryptographic
instances of the computational problem. This is especially true for the second fam-
ily of hard problems: even though the underlying general problem is NP-hard, its
cryptographic instances may be much easier, because the cryptographic function-
alities typically require an unusual structure. In particular, this means that maybe
there could be an attack which can only be used to break the scheme, but not
to solve the underlying problem in general. This happened many times in knap-
sack cryptography and multivariate cryptography. Interestingly, generic tools to
solve the general problem perform sometimes even much better on cryptographic
instances (see [FJ03] for Gröbner bases and [GN08b, NS01] for lattice reduction).

However, if the underlying computational problem turns out to be really hard
both in general and for instances of cryptographic interest, this will not necessarily
imply that the cryptosystem is secure. First of all, it is not even clear what is meant
exactly by the term secure or insecure. Should an encryption scheme which leaks
the first bit of the plaintext be considered secure? Is the secret key really necessary
to decrypt ciphertexts or to sign messages? If a cryptosystem is theoretically secure,
could there be potential security flaws for its implementation? For instance, if some
of the temporary variables (such as pseudo-random numbers) used during the cryp-
tographic operations are partially leaked, could it have an impact on the security
of the cryptosystem? This means that there is much more to cryptanalysis than
just trying to solve the main algorithmic problems. In particular, cryptanalysts
are interested in defining and studying realistic environments for attacks (adaptive
chosen-ciphertext attacks, side-channel attacks, etc.), as well as the goals of attacks
(key recovery, partial information, existential forgery, distinguishability, etc.). This
is very much related to the development of provable security, a very popular field
of cryptography. Overall, cryptanalysis usually relies on three types of failures:

Algorithmic failures: The underlying hard problem is not as hard as ex-
pected. This could be due to the computational problem itself, or to
special properties of cryptographic instances.

Design failures: Breaking the cryptosystem is not as hard as solving the
underlying hard problem.

PUBLIC-KEY CRYPTANALYSIS 5

Implementation failures: Exploiting additional information due to imple-
mentation mistakes or side-channel attacks. This is particularly relevant
to the world of smartcards, and is not well covered by provable security.

Thirty years after the introduction of public-key cryptography, we have a much
better understanding of what security means, thanks to the advances of public-key
cryptanalysis. It is perhaps worth noting that cryptanalysis also proved to be a
good incentive for the introduction of new techniques in cryptology. Indeed several
mathematical objects now invaluable in cryptographic design were first introduced
in cryptology as cryptanalytic tools, including:

• Euclidean lattices, whose first cryptologic use was the cryptanalysis [Adl83,
Sha82] of the Merkle-Hellman cryptosystem [MH78]. Besides crypt-
analysis, they are now used in lattice-based cryptosystems (see the sur-
vey [NS01]), as well as in a few security proofs [Sho01, FOPS01, CNS02].

• Elliptic curves. One might argue that the first cryptologic usage of el-
liptic curves was Lenstra’s ECM factoring algorithm [Len87], before the
proposal of cryptography based on elliptic curves [Kob87, Mil87]: both
articles [Kob87, Mil87] mention a draft of [Len87] in their introduction.

• Pairings, whose first cryptologic use was cryptanalytic [MOV93], to prove
that the discrete logarithm problem in certain elliptic curves could be re-
duced efficiently to the discrete logarithm problem in finite fields. See [Men08]
and the book [BSS04] for positive applications of pairings.

1.3. Road Map. In these notes, we intend to survey the main principles
and the main techniques used in public-key cryptanalysis. As a result, we will
focus on the two most famous (and perhaps simplest) asymmetric cryptosystems:
RSA [RSA78] and Elgamal in prime fields [El 85], which we will recall in Section 2.
Unfortunately, this means that we will ignore the rich cryptanalytic literature re-
lated to the second family of hard problems mentioned in Section 1.1, as well as that
of elliptic-curve cryptography. Another important topic of cryptanalysis which we
will not cover is side-channel cryptanalysis (as popularized by [Koc96, BDL97]).

In Section 3, we review the main security notions, which we will illustrate by
simple attacks in Section 4. In Section 5, we present a class of rather elementary
attacks known as square-root attacks. In Section 6, we introduce the theory of
lattices, both from a mathematical and a computational point of view, which is
arguably the most popular technique in public-key cryptanalysis. This will be
needed for Section 7 where we present the vast class of lattice attacks.

2. Textbooks Cryptosystems

In order to explain what is public-key cryptanalysis, it would be very helpful to
give examples of attacks. Although plenty of interesting cryptanalyses have been
published in the research literature (see the collections of proceedings [MZ98,
IAC04]), many require a good understanding of the underlying cryptosystem,
which may not be very well-known and may be based on unusual techniques. To
simplify our exposition, we only present attacks on the two most famous cryptosys-
tems: RSA [RSA78] and Elgamal over prime fields [El 85]. Both cryptosystems
have the additional advantage of being very easy to describe. We refer to these
cryptosystems as textbook cryptosystems, because we will consider the original

6 PHONG Q. NGUYEN

description of those schemes, the one that can be found in most cryptography text-
books, but not the one which is actually implemented in practice nowadays. Crypt-
analysis has played a crucial role in the way cryptosystems are now implemented.
We now recall briefly how RSA and Elgamal work.

2.1. RSA. The RSA cryptosystem [RSA78] is the most widely used asym-
metric cryptosystem. It is based on the hardness of factoring large integers.

2.1.1. Key generation. The user selects two large primes p and q (of the same
bit-length) uniformly at random, so that N = pq is believed to be hard to factor. As
previously mentioned, the factoring record for such numbers is currently a 663-bit
N . In electronic commerce, the root certificates used by Internet browsers typically
use a N of either 1024 or 2048 bits.

Next, the user selects a pair of integers (e, d) such that:

(2.1) ed ≡ 1 (mod φ(N)),

where φ(N) = (p − 1)(q − 1) is Euler’s function: φ(N) is the number of integers
in {1, . . . , N − 1} which are coprime with N . The integers e and d are called the
RSA exponents: e is the public exponent, while d is the secret exponent. The RSA
public key is the pair (N, e), and the RSA secret key is d. The primes p and q do
not need to be kept.

There are essentially three ways to select the RSA exponents:

Random exponents: The user selects an integer d ∈ {2, . . . , φ(N) − 1}
uniformly at random among those which are coprime with φ(N). The
public exponent e is chosen as the inverse of d modulo φ(N).

Low Public Exponent: To speed up public exponentiation, the user se-
lects a very small e, possibly with low Hamming weight. If e is not in-
vertible modulo φ(N), then the user selects a new pair (p, q) of primes,
otherwise, the secret exponent d is chosen as the inverse of e modulo φ(N).
The most popular choices are e = 3 and e = 216 + 1 = 65537. Note that
e must be odd to have a chance of being invertible modulo φ(N).

Short Secret Exponent: To speed up private exponentiation, the user se-
lects this time a short d, with a sufficiently long bit-length so that it cannot
be exhaustively searched. If d is not invertible modulo φ(N), a new d is
picked. Otherwise, the public exponent e is chosen as the inverse of d
modulo φ(N). This choice of d is however not recommended: it is known
that it is provably insecure [Wie90] if d ≤ N1/4, and it is heuristically
insecure [BD99] if d ≤ N1−1/

√
2 ≈ N0.292.... In such attacks (which we

will describe in later sections), one may recover the factorization of N ,
given only the public key (N, e).

If one knows the factorization of N , then one can obviously derive the secret expo-
nent d from the public exponent e. In fact, it is well-known that the knowledge of
the secret exponent d is equivalent to factoring N . More precisely, it was noticed
as early as in [RSA78] that if one knows the secret key d, then one can recover
the factorization of N in probabilistic polynomial time. It was recently proved
in [CM04] that this can actually be done in deterministic polynomial time. Hence,
recovering the RSA secret key is as hard as factoring the RSA public modulus, but
this does not necessarily mean that breaking RSA is as hard as factoring.

PUBLIC-KEY CRYPTANALYSIS 7

2.1.2. Trapdoor permutation. We denote by ZN the ring Z/NZ, which we rep-
resent by {0, 1, . . . , N − 1}. The main property of the RSA key generation is the
congruence (2.1) which implies, thanks to Fermat’s little theorem and the Chinese
remainder theorem, that the modular exponentiation function x 7→ xe is a permu-
tation over ZN . This function is called the RSA permutation. It is well-known that
its inverse is the modular exponentiation function x 7→ xd, hence the name trapdoor
permutation: if one knows the trapdoor d, one can efficiently invert the RSA per-
mutation. Without the trapdoor, the inversion problem is believed to be hard, and
is known as the e-th root problem (also called the RSA problem): given an integer
y ∈ ZN chosen uniformly at random, find x ∈ ZN such that y ≡ xe mod N . The
RSA assumption states that no probabilistic polynomial-time algorithm can solve
the RSA problem with non-negligible probability.

It is however unknown if the knowledge of d is necessary to solve the e-th root
problem. Maybe there could be an alternative way to invert the RSA permutation,
other than raising to the power d. In fact, the work [BV98] suggests that the e-th
root problem with a small e might actually be easier than factoring.

An important property of the RSA permutation is its multiplicativity. More
precisely, for all x and y in ZN :

(xy)e ≡ xeye (mod N).(2.2)

This homomorphic property will be very useful for certain attacks.
2.1.3. Asymmetric encryption. Textbook-RSA encryption is a simple applica-

tion of the RSA trapdoor permutation, in which encryption is achieved by applying
the RSA permutation. More precisely, the set of messages is ZN = {0, 1, . . . N−1}.
To encrypt a message m, one simply raises it to the power e modulo N , which
means that the ciphertext is:

(2.3) c = me mod N.

To decrypt the ciphertext c, one simply inverts the RSA permutation:

(2.4) m = cd mod N.

This is the way the RSA public-key encryption scheme was originally described
in [RSA78], and is still described in many textbooks, but this is not the way RSA
is now implemented in various products or standards due to security problems,
even though the basic principle remains the same. It is now widely accepted that
a trapdoor permutation should not be directly used as a public-key encryption
scheme: a preprocessing of the messages is required, e.g. OAEP (optimal asymmet-
ric encryption) [BR95, Poi05]. The attacks we will present in these notes explain
why.

It is worth noting that Textbook-RSA encryption is multiplicative like the
RSA permutation. If m1 are m2 are two messages in ZN encrypted as c1 and
c2 using (2.3), then their product m3 = (m1m2) mod N is encrypted as c3 =
(c1c2) mod N . In other words, the ciphertext of a product is the product of the
ciphertexts.

2.1.4. Digital signature. The magical property of RSA is its trapdoor permu-
tation: most public-key cryptosystems known involve a trapdoor one-way function
instead (see [MOV97]). Fortunately, it is very easy to derive a digital signature
scheme from a trapdoor permutation.

8 PHONG Q. NGUYEN

In the original description [RSA78], the set of messages to sign is ZN =
{0, 1, . . . , N − 1}. The signature of a message m ∈ ZN is simply its preimage
through the RSA permutation:

(2.5) s = md mod N.

To verify that s is the signature of m with the public key (N, e), one checks that
s ∈ ZN and that the following congruence holds:

(2.6) m ≡ se (mod N).

Similarly to the asymmetric encryption case, this is not the way RSA signatures
are now implemented in various products or standards due to security problems,
even though the basic principle remains the same. Again, we will present at-
tacks which explain why. A trapdoor permutation should not be directly used
as a digital signature scheme: a hashing-based preprocessing of the messages is re-
quired, e.g. FDH (full-domain hash) [BR96, Poi05] or PSS (probabilistic signature
scheme) [BR96, Poi05].

It is worth noting that the preprocessing now in use in asymmetric encryption or
digital signatures involves a cryptographic hash function. However, when [RSA78]
was published, no cryptographic hash function was available! This is why many
ad hoc solutions were developed (and sometimes deployed) in the eighties, with
various degrees of success. We will describe attacks on some of those. The RSA
standards [Lab] currently advocated by the RSA Security company are: RSA-
OAEP for asymmetric encryption and RSA-PSS for signatures.

2.2. Elgamal. While there is essentially only one RSA cryptosystem, there is
much more flexibility with the Elgamal cryptosystem [El 85] based on the hardness
of the discrete logarithm problem: it has many variants depending on the group or
subgroup used, as well as the encoding of messages and ciphertexts. Here, we only
consider the so-called Textbook Elgamal, that is, the basic Elgamal cryptosystem
over a prime field Zp, as originally described in [El 85]. Another significant dif-
ference with RSA is the gap between the Elgamal asymmetric encryption scheme
and the Elgamal digital signature scheme. In RSA, asymmetric encryption and
signatures are the two facets of the RSA trapdoor permutation. Because the El-
gamal asymmetric encryption scheme involves a trapdoor one-way function based
on the Diffie-Hellman key exchange [DH76], rather than a trapdoor permutation,
it does not naturally lead to an efficient digital signature scheme. The Elgamal
signature scheme is quite different from its asymmetric encryption counterpart: it
is the ancestor of most discrete-log based signature schemes, such as DSA, ECDSA
or Schnorr’s signature (see [MOV97]).

2.2.1. Key generation. The user selects a large random prime p, in such a way
that p − 1 has at least one large prime factor and has known factorization. It is
then believed that the discrete logarithm problem in Z×p is hard. Thanks to the
factorization of p − 1, the user can compute a generator g of the multiplicative
group Z×p . There are essentially two ways to select the generator g:

Random generators: This is the recommended option: the generator g is
selected uniformly at random among all generators of Z×p .

Small generators: One tries small values for g, such as g = 2, to speed
up exponentiation with base g. If none works, one picks another prime p.

PUBLIC-KEY CRYPTANALYSIS 9

We will later see that the choice g = 2 has dramatic consequences on the
security of the Elgamal signature scheme [Ble96].

The parameters g and p are public. They can be considered as central parameters,
since they can be shared among several users, but if that is the case, it is important
that all users are convinced that the parameters have been generated in a random
way so that they have no special property.

The user’s secret key is an integer x chosen uniformly at random over Zp−1 =
{0, 1, . . . , p− 2}. The corresponding public key is the integer y ∈ Z×p defined as:

(2.7) y = gx (mod p).

Many variants of Elgamal alternatively use a prime order subgroup, rather than
the whole group Z×p . More precisely, they select an element g ∈ Z×p of large prime
order q � p: the secret key x is then chosen in Zq.

2.2.2. Asymmetric encryption. The Elgamal asymmetric encryption scheme
can be viewed as an application of the Diffie-Hellman key exchange protocol [DH76].
In the well-known basic Diffie-Hellman protocol, Alice and Bob do the following to
establish a shared secret key:

• Alice selects an integer a ∈ Zp−1 uniformly at random, and sends A = ga

mod p to Bob.
• Bob selects an integer b ∈ Zp−1 uniformly at random, and sends B = gb

mod p to Alice.
• The secret key shared by Alice and Bob is s = gab mod p. Alice may

compute s as s = Ba mod p, while Bob may alternatively compute s as
s = Ab mod p.

To transform this key exchange protocol into a probabilistic asymmetric encryption
scheme, let us view Alice as the user who possesses the pair of keys (x, y) defined
in (2.7), so that (a,A) = (x, y), and let us view Bob as the person who wishes to
encrypt messages to the user. Bob knows the public key y = gx mod p. The set
of plaintexts is Zp. To encrypt a message m ∈ Zp:

• Bob selects an integer k ∈ Zp−1 uniformly at random.
• The ciphertext is the pair (c, d) ∈ Z×p × Zp defined as

c = gk (mod p)(2.8)

d = myk (mod p)(2.9)

To see how decryption works, notice that thanks to the Diffie-Hellman trick, Alice
may compute the (virtual) secret s = gxk = yk mod p from her secret key x and
the first half c of the ciphertext. This is because s = cx mod p, as if Bob’s pair
(b, B) in the Diffie-Hellman protocol was (k, c). Once yk mod p is known, Alice
may recover the message m from the second half d of the ciphertext, by division.

In other words, the first half (2.8) of the ciphertext sets up a one-time Diffie-
Hellman secret key yk = gkx. The second half (2.9) of the ciphertext can be viewed
as a one-time pad (using modular multiplication rather than a xor) between the
the message and the one-time key. Decryption works by recovering this one-time
key using the user’s secret key, thanks to the Diffie-Hellman trick.

Since Elgamal encryption [El 85] is very much related to the Diffie-Hellman
key exchange [DH76], one may wonder why it did not already appear in [DH76].
Perhaps one explanation is that, strictly speaking, public-key encryption as defined
in [DH76] was associated to a trapdoor permutation, so that it would be easy to

10 PHONG Q. NGUYEN

derive both encryption and signature: it was assumed implicitly that the set of
ciphertexts had to be identical to the set of plaintexts. But Elgamal encryption
does not use nor define a trapdoor permutation. The closest thing to a permutation
in Elgamal encryption is the following bijection between Zp × Zp−1 and Z×p × Zp:

(m, k) 7→ (c, d) = (gk,myk).

But the secret key x only helps to partially invert this bijection: given an image
(c, d), one knows how to efficiently recover the corresponding m, but not the second
half k, which is a discrete logarithm problem. Thus, it cannot be considered as a
trapdoor permutation. In some sense, it could be viewed as a partial trapdoor
permutation.

We saw two significant differences between Textbook-Elgamal encryption and
Textbook-RSA encryption: Elgamal is probabilistic rather than deterministic, and
it is not based on a trapdoor permutation. Nevertheless, there is one noticeable
thing in common: Elgamal is multiplicative too. Indeed, assume that two plaintexts
m1 and m2 are encrypted into (c1, d1) and (c2, d2) (following (2.8) and (2.9)) using
respectively the one-time keys k1 and k2. In a natural way, one could define the
product of ciphertexts as (c3, d3) where:

c3 = c1c2 ∈ Z×p
d3 = d1d2 ∈ Zp

Then it can be easily checked that (c3, d3) ∈ Z×p × Zp would be decrypted as
m3 = (m1m2) mod p because it is the ciphertext of m3 with the one-time key
k3 = (k1 + k2) mod p. Thus, in Textbook-Elgamal as well as Textbook-RSA, the
product of ciphertexts is a ciphertext of the product.

2.2.3. Digital signature. Surprisingly, the Elgamal signature scheme [El 85]
has nothing to do with the Elgamal asymmetric encryption scheme [El 85]. The
only thing in common is the key generation process and the fact that the scheme
is probabilistic.

The set of messages is Zp. To sign a message m ∈ Zp:
• The user selects uniformly at random a one-time key k ∈ Z×p−1, that is an

integer in {0, . . . , p− 2} coprime with p− 1.
• The signature of m is the pair (a, b) ∈ Z×p × Zp−1 defined as:

a = gk (mod p)(2.10)

b = (m− ax)k−1 (mod p− 1).(2.11)

To verify a given signature (a, b) of a given message m, one checks that (a, b) ∈
Z×p × Zp−1 and that the following congruence holds:

gm ≡ yaab (mod p)(2.12)

The previous congruence can be equivalently rewritten as:

m ≡ ax+ b log a (mod p− 1),(2.13)

where log denotes the discrete log in Z×p with respect to the base g. This rewriting
will prove particularly useful when presenting attacks. Note that if the pair (a, b)
has been generated according to (2.10) and (2.11), then k = log a, so that (2.13)
follows easily from (2.11).

