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Lecture 7: Hermite’s Inequality and the LLL Algorithm

1 Hermite’s inequality

Recall Hermite’s constant:

γd = max
d−rankL

λ1(L)2

covol(L)2/d
(1)

Lagrange proved that γ2 =
√

4/3. Hermite proved the existence of γd by
proving the following inequality:

Theorem 1.1 (Hermite’s inequality [4]) For all integer d ≥ 2:

γd ≤ γd−12 . (2)

Proof. We give a proof by induction, slightly different from the historical
proof of Hermite. Since the inequality is trivial for d = 2, assume that it
holds for d − 1. Consider a shortest nonzero vector b1 of a d-rank lattice
L. Denote by L′ = π2(L) the (d− 1)-rank lattice obtained by projecting L
over b⊥1 . Its volume is vol(L′) = vol(L)/‖b1‖. Let b′2 be a shortest nonzero
vector of L′. The induction assumption ensures that:

‖b′2‖ ≤ (4/3)(d−2)/4vol(L′)1/(d−1).

We can lift b′2 (by size-reduction) into a nonzero vector b2 ∈ L such that
‖b2‖2 ≤ ‖b′2‖2 + ‖b1‖2/4. Since b1 cannot be longer than b2, we deduce:

‖b1‖ ≤
√

4/3‖b′2‖ ≤ (4/3)d/4vol(L′)1/(d−1),

which can be rewritten as:

‖b1‖ ≤ (4/3)(d−1)/4vol(L)1/d,

which completes the proof. In retrospect, one notices that with the inequal-
ity ‖b1‖ ≤

√
4/3‖b′2‖, one has in fact proved the inequality:

γd ≤ (4γd−1/3)(d−1)/d .
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By composing all these inequalities, one indeed obtains Hermite’s inequality:

γd ≤ (4/3)(d−1)/d+(d−2)/d+···+1/d = (4/3)(d−1)/2.

The historical proof given by Hermite in his first letter [4] to Jacobi also
proceeded by induction, but in a slightly different way. Hermite considered
an arbitrary primitive vector b1 of the lattice L. If b1 satisfies Hermite’s
inequality, that is, if ‖b1‖ ≤ (4/3)(d−1)/4vol(L)1/d, there is nothing to prove.
Otherwise, one applies the induction assumption to the projected lattice
L′ = π2(L): one knows that there exists a primitive vector b?

2 ∈ L′ satisfying
Hermite’s inequality: ‖b?

2‖ ≤ (4/3)(d−2)/4vol(L′)1/(d−1). One can lift this
vector b?

2 ∈ L′ into a primitive vector b2 ∈ L such that ‖b2‖2 ≤ ‖b?
2‖2 +

‖b1‖2/4. Since b1 does not satisfy Hermite’s inequality, one notices that
‖b2‖ < ‖b1‖: one can therefore replace b1 by b2, and start again. But
this process cannot go on indefinitely: indeed, there are only finitely many
vectors of L which have norm ≤ ‖b1‖. Hence, there must exist a nonzero
vector b1 ∈ L satisfying Hermite’s inequality. ut
The inequality (2) suggests to use two-dimensional reduction to find in any
d-rank lattice a nonzero vector of norm less than:√

γd−12 vol(L)1/d = (4/3)(d−1)/4vol(L)1/d.

This is somewhat the underlying idea behind all the algorithms of this
section: Hermite’s algorithms and the Lenstra-Lenstra-Lovász algorithm
(LLL). In fact, the proof of (2) that we gave provides such an algorithm,
implicitly.

To explain this algorithm, let us recall Gram-Schmidt orthogonalization.
The Gram-Schmidt orthogonalization (GSO) of b1, . . . ,bd is the orthogonal
family (b?

1, . . . ,b
?
d) defined as follows: b?

1 = b1 and more generally b?
i =

πi(bi) for 1 ≤ i ≤ d, where πi denotes the orthogonal projection over the
orthogonal supplement of the linear span of b1, . . . ,bi−1. Recall that:

b?
i = bi −

i−1∑
j=1

µi,jb
?
j , 1 ≤ i ≤ d (3)

where µi,j =
〈bi,b

?
j 〉

‖b?
j‖

2 .

This algorithm makes sure that the basis is size-reduced and that all the
local bases (πi(bi), πi(bi+1)) = (b?

i ,b
?
i+1 + µi+1,ib

?
i ) are L-reduced: these

local bases correspond to the 2×2 matrices on the diagonal, when we repre-
sent the basis in triangular form. In other words, the reduced bases obtained
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are size-reduced and such that for all 1 ≤ i ≤ d :

‖b?
i+1‖2 ≥

3

4
‖b?

i ‖2, (4)

that is, the decrease of the norms of the Gram-Schmidt vectors (which are
the diagonal coefficients in the triangular representation) is at most geomet-
ric, which is sometimes called Siegel’s condition [10]. It is then easy to see
that the first vector of such a basis satisfies:

‖b1‖ ≤ (4/3)(d−1)/4vol(L)1/d,

as announced. But it is unknown if this algorithm and those of Hermite are
polynomial time: the LLL algorithm guarantees a polynomial running-time
by relaxing inequalities (4).

2 Hermite’s algorithms

We now describe the first reduction algorithms in arbitrary dimension, de-
scribed