PUBLIC-KEY CRYPTANALYSIS 11

3. Security Notions

Perhaps one of the biggest achievements of public-key cryptography is the in-
troduction of rigorous and meaningful security notions for both encryption and
signatures. Rigorous, because these notions can be formally defined using the lan-
guage of complexity theory. Meaningful, because the relatively young history of
public-key cryptography seems to indicate that they indeed capture the “right” no-
tion of security, as various attacks have shown that (even slightly) weaker notions
of security would be insufficient. However, it should be noted that security notions
do not take into account implementation issues: in particular, side-channel attacks
are not currently covered by provable security.

Since our focus is on cryptanalysis, rather than provable security, we will not
properly define all the security notions: we will content ourselves with informal
definitions, to convey intuitions more easily, and to keep our presentation light.
We refer the interested reader to the lecture notes [Poi05] for a more technical
treatment.

We would like to insist on the following point. Some of the security notions
widely accepted today may look a bit artificial and perhaps too demanding at first
sight. In fact, it could be argued that it is the discovery of certain realistic attacks
which have convinced the community of the importance of such strong notions of
security. In other words, public-key cryptanalysis has helped to find the right notion
of security, but it has also helped in the acceptance of strong security notions. For
instance, it is arguably Bleichenbacher’s practical attack [Ble98] which triggered
the switch to OAEP for RSA encryption in the PKCS standards [Lab], even though
chosen-ciphertext attacks on RSA had appeared long before.

Roughly speaking, it is now customary to define security notions using games
(see the survey [Sho04]): a cryptographic scheme is said to be secure with respect
to a certain security notion if a specific game between a challenger and an attacker
cannot be won by the attacker with non-negligible probability, where the attacker
is modeled as a probabilistic polynomial-time Turing machine with possibly access
to oracles: the security notion defines exacly which oracles the attacker has access
to. Informally, a security notion consists of two definitions:

• The goal of the attacker. This defines the rules of the game: what is the
purpose of the attacker (that is, when is the game won or lost), and how
the game is run.

• The means of the attacker. This is where the access to oracles is de-
fined. For instance, in chosen-ciphertext security, the attacker has access
to a decryption oracle, which may decrypt any ciphertext apart from the
challenge ciphertext.

The oracles may also depend on the security model. For instance, in the well-known
random oracle model, a hash function is modeled as an oracle which behaves like a
random function.

3.1. Digital Signatures. We start with digital signatures because the “right”
security notion is fairly natural here. Of all the possible goals of the attacker, the
most important are the following ones:

Key recovery: The attacker wants to recover the secret key sk of the signer.
Universal forgery: the attacker wants to be able to sign any message. This

is also called a selective forgery.

12 PHONG Q. NGUYEN

Existential forgery: The attacker wants to exhibit a new signature. By
a new signature, one usually means a signature of a new message, but it
may also mean a new signature of a message for which a signature was
already known, which is meaningful for a probabilistic signature.

Attacks on signature schemes are also classified based on the means available to
the attacker:

No-message attacks: the attacker only knows the public key pk of the
signer.

Known-message attacks: the attacker knows a list of valid random pairs
(message,signature).

Chosen-message attacks: the attacker may ask for signatures of messages
of his/her choice. If the requests are not independent, the chosen-message
attack is said to be adaptive. Of course, depending on the goal of the
attacker, there is a natural restriction over the requests allowed: for in-
stance, in a universal forgery, the attacker cannot ask for the signature of
the challenge message he has to sign.

We will see that the original description of the main signature schemes only satisfy
very weak notions of security. To achieve the strongest notions of security under
appropriate assumptions, a preprocessing of the message is required, using hash
functions, but it is not mandatory to have a probabilistic signature scheme, which
is a noteworthy difference with the situation of asymmetric encryption.

3.2. Asymmetric Encryption. It took cryptographers significantly longer
to define the strongest security notions for asymmetric encryption than for digital
signatures, which is a sign that things are arguably more complex with encryption.
Of all the possible goals of the attacker, the most important are the following ones:

Key recovery: The attacker wants to recover the secret key sk of the user.
Decryption: the attacker wants to be able to decrypt any ciphertext. The

encryption scheme is said to be one-way if no efficient attacker is able to
decrypt a random ciphertext with non-negligible probability. By a random
ciphertext, we mean the ciphertext of a plaintext chosen uniformly at
random over the plaintext space.

Malleability: Given a list of ciphertexts, the attacker wants to build a
new ciphertext whose plaintext is related to the plaintexts of the input
ciphertexts.

Distinguisher: The attacker wants to output two distinct messages m0 and
m1 such that if a challenger encrypts either m0 or m1 into c, the attacker
would be able to tell which message was encrypted, just by looking at the
challenge ciphertext c.

Clearly, if the encryption scheme is deterministic, there is always a trivial distin-
guisher: one could select any pair of distinct messages m0 and m1, and by en-
crypting both m0 and m1, one could tell which one corresponds to the challenge
ciphertext. This implies that probabilistic encryption is necessary to satisfy strong
security notions.

Attacks on encryption schemes are also classified based on the means available
to the attacker:

Chosen-plaintext attacks: the attacker only knows the public key pk of
the user, which implies that he may encrypt any plaintext of his choice.

PUBLIC-KEY CRYPTANALYSIS 13

Valid-ciphertext attacks: the attacker can check whether a given cipher-
text is valid, that is, that there exists a plaintext which may be encrypted
into such a ciphertext. This makes sense when the set of ciphertexts is
bigger than the set of plaintexts.

Plaintext-checking attacks: the attacker can check whether a given ci-
phertext would be decrypted as a given plaintext.

Chosen-ciphertext attacks: the attacker may ask for decryption of ci-
phertexts of its choice: if the ciphertext is not valid, the attacker will
know. If the requests are not independent, the chosen-message attack is
said to be adaptive. Of course, depending on the goal of the attacker,
there is a natural restriction over the requests allowed: for instance, in a
chosen-ciphertext distinguisher, the attacker cannot ask for the decryption
of the challenge ciphertext.

4. Elementary Attacks

The goal of this section is to illustrate the security notions described in Section 3
by presenting very simple attacks on textbook cryptosystems.

4.1. Digital Signatures. We first start with elementary attacks on textbook
digital signatures.

4.1.1. Textbook-RSA. We first consider Textbook-RSA. Like any trapdoor per-
mutation used directly as a signature scheme, Textbook-RSA is vulnerable to a
no-message existential forgery. Indeed, anyone can select uniformly at random a
number s ∈ ZN , and compute:

m = se mod N.(4.1)

Then s is a valid signature of the message m ∈ ZN . But this existential forgery
is far from being a universal forgery, since there is very limited freedom over the
choice of m.

However, in the particular case of Textbook-RSA, it is easy to obtain an adap-
tive chosen-message universal forgery, thanks to the multiplicativity of the RSA
permutation. Indeed, assume that we would like to sign a message m ∈ ZN . Select
m1 ∈ ZN uniformly at random. If m1 is not invertible mod N (which is unlikely),
then we have found a non-trivial factor of N , which allows us to sign m. Otherwise,
we may compute:

m2 = mm−1
1 (mod N).

We ask the oracle the signatures s1 and s2 of respectively m1 and m2. Then it is
clear by multiplicativity that s = (s1s2) mod N is a valid signature of m.

A well-known countermeasure to avoid the previous attacks is to hash the mes-
sage before signing it, that is, we assume the existence of a cryptographic hash
function h from {0, 1}∗ to ZN . Instead of signing a message m ∈ ZN , we sign an
arbitrary binary message m ∈ {0, 1}∗ and replace m by h(m) in both the signing
process (2.5) and the verification process (2.6). The resulting RSA signature scheme
is known as FDH-RSA for full-domain hash RSA [BR96], and it is provably secure
in the random oracle model (roughly speaking, this assumes that the hash function
is perfect: behaving like a random function), under the RSA assumption. To make
sure that the hash function does not create obvious security failures, the hash func-
tion is required to be at least collision-free, that is, it should be “computationally
hard” to output two distinct messages m0 and m1 such that h(m0) = h(m1).

14 PHONG Q. NGUYEN

In the case of Textbook-RSA, the use of a hash function prevented elementary
forgeries and even provided a security proof in the random oracle model, but hash
functions do not necessarily solve all the security problems by magic, as we will
now see with Textbook-Elgamal.

4.1.2. Textbook-Elgamal. First, let us see an elementary existential forgery on
Textbook-Elgamal. To forge a signature, it suffices to find a triplet (m, a, b) ∈
Zp × Z×p × Zp−1 satisfying (2.13):

m ≡ ax+ b log a (mod p− 1).

Given an arbitrary m, the signer finds a valid pair (a, b) because he/she selects
an a for which he/she already knows log a (this logarithm is the one-time key k)
and makes sure it is invertible modulo p − 1. Then because the signer knows the
secret exponent x, he/she can solve (2.13) for b. But the attacker does not know
the secret exponent x in (2.13), so he/she cannot do the same. One way to solve
that problem would be to select a in such a way that ax cancels out with b log a.
For instance, if we select an a of the form:

a = gByC (mod p),

where B and C are integers, then

ax+ b log a ≡ x(a+ bC) + bB (mod p− 1).

So if we select a C coprime with p− 1, we can choose b such that:

a+ bC ≡ 0 (mod p− 1).

Finally, we select the message m as:

m ≡ bB (mod p− 1).

Our choice of (m, a, b) then satisfies (2.13). We thus have obtained a no-message
existential forgery on Textbook-Elgamal. But this forgery, which was first described
in [El 85], has almost no flexibility over m: we can obtain many forgeries thanks to
different choices of (B,C), but each choice of (B,C) gives rise to a unique m. This
means that this forgery will be prevented if we hash the message before hashing,
like in FDH-RSA.

We now describe another existential forgery on Textbook-Elgamal, which can
also be prevented by hashing. However, as opposed to the previous existential
forgery, we will later see that this existential forgery can be transformed into a
clever universal forgery found by Bleichenbacher [Ble96], which cannot therefore
be prevented by hashing.

This alternative existential forgery finds a triplet (m, a, b) ∈ Zp × Z×p × Zp−1

satisfying (2.13) by solving the congruence by Chinese remainders separately. Thus,
we decompose the modulus p− 1 as p− 1 = qs where s is smooth (that is, it has no
large prime factor, see [Sho05]). The reason why we choose s to be smooth is that
it is easy to extract discrete logarithm in a group of smooth order, using Pohlig-
Hellman’s algorithm (see [MOV97, Sho05]). In particular, we do not know how
to compute efficiently the discrete-log function log over Z×p , but for any z ∈ Z×p ,
we can efficiently compute (log z) mod s. We do not know the secret key x, but
because we know the public key y = gx mod p, we may compute the smooth part
x mod s. Since p− 1 is always even, the smooth part s is at least 2.

PUBLIC-KEY CRYPTANALYSIS 15

Because p − 1 = qs, the congruence (2.13) would imply the following two
congruences:

m ≡ ax+ b log a (mod q)(4.2)

m ≡ ax+ b log a (mod s)(4.3)

Reciprocally, if we could find a triplet (m, a, b) satisfying both (4.2) and (4.3),
would it necessarily satisfy (2.13)? The answer would be positive if q and s were
coprime, by the Chinese remainder theorem. So let us assume that we put all the
smooth part of p − 1 into s, so that the smooth number s is indeed coprime with
q = (p− 1)/s.

We do not know x mod q, so the mod q-congruence (4.2) looks hard to satisfy.
However, note that the triplet (m, a, b) = (m, q, 0) is a trivial solution of (4.2)
whenever m ≡ 0 (mod q). So let us consider any message m such that m ≡ 0
(mod q), and set a = q. It remains to satisfy the second congruence (4.3). We
can compute log a mod s, and if we are lucky, it will be invertible mod s, so that
we can solve (4.3). Thus, we have obtained a probabilistic existential forgery,
which is weakly universal in the sense that if log q is coprime with s, then we can
forge the signature of any message m divisible by q. Like the previous existential
forgery, this attack could easily be avoided using a cryptographic hash function,
but Bleichenbacher [Ble96] found a trick to remove this limitation over m. We
now describe Bleichenbacher’s attack, with a presentation slightly different from
that of [Ble96].

We restrict to the simplest form of Bleichenbacher’s forgery, which requires
that the generator g is smooth and divides p− 1: a natural choice would be g = 2.
Thus, we let s = g where p − 1 = qs and we assume that s is smooth as before.
However, we will no longer assume that q and s are coprime, so it will not suffice
to work with (4.2) and (4.3) only. Instead, we will work with the congruence (2.13)
mod p− 1 directly. We can compute x0 = x mod s, so that x = x0 + sx1 where x1

is unknown. If we let a = q, then (2.13) becomes:

m ≡ ax0 + b log a (mod p− 1).(4.4)

This congruence looks hard to solve for b since we know log a mod s but not mod
p − 1. The trick is that the particular choice a = q enables us to compute log a.
We claim that log a = log q is equal to the integer k = (p − 3)/2 = (p − 1)/2 − 1.
To see this:

gk ≡ g(p−1)/2g−1 (mod p)

≡ (−1)g−1 because g is generator, so its Legendre symbol is -1.

≡ qsg−1 because p− 1 = qs.
≡ q because g = s.

It follows that (4.4) can be rewritten as:

m ≡ ax0 + bk (mod p− 1).(4.5)

It is an elementary fact of number theory that this linear congruence can be solved
for b if and only if gcd(k, p − 1) divides m − ax0. To evaluate gcd(k, p − 1), note
that:

k2 = ((p− 1)/2− 1)2 = ((p− 1)/2)2 − (p− 1) + 1 ≡ 1 + ((p− 1)/2)2 (mod p− 1).

16 PHONG Q. NGUYEN

We distinguish two cases:
• If p ≡ 1 (mod 4), then gcd(k, p− 1) = 1 because the previous congruence

becomes k2 ≡ 1 (mod p − 1) as ((p − 1)/2)2 is a multiple of p − 1. It
follows that whatever the value of m, we can always solve (4.5) for b.

• Otherwise, p ≡ 3 (mod 4), and we claim that gcd(k, p − 1) = 2. Indeed,
this time, we have that ((p−1)/2)2 ≡ 1 (mod p−1) rather than 0, which
implies that

k2 ≡ 2 (mod p− 1).
It follows that gcd(k, p − 1) = 2 because we already know that it is ≥ 2.
Hence, if we assume that m is uniformly distributed modulo p − 1, then
the probability that gcd(k, p − 1) divides m − ax0 is exactly 1/2. This
means that we can solve (4.5) half of the time.

Hence, if the generator is smooth and divides p− 1, we can either forge a signature
on every message if p ≡ 1 (mod 4), or on half of the messages if p ≡ 3 (mod 4).
Bleichenbacher describes other attacks on other specific generators in [Ble96].

Surprisingly, on the other hand, Pointcheval and Stern [PS96] showed at the
same conference as [Ble96] that a slight modification of the Elgamal signature
scheme is provably secure in the random oracle model. Furthermore, Bleichen-
bacher’s attack applied to that modification as well, but there is fortunately no
contradiction because the Pointcheval-Stern security proof assumed that the gen-
erator g was chosen uniformly at random among all generators of Z∗p, in which case
it is very unlikely that g will be smooth and dividing p − 1. This suggests the
following lesson: one should always carefully look at all the assumptions made by
a security proof.

4.2. Asymmetric Encryption.
4.2.1. Textbook-RSA. We first consider Textbook-RSA. Like any trapdoor per-

mutation used directly as a public-key encryption scheme, Textbook-RSA is vulner-
able to brute-force attacks over the plaintext. More precisely, an attacker has access
to a plaintext-checking oracle: the attacker can check whether a given ciphertext c
would be decrypted as a given plaintext m, by checking if:

c ≡ me mod N.(4.6)

In particular, if the set of plaintexts M (where m ∈ M) is small, one can decrypt
by brute-force: one would simply enumerate all m′ ∈ M and check whether the
ciphertext c corresponds to the plaintext m′, in which case m = m′. This would be
for instance the case if we were encrypting English plaintexts letter by letter. In
other words, when the distribution of plaintexts is very different from the uniform
distribution over ZN , (such as when the set of plaintexts M is a very small subset
of ZN), attacks may arise. Another famous example is the short-message attack.
Assume that the plaintexts are in fact very small: for instance, assume that the
plaintext m satisfies 0 ≤ m ≤ N1/e, (e.g. m is a 128-bit AES key, N a 1024-bit
modulus, and e = 3). Then the integer m satisfies: 0 ≤ me ≤ N , which means that
the congruence (4.6) is in fact an equality over Z,

c = me.

But it is well-known that solving univariate polynomial equations over Z can be
done in polynomial time: extracting e-th roots over Z is simply a particular case. In
other words, if 0 ≤ m ≤ N1/e, then one can recover the plaintext m from (c,N, e)

PUBLIC-KEY CRYPTANALYSIS 17

in polynomial time. To summarize, if the distribution of the plaintext m is the
uniform distribution over ZN , no one currently knows how to recover efficiently the
plaintext m from its ciphertext c = me mod N : this is exactly the RSA assumption.
But if the distribution of the plaintext m is very different, there are examples for
which there exist very efficient attacks.

Another elementary remark is that the RSA permutation provably leaks infor-
mation. Given c = me mod N where m has uniform distribution over ZN , one does
not know how to recover m efficiently, but it is easy to recover efficiently one bit
of information on the plaintext m. More precisely, because e must be odd (since
it is coprime with φ(N) which is even), the congruence (4.6) implies the following
equality of Jacobi symbols: (c

N

)
=
(m
N

)e
=
(m
N

)
.

In other words, one can derive efficiently the Jacobi symbol
(
m
N

)
, which provides

one bit of information on the plaintext m.
We earlier saw an adaptive chosen-message universal forgery on Textbook-RSA

signatures based on the multiplicativity of the RSA permutation. This elementary
attack has an encryption analogue: it can be transformed into an adaptative chosen-
ciphertext attack. Indeed, assume that we would like to decrypt a ciphertext c =
me mod N ∈ ZN : in other words, we would like to recover the plaintext m ∈ ZN .
Select m1 ∈ ZN uniformly at random. If m1 is not invertible mod N (which is
unlikely), then we have found a non-trivial factor of N , which of course allows us
to decrypt c. Otherwise, we may compute:

c2 = cm−e1 (mod N).

We ask the decryption oracle to decrypt the ciphertext c2: this gives the plaintext
m2 ∈ ZN defined by c2 = me

2 mod N . Then it is clear by multiplicativity that
m = (m1m2) mod N , which allows us to recover the initial plaintext m.

4.2.2. Textbook-Elgamal. Textbook-Elgamal is a probabilistic encryption scheme,
unlike Textbook-RSA. In particular, there is no access to a plaintext-checking or-
acle. However, Textbook-Elgamal provably leaks one bit of information on the
plaintext, just like Textbook-RSA. Indeed, if g is a generator of Z∗p, then its Le-

gendre symbol
(
g
p

)
must be equal to -1. In particular, the congruence (2.8) implies

that the ciphertext (c, d) of a message m satisfies:(
c

p

)
= (−1)k,

which discloses the parity of the one-time key k. Furthermore, the congruence (2.9)
implies that: (

d

p

)
=
(
m

p

)(
y

p

)k
.

Because d, y and p are public, and since the parity of k is now known, one can
compute the Legendre symbol

(
m
p

)
, which discloses one bit of information on the

plaintext m.

18 PHONG Q. NGUYEN

We saw in Section 4.2.1 an adaptive chosen-ciphertext attack on Textbook-RSA
encryption based on the multiplicativity of the RSA permutation. Since Textbook-
Elgamal is multiplicative as well (see Section 2.2.2), this adaptive chosen-ciphertext
attack can trivially be adapted to the Elgamal setting.

The fact that Textbook-RSA encryption is deterministic makes it vulnerable
to several elementary attacks, but transforming it into a probabilistic encryption
scheme will not prevent all the security problems by magic, as the example of
Textbook-Elgamal encryption shows.

5. Square-Root Attacks

Whenever an exhaustive search over a secret key or a plaintext (or any other
secret value) is possible, cryptographers often look for improved attacks based on
time/memory trade-offs (see [MOV97, Hel80, Oec03, BBS06]). Usually, ex-
haustive search requires negligible memoryM and exponential time T . A time/memory
trade-off tries to balance those two costs. It is often achieved by splitting the secret
value in values of half-size, in which case the new time and space complexity become
roughly the square root of the cost of exhaustive search: that is, if T is the run-
ning time of exhaustive search, then both the time and space complexities become
roughly

√
T . Sometimes, it is possible to further improve the space complexity of

such square-root attacks to negligible memory, which is of considerable interest in
practice. But among the three square-root attacks we will present, such a memory
improvement is only known for the first one, which deals with the discrete logarithm
problem.

5.1. The Discrete Logarithm Problem. As an illustration, consider the
discrete logarithm problem used in Textbook-Elgamal. Let p be a prime and g be
a generator of Z∗p. Assume that one is given an integer y satisfying:

y = gx mod p,(5.1)

where the integer x is secret. The discrete logarithm problem asks to recover x
modulo p − 1. Assume that the secret exponent x satisfies 0 ≤ x ≤ X, where
the public bound X is much smaller than p: does that make the discrete logarithm
easier? Obviously, the simplest method would be to exhaustive search all exponents
x such that 0 ≤ x ≤ X, and find out which one satisfies (5.1). This costs X group
operations with negligible space. A simple time/memory trade-off is obtained by
splitting the secret exponent x in two parts. More precisely, the integer x can be
written as:

x = x1 + b
√
Xcx2

where x1 are x2 are two integers satisfying 0 ≤ x1 ≤ b
√
Xc ≤

√
X and 0 ≤ x2 ≤

X/b
√
Xc = O(

√
X). This enables to rewrite (5.1) as:

y ≡ gx1+b
√
Xcx2 (mod p),

that is:

y/gb
√
Xcx2 ≡ gx1 (mod p).(5.2)

Reciprocally, any pair (x1, x2) satisfying (5.2) gives rise to a solution x of (5.1).
This suggests the following time/memory trade-off:

PUBLIC-KEY CRYPTANALYSIS 19

• Precompute the list L of all gx1 mod p where 0 ≤ x1 ≤ b
√
Xc, and sort

the list L to allow binary search. This will cost essentially O(
√
X lnX)

polynomial-time operations.
• For all integers x2 such that 0 ≤ x2 ≤ X/b

√
Xc, compute y/gb

√
Xcx2 mod

p and find out if it belongs to the list L. If it belongs to L, output the cor-
responding solution x to (5.1). This will also cost essentially O(

√
X lnX)

polynomial-time operations.

In other words, we have obtained a time/memory trade-off to solve (5.2) (and
therefore (5.1)), which has time and space complexity roughly O(

√
X lnX), if we

ignore polynomial costs. The method we have just described is known as the baby-
step/giant-step method in the literature (see [MOV97]). For the discrete logarithm
problem, there are improvements to this basic square-root attack which allow to
decrease the space requirement to negligible memory: see for instance Pollard’s
ρ and kangaroo methods in [CP01, MOV97], which are based on cycle-finding
algorithms such as Floyd’s.

5.2. RSA encryption of short messages. Another simple example of square-
root attacks is given by Textbook-RSA encryption of short messages with an arbi-
trary public exponent e, as explained in [BJN00]. Let 0 ≤ m ≤ B be a plaintext
encrypted as c = me mod N . We assume that the plaintext is small, that is,
B � N . For instance, m could be a 56-bit DES, N a 1024-bit RSA modulus, and
e = 216 + 1. It might happen that m can be split as m = m1m2 where m1 and
m2 are between 0 and roughly

√
B. Splitting probabilities (as well as theoretical

results) are listed in [BJN00]:

• For example, if 1 ≤ m ≤ 264 has uniform distribution then m can be split
as a product m1m2 where 1 ≤ mi < 232 with probability ≈ 0.18.

• Extending to 1 ≤ mi ≤ 233 increases the probability to ≈ 0.29, while
extending to 1 ≤ mi ≤ 234 increases the probability to ≈ 0.35.

This suggests the following attack [BJN00]:

• Compute all the values me
1 mod N where 1 ≤ m1 ≤ A

√
B for some small

constant A. These values (together with the corresponding m1) should be
stored in a structure which is easily searched.

• For all values m2 such that 1 ≤ m2 ≤ A′
√
B, compute c/me

2 mod N and,
for each value, see if this number appears in the earlier structure.

• If a match is found then we have c/me
2 ≡ me

1 (mod N) in which case
c ≡ (m1m2)e (mod N) and therefore, the secret plaintext is m = m1m2.

The cost of the attack is essentiallyO((A+A′)
√
B lnB) polynomial-time operations.

5.3. RSA with small CRT secret exponents. The square-root attacks
we have described are very elementary, but sometimes, square-root attacks can be
tricky. A less elementary example is given by Coppersmith’s square-root attack on
the discrete logarithm problem with sparse exponents: this is a particular case of
the discrete logarithm problem when the secret exponent has low Hamming weight.
The motivation is that such exponents allow faster exponentiation, and are therefore
tempting for certain cryptographic schemes. For more details, Coppersmith’s attack
is described in [Sti02]: it was originally presented in the eighties as a remark on
the message security of the Chor-Rivest public-key encryption scheme. Its time and

20 PHONG Q. NGUYEN

space complexities are roughly the square root of the running time of exhaustive
search over all sparse exponents.

A more sophisticated square-root attack applies to RSA with small CRT secret
exponent: the attack is vaguely described in [QL00] and is attributed to Richard
Pinch. The motivation is the following. To speed up RSA decryption or signa-
ture generation, one could select a small secret exponent d. But we will see later
(in Section 7.1.1) an attack (due to Wiener [Wie90]), which recovers the factor-
ization of the RSA modulus N for usual parameters whenever d = O(N1/4). And
Wiener’s attack was improved by Boneh and Durfee [BD99] to d = O(N1−1

√
2/2) =

O(N0.292...) using lattice-based techniques which we will describe in Section 7.3. A
better way to speed up RSA decryption or signature generation is to choose N = pq
and e so that the integers dp and dq satisfying

edp ≡ 1 (mod p− 1) and edq ≡ 1 (mod q − 1)

are small. If dp and dq are both O(B), there is a simple brute-force attack which
costs O(B). Namely, assume without loss of generality that 1 < dp, dq < B with
dp 6= dq, and consider the following:

• Choose a random 1 < m < N and set c = me mod N .
Recall that cdp = medp ≡ m mod p.

• For each 1 < i < B one can compute

gcd(ci −m mod N,N)

and see if we have factored N .
• When i = dp 6= dq we have ci ≡ m mod p and ci 6≡ m mod q. Hence the

algorithm will succeed.
• The complexity is Õ(B).

It is natural to seek a square-root attack in this case. Consider what happens if
one tries the obvious approach:

• Write M = b
√
Bc and dp = d1 +Md2 with 0 ≤ d1 < M , 0 ≤ d2 ≤M + 1.

• One would expect to compute and store a table of ‘baby steps’ ci mod N
for 0 ≤ i < M .

• Then one would expect to compute the giant steps (cM)j mod N for
0 ≤ j ≤M + 1.

• For each new giant step we must test whether there is a match, i.e., a
value for i such that gcd(ci(cM)j −m,N) 6= 1.

The problem is that it seems the only way to check this is to run over the entire
table of the baby steps and try each one. If this is done then the final complexity
is still Õ(B) rather than the square root.

The following attack reaches the square-root goal:
• Compute the polynomial

G(x) =
M+1∏
j=0

((cM)jx−m) mod N.

• This computation takes time Õ(M) and storingG(x) requires space Õ(M).
• Note that G(cd1) ≡ 0 mod p since

(cM)d2cd1 ≡ cd ≡ m mod p.

• Evaluate G(x) modulo N at ci for all 0 ≤ i < M .

PUBLIC-KEY CRYPTANALYSIS 21

• This gives a list of M numbers, one of which has a non-trivial gcd with
N . One therefore factors N .

However, this method requires the evaluation of G(x) at M points. Since G(x)
is a polynomial of degree M + 1, one might think that this is too expensive, that
it would cost Õ(M2). Fortunately, there is an algorithm due to Strassen (see the
textbook [JvzGG03]), which uses the Fast Fourier Transform (FFT) to evaluate
a polynomial of degree M at M points in time Õ(M). Using this algorithm, we
eventually obtain a square-root complexity Õ(

√
B) as announced. Recently, a lat-

tice attack on this problem appeared in [JM07], based on techniques which we will
describe in Section 7.3.

6. An Introduction to Lattices

6.1. Background. We will consider Rn with its usual topology of an Eu-
clidean vector space. We will use bold letters to denote vectors, usually in row
notation. The Euclidean inner product of two vectors x = (xi)ni=1 and y = (yi)ni=1

is denoted by:

〈x,y〉 =
n∑
i=1

xiyi.

The corresponding Euclidean norm is denoted by:

‖x‖ =
√
x2

1 + · · ·+ x2
n.

Denote by B(x, r) the open ball of radius r centered at x:

B(x, r) = {y ∈ Rn : ‖x− y‖ < r}.
A subset D of Rn is called discrete when it has no limit point, that is: for

all x ∈ D, there exists ρ > 0 such that B(x, ρ) ∩ D = {x}. As an example, Zn
is discrete (because ρ = 1/2 clearly works), while Qn and Rn are not. The set
{1/n : n ∈ N∗} is discrete, but the set {0} ∪ {1/n : n ∈ N∗} is not. Any subset of a
discrete set is discrete.

For any ring R, we denote byMn,m(R) (resp. Mn(R)) the set of n×m (resp.
n × n) matrices with coefficients in R. GLn(R) denotes the group of invertible
matrices in the ring Mn(R).

For any subset S of Rn, we define the linear span of S, denoted by span(S), as
the minimal vector subspace (of Rn) containing S.

Let b1, . . . ,bm be in Rn. The vectors bi’s are said to be linearly dependent if
there exist x1, . . . , xm ∈ R which are not all zero and such that:

m∑
i=1

xibi = 0.

Otherwise, they are said to be linearly independent.
The Gram determinant of b1, . . . ,bm ∈ Rn, denoted by ∆(b1, . . . ,bm), is by

definition the determinant of the Gram matrix (〈bi,bj〉)1≤i,j≤m. This real number
∆(b1, . . . ,bm) is always ≥ 0, and it turns out to be zero if and only if the bi’s
are linearly dependent. The Gram determinant is invariant by any permutation of
the m vectors, and by any integral linear transformation of determinant ±1 such
as adding to one of the vectors a linear combination of the others. The Gram
determinant has a very useful geometric interpretation: when the bi’s are linearly

22 PHONG Q. NGUYEN

independent,
√

∆(b1, . . . ,bm) is the m-dimensional volume of the parallelepiped
spanned by the bi’s.

6.2. Lattices. We call lattice of Rn any discrete subgroup of (Rn,+); that
is any subgroup of (Rn,+) which has the discreteness property. Notice that an
additive group is discrete if and only if 0 is not a limit point, which implies that a
lattice is any non-empty set L ⊆ Rn stable by subtraction (in other words: for all
x and y in L, x−y belongs to L), and such that L∩B(0, ρ) = {0} for some ρ > 0.

With this definition, the first examples of lattices which come to mind are the
zero lattice {0} and the lattice of integers Zn. Our definition implies that any
subgroup of a lattice is a lattice, and therefore, any subgroup of (Zn,+) is a lattice.
Such lattices are called integral lattices. As an example, consider two integers a and
b ∈ Z: the set aZ + bZ of all integral linear combinations of a and b is a subgroup
of Z, and therefore a lattice; it is actually the set gcd(a, b)Z of all multiples of
the gcd of a and b. For another example, consider n integers a1, . . . , an, together
with a modulus M . Then the set of all (x1, . . . , xn) ∈ Zn such that

∑n
i=1 aixi ≡ 0

(mod M) is a lattice in Zn because it is clearly a subgroup of Zn.
We give a few basic properties of lattices:

Proposition 6.1. Let L be a lattice in Rn.
(1) There exists ρ > 0 such that for all x ∈ L:

L ∩B(x, ρ) = {x}.
(2) L is closed.
(3) For all bounded subsets S of Rn, L ∩ S is finite.
(4) L is countable.

Proof. We know that L ∩ B(0, ρ) = {0} for some ρ > 0. Since L is an
additive group, we obtain property 1. It follows that any convergent sequence of L
is stationary, which proves property 2. If S is a bounded subset, it must be included
in some closed ball B. The set L ∩ B is closed and bounded, thus compact. Since
it is also discrete, it must be finite (by the Borel-Lebesgue theorem), which gives
property 3. Since Rn is the union of all B(0, r) for r ∈ N, we obtain property 4. �

Notice that a set which satisfies either property 1 or 3 is necessarily discrete,
but an arbitrary discrete subset of Rn does not necessarily satisfy property 1 nor
3. It is the group structure of lattices which allows such additional properties.

6.3. Lattice Bases. Let b1, . . . ,bm be arbitrary vectors in Rn. Denote by
L(b1, . . . ,bm) the set of all integral linear combinations of the bi’s:

L(b1, . . . ,bm) =

{
m∑
i=1

nibi : n1, . . . , nm ∈ Z

}
This set is a subgroup of Rn, but it is not necessarily discrete. For instance, one
can show that L((1), (

√
2)) is not discrete because

√
2 6∈ Q. However, notice that

if the bi’s are in Qn, then L(b1, . . . ,bm) is discrete, and so is a lattice. When
L = L(b1, . . . ,bm) is a lattice, we say that L is spanned by the bi’s, and that the
bi’s are generators. When the bi’s are further linearly independent, we say that
(b1, . . . ,bm) is a basis of the lattice L, in which case each lattice vector decomposes
itself uniquely as an integral linear combination of the bi’s. Bases and sets of
generators are useful to represent lattices, and to perform computations. One will

PUBLIC-KEY CRYPTANALYSIS 23

typically represent a lattice on a computer by some lattice basis, which can itself be
represented by a matrix with real coefficients. In practice, one will usually restrict
to integral lattices, so that the underlying matrices are integral matrices.

We define the dimension or rank of a lattice L, denoted by dim(L), as the
dimension d of its linear span denoted by span(L). The dimension is the maximal
number of linearly independent lattice vectors. Any lattice basis of L must have
exactly d elements. There always exist d linearly independent lattice vectors, how-
ever such vectors do not necessarily form a basis, as opposed to the case of vectors
spaces. But the following theorem shows that one can always derive a lattice basis
from such vectors:

Theorem 6.2. Let L be a lattice of Rn, with dimension d. Let c1, . . . , cd be
linearly independent vectors of L. There exists a lower triangular matrix (ui,j) ∈
Md(R) such that the vectors b1, . . . ,bd defined as bi =

∑i
j=1 ui,jcj form a basis

of L.

Proof. We reproduce the proof of [Sie89, Theorem 18, p. 45]. Let 1 ≤ i ≤ d.
Consider the following set:

Si =

xi ∈]0, 1] : ∃x1, . . . , xi−1 ∈ R such that
i∑

j=1

xjcj ∈ L

 .

This set is actually finite because xi ∈ Si implies that xici +
∑i−1
j=1(xj − bxjc)cj

belongs to L ∩ B(0,
∑i
j=1 ‖cj‖) which is finite. And Si is not empty since it con-

tains 1, therefore it has a smallest element which is strictly positive, and which
we denote by ui,i > 0. By definition, there exist ui,1, . . . , ui,i−1 ∈ R such that
bi =

∑i
j=1 ui,jcj ∈ L.

It remains to prove that the bi’s form a basis. Since ui,i > 0, the bi’s are
linearly independent. Now, let y ∈ L. Since the bi’s are linearly independent,
there exist y1, . . . , yn ∈ R such that y =

∑d
i=1 yibi. Define x =

∑d
i=1 xibi where

xi = yi − byic. We have x ∈ L and 0 ≤ xi < 1. Suppose ad absurdum that not all
the yi’s are integral: let k be the largest index such that yk 6∈ Z. Then xk > 0 and
xi = 0 if i > k. Thus:

x = uk,kxkck +
k−1∑
j=1

uk,jxkcj +
k−1∑
i=1

xi

i∑
j=1

ui,jcj .

Since 0 < xk < 1, 0 < uk,kxk < uk,k which contradicts the fact that uk,k is the
smallest element of Sk. �

This gives the unconditional existence of lattice bases:

Corollary 6.3. Any lattice of Rn has at least one basis.

Thus, even if sets of the form L(b1, . . . ,bm) may or may not be lattices, all
lattices can be written as L(b1, . . . ,bm) for some linearly independent bi’s. The
converse is easy to prove:

Theorem 6.4. Let b1, . . . ,bd ∈ Rn be linearly independent. Then the set
L(b1, . . . ,bd) is a lattice of dimension d.

24 PHONG Q. NGUYEN

Proof. Let L = L(b1, . . . ,bd). It suffices to show that 0 is not a limit point
of L. Consider the parallelepiped P defined by:

P =

{
d∑
i=1

xibi : |xi| < 1

}
.

Since the bi’s are linearly independent, L ∩ P = {0}. Besides, there exists ρ > 0
such that B(0, ρ) ⊆ P , which shows that 0 cannot be a limit point of L. �

Corollary 6.3 together with Theorem 6.4 give an alternative definition of a
lattice: a non-empty subset L of Rn is a lattice if only if there exist linearly inde-
pendent vectors b1,b2, . . . ,bd in Rn such that:

L = L(b1, . . . ,bd).

This characterization suggests that lattices are discrete analogues of vector spaces.
Lattice bases are characterized by the following elementary result, whose proof

is omitted:

Theorem 6.5. Let (b1, . . . ,bd) be a basis of a lattice L in Rn. Let c1, . . . , cd
be vectors of L: there exists a d×d integral matrix U = (ui,j)1≤i,j≤d ∈Md(Z) such
that ci =

∑d
j=1 ui,jbj for all 1 ≤ i ≤ d. Then (c1, . . . , cd) is a basis of L if and

only if the matrix U has determinant ±1.

As a result, as soon as the lattice dimension is ≥ 2, there are infinitely many
lattice bases.

6.4. Lattice Volume. Let (b1, . . . ,bd) and (c1, . . . , cd) be two bases of a lat-
tice L in Rn. By Theorem 6.5, there exists a d×d integral matrix U = (ui,j)1≤i,j≤d ∈
Md(Z) of determinant ±1 such that ci =

∑d
j=1 ui,jbj for all 1 ≤ i ≤ d. It follows

that the Gram determinant of those two bases are equal:

∆(b1, . . . ,bd) = ∆(c1, . . . , cd) > 0.

The volume (or determinant) of the lattice L is defined as:

vol(L) = ∆(b1, . . . ,bd)1/2,

which is independent of the choice of lattice basis (b1, . . . ,bd). We prefer the
name volume to the name determinant because of its geometric interpretation: it
corresponds to the d-dimensional volume of the parallelepiped spanned by any basis.
In the mathematical literature, the lattice volume we have just defined is sometimes
alternatively called co-volume, because it is also the volume of the torus span(L)/L.
In the important case of full-dimensional lattices where dim(L) = n = dim(Rn),
the volume is equal to the absolute value of the determinant of any lattice basis
(hence the alternative name determinant).

Given a lattice L, how does one compute the volume of L? If an explicit basis of
L is known, this amounts to computing a determinant: for instance, the volume of
the hypercubic lattice Zn is clearly equal to one. But if no explicit basis is known,
there is sometimes another way, due to the following elementary result: if L1 and
L2 are two lattices of Rn with the same dimension such that L1 ⊆ L2, then L2/L1

is a finite group of order denoted by [L2 : L1] which satisfies

vol(L1) = vol(L2)× [L2 : L1].

PUBLIC-KEY CRYPTANALYSIS 25

As an illustration, consider n integers a1, . . . , an, together with a modulus M .
We have seen in Section 6.2 that the set L of all (x1, . . . , xn) ∈ Zn such that∑n
i=1 aixi ≡ 0 (mod M) is a lattice in Zn because it is a subgroup of Zn. But

there seems to be no trivial basis of L. However, note that L ⊆ Zn and that the
dimension of L is n because L contains all the vectors of the canonical basis of Rn
multiplied by M . It follows that:

vol(L) = [Zn : L].

Furthermore, the definition of L clearly implies that:

[Zn : L] = M/ gcd(M,a1, a2, . . . , an).

Hence:
vol(L) =

M

gcd(M,a1, a2, . . . , an)
.

6.5. Lattice Reduction. A fundamental result of linear algebra states that
any finite-dimensional vector space has a basis. We earlier established the ana-
logue result for lattices: any lattice has a basis. In the same vein, a fundamental
result of bilinear algebra states that any finite-dimensional Euclidean space has an
orthonormal basis, that is, a basis consisting of unit vectors which are pairwise
orthogonal. A natural question is to ask whether lattices also have orthonormal
bases, or at least, orthogonal bases. Unfortunately, it is not difficult to see that
even in dimension two, a lattice may not have an orthogonal basis. Informally, the
goal of lattice reduction is to circumvent this problem: more precisely, the theory of
lattice reduction shows that in any lattice, there is always a basis which is not that
far from being orthogonal. Defining precisely what is meant exactly by not being
far from being orthogonal is tricky, so for now, let us just say that such a basis
should consist of reasonably short lattice vectors, which implies that geometrically,
such vectors are not far from being orthogonal to each other.

6.5.1. Minkowski’s successive minima. In order to explain what is a reduced
basis, we need to define what is meant by short lattice vectors. Let L be a lattice
of dimension ≥ 1 in Rn. There exists a non-zero vector u ∈ L. Consider the closed
hyperball B of radius ‖u‖, centered at zero. Then L ∩ B is finite and contains u,
so it must have a shortest non-zero vector. The Euclidean norm of that shortest
non-zero vector is called the first minimum of L, and is denoted by λ1(L) > 0 or
‖L‖. By definition, any non-zero vector v of L satisfies: ‖v‖ ≥ λ1(L). And there
exists w ∈ L such that ‖w‖ = λ1(L): any such w is called a shortest vector of
L, and it is not unique since −w would also be a shortest vector. The kissing
number of L is the number of shortest vectors in L: it is upper bounded by some
exponential function of the lattice dimension (see [CS98]).

If w is a shortest vector of L, then so is −w. Thus, one must be careful when
defining the second-to-shortest vector of a lattice. To circumvent this problem,
Minkowski [Min96] defined the other minima as follows. For all 1 ≤ i ≤ dim(L),
the i-th minimum λi(L) is defined as the minimum of max1≤j≤i ‖vj‖ over all i
linearly independent lattice vectors v1, . . . ,vi ∈ L. Clearly, the minima are in-
creasing: λ1(L) ≤ λ2(L) ≤ · · · ≤ λd(L). And it is not difficult to see that there
always exist linearly independent lattice vectors v1, . . . ,vd reaching simultaneously
the minima, that is ‖vi‖ = λi(L) for all i. However, surprisingly, as soon as
dim(L) ≥ 4, such vectors do not necessarily form a lattice basis. The canonical
example is the 4-dimensional lattice L defined as the set of all (x1, x2, x3, x4) ∈ Z4

26 PHONG Q. NGUYEN

such that
∑4
i=1 xi is even. It is not difficult to see that dim(L) = 4 and that all the

minima of L are equal to
√

2. Furthermore, it can be checked that the following
row vectors form a basis of L:

1 −1 0 0
1 1 0 0
1 0 1 0
1 0 0 1

 .

The basis proves in particular that vol(L) = 2. However, the following row vectors
are linearly independent lattice vectors which also reach all the minima:

1 −1 0 0
1 1 0 0
0 0 1 1
0 0 1 −1

 .

But they do not form a basis, since their determinant is equal to 4: another reason
is that for all such vectors, the sum of the first two coordinates is even, and that
property also holds for any integral linear combination of those vectors, but clearly
not for all vectors of the lattice L. More precisely, the sublattice spanned by those
four row vectors has index two in the lattice L.

Nevertheless, in the lattice L, there still exists at least one basis which reaches
all the minima simultaneously, and we already gave one such basis. This also holds
for any lattice of dimension ≤ 4, but it is no longer true in dimension ≥ 5, as
was first noticed by Korkine and Zolotarev in the 19th century, in the language of
quadratic forms. More precisely, it can easily be checked that the lattice spanned
by the rows of the following matrix

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1

has no basis reaching all the minima (which are all equal to two).

6.5.2. Hermite’s constant and Minkowski’s theorems. Now that successive min-
ima have been defined, it is natural to ask how large those minima can be. Her-
mite [Her50] was the first to prove that the quantity λ1(L)/ vol(L)1/d could be
upper bounded over all d-rank lattices L. The supremum of λ1(L)2/ vol(L)2/d over
all d-rank lattices L is denoted by γd, and called Hermite’s constant of dimension
d, because Hermite was the first to establish its existence in the language of qua-
dratic forms. The use of quadratic forms explains why Hermite’s constant refers to
maxL λ1(L)2/ vol(L)2/d and not to maxL λ1(L)/ vol(L)1/d. Clearly, γd could also
be defined as the supremum of λ1(L)2 over all d-rank lattices L of unit volume.

It is known that γd is reached, that is: for all d ≥ 1, there is a d-rank lattice
L such that γd = λ1(L)2/ vol(L)2/d, and any such lattice is called critical. But
finding the exact value of γd is a very difficult problem, which has been central
in Minkowski’s geometry of numbers. The exact value of γd is known only for
1 ≤ d ≤ 8 (see the book [Mar03] for proofs) and very recently also for d = 24
(see [CK04]): the values are summarized in the following table.

d 2 3 4 5 6 7 8 24

γd 2/
√

3 21/3 √
2 81/5 (64/3)1/6 641/7 2 4

Approximation 1.1547 1.2599 1.4142 1.5157 1.6654 1.8114 2 4

PUBLIC-KEY CRYPTANALYSIS 27

Furthermore, the list of all critical lattices (up to scaling and isometry) is known
for each of those dimensions.

However, rather tight asymptotical bounds are known for Hermite’s constant.
More precisely, we have:

d

2πe
+

log(πd)
2πe

+ o(1) ≤ γd ≤
1.744d

2πe
(1 + o(1)).

For more information on the proof of those bounds: see [MH73, Chapter II] for
the lower bound (which comes from the Minkowski-Hlawka theorem), and [CS98,
Chapter 9] for the upper bound. Thus, γd is essentially linear in d. It is known
that γdd ∈ Q (because there is always an integral critical lattice), but it is unknown
if γd is an increasing sequence.

Hermite’s historical upper bound [Her50] on his constant was exponential in
the dimension:

γd ≤ (4/3)(d−1)/2.

The first linear upper bound on Hermite’s constant is due to Minkowski, who viewed
it as a consequence of his Convex Body Theorem:

Theorem 6.6 (Minkowski’s Convex Body Theorem). Let L be a full-rank lattice
of Rn. Let C be a measurable subset of Rn, convex, symmetric with respect to 0,
and of measure > 2n vol(L). Then C contains at least a non-zero point of L.

This theorem is a direct application of the following elementary lemma (see [Sie89]),
which can be viewed as a generalization of the pigeon-hole principle:

Lemma 6.7 (Blichfeldt). Let L be a full-rank lattice in Rn, and F be a mea-
surable subset of Rn with measure > vol(L). Then F contains at least two distinct
vectors whose difference is in L.

Indeed, we may consider F = 1
2C, and the assumption in Theorem 6.6. implies

that the measure of F is > vol(L). From Blichfeldt’s lemma, it follows that there
exist x and y in F such that x− y ∈ L \ {0}. But

x− y =
1
2

(2x− 2y)

which belongs to C by convexity, and symmetry with respect to 0. Hence: x−y ∈
C ∩ (L \ {0}), which completes the proof of Theorem 6.6.

One notices that the bound on the volumes in Theorem 6.6 is the best possible,
by considering

C =

{
n∑
i=1

xibi : |xi| < 1

}
,

where the bi’s form an arbitrary basis of the lattice. Indeed, in this case, the
measure of C is exactly 2n vol(L), but by definition of C, no non-zero vector of L
belongs to C.

In Theorem 6.6, the condition on the measure of C is a strict inequality, but
it is not difficult to show that the strict inequality can be relaxed to an inequality
≥ 2n vol(L) if C is further assumed to be compact. By choosing for C a closed
hyperball of sufficiently large radius (so that the volume inequality is satisfied), one
obtains that any d-dimensional lattice L of Rn contains a non-zero x such that

‖x‖ ≤ 2
(

vol(L)
vd

) 1
d

,

28 PHONG Q. NGUYEN

where vd denotes the volume of the closed unitary hyperball of Rd. Using well-
known formulas for vd, one can derive a linear bound on Hermite’s constant, for
instance:

∀d, γd ≤ 1 +
d

4
.

One can obtain an analogous result for the max-norm:

Theorem 6.8. Let L be a d-dimensional lattice. Then there exists a non-zero
x in L such that:

‖x‖∞ ≤ vol(L)1/d.

Notice that this bound is reached by L = Zd.
Now that we know how to bound the first minimum, it is natural to ask if a sim-

ilar bound can be obtained for the other minima. Unfortunately, one cannot hope
to upper bound separately the other minima, because the successive minima could
be unbalanced. For instance, consider the rectangular 2-rank lattice L spanned by
the following row matrix: (

ε 0
0 1/ε

)
,

where ε > 0 is small. The volume of L is one, and by definition of L, it is clear that
λ1(L) = ε and λ2(L) = 1/ε if ε ≤ 1. Here, λ2(L) can be arbitrarily large compared
to the lattice volume, while λ1(L) can be arbitrarily small compared to the upper
bound given by Hermite’s constant.

However, it is always possible to upper bound the geometric mean of the first
consecutive minima, as summarized by the following theorem (for an elementary
proof, see [Sie89, MG02]):

Theorem 6.9 (Minkowski’s Second Theorem). Let L be a d-rank lattice of Rn.
Then for any integer r such that 1 ≤ r ≤ d:(

r∏
i=1

λi(L)

)1/r

≤ √γd vol(L)1/d.

6.5.3. Random Lattices. The upper bound on the first minimum derived from
Hermite’s constant is only tight for critical lattices, which are very special lattices.
One might wonder what happens for more general lattices, say random lattices. But
what is a random lattice? Surprisingly, from a mathematical point of view, there is
a natural (albeit technically involved) notion of random lattice, which follows from a
measure on full-rank lattices with determinant 1 introduced by Siegel [Sie45] back
in 1945, to provide an alternative proof of the Minkowski-Hlawka theorem; this
measure is derived from Haar measures of classical groups. In these lecture notes,
no formal definition of random lattices will be needed: we refer the interested reader
to the recent articles [Ajt02, GM03] which propose efficient ways to generate
lattices which are provably random in this sense: see also [NS06] for practical
considerations. We now list a few important properties of random lattices, to give
more intuition on random lattices. We saw in Section 6.5.2 that an n-rank lattice
L satisfies:

λ1(L) ≤ √γn vol(L)1/n ≤
√

1 + n/4 vol(L)1/n.(6.1)

PUBLIC-KEY CRYPTANALYSIS 29

Interestingly, a random n-rank lattice L satisfies asymptotically with overwhelming
probability (see [Ajt06] for a proof):

∀ 1 ≤ i ≤ n, λi(L) ≈
√

n

2πe
vol(L)1/n.

In particular, the bound on the first minimum derived from Hermite’s constant
is not that far from being tight in the random case: the ratio between the two
upper bounds is bounded independently of the dimension. Thus, even though it is
easy to construct lattices for which the first minimum is arbitrarily small compared
to Hermite’s bound, such lattices are far from being random: the first minimum
of random lattices is almost as large as the one of critical lattices. Furthermore,
[Ajt06] also shows that asymptotically, in a random n-rank lattice L, there exists
with overwhelming probability a lattice basis (b1, . . . ,bn) such that:

∀ 1 ≤ i ≤ n, ‖bi‖ ≈
√

n

2πe
vol(L)1/n.

Such a basis consists of very short vectors, since their norms are close to the suc-
cessive minima. Thus, there are always nice bases in random lattices.

The previous properties are useful to distinguish specific lattices from random
lattices. For instance, in cryptography, one often encounters lattices for which
the first minimum is provably much smaller than Hermite’s bound (6.1), so such
lattices cannot be random, and they might have exceptional properties which can be
exploited. And when a lattice is very far from being random, certain computational
problems which are hard in the general case may become easy.

6.5.4. Reduction Notions. In Section 6.5.3, we saw that random lattices always
have nice bases: naturally, one might wonder what happens in the general case.
The goal of lattice (basis) reduction is to prove the existence of nice lattice bases
in every lattice, and not just random lattices. Such nice bases are called reduced,
but it is important to stress that there are many notions of reduction. Usually,
one first defines a notion of reduction, then shows that there exist bases which are
reduced in this sense, and finally proves that bases which are reduced in this sense
have interesting properties. In terms of interesting properties, we are interested in
both mathematical and computational properties: does it have nice mathematical
properties, and is it easy to compute such reduced bases? Computational aspects
will only be discussed in the next subsection.

In low dimension ≤ 4, there is one notion of reduction which is arguably better
than all the others: the so-called Minkowski reduction. Minkowski defined a natural
notion of reduction, for which it is easy to prove that there are Minkowski-reduced
bases in all lattices. And Minkowski proved that when the lattice dimension d is
≤ 4, a Minkowski-reduced basis (b1, . . . ,bd) must satisfy: ∀i, ‖bi‖ = λi(L), which
is arguably the best one can hope for a basis. Furthermore, there is a very natural
algorithm to compute such bases, and which is very efficient up to dimension ≤ 4
(see [NS04]). However, when the dimension is ≥ 5, among all the reduction notions
which are known, none is clearly better than the others. But the best notions of
reduction known all provide guarantees on the norm of the basis vectors b1, . . . ,bd,
such as upper bounds on the d ratios ‖bi‖/λi(L).

Enumerating all the reduction notions known is beyond the scope of these notes.
In fact, we will not even define precisely any reduction notion. Instead, we will
only present properties of two important notions of reduction (see [MG02]): the

30 PHONG Q. NGUYEN

Lenstra-Lenstra-Lovász reduction [LLL82] (called LLL for short), and the Hermite-
Korkine-Zolotarev reduction [KZ73] (called HKZ for short). The HKZ reduction is
a very strong notion of reduction which is computationally expensive, while the LLL
reduction is a weaker notion of reduction which is computationally inexpensive. An
HKZ-reduced basis (b1, . . . ,bd) of a lattice L satisfies for all 1 ≤ i ≤ d:

4
i+ 3

≤
(
‖bi‖
λi(L)

)2

≤ i+ 3
4

.

In particular, ‖b1‖ = λ1(L), and one can see that all the other vectors are very close
to the minima. The LLL reduction is a relaxed variant of a notion of reduction
proposed by Hermite [Her50]: it depends on a factor δ satisfying 1

4 < δ ≤ 1.
Historically, the factor chosen in [LLL82] was δ = 3/4 for ease of notation, but the
closer δ is to 1, the stronger the LLL reduction. An LLL-reduced basis (b1, . . . ,bd)
with factor δ of a lattice L satisfies (see [LLL82]):

(1) ‖b1‖ ≤ α(d−1)/4(volL)1/d, where α = 1/(δ − 1
4).

(2) For all 1 ≤ i ≤ d, ‖bi‖ ≤ α(d−1)/2λi(L).
(3) ‖b1‖ × · · · × ‖bd‖ ≤ αd(d−1)/4 volL.

Note that for the historical choice δ = 3/4 of [LLL82], we have α = 2. Interestingly,
for the optimal choice δ = 1, we obtain α = 4/3, in which case the previous
inequality (1) matches Hermite’s exponential bound on Hermite’s constant. The
vectors of an LLL-reduced basis are thus at most exponentially far from the minima.

We stress that we have not even defined the LLL or HKZ reductions: we only
listed a few properties of those reductions. We have not even proved that any lattice
must have LLL-reduced bases and HKZ-reduced bases (which holds): typically, the
existence of reduced bases is established by means of an algorithm (efficient or not).
We will discuss computational aspects of lattice reduction in the next subsection.

6.6. Computational Aspects. In this section, we discuss computational as-
pects of lattices. More information can be found in [MG02, GLS93]. We would
like to emphasize that there is a well-known gap between theory and practice: one
should be very careful when interpreting theoretical or practical results.

6.6.1. Computational Model. When dealing with complexity aspects, we as-
sume implicitly that the lattices under consideration are rational lattices given
explicitly by a basis, that is a matrix with rational coefficients: the cost of the
algorithm will be measured with respect to the size of this matrix, that is, the
maximal bit-length of the numerator and denominator of the coefficients, as well
as the numbers of rows and columns of the matrix. From a practical point of view,
all the parameters of the matrix are important. Naturally, a lattice algorithm will
be said to be polynomial-time if its running time is polynomial in the size of the
matrix representing the lattice. Since any rational lattice can easily be transformed
into an integral lattice by an appropriate scaling, we can assume without loss of
generality that the input lattices are integral lattices.

One may wonder about alternative representations of lattices. For instance, if
one is only given a set of generators of an integral lattice, a classical result states
that one can compute in polynomial time a basis of the lattice (see [GLS93]).
More generally, a lattice may be given only implicitly, and the first task is to
efficiently find a basis. For instance, the set of integral solutions to a system of
linear equations over the integers is a lattice: a classical result states that one can

PUBLIC-KEY CRYPTANALYSIS 31

compute in polynomial time a basis of that lattice from the system of equations
(see [GLS93]).

Complexity results assume that there is a main parameter, and the hardness
refers to when that parameter grows to infinity. In the case of lattices, the main
parameter is the lattice dimension: the other parameters (bit-length of the matrix
entries and the dimension of the space) are then assumed to be polynomial in the
lattice dimension. In fixed lattice dimension, all lattice problems become easy.

6.6.2. Lattice Problems. There are many computational problems related to
lattices, which can be roughly classified in two categories: those which are easy,
and those which are believed to be hard.

Among the easy lattice problems which can be solved in polynomial time
(see [GLS93]), one can find:

Membership: Given a basis of a lattice L in Qn and a target vector t ∈ Qn,
decide if t ∈ L or not.

Equality: Given bases of two lattices L1 and L2 in Qn, decide if L1 = L2.
Inclusion: Given bases of two lattices L1 and L2 in Qn, decide if L1 ⊆ L2.
Intersection: Given bases of two lattices L1 and L2 in Qn, find a basis of

the lattice L1 ∩ L2.
Interestingly, there are lattice problems which seem to be very hard, due to the

existence of NP-hardness results (see [MG02]). The most famous lattice problem
is the shortest vector problem (SVP for short): given a basis of a rational lattice
L, find v ∈ L such that ‖v‖ = λ1(L). Because Ajtai [Ajt98] proved that SVP
is NP-hard under randomized reductions, the existence of efficient algorithms to
solve SVP seems unlikely. In fact, the best deterministic SVP algorithm is Kan-
nan’s super-exponential algorithm [Kan83] which requires O(dd/(2e)+o(d)) polyno-
mial operations (and negligible memory) [HS07, HS08], where d is the lattice
dimension. The probabilistic SVP algorithm of [AKS01] improves the running
time to 2O(d) polynomial operations, but its space requirements become exponen-
tial 2O(d) (see [NV08] for an assessement of the O() constant). In low dimension
d ≤ 4, there is an elegant and very efficient algorithm to solve SVP, which gen-
eralizes Lagrange’s algorithm (see [NS04]). Since SVP seems to be a very hard
problem, one often considers approximate versions of SVP. For instance the γ-
approximate SVP with γ ∈ R is: given a basis of a rational lattice L, find a non-
zero v ∈ L such that ‖v‖ ≤ γλ1(L). Approximating SVP within a factor γ means
solving γ-approximate SVP. Naturally, the bigger γ, the easier γ-approximate SVP.
The LLL algorithm [LLL82] solves (4/3)d/2-approximate SVP in polynomial time
(see [MG02]). The best polynomial-time deterministic algorithm for approximate-
SVP is Gama and Nguyen’s algorithm [GN08a] (an improvement of [Sch87,
GHGKN06]) with an appropriate blocksize k, which can solve γ-approximate
SVP for γ = γ

(d−k)/(k−1)
k = 2O(d(log log d)2/ log d) for k = O(log d/ log log d). The

best polynomial-time randomized algorithm for approximate-SVP is Gama and
Nguyen’s algorithm [GN08a] (an improvement of [Sch87, GHGKN06]) using
the randomized AKS algorithm [AKS01] within blocks of size k, which can solve
γ-approximate SVP for γ = γ

(d−k)/(k−1)
k = 2O(d(log log d)/ log d) for k = O(log d).

Another famous lattice problem is the closest vector problem (CVP for short),
also called the nearest lattice point problem: given a basis of a rational lattice
L ∈ Qn and a target vector t ∈ Qn, find v ∈ L minimizing ‖t − v‖, that is, such
that ‖t−v‖ ≤ ‖t−w‖ for all w ∈ L. Similarly as for SVP, one defines γ-approximate

32 PHONG Q. NGUYEN

CVP as follows: given a basis of a rational lattice L ∈ Qn and a target vector t ∈ Qn,
find v ∈ L such that ‖t− v‖ ≤ γ‖t−w‖ for all w ∈ L. Note that if one knows a
orthogonal basis for the lattice L (such as is the case for Zn), CVP becomes trivial,
but in general, one only knows a weakly-reduced basis, which makes the problem
very difficult. CVP was shown to be NP-hard as early as in 1981 [Emd81] (for a
much simpler “one-line” proof using the knapsack problem, see [Mic01]). Babai’s
nearest plane algorithm [Bab86] uses LLL to solve 2(4/3)d/2-approximate CVP
in polynomial time (see [MG02]). Using any of [Sch87, GHGKN06, GN08a],
this can be improved to 2O(d(log log d)2/ log d) in polynomial time, and even further to
2O(d log log d/ log d) in randomized polynomial time using [AKS01], due to Kannan’s
link between CVP and SVP (see further). For exact CVP, the best algorithm
is Kannan’s super-exponential algorithm [Kan83, Kan87b], with running time
2O(d log d) (see also [Hel85, HS07] for an improved constant).

Interestingly, NP-hardness results for SVP and CVP are known to have lim-
its. Goldreich and Goldwasser [GG98] showed that approximating SVP or CVP
to within

√
d/ log d cannot be NP-hard, unless the polynomial-time hierarchy col-

lapses.
There are relationships between SVP and CVP. Goldreich et al. [GMSS99]

showed that CVP cannot be easier than SVP: given an oracle that solves f(d)-
approximate CVP, one can solve f(d)-approximate SVP in polynomial time. Re-
ciprocally, Kannan proved in [Kan87a, Section 7] that any algorithm solving
f(d)-approximate SVP where f is a non-decreasing function can be used to solve
d3/2f(d)2-approximate CVP in polynomial time.

In practice, a popular strategy to try to solve CVP when the target vector is
very close to the lattice is Kannan’s embedding method (see [Kan87b, GGH97,
Ngu99, MG02]), which uses the previous algorithms for SVP and a simple heuris-
tic reduction from CVP to SVP. Namely, given a lattice basis (b1, . . . ,bd) and a
vector v ∈ Rn, the embedding method builds the (d + 1)-dimensional lattice (in
Rn+1) spanned by the row vectors (bi, 0) and (v, 1). Depending on the lattice,
one should choose a coefficient different from 1 in (v, 1). It is hoped that a short-
est vector of that lattice is of the form (v − u, 1) where u is a closest vector (in
the original lattice) to v, whenever the distance to the lattice is smaller than the
lattice first minimum. This heuristic may fail (see for instance [Mic98] for some
simple counterexamples), but it can also sometimes be proved, notably in the case
of lattices arising from low-density knapsacks (see [NS05b]).

Approximating SVP or CVP is often achieved by solving a more general prob-
lem: lattice reduction, which is roughly speaking finding a basis close to all the
minima.

6.6.3. Cost of HKZ and LLL Reductions. The classical results regarding HKZ
and LLL reductions are the following:

• It is possible to compute an HKZ-reduced basis of a d-dimensional lattice
in O(dO(d)) polynomial operations (see [Kan83, Sch87, HS07]): note
that this running time is super-exponential in d.

• If the reduction factor δ is a rational number such that 1/4 < δ < 1, the
LLL algorithm [LLL82] computes an LLL-reduced basis of factor δ in
polynomial time (see also [NS05a] for optimized variants). Note that we
need δ < 1, in which case α > 4/3. In practice, one often uses δ = 0.99
so that α ≈ 4/3: in [MG02], it is even shown how to select δ converging

PUBLIC-KEY CRYPTANALYSIS 33

to 1 while keeping polynomial-time complexity. However, the constant
α is typically a worst-case constant: on the average, in practice, it seems
that α should be replaced by a smaller constant close to 1.08 for moderate
dimension (see [NS06, GN08b]).

6.6.4. Experimental Facts. For those who are interested in performing exper-
iments, the NTL library [Sho] provides an easy-to-use lattice package, which in-
cludes efficient implementations of the main lattice reduction algorithms. In low
dimension, one can also play with GP/PARI [BBB+].

In this section, we discuss what can be expected in practice regarding the solv-
ability of lattice problems: more information can be found in [GN08b]. We stress
that there is unfortunately no easy rule-of-thumb to predict what one can do or can-
not do in practice. In low dimension, say ≤ 60, the most important lattice problems
become easy: for instance, exact SVP and CVP can be quickly solved using existing
tools. The main reason is that lattice reduction algorithms behave better than their
worst-case bounds: see for instance [NS06] for the case of LLL, and [GN08b] for
the case of BKZ. However, as soon as the lattice dimension becomes very high, it
is difficult to predict experimental results in advance. Several factors seem to influ-
ence the result: the lattice dimension, the input basis, the structure of the lattice,
and in the case of CVP, the distance of the target vector to the lattice. What is
always true is that one can quickly approximate SVP and CVP up to exponential
factors with an exponentiation base very close to 1 (see [GN08b] for concrete val-
ues of the exponentiation bases), but in high dimension, such exponential factors
may not be enough for cryptanalytic purposes, depending on the application. If
better approximation factors are required, one should perform experiments to see
if existing algorithms are sufficient. If the lattice and the input basis are not ex-
ceptional, there is no reason to believe that exact SVP can be solved in very high
dimension (say ≥ 300), although one can always give it a try. Furthermore, if the
target vector is not unusually close to the lattice, there is also no reason to believe
that exact CVP could be solved in very high dimension (say ≥ 300).

One example of unusual lattice structure is when one knows the existence of
a non-zero lattice vector much smaller than Hermite’s bound: one should compare
the norm of that lattice vector with

√
d vol(L)1/d. In this case, one is advised

to try existing algorithms in practice, since there is hope: for instance, [Ngu99]
reported successes for such SVP instances (and CVP instances for which the target
vector is unusually close to the lattice, i.e. when the distance is much smaller than√
d vol(L)1/d) in very high dimension; and the experiments of [GN08b] suggest

that SVP can be solved for lattices L such that λ2(L)/λ1(L) is a not too small
fraction of 1.012d.

7. Lattice Attacks

In this section, we survey the main lattice attacks:

• Section 7.1 presents natural attacks which use lattices of low dimension.
• Section 7.2 presents natural attacks which use lattices of high dimension.
• Section 7.3 presents attacks based on unusually small roots of polynomial

equations (or congruences): finding such roots is done using lattices of
moderate dimension.

34 PHONG Q. NGUYEN

7.1. Low-Dimensional Attacks. The attacks we will present in this section
are fairly representative of attacks based on low-dimensional lattices. Here, the
underlying problem which will be tackled by the use of lattices is as follows: assume
that we have a linear congruence of the form

n∑
i=1

aixi ≡ b (mod M),(7.1)

where only the xi’s are unknown integers, whereas the integer ai ∈ Z, the integer
b ∈ Z and the modulus M are known. Obviously, if there is no constraint on the
size of the xi’s, it is easy to find a solution (x1, . . . , xn) ∈ Zn to (7.1), so we are
interested in solutions satisfying special properties, say the size of the xi’s is small.
When n is small (say, less than 10), the following holds:

• Lattice reduction can efficiently find a solution (x1, . . . , xn) ∈ Zn such
that xi = O(M1/n). Note that this is trivial if n = 1. If b ≡ 0 (mod M),
the problem can be reduced to finding a very short vector in a lattice. If
b 6≡ 0 (mod M), the problem can be reduced to finding a very close lattice
vector.

• If there is an exceptional solution (x1, . . . , xn) ∈ Zn such that
∏n
i=1 xi is

much smaller than M , then it can probably be recovered in practice, and
perhaps also in theory. More precisely, if b ≡ 0 (mod M), it means that
there exists an exceptionally short vector in a certain lattice. And if b 6≡ 0
(mod M), it means that there exists a vector in a certain lattice which is
unusually close to a certain target vector.

Such results have been applied many times in cryptanalysis.
7.1.1. RSA with small secret exponent. Consider the usual RSA key generation:
• The public modulus is N = pq where p and q are large primes of about

the same bit-length, that of N1/2.
• The pair (e, d) of public and secret exponents satisfy the congruence (2.1),

and we have 0 ≤ e, d ≤ N .
Wiener [Wie90] showed that if the secret exponent d is such that 0 ≤ d ≤ N1/4,
then one can recover p and q in polynomial time from N and e. Wiener’s attack
was historically presented using continued fractions. Here, we will present a lattice
version of this attack, based on a two-dimensional shortest vector problem. Note
that this lattice version will only be heuristic, while Wiener’s attack is provable:
however, in practice, both work as well. Furthermore, this lattice attack is fairly
representative of the numerous heuristic cryptanalyses based on low-dimensional
lattices.

Because p and q are balanced, we have:

φ(N) = N +O(
√
N).

The congruence (2.1) implies the existence of some k = O(d) such that e · d =
1 + k(N +O(

√
N)), thus:

` = e · d− kN = O(d
√
N).

Now consider the 2-rank lattice L spanned by the rows of:(
e
√
N

N 0

)

PUBLIC-KEY CRYPTANALYSIS 35

Then L contains t = d × first row − k × second row = (`, d
√
N), whose norm is

≈ d
√
N , while vol(L)1/2 = N3/4. Thus, t is heuristically expected to be the shortest

vector of L if d
√
N < N3/4, that is, d ≤ N1/4. Note however that we do not claim

to have proved that t is the shortest vector: it is only a very reasonable guess. By
solving SVP in the 2-rank lattice L, we can hope to find t, and therefore the secret
exponent d.

Let us a give a baby example for concreteness. Assume that Alice had selected
the primes p = 6011673201679823947 and q = 6987193563793194751, so that her
RSA modulus is:

N = 42004724302405294297751453898364502197.

The bit-length of N is 125, so let us assume that Alice selected a 30-bit prime at
random as her secret exponent, such as d = 814510573, so that Wiener’s bound
d < N1/4 is satisfied. Then Alice’s public exponent is:

e = 17924546723775007116522646995236610637.

From the public key (e,N), the attacker computes
√
N ≈ 6481105176002414967,

and derives the following 2× 2 integer matrix:(
17924546723775007116522646995236610637 6481105176002414967
42004724302405294297751453898364502197 0

)
.

After running Lagrange’s algorithm, the attacker obtains the following reduced
basis:(

4518062787607145156653412229 −5278928690578992864154946091
28630395383776734081193510984 26803350500352508931781506895

)
.

Notice that the first row vector of the reduced basis is substantially shorter than
the second row vector, which proves that the lattice is not random. From the first
row vector, the attacker guesses that Alice’s secret exponent is:

d = 5278928690578992864154946091/6481105176002414967 = 814510573,

which is correct!
7.1.2. RSA signatures with constant-based padding. We saw in Section 4.1.1 an

adaptive chosen-message universal forgery on Textbook-RSA, thanks to the multi-
plicativity of the RSA permutation. This forgery shows that one should preprocess
the message before signing it, and check the preprocessing when verifying the signa-
ture. One early candidate of preprocessing is constant-based padding, which means
that we pad the messages by a fixed (public) series of bits before signing, and check
that redundancy when verifying a signature. In other words:

• There is a constant P defining the padding.
• A message m to sign is assumed to be small (say, |m| ≤ M where M is

much smaller than N), and its signature is:

s = (P +m)d (mod N).

• A signature s of a message m is checked using the congruence:

se ≡ P +m (mod N).

One further checks that m is sufficiently small, that is, |m| ≤M .

36 PHONG Q. NGUYEN

The smaller M is, the harder it should be for an attacker to forge signatures.
Assume that we have three messages m1, m2 and m3. Each mi is signed as:

si = (P +mi)d (mod N).

Then s1 ≡ s2s3 (mod N) if and only if (P+m1) ≡ (P+m2)(P+m3) (mod N). We
claim that given m3, we can find suitable m1 and m2 less than roughly

√
N using

lattice reduction, namely approximating the closest vector problem in dimension
two. This leads to a chosen-message universal forgery, provided that the message
size is at least half that of N .

We want to solve (P + m1) ≡ (P + m2)(P + m3) (mod N), which is of the
form m1 − m2α ≡ β (mod N). Consider the 2-rank lattice L of all (x, y) ∈ Z2

such that x − yα ≡ 0 (mod N). Notice that vol(L) = N . We can hope to find
a lattice vector u = (u1, u2) whose distance to t = (β, 0) is ≈ vol(L)1/2 ≈ N1/2.
Then m1 = β−u1 and m2 = −u2 are both O(N1/2). And m1−m2α ≡ β (mod N)
which leads to a heuristic forgery which works very well in practice. Hence, we have
obtained a chosen-message universal forgery up to the bound M ≈ N1/2. Interest-
ingly, the bound N1/2 for the message bound M has been improved to N1/3 using
four messages by Brier et al. [BCCN01] using different lattice-based techniques:
Lenstra and Shparlinski [LS02] improved the existential forgery of [BCCN01] into
a universal forgery.

Again, let us give a baby example for concreteness. We take the same RSA
modulus N as the example of Section 7.1.1. The constant P is chosen as the first
decimal digits of π multiplied by a suitable power of 10:

P = 31415926535897932300000000000000000000.

We would like to sign the message m3 = 2718281828459045235. This implies that:

β = P (P +m3)− P ≡ 28532925287943337534233793526174219074 (mod N),

and

α = P +m3 ≡ 31415926535897932302718281828459045235 (mod N).

So we consider the lattice L of all (x, y) ∈ Z2 such that x− yα ≡ 0 (mod N). The
following 2× 2 matrix is clearly a basis of L:(

α 1
N 0

)
=
(

31415926535897932302718281828459045235 1
42004724302405294297751453898364502197 0

)
.

After running the LLL algorithm, we obtain the following reduced basis:(
2840910670399556715 3383974095730158874
−8143041377019128593 5086004066464213681

)
.

After running Babai’s nearest plane algorithm [Bab86] on the target vector t =
(β, 0), we obtain the following lattice vector

u =
(
28532925287943337532025597115229231563 1667092550642276495

)
,

which leads to m1 = 2208196410944987511 and m2 = −1667092550642276495. It
can be checked that:

(P +m1) ≡ (P +m2)(P +m3) (mod N).

Note that both |m1| and |m2| are less than 261, whereas the bit-length of m3 is 62.
By comparison, the bit-length of N is 125, so m1 and m2 are indeed close to

√
N .

PUBLIC-KEY CRYPTANALYSIS 37

7.1.3. Elgamal signature in GnuPG. GnuPG [GPG] is a widely deployed soft-
ware to secure emails: it is present in most distributions of the Linux operating
system, and is more or less an open source version of the famous PGP software.
Prior to the publication of [Ngu04], GnuPG included an implementation of the
Elgamal signature, which turned out to be extremely insecure. Namely, Nguyen
showed in [Ngu04] that after one signature had been released, an attacker could
recover the signer’s secret key in less than a second on a personal computer. The
attack is based on low-dimensional lattices.

First, let us describe the Elgamal signature scheme as implemented in GnuPG,
which slightly differs from Textbook Elgamal. The parameters are a large prime p
such that (p− 1)/2 has large factors, and a generator g of Z∗p. The secret key is a
small exponent x less than p3/8, and the public key is y = gx (mod p). Messages
are preprocessed before being signed, using a usual padding which we omit here.
To sign a padded message m ∈ Zp:

• Select a small “random” number k coprime with p − 1, which turns out
to be less than p3/8.

• The signature is (a, b) where a = gk mod p and b = (m−ax)k−1 (mod p−
1).

The attack [Ngu04] works as follows. Assume that a signature (a, b) of a
message m is known. We focus on the congruence b ≡ (m − ax)k−1 (mod p − 1)
satisfied by the signature (a, b), that is:

bk + ax ≡ m (mod p− 1),(7.2)

where both k and x are ≤ p3/8. Consider the 2-rank lattice L of all (α, β) ∈ Z2

such that:
bα+ aβ ≡ 0 (mod p− 1).

The volume of L is vol(L) = (p−1)/ gcd(a, b, p−1) ≈ p because a and b are unlikely
to have a large gcd. We can easily find integers u1, u2 ∈ Z such that

bu1 + au2 ≡ m (mod p− 1).

Then the lattice vector t = (u1 − k, u2 − x) ∈ L is unusually close to u = (u1, u2):
the distance between t and u is less than p3/8, which is itself much less than
vol(L)1/2 ≈ p1/2. If t is indeed the closest lattice vector, then the secret key x is
recovered.

The attack is very efficient in practice, and can be made provable if a and b
are assumed to be uniformly distributed: for more details, see [Ngu04]. Namely,
if a and b are assumed to be uniformly distributed, one can prove that L has no
unusually short vectors, which implies that when a lattice vector is unusually close
to a target vector, any other lattice vector must be sustantially farther away from
that target vector.

7.2. High-Dimensional Attacks. As an illustration of attacks based on
high-dimensional lattices, we present an important attack which was historically
not presented in terms of lattices, but which can interestingly be viewed in terms
of lattices in a simple manner. The attack is Bleichenbacher’s celebrated chosen-
ciphertext attack [Ble98] on RSA-PKCS#1 encryption version 1.5, which arguably
motivated the use of chosen-ciphertext security in cryptography standards. Ble-
ichenbacher did not use lattices because he wanted to optimize the attack, but the
lattice version of the attack is perhaps easier to understand.

38 PHONG Q. NGUYEN

In Section 4.2.1, we saw elementary attacks on Textbook RSA encryption which
show that messages must be preprocessed prior to raw RSA encryption (raising to
the power e modulo N). A natural question arises: which preprocessing should
one use? In the nineties, a very popular solution was to use the PKCS#1 v1.5
standard [Lab] advocated by the RSA company: for instance, the standard was
used in SSL v3.0, which is widely deployed in Internet browsers. The standard
specified how to transform a message M , prior to raw RSA encryption (that is,
exponentiation to the power e):

• The message m to encrypt is assumed to be much smaller than the RSA
modulus N : it will be at least a few bytes less than N .

• This value is then padded as described in PKCS#1 v1.5 block type 02
(see Figure 1): a zero byte is added to the left, as well as as many non-
zero random bytes as necessary in such a way that the first two bytes of
the final value are 00 02 followed by as many nonzero random bytes as
necessary to match the size of the modulus. In other words, the whole
value m described in Figure 1 must fit the size of the modulus N .

00 02 Non-zero random bytes 00 Message M

Figure 1. PKCS#1 v1.5 encryption padding, block type 02.

When decrypting an RSA ciphertext encrypted by the PKCS#1 v1.5 block type 02
standard, one recovers a value m of the form given in Figure 1 and must proceed
as follows to recover the message M :

• One first checks that the first two most significant bytes are 00 and 02.
• Next, one removes all the non-zero bytes until one finds a 00 byte.
• The rest must be the message M .

But what if the decryption process failed? For instance, what if the first two most
significant bytes of cd (mod N) are not 00 and 02? Such a situation may arise since
anybody can submit ciphertexts, and therefore, ciphertexts are not necessarily valid
ciphertexts. Bleichenbacher [Ble98] noticed that in several implementations of SSL
v3.0, the person who decrypts – in real life, a server which receives many messages
encrypted with its RSA public key – actually returns an error message when there is
a problem during the decryption process. In other words, in this case, an adversary
has access to a 0002-oracle: given any c ∈ ZN , the 0002-oracle answers whether or
not the first two most significant bytes of cd (mod N) are 00 and 02. In [Ble98],
Bleichenbacher showed how such an oracle enables an adversary to decrypt any RSA
ciphertext c = me (mod N), including those m of the form described in Figure 1.
The attack presented in [Ble98] is rather technical, so as to minimize the number
of queries to the oracle. In these notes, we will present an alternative lattice-based
attack, which is simpler to present, but is not intended to be optimal: the main
ideas are nevertheless identical.

Assume that there is an RSA public key (N, e), and that a message m ∈
{0, . . . , N − 1} has been encrypted as c = me (mod N): the ciphertext c is public,
but the message m is of course secret. Assume also that one has access to a 0002-
oracle O: given any c′ ∈ ZN , the oracle O answers whether or not the first two most
significant bytes of c′d (mod N) are 00 and 02. We will see how one can recover m
using a reasonable number of oracle queries.

PUBLIC-KEY CRYPTANALYSIS 39

First of all, we note that if we select a c ∈ ZN uniformly at random, the
probability that the oracle O answers yes is very close to 1/2562 = 1/65536: here,
we only say “very close” because N is not exactly a power of two. This suggests to
do the following many times:

• Select uniformly at random r ∈ ZN .
• Compute c′ = rec (mod N) and send c′ to the oracle O.
• If the answer is yes (which should happen with probability 1/65536), store
r: it means that rm (mod N) starts with 00 02, because c′ ≡ (rm)e

(mod N) by multiplicativity of the RSA permutation. Otherwise, start
again.

We now know many random integers r1, . . . , rn such that each rim mod N starts
with 00 02, and we would like to recover the message m. If we knew one of the
rim mod N exactly, it would be easy to recover m by dividing by ri, whose value
is known. But here, we only know an approximation of each of the rim mod N :
more precisely, if we let a = 2`−15 where ` is the bit-length of N , then a represents
the number 0002 shifted to the left 0 ≤ (rim mod N) − a < N/216; we can even
have a better approximation if we use a′ = a+N/217, which implies that:

|(rim mod N)− a′| ≤ N/217.

This kind of problem has been dubbed hidden number problem (HNP) by Boneh
and Venkatesan [BV96]: here, m is the “hidden number”. Boneh and Venkate-
san [BV96] studied the HNP to obtain bit-security results on the Diffie-Hellman
key exchange in prime fields. Later, the HNP and variants were applied to crypt-
analysis (see [NS02, NS03]), namely to attack classical signature schemes based
on the discrete logarithm problem when partial information on the one-time keys
used during signature generation is leaked.

We will now solve the HNP by viewing it as a lattice closest vector problem.
Consider the (n+ 1)-rank lattice L spanned by the following rows:

1/65536 r1 r2 . . . rn
0 N 0 . . . 0
... 0 N

. . .
...

...
...

. 0
0 0 . . . 0 N

By multiplying the first row by m, and subtracting appropriate multiples of the
other rows, one sees that the lattice L contains the vector

m = (m/65536,mr1 mod N, . . . ,mrn mod N).

If we could recover the vector m ∈ L, we would derive the message m. Since
each mri mod N starts with the 00 02 bytes, we have seen that if ` denotes the
bit-length of N then the constant a′ = 2`−15 +N/217 satisfies:

|(rim mod N)− a′| ≤ N/217.

This suggests to define the target vector t = (N/217, a′, a′, . . . , a′). We note that
the lattice vector m is very close to t. Indeed, each coordinate of m− t is less than
N/217 in absolute value. Hence:

‖m− t‖ ≤ N
√
n+ 1/217.

40 PHONG Q. NGUYEN

Is that distance exceptional? Since vol(L) = Nn/65536 and L has rank n + 1, a
typical lattice distance should be:

√
n+ 1(Nn/65536)1/(n+1),

which is roughly
√
n+ 1Nn/(n+1). Thus, one would expect m ∈ L to be heuristically

the closest vector to t if:

N/217 � Nn/(n+1).(7.3)

If m ∈ L was indeed the closest lattice vector, any CVP oracle would disclose m.
However, in general, the closest vector problem can only be solved in practice when
the dimension is not too big. So we shouldn’t take too large values of n.

We performed experiments on 512-bit and 1024-bit modulus N using the NTL
library [Sho]. To try to solve the closest vector problem, we applied Babai’s near-
est plane algorithm [Bab86] on an LLL-reduced basis and BKZ-reduced bases of
blocksize 10 and 20. If N is a 512-bit number, then (7.3) is satisfied as soon as
n + 1 � 30. In practice, we were able to recover m within a few seconds when n
is roughly greater than 40. This means that the total number of oracle queries is
≈ 40×65536 = 2, 621, 440. If N is a 1024-bit number, then (7.3) is satisfied as soon
as n + 1 � 60. In practice, we were able to recover m within a few minutes when
n is roughly greater than 80. This means that the total number of oracle queries is
≈ 80× 65536 = 5, 242, 880. Interestingly, the numbers of oracle queries required by
the lattice attack are not that much bigger than in the initial (non-lattice) method
of Bleichenbacher [Ble98].

7.3. Polynomial Attacks. We now survey an important application of lat-
tice reduction found in 1996 by Coppersmith [Cop97, Cop01], and its develop-
ments. These results illustrate the power of linearization combined with lattice
reduction.

7.3.1. Univariate modular equations. Consider Textbook-RSA encryption with
a small public exponent e, such as e = 3. Recall that a message m ∈ ZN is
encrypted as:

c = me mod N.

We saw in Section 4.2.1 the short-message attack: if 0 ≤ m ≤ N1/e, then the short
message m can be recovered from c. Can this short-message attack be extended?

For instance, if the message m is the shift of a short message (less than N1/e),
then the same attack applies, after division (modulo N) by a suitable power of
two. More generally, what if only a few consecutive bits of the message m were
unknown? Such messages are called stereotyped: many parts of the message are
known. This is the case of emails, which include known fields such as the name of
the sender, the name of the recipient, etc. Formally speaking, we assume that the
secret message m ∈ {0, . . . , N − 1} is of the form:

m = m0 + 2ks,

where m0, s, k are all non-negative integers, but only s is secret: the integers m0

and k are known. This corresponds to the situation where m = ‘known bits’ ‖
‘unknown bits’ ‖‘known bits’, where the ‖ symbol denotes concatenation. Then the
ciphertext c satisfies:

c = (m0 + 2ks)e (mod N),

PUBLIC-KEY CRYPTANALYSIS 41

which, after division by a suitable power of two, can be rewritten as

P (s) ≡ 0 (mod N),

where P (x) ∈ Z[x] is a monic polynomial of degree e whose coefficients can all be
derived from c, k,m0 and N .

At first sight, this is just an instance of the general problem of solving univariate
polynomial equations modulo some integer N of unknown factorization, which is
considered to be hard. Indeed, for some polynomials, the problem is equivalent to
the knowledge of the factorization of N . And the particular case of extracting e-th
roots modulo N is the problem of decrypting ciphertexts in the RSA cryptosystem,
for an eavesdropper. Surprisingly, Coppersmith [Cop97] showed using the LLL
algorithm that the special problem of finding small roots was easy:

Theorem 7.1 (Coppersmith). Let P (x) ∈ Z[x] be a monic polynomial of degree
δ in one variable, and let N be an integer of unknown factorization. Then one can
find in time polynomial in (logN, δ) all integers x0 such that P (x0) ≡ 0 (mod N)
and |x0| ≤ N1/δ.

Before proving Theorem 7.1, let us make a few remarks. Related (but weaker)
results appeared in the eighties [H̊as88, VGT88]. More precisely, H̊astad [H̊as88]
presented his result in terms of a system of low-degree modular equations, but he
actually studies the same problem, and his approach proves a weaker version of
Theorem 7.1 with the smaller bound N2/(δ(δ+1)) instead of N1/δ. Incidentally,
Theorem 7.1 implies that the number of roots less than N1/δ is polynomial, which
was also proved in [KS94] (using elementary techniques).

Theorem 7.1 is easy to prove if P (x) is of the form P (x) = xδ + c: this is
what we used in the short-message attack against Textbook-RSA. Can we hope to
improve the bound N1/δ to say C × N1/δ? It is not difficult to see that we can
do so if we multiply the polynomial running-time of Theorem 7.1 by C, but the
new running-time is then exponential in logC: namely, one splits the roots interval
of length 2C × N1/δ into roughly C intervals of length 2N1/δ. Unfortunately, if
one would like to keep a polynomial running-time, one cannot hope to improve
the (natural) bound N1/δ for all polynomials and all moduli N . Indeed, for the
polynomial P (x) = xδ and N = pδ where p is prime, the roots of P mod N are
the multiples of p. Thus, one cannot hope to find all the small roots (slightly)
beyond N1/δ = p, because there are simply too many of them. This suggests that
even an SVP-oracle (instead of an approximate-SVP algorithm like LLL) should
not improve Theorem 7.1 in general, as evidenced by the proof of Theorem 7.1: the
approximation factor provided by LLL does not play a significant role, because the
lattices considered by the proof have a huge volume (compared to their dimension).
It was noticed in [BN00] that if one only looks for the smallest root modN , an SVP-
oracle can improve the bound N1/δ for very particular moduli (namely, squarefree
N of known factorization, without too small factors). Note that in such cases,
finding modular roots can still be difficult, because the number of modular roots
can be exponential in the number of prime factors of N . Coppersmith discusses
potential improvements in [Cop01]. For instance, the condition P (X) being monic
can replaced by the gcd of the coefficients of P (X) and N being equal to 1.

Theorem 7.1 has many applications. The historical application was to at-
tack RSA encryption when a very small public exponent is used (see [Bon99]
for a survey). Later applications include Chinese remaindering in the presence

42 PHONG Q. NGUYEN

of noise [BN00], and surprisingly, a few security proofs of factoring-based cryp-
tographic schemes (see [Sho01, Bon01]). We already saw the cryptanalytic ap-
plication to stereotyped messages, which generalized the short-message attack: if
there are less than (logN)/e unknown consecutive bits in the message m, then the
whole message m can be recovered in polynomial time from its ciphertext c = me

(mod N) and the public key (N, e). A less direct application is the random pad:
to prevent elementary attacks on RSA, rather than applying the PKCS#1 v1.5
padding, one could simply append random bytes to a message m, before raising it
to the power e modulo N . More precisely the ciphertext of a message m � N is
c = (m‖r)e (mod N), where r is a sequence of bits chosen uniformly at random for
each encryption. If the same message m� N is encrypted twice, an adversary may
collect the ciphertexts c1 = (m‖r1)e (mod N) and c2 = (m‖r2)e (mod N). Cop-
persmith [Cop97] noticed that by computing the resultant of those two polynomials
in (m, r1, r2), one obtains a univariate polynomial congruence modulo N of degree
e2, satisfied by r1 − r2. Thus, if the random sequence r has less than log(N)/(e2)
bits, then one can recover r1 − r2, which eventually leads to the recovery of the
message m using other techniques (see [CFPR96]).

We now sketch a proof of Theorem 7.1, in the spirit of Howgrave-Graham [HG97],
who simplified Coppersmith’s original proof by working in the dual lattice of the
lattice originally considered by Coppersmith. More details can be found in the sur-
vey [Cop01]. Coppersmith’s method reduces the problem of finding small modular
roots to the (easy) problem of solving polynomial equations over Z. More pre-
cisely, it applies lattice reduction to find an integral polynomial equation satisfied
by all small modular roots of P . The intuition is to linearize all the equations of
the form xiP (x)j ≡ 0 (mod N j) for appropriate integral values of i and j. Such
equations are satisfied by any solution of P (x) ≡ 0 (mod N). Small solutions x0

will give rise to unusually short solutions to the resulting linear system. To trans-
form modular equations into integer equations, we will use the elementary fact that
any sufficiently small integer must be zero. More precisely, we will use the follow-
ing elementary lemma1, with the notation ‖r(x)‖ =

√∑
a2
i for any polynomial

r(x) =
∑
aix

i ∈ Q[x]:

Lemma 7.2. Let r(x) ∈ Q[x] be a polynomial of degree < n and let X be a
positive integer. Suppose ‖r(xX)‖ < 1/

√
n. If r(x0) ∈ Z with |x0| ≤ X, then

r(x0) = 0 holds over the integers.

Proof. If |x0| ≤ X, then the Cauchy-Schwarz inequality ensures that:

r(x0)2 =

(
n−1∑
i=0

rix
i
0

)2

=

(
n−1∑
i=0

riX
i(x0/X)i

)2

≤

(
n−1∑
i=0

(riXi)2
)
×

(
n−1∑
i=0

(x0/X)2i
)

≤ ‖r(xX)‖2 × n

Thus, if we further have ‖r(xX)‖ < 1/
√
n, then |r(x0)| < 1. Hence, if r(x0) ∈ Z, it

must be zero. �

1A similar lemma is used in [H̊as88]. Note also the resemblance with [LLL82, Prop. 2.7].

PUBLIC-KEY CRYPTANALYSIS 43

We would like to apply Lemma 7.2 to a suitable polynomial r(x) ∈ Q[x], that
is, a polynomial satisfying:

• Property 1: ‖r(xX)‖ < 1/
√

1 + deg r. In other words, the vector corre-
sponding to the polynomial r(xX) must be short.

• Property 2: r(x0) ∈ Z whenever P (x0) ≡ 0 (mod N) and x0 ∈ Z.
If we find such a polynomial r(x) ∈ Q[x], then by solving the equation r(x0) = 0
over Z, we will find in polynomial time all the integers x0 ∈ Z such that P (x0) ≡ 0
(mod N) and |x0| ≤ X. And if X is sufficiently close to N1/δ, say N1/δ = O(X),
then Theorem 7.1 would follow.

But how can we find such a polynomial r(x) ∈ Q[x]? An obvious candidate
is q(x) = P (x)/N ∈ Q[x], which clearly satisfies Property 2. But it is unclear
whether q(x) would satisfy Property 1. Other natural choices would be all the
polynomials of the form qu,v(x) = xu(P (x)/N)v ∈ Q[x] where u and v are non-
negative integers. Such polynomials satisfy Property 2, just like q(x), but they
are also unlikely to satisfy Property 1. There are however many other candidates:
notice that any integral linear combination of the qu,v(x)’s satisfies Property 2,
and maybe one such combination could satisfy Property 1. This suggests to find
r(x) ∈ Q[x] satisfying Lemma 7.2 among all integral linear combinations of the
qu,v(x)’s: this is reminiscent of finding short vectors in a lattice.

Since there is an infinite number of qu,v(x)’s, it might be useful to restrict to
polynomials of bounded degree, where the bound is a parameter which we will
select in an appropriate manner. More precisely, let us consider a non-negative
integer h, as well as the n = (h + 1)δ polynomials qu,v(x) = xu(P (x)/N)v ∈ Q[x],
where 0 ≤ u ≤ δ − 1 and 0 ≤ v ≤ h. Now, we would like to find a short vector
in the lattice corresponding to the qu,v(xX)’s. More precisely, define the n × n
matrix M whose i-th row consists of the coefficients of qu,v(xX), starting by the
low-degree terms, where v = b(i− 1)/δc and u = (i− 1)− δv. Notice that the i-th
row represents a polynomial qu,v(xX) of degree i − 1, whose leading coefficient is
Xu(Xδ/N)v = Xi−1/Nv. Hence, the matrix M is lower triangular, and a simple
calculation leads to:

det(M) = Xn(n−1)/2N−nh/2.

Let us now apply an LLL-reduction to the full-dimensional lattice spanned by the
rows of M . The first vector of the reduced basis corresponds to a non-zero polyno-
mial of the form r(xX), and has Euclidean norm ‖r(xX)‖. The theoretical bounds
of the LLL algorithm ensure that:

‖r(xX)‖ ≤ 2(n−1)/4 det(M)1/n = 2(n−1)/4X(n−1)/2N−h/2.

Recall that we need ‖r(xX)‖ ≤ 1/
√
n to apply Lemma 7.2. Hence, for a given

choice of h, the method is guaranteed to find modular roots x0 up to the bound X
if the bound satisfies:

X ≤ 1√
2
Nh/(n−1)n−1/(n−1).

The limit of the upper bound, when h grows to∞, is 1√
2
N1/δ. Thus, we would like

to select a sufficiently large h so that the bound X satisfies N1/δ = O(X), but on
the other hand, we need to keep the running time of the algorithm polynomial by
restricting to sufficiently small values of h, with respect to logN and δ. Fortunately,
both requirements are compatible: Theorem 7.1 follows from an appropriate choice
of h as a function of logN and δ.

44 PHONG Q. NGUYEN

The algorithm of Theorem 7.1 is practical: see [CNS99, HG98] for experi-
mental results. In practice, the optimal choice of parameters depends very much on
the implementation of the lattice reduction algorithm: rather than fix the bound X,
and choose h and n accordingly, one should select the lattice rank n, and compute
the theoretical bound X which is guaranteed. In order to find the value of n which
offers the best trade-off between the running time and the size of the bound X,
one should perform a series of experiments with existing implementations of lattice
reduction algorithms.

7.3.2. The gcd generalization. Interestingly, Theorem 7.1 can be viewed as a
particular case of the following gcd result:

Theorem 7.3. Let P (x) ∈ Z[x] be a monic polynomial of degree δ in one
variable, and let N be an integer of unknown factorization. Let α ∈ Q such that
0 ≤ α ≤ 1. Then one can find in time polynomial in (logN, δ) and the bit-size of
α all integers x0 such that gcd(P (x0), N) ≥ Nα and |x0| ≤ Nα2/δ.

Strictly speaking, Theorem 7.3 only appeared explicitly in [May03, May04]
where it was attributed to Coppersmith. However, it was earlier presented in sev-
eral workshop/summer school talks (such as SAC 2001), and could be considered as
a folklore theorem: the result was implicit in [BDHG99, Bon00]; the particular
case P (x) of degree 1 was stated and proved in [HG01], and the proof of [HG01]
also works for the general case. Blömer and May [BM05, Cor. 14] proved a
slightly different result where there are two modifications in the statement of The-
orem 7.3: one replaces the assumption P (x) monic by the weaker assumption that
the gcd of the coefficients of P (x) is coprime with N , and one replaces the property
gcd(P (x0), N) ≥ Nα by the stronger property: P (x0) ≥ Nα and P (x0) divides N .

Note that Theorem 7.1 is simply the case α = 1 in Theorem 7.3. By choos-
ing different values of α, one obtains interesting applications [BDHG99, Bon00,
HG01, CM04]. To give a flavour of the applications, let us present two examples:

Factoring with a hint: Consider an RSA modulus N = pq where p and
q have the same size. Assume that we know half of the most significant
bits of p: for instance, one could imagine that half of the bits are given
by the identity of the user, so that it would not be necessary to store
them. Thus, we know an integer p0 such that p = p0 + ε where ε is
an unknown integer such that 0 ≤ ε / N1/4. Consider the polynomial
P (x) = p0 + x. Then gcd(P (ε), N) = p ' N1/2 with ε ≤ N1/4. By
applying Theorem 7.3 with α = 1/2, we obtain ε and therefore factor N in
polynomial time. Such a result was first proved by Coppersmith [Cop97],
but not using Theorem 7.3. Rather, Coppersmith [Cop97] applied an
analogue of Theorem 7.1 to bivariate equations over the integers, which
we discuss in Section 7.3.4. We assumed that the (half) unknown bits of
p were the least significant bits of p: by tweaking the polynomial P (x),
one can apply Theorem 7.3 to easily prove the more general result where
the unknown bits of p are located at an arbitrary position (such as most
significant bits, or middle bits), as while as they are all consecutive (not
split among several blocks). More precisely, we may write p = p0 + ε2k

where p0 and k are known, which leads us to consider P (x) = cp0 + x
where c is chosen as the inverse of 2k modulo N .

PUBLIC-KEY CRYPTANALYSIS 45

Factoring of N = prq: Assume that N = prq where r is large, and p and q
need not be prime. Assume that we know an approximation p0 of p : p =
p0+ε. Consider the polynomial P (x) = (p0+x)r. Then gcd(P (ε), N) = pr

is very large. By a careful application of Theorem 7.3, Boneh, Durfee and
Howgrave-Graham [BDHG99] proved that all numbers N = prq where
r > log p and log q = O(log p) can be factored in time polynomial in logN .
In such a case, a sufficiently good approximation p0 of p can be found in
polynomial time by brute force: because r is large, we do not need a very
good approximation.

We will not give a complete proof of Theorem 7.3: see [HG01, May03] for
more details. Rather, we will give the main argument, compared to Theorem 7.1.
In Theorem 7.1, we used the fact that every sufficiently small integer was zero, in
order to transform a polynomial congruence modulo N into a polynomial equation
over Z. Theorem 7.3 relies on the fact that every sufficiently small rational with
bounded denominator must be zero. More precisely, the proof considers again an
integral linear combination r(x) ∈ Q[x] of the polynomials qu,v(x) = xu(P (x)/N)v

with the constraint 0 ≤ v ≤ h. If the gcd of P (x0) with N is ≥ Nα, then Q(x0) is
not necessarily an integer like in the proof of Theorem 7.1: However, the rational
number Q(x0) then has denominator ≤ Nh(1−α). Thus, this rational number is
therefore zero if it is < 1/Nh(1−α). This still reduces the problem to finding short
lattice vectors, but the proof is more technical: namely, because the bound on the
short vector depends here on the parameter h, we need to find the right balance
between all the parameters used by the algorithm.

7.3.3. Multivariate modular equations. Interestingly, Coppersmith [Cop97] no-
ticed that Theorem 7.1 can be heuristically extended to multivariate polynomial
modular equations. Assume for instance that one would like to find all small roots
of P (x, y) ≡ 0 (mod N), where P (x, y) has total degree δ and has at least one monic
monomial xαyδ−α of maximal total degree. If one could obtain two algebraically in-
dependent integral polynomial equations satisfied by all sufficiently small modular
roots (x, y), then one could compute (as resultant) a univariate integral polynomial
equation satisfied by x, and hence find efficiently all small (x, y). To find such
equations, one can use an analogue of Lemma 7.2 to bivariate polynomials, with
the (natural) notation ‖r(x, y)‖ =

√∑
i,j a

2
i,j for r(x, y) =

∑
i,j ai,jx

iyj :

Lemma 7.4. Let r(x, y) ∈ Q[x, y] be a sum of at most w monomials. Assume
‖r(xX, yY)‖ < 1/

√
w for some X,Y ≥ 0. If r(x0, y0) ∈ Z with |x0| < X and

|y0| < Y , then r(x0, y0) = 0 holds over the integers.

By analogy, one chooses a parameter h and select r(x, y) as a linear combination
of the polynomials qu1,u2,v(x, y) = xu1yu2(P (x, y)/N)v, where u1 + u2 + δv ≤ hδ
and u1, u2, v ≥ 0 with u1 < α or u2 < δ − α. Such polynomials have total degree
less than hδ, and therefore are linear combinations of the n = (hδ + 1)(hδ + 2)/2
monic monomials of total degree ≤ δh. Due to the condition u1 < α or u2 <
δ−α, such polynomials are in bijective correspondence with the n monic monomials
(associate to qu1,u2,v(x, y) the monomial xu1+vαyu2+v(δ−α)). One can represent the
polynomials as n-dimensional vectors in such a way that the n×n matrix consisting
of the qu1,u2,v(xX, yY)’s (for some ordering) is lower triangular with coefficients
N−vXu1+vδyu2+v(δ−α) on the diagonal.

46 PHONG Q. NGUYEN

Now consider the first two vectors r1(xX, yY) and r2(xX, yY) of an LLL-
reduced basis of the lattice spanned by the rows of that matrix. Since the rational
qu1,u2,v(x0, y0) is actually an integer for any root (x0, y0) of P (x, y) modulo N , we
need ‖r1(xX, yY)‖ and ‖r2(xX, yY)‖ to be less than 1/

√
n to apply Lemma 7.4. A

(tedious) computation of the triangular matrix determinant enables to prove that
r1(x, y) and r2(x, y) satisfy that bound when XY < N1/δ−ε and h is sufficiently
large. Thus, one obtains two integer polynomial bivariate equations satisfied by all
small modular roots of P (x, y).

The problem is that, although such polynomial equations are linearly inde-
pendent as vectors, they might be algebraically dependent, making the method
heuristic. This heuristic assumption is unusual: many lattice-based attacks are
heuristic in the sense that they require traditional lattice reduction algorithms to
behave like SVP-oracles. An important open problem is to find sufficient conditions
to make Coppersmith’s method provable for bivariate (or multivariate) equations:
see [BJ07] for recent progress on this question. Note that the method cannot
work all the time. For instance, the polynomial x − y has clearly too many roots
over Z2 and hence too many roots modulo any N (see [Cop97] for more general
counterexamples).

Such a result may enable to prove several attacks which are for now, only heuris-
tic. Indeed, there are applications to the security of the RSA encryption scheme
when a very low public exponent or a low private exponent is used (see [Bon99]
for a survey), and related schemes such as the KMOV cryptosystem (see [Ble97]).
In particular, the experimental evidence of [BD99, Ble97, DN00] shows that the
method is very effective in practice for certain polynomials.

Let us make a few remarks. In the case of univariate polynomials, there was
basically no choice over the polynomials qu,v(x) = xu(P (x)/N)v used to generate
the appropriate univariate integer polynomial equation satisfied by all small mod-
ular roots. There is much more freedom with bivariate modular equations. Indeed,
in the description above, we selected the indices of the polynomials qu1,u2,v(x, y) in
such a way that they corresponded to all the monomials of total degree ≤ hδ, which
form a triangle in Z2 when a monomial xiyj is represented by the point (i, j). This
corresponds to the general case where a polynomial may have several monomials of
maximal total degree. However, depending on the shape of the polynomial P (x, y)
and the bounds X and Y , other regions of (u1, u2, v) might lead to better bounds.

Assume for instance P (x, y) is of the form xδxyδy plus a linear combination of
xiyj ’s where i ≤ δx, j ≤ δy and i + j < δx + δy. Intuitively, it is better to select
the (u1, u2, v)’s to cover the rectangle of sides hδx and hδy instead of the previous
triangle, by picking all qu1,u2,v(x, y) such that u1 + vδx ≤ hδx and u2 + vδy ≤ hδy,
with u1 < δx or u2 < δy. One can show that the polynomials r1(x, y) and r2(x, y)
obtained from the first two vectors of an LLL-reduced basis of the appropriate lattice
satisfy Lemma 7.4, provided that h is sufficiently large, and the bounds satisfy
XδxY δy ≤ N2/3−ε. Boneh and Durfee [BD99] applied similar and other tricks to a
polynomial of the form P (x, y) = xy+ax+ b. This allowed better bounds than the
generic bound, leading to improved attacks on RSA with low secret exponent (see
also [DN00] for an extension to the trivariate case, useful when the RSA primes
are unbalanced). More precisely, recall that the RSA exponents d and e are such
that e ·d ≡ 1 mod φ(N). Since φ(N) = (p− 1)(q− 1) = N + 1− p− q = N + 1− s,
where s = p+ q ≈ N1/2 there exists k such that e ·d+k(N + 1− s) = 1. We obtain

PUBLIC-KEY CRYPTANALYSIS 47

a bivariate polynomial congruence with unknowns k and s:

k(N + 1− s) ≡ 1 (mod e),

which is of the form P (x, y) = xy+ax+b as mentioned previously. Here, s ≈ N1/2 is
relatively small. If d is small, then so will be the unknown integer k. By optimizing
Coppersmith’s technique to this polynomial, Boneh and Durfee [BD99] showed that
one can heuristically factor the RSA modulus N = pq from the public key (N, e) if
d ≤ N1−1/

√
2 ≈ N0.292, which improved the bound N0.25 of Wiener [Wie90] (see

Section 7.1.1). The bound can be improved if p and q are unbalanced [DN00].
7.3.4. Multivariate integer equations. The general problem of solving multivari-

ate polynomial equations over Z is also hard, as integer factorization is a special
case. Coppersmith [Cop97] showed that a similar (albeit more technical) lattice-
based approach can be used to find small roots of bivariate polynomial equations
over Z:

Theorem 7.5 (Coppersmith). Let P (x, y) be a polynomial in two variables over
Z, of maximum degree δ in each variable separately, and assume the coefficients of
P are relatively prime as a set. Let X,Y be bounds on the desired solutions x0, y0.
Define P̂ (x, y) = P (Xx, Y y) and let D be the absolute value of the largest coefficient
of P̂ . If XY < D2/(3δ)2−14δ/3, then in time polynomial in (logD, δ), we can find
all integer pairs (x0, y0) such that P (x0, y0) = 0, |x0| < X and |y0| < Y .

Again, the method extends heuristically to more than two variables, and there
can be improved bounds depending on the shape2 of the polynomial (see [Cop97]).
Theorem 7.5 was introduced to factor in polynomial time an RSA–modulus N = pq
provided that half of the (either least or most significant) bits of either p or q are
known (see [Cop97, Bon00, BDF98]). This was sufficient to break an ID-based
RSA encryption scheme proposed by Vanstone and Zuccherato [VZ95]. Boneh et
al. [BDF98] provide another application, for recovering the RSA secret key when
a large fraction of the bits of the secret exponent is known. However, none of
the applications cited above happen to be “true” applications of Theorem 7.5: it
was later realized in [HG98, BDHG99] that those results could alternatively be
obtained from Theorem 7.3, which is the gcd generalization of Theorem 7.1.

The main idea of the proof of Theorem 7.5 is to find another bivariate integer
polynomial equation satisfied by the small roots. Surprisingly, it is possible to do
so using lattice reduction while making sure that this new equation is algebraically
independent from the first equation. Then, by computing a resultant, and solving
univariate polynomial equations over Z, one can deduce all the small roots.

The original proof by Coppersmith can be found in [Cop97]. Coron [Cor07]
found an alternative method inspired by Theorem 7.1. Blömer and May [BM05]
showed a general method to adapt the bounds of Theorem 7.5 depending on the
shape of the polynomial P (x, y). In particular, they showed that Theorem 7.1 can
actually follow from Theorem 7.5. Surprisingly, Theorem 7.3 does not seem to
follow from Theorem 7.5, though Blömer and May [BM05] are able to show that
a result close to Theorem 7.3 can be viewed as a corollary of Theorem 7.5.

2The coefficient 2/3 is natural from the remarks at the end of the previous section for the

bivariate modular case. If we had assumed P to have total degree δ, the bound would be XY <
D1/δ.

48 PHONG Q. NGUYEN

Acknowledgements

We would like to thank Steven Galbraith, Alexander May, Igor Shparlinski,
Damien Stehlé and Frederik Vercauteren for helpful discussions and comments on
drafts of these notes.

References

[Adl83] L. M. Adleman, On breaking generalized knapsack publick key cryptosystems, Proc.

of 15th STOC, ACM, 1983, pp. 402–412.
[Ajt98] M. Ajtai, The shortest vector problem in L2 is NP-hard for randomized reductions,

Proc. of 30th STOC, ACM, 1998, Available at [ECC] as TR97-047.

[Ajt02] M. Ajtai, Random lattices and a conjectured 0-1 law about their polynomial time
computable properties, Proc. of FOCS 2002, IEEE, 2002, pp. 13–39.

[Ajt06] M. Ajtai, Generating random lattices according to the invariant distribution, Draft

of March, 2006.
[AKS01] M. Ajtai, R. Kumar, and D. Sivakumar, A sieve algorithm for the shortest lattice

vector problem, Proc. 33rd STOC, ACM, 2001, pp. 601–610.

[Bab86] L. Babai, On Lovász lattice reduction and the nearest lattice point problem, Combi-
natorica 6 (1986), 1–13.

[BBB+] C. Batut, K. Belabas, D. Bernardi, H. Cohen, and M. Olivier, PARI/GP computer

package version 2, Université de Bordeaux I.
[BBFK05] F. Bahr, M. Boehm, J. Franke, and T. Kleinjung, Factorization of RSA-200, Public

announcement on May 9th., 2005.
[BBS06] Elad Barkan, Eli Biham, and Adi Shamir, Rigorous bounds on cryptanalytic

time/memory tradeoffs, Advances in Cryptology – Proc. CRYPTO ’06, Lecture

Notes in Computer Science, vol. 4117, Springer, 2006, pp. 1–21.
[BCCN01] E. Brier, C. Clavier, J.-S. Coron, and D. Naccache, Cryptanalysis of RSA signatures

with fixed-pattern padding., Proc. CRYPTO ’01, LNCS, vol. 2139, IACR, Springer-

Verlag, 2001, pp. 433–439.
[BD99] D. Boneh and G. Durfee, Cryptanalysis of RSA with private key d less than N0.292,

Proc. of Eurocrypt ’99, LNCS, vol. 1592, IACR, Springer-Verlag, 1999, pp. 1–11.

[BDF98] D. Boneh, G. Durfee, and Y. Frankel, An attack on RSA given a small fraction of
the private key bits, Proc. of Asiacrypt ’98, LNCS, vol. 1514, Springer-Verlag, 1998,

pp. 25–34.

[BDHG99] D. Boneh, G. Durfee, and N. A. Howgrave-Graham, Factoring n = prq for large r,
Proc. of Crypto ’99, LNCS, vol. 1666, IACR, Springer-Verlag, 1999.

[BDL97] D. Boneh, R. A. DeMillo, and R. J. Lipton, On the importance of checking crypto-
graphic protocols for faults, Proc. of Eurocrypt ’97, LNCS, vol. 1233, IACR, Springer-

Verlag, 1997, pp. 37–51.

[BJ07] Aurélie Bauer and Antoine Joux, Toward a rigorous variation of Coppersmith’s
algorithm on three variables, Advances in Cryptology - Proc. EUROCRYPT ’07,

Lecture Notes in Computer Science, vol. 4515, Springer, 2007, pp. 361–378.

[BJN00] D. Boneh, A. Joux, and P. Q. Nguyen, Why textbook ElGamal and RSA encryption
are insecure, Proc. of Asiacrypt ’00, LNCS, vol. 1976, IACR, Springer-Verlag, 2000.

[Ble96] D. Bleichenbacher, Generating ElGamal signatures without knowing the secret key,

Proc. of Eurocrypt ’96, LNCS, vol. 1070, IACR, Springer-Verlag, 1996, Corrected
version available from the author, pp. 10–18.

[Ble97] , On the security of the KMOV public key cryptosystem, Proc. of Crypto ’97,
LNCS, vol. 1294, IACR, Springer-Verlag, 1997, pp. 235–248.

[Ble98] , Chosen ciphertext attacks against protocols based on the RSA encryption

standard PKCS #1, Proc. of Crypto ’98, LNCS, vol. 1462, IACR, Springer-Verlag,
1998, pp. 1–12.

[BM05] J. Blömer and A. May, A tool kit for finding small roots of bivariate polynomials

over the integers., Advances in Cryptology - Proc. of EUROCRYPT 2005, Lecture
Notes in Computer Science, vol. 3494, Springer, 2005, pp. 251–267.

PUBLIC-KEY CRYPTANALYSIS 49

[BN00] D. Bleichenbacher and P. Q. Nguyen, Noisy polynomial interpolation and noisy
Chinese remaindering, Proc. of Eurocrypt ’00, LNCS, vol. 1807, IACR, Springer-

Verlag, 2000.

[Bon99] D. Boneh, Twenty years of attacks on the RSA cryptosystem, Notices of the AMS
46 (1999), no. 2, 203–213.

[Bon00] , Finding smooth integers in short intervals using CRT decoding, Proc. of

32nd STOC, ACM, 2000.
[Bon01] , Simplified OAEP for the RSA and Rabin functions, Proc. of Crypto ’01,

LNCS, IACR, Springer-Verlag, 2001.
[BR95] M. Bellare and P. Rogaway, Optimal asymmetric encryption, Proc. of Eurocrypt

’94, LNCS, vol. 950, IACR, Springer-Verlag, 1995, pp. 92–111.

[BR96] , The exact security of digital signatures - how to sign with RSA and Rabin,
Proc. of Eurocrypt ’96, LNCS, vol. 1070, IACR, Springer-Verlag, 1996, pp. 399–416.

[BSS04] I. F. Blake, G. Seroussi, and N. Smart, Advances in elliptic curve cryptography,

London Mathematical Society Lecture Note Series, vol. 317, Cambridge University
Press, 2004.

[BV96] D. Boneh and R. Venkatesan, Hardness of computing the most significant bits of

secret keys in Diffie-Hellman and related schemes, Proc. of Crypto ’96, LNCS, IACR,
Springer-Verlag, 1996.

[BV98] , Breaking RSA may not be equivalent to factoring, Proc. of Eurocrypt ’98,
LNCS, vol. 1233, Springer-Verlag, 1998, pp. 59–71.

[CFPR96] D. Coppersmith, M. K. Franklin, J. Patarin, and M. K. Reiter, Low-exponent RSA

with related messages, Proc. of Eurocrypt ’96, LNCS, vol. 1070, IACR, Springer-
Verlag, 1996, pp. 1–9.

[CK04] H. Cohn and A. Kumar, The densest lattice in twenty-four dimensions, Electron.

Res. Announc. Amer. Math. Soc. 10 (2004), 58–67 (electronic).
[CM04] J.-S. Coron and A. May, Deterministic polynomial time equivalence of computing

the RSA secret key and factoring, Cryptology ePrint Archive: Report 2004/208.

Appeared in J. Cryptology, 2007., 2004.
[CNS99] C. Coupé, P. Q. Nguyen, and J. Stern, The effectiveness of lattice attacks against

low-exponent RSA, Proc. of PKC’99, LNCS, vol. 1431, Springer-Verlag, 1999.

[CNS02] D. Catalano, P. Q. Nguyen, and J. Stern, The hardness of Hensel lifting: the case
of RSA and discrete logarithm, Proc. of Asiacrypt ’02, LNCS, vol. 2501, IACR,

Springer-Verlag, 2002, pp. 299–310.

[Cop97] D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA
vulnerabilities, J. of Cryptology 10 (1997), no. 4, 233–260, Revised version of two

articles from Eurocrypt ’96.
[Cop01] , Finding small solutions to small degree polynomials, Proc. of CALC ’01,

LNCS, Springer-Verlag, 2001.

[Cor07] J.-S. Coron, Finding small roots of bivariate integer polynomial equations: A di-
rect approach, Advances in Cryptology - Proc. of CRYPTO 2007, Lecture Notes in

Computer Science, vol. 4622, Springer, 2007, pp. 379–394.

[CP01] R. Crandall and C. Pomerance, Prime numbers – a computational perspective,
Springer-Verlag, 2001.

[CS98] J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups, Springer-

Verlag, 1998, Third edition.
[DFSS07] V. Dubois, P.-A. Fouque, A. Shamir, and J. Stern, Practical cryptanalysis of

SFLASH, Advances in Cryptology – Proceedings of CRYPTO ’07, LNCS, vol. 4622,
Springer-Verlag, 2007.

[DH76] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform.
Theory IT-22 (1976), 644–654.

[DN00] G. Durfee and P. Q. Nguyen, Cryptanalysis of the RSA schemes with short se-
cret exponent from Asiacrypt ’99, Proc. of Asiacrypt ’00, LNCS, vol. 1976, IACR,

Springer-Verlag, 2000.
[ECC] ECCC, http://www.eccc.uni-trier.de/eccc/, The Electronic Colloquium on Com-

putational Complexity.
[El 85] T. El Gamal, A public key cryptosystem and a signature scheme based on discrete

logarithms, IEEE Trans. Inform. Theory 31 (1985), 469–472.

50 PHONG Q. NGUYEN

[Emd81] P. van Emde Boas, Another NP-complete problem and the complexity of computing
short vectors in a lattice, Tech. report, Mathematische Instituut, University of Am-

sterdam, 1981, Report 81-04. Available at http://turing.wins.uva.nl/~peter/.

[FJ03] J.C. Faugère and A. Joux, Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using Gröbner bases, Proc. of Crypto ’03, LNCS, vol. 2729, Springer-

Verlag, 2003, pp. 44–60.

[FOPS01] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern, RSA–OAEP is secure under
the RSA assumption, Proc. of Crypto ’01, LNCS, IACR, Springer-Verlag, 2001.

[GG98] O. Goldreich and S. Goldwasser, On the limits of non-approximability of lattice
problems, Proc. of 30th STOC, ACM, 1998, Available at [ECC] as TR97-031.

[GGH97] O. Goldreich, S. Goldwasser, and S. Halevi, Public-key cryptosystems from lattice

reduction problems, Proc. of Crypto ’97, LNCS, vol. 1294, IACR, Springer-Verlag,
1997, Available at [ECC] as TR96-056., pp. 112–131.

[GHGKN06] N. Gama, N. Howgrave-Graham, H. Koy, and P. Q. Nguyen, Rankin’s constant and

blockwise lattice reduction, Proc. of Crypto ’06, LNCS, vol. 4117, Springer-Verlag,
2006, pp. 112–130.

[GLS93] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial

optimization, Springer-Verlag, 1993.
[GM03] D. Goldstein and A. Mayer, On the equidistribution of Hecke points, Forum Math-

ematicum 15 (2003), 165–189.

[GMSS99] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert, Approximating shortest
lattice vectors is not harder than approximating closest lattice vectors, Information

Processing Letters 71 (1999), 55–61, Available at [ECC] as TR99-002.

[GN08a] N. Gama and P. Q. Nguyen, Finding short lattice vectors within Mordell’s inequality,
STOC ’08 – Proc. 40th ACM Symposium on the Theory of Computing, ACM, 2008.

[GN08b] , Predicting lattice reduction, Advances in Cryptology – Proc. EUROCRYPT
’08, Lecture Notes in Computer Science, Springer, 2008.

[GPG] GPG, The GNU privacy guard, http://www.gnupg.org.

[H̊as88] J. H̊astad, Solving simultaneous modular equations of low degree, SIAM J. Comput.
17 (1988), no. 2, 336–341, Preliminary version in Proc. of Crypto ’85.

[HDdL00] R. Harley, D. Doligez, D. de Rauglaudre, and X. Leroy, Ecc2k-108 challenge solved,

Public announcement on April 4th., 2000.
[Hel80] M. E. Hellman, A cryptanalytic time-memory tradeoff, IEEE Trans. Inform. Theory

26 (1980), 401–406.

[Hel85] B. Helfrich, Algorithms to construct Minkowski reduced and Hermite reduced bases,
Theoretical Computer Science 41 (1985), 125–139.

[Her50] C. Hermite, Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de
la théorie des nombres, deuxième lettre, J. Reine Angew. Math. 40 (1850), 279–

290, Also available in the first volume of Hermite’s complete works, published by

Gauthier-Villars.
[HG97] N. A. Howgrave-Graham, Finding small roots of univariate modular equations re-

visited, Cryptography and Coding, LNCS, vol. 1355, Springer-Verlag, 1997, pp. 131–

142.
[HG98] , Computational mathematics inspired by RSA, Ph.D. thesis, University of

Bath, 1998.
[HG01] , Approximate integer common divisors, Proc. of CALC ’01, LNCS, Springer-

Verlag, 2001.
[HPS98] J. Hoffstein, J. Pipher, and J.H. Silverman, NTRU: a ring based public key cryp-

tosystem, Proc. of ANTS III, LNCS, vol. 1423, Springer-Verlag, 1998, Additional
information at http://www.ntru.com, pp. 267–288.

[HS07] Guillaume Hanrot and Damien Stehlé, Improved analysis of kannan’s shortest lattice
vector algorithm, Advances in Cryptology - Proc. CRYPTO 2007, Lecture Notes in

Computer Science, vol. 4622, Springer, 2007, pp. 170–186.
[HS08] , Worst-case hermite-korkine-zolotarev reduced lattice bases, CoRR

abs/0801.3331 (2008).

[IAC04] IACR, Advances in cryptology 1998–2003, Springer-Verlag, 2004, Electronic Pro-

ceedings of the Eurocrypt, Crypto, Asiacrypt, FSE and PKC Conferences.

PUBLIC-KEY CRYPTANALYSIS 51

[JM07] Ellen Jochemsz and Alexander May, A polynomial time attack on RSA with private

CRT-exponents smaller than 0.073, Advances in Cryptology – Proc. CRYPTO ’07,
Lecture Notes in Computer Science, vol. 4622, Springer, 2007, pp. 395–411.

[JvzGG03] Joachim‘ J. von zur Gathen and J. Gerhard, Modern computer algebra, second ed.,

Cambridge University Press, Cambridge, 2003.
[Kan83] R. Kannan, Improved algorithms for integer programming and related lattice prob-

lems, Proc. of 15th STOC, ACM, 1983, pp. 193–206.
[Kan87a] , Algorithmic geometry of numbers, Annual review of computer science 2

(1987), 231–267.

[Kan87b] , Minkowski’s convex body theorem and integer programming, Math. Oper.
Res. 12 (1987), no. 3, 415–440.

[Kle07] T. Kleinjung, Discrete logarithms in GF(p) – 160 digits, Public announcement on

Feb. 5th., 2007.
[Kob87] N. Koblitz, Elliptic curve cryptosystems, Math. Comp. 48 (1987), 203–209.

[Kob98] , Algebraic aspects of cryptography, Springer-Verlag, 1998.

[Koc96] P. C. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems, Proc. of Crypto ’96, LNCS, vol. 1109, IACR, Springer-Verlag,

1996, pp. 104–113.
[KS94] S. V. Konyagin and T. Seger, On polynomial congruences, Mathematical Notes 55

(1994), no. 6, 596–600.

[KZ73] A. Korkine and G. Zolotareff, Sur les formes quadratiques, Math. Ann. 6 (1873),
336–389.

[Lab] RSA Laboratories, The public-key cryptography standards (PKCS), Available at

http://www.rsasecurity.com/rsalabs.
[Len87] H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. 126 (1987),

649–673.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational
coefficients, Mathematische Ann. 261 (1982), 513–534.

[LS02] A. K. Lenstra and I. Shparlinski, Selective forgery of RSA signatures with fixed-

pattern padding., Proc. of PKC ’02, Lecture Notes in Computer Science, vol. 2274,
Springer, 2002, pp. 228–236.

[Mar03] J. Martinet, Perfect lattices in Euclidean spaces, Grundlehren der Mathematischen
Wissenschaften, vol. 327, Springer-Verlag, Berlin, 2003.

[May03] A. May, New RSA vulnerabilities using lattice reduction methods, Ph.D. thesis, Uni-

versity of Paderborn, 2003.
[May04] , Secret exponent attacks on RSA-type schemes with moduli n = prq, Public

Key Cryptography – Proc. of PKC 2004, Lecture Notes in Computer Science, vol.

2947, Springer, 2004, pp. 218–230.
[McE78] R. J. McEliece, A public-key cryptosystem based on algebraic number theory, Tech.

report, Jet Propulsion Laboratory, 1978, DSN Progress Report 42-44.

[Men08] A. Menezes, An introduction to pairing-based cryptography, AMS, 2008, In this book.
[MG02] D. Micciancio and S. Goldwasser, Complexity of lattice problems: A cryptographic

perspective, Kluwer Academic Publishers, 2002.
[MH73] J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer-Verlag, 1973.

[MH78] R. Merkle and M. Hellman, Hiding information and signatures in trapdoor knap-

sacks, IEEE Trans. Inform. Theory IT-24 (1978), 525–530.
[MI88] T. Matsumoto and H. Imai, Public quadratic polynominal-tuples for efficient

signature-verification and message-encryption, Proc. of Eurocrypt ’88, LNCS, vol.

330, Springer-Verlag, 1988, pp. 419–453.
[Mic98] D. Micciancio, On the hardness of the shortest vector problem, Ph.D. thesis, Mas-

sachusetts Institute of Technology, 1998.

[Mic01] , The hardness of the closest vector problem with preprocessing, IEEE Trans.
Inform. Theory 47 (2001), no. 3, 1212–1215.

[Mil87] V. Miller, Use of elliptic curves in cryptography, Proc. of Crypto ’85, LNCS, vol.

218, IACR, Springer-Verlag, 1987, pp. 417–426.
[Min96] H. Minkowski, Geometrie der Zahlen, Teubner-Verlag, Leipzig, 1896.

[MOV93] A. Menezes, T. Okamoto, and S. A. Vanstone, Reducing elliptic curve logarithms to
logarithms in a finite field, IEEE Trans. Inform. Theory 39 (1993), no. 5, 1639–1646.

52 PHONG Q. NGUYEN

[MOV97] A. Menezes, P. Van Oorschot, and S. Vanstone, Handbook of applied cryptography,
CRC Press, 1997, Freely available on the Internet.

[MZ98] K. S. McCurley and C. D. Ziegler, Advances in cryptology 1981–1997, Springer-

Verlag, 1998, Electronic Proceedings of the Eurocrypt and Crypto Conferences.
[Nat94] National Institute of Standards and Technology (NIST), FIPS publication 186: Dig-

ital signature standard, May 1994.

[Ngu99] P. Q. Nguyen, Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem from
Crypto ’97, Proc. of Crypto ’99, LNCS, vol. 1666, IACR, Springer-Verlag, 1999,

pp. 288–304.
[Ngu04] , Can we trust cryptographic software? Cryptographic flaws in GNU Privacy

Guard v1.2.3., Advances in Cryptology - Proc. EUROCRYPT 2004, Lecture Notes

in Computer Science, vol. 3027, Springer, 2004, pp. 555–570.
[NS01] P. Q. Nguyen and J. Stern, The two faces of lattices in cryptology, Cryptography and

Lattices – Proc. CALC ’01, LNCS, vol. 2146, Springer-Verlag, 2001, pp. 146–180.

[NS02] P. Q. Nguyen and I. E. Shparlinski, The insecurity of the digital signature algorithm
with partially known nonces., J. Cryptology 15 (2002), no. 3, 151–176.

[NS03] , The insecurity of the elliptic curve digital signature algorithm with partially

known nonces., Des. Codes Cryptography 30 (2003), no. 2, 201–217.
[NS04] P. Q. Nguyen and D. Stehlé, Low-dimensional lattice basis reduction revisited (ex-

tended abstract), Proc. of the 6th Algorithmic Number Theory Symposium (ANTS

VI), LNCS, vol. 3076, Springer-Verlag, 2004, pp. 338–357.
[NS05a] , Floating-point LLL revisited, Proc. of Eurocrypt 2005, LNCS, vol. 3494,

Springer-Verlag, 2005, pp. 215–233.
[NS05b] Phong Q. Nguyen and Jacques Stern, Adapting density attacks to low-weight knap-

sacks, Advances in Cryptology – Proceedings of ASIACRYPT ’05, LNCS, vol. 3788,

Springer-Verlag, 2005, pp. 41–58.
[NS06] P. Q. Nguyen and D. Stehlé, LLL on the average, Proc. of ANTS-VII, LNCS, vol.

4076, Springer-Verlag, 2006.

[NV08] P. Q. Nguyen and T. Vidick, Sieve algorithms for the shortest vector problem are
practical, J. of Mathematical Cryptology (2008), To appear.

[Odl90] A. M. Odlyzko, The rise and fall of knapsack cryptosystems, Cryptology and Com-

putational Number Theory, Proc. of Symposia in Applied Mathematics, vol. 42,
A.M.S., 1990, pp. 75–88.

[Oec03] Philippe Oechslin, Making a faster cryptanalytic time-memory trade-off, Advances

in Cryptology – Proc. CRYPTO ’03, Lecture Notes in Computer Science, vol. 2729,
Springer, 2003, pp. 617–630.

[Poi05] D. Pointcheval, Provable security for public key schemes, pp. 133–185, Birkhäuser
Verlag, 2005.

[PS96] D. Pointcheval and J. Stern, Security proofs for signature schemes, Proc. of Euro-

crypt ’96, LNCS, vol. 1070, IACR, Springer-Verlag, 1996, pp. 387–398.
[QL00] G. Qiao and K.-Y. Lam, RSA signature algorithm for microcontroller implementa-

tion., Proc. of CARDIS ’98, Lecture Notes in Computer Science, vol. 1820, Springer-

Verlag, 2000, pp. 353–356.
[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman, A method for obtaining digital signa-

tures and public-key cryptosystems, Communications of the ACM 21 (1978), no. 2,

120–126.
[Sch87] C. P. Schnorr, A hierarchy of polynomial lattice basis reduction algorithms, Theo-

retical Computer Science 53 (1987), 201–224.

[Sha82] A. Shamir, A polynomial time algorithm for breaking the basic Merkle-Hellman
cryptosystem, Proc. of 23rd FOCS, IEEE, 1982, pp. 145–152.

[Sho] V. Shoup, Number Theory C++ Library (NTL), Available at
http://www.shoup.net/ntl/.

[Sho99] Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer, SIAM Rev. 41 (1999), no. 2, 303–332 (electronic).
MR MR1684546 (2000e:11159)

[Sho01] V. Shoup, OAEP reconsidered, Proc. of Crypto ’01, LNCS, IACR, Springer-Verlag,

2001.

PUBLIC-KEY CRYPTANALYSIS 53

[Sho04] , Sequences of games: a tool for taming complexity in security proofs, Cryp-
tology ePrint Archive: Report 2004/332, 2004.

[Sho05] , A computational introduction to number theory and algebra, Cambridge

University Press, 2005, Also available on the Internet.
[Sie45] C. L. Siegel, A mean value theorem in geometry of numbers, Annals of Mathematics

46 (1945), no. 2, 340–347.

[Sie89] C. L. Siegel, Lectures on the geometry of numbers, Springer-Verlag, 1989.
[Sti02] D. R. Stinson, Some baby-step giant-step algorithms for the low hamming weight

discrete logarithm problem., Math. Comput. 71 (2002), no. 237, 379–391.
[VGT88] B. Vallée, M. Girault, and P. Toffin, How to guess `-th roots modulo n by reducing

lattice bases, Proc. of AAEEC-6, LNCS, vol. 357, Springer-Verlag, 1988, pp. 427–442.

[VZ95] S. A. Vanstone and R. J. Zuccherato, Short RSA keys and their generation, J. of
Cryptology 8 (1995), no. 2, 101–114.

[Wie90] M. Wiener, Cryptanalysis of short RSA secret exponents, IEEE Trans. Inform. The-

ory 36 (1990), no. 3, 553–558.

ENS & CNRS. École normale supérieure, département d’informatique; 45, rue d’Ulm,

F–75005 Paris.
E-mail address: http://www.di.ens.fr/~pnguyen/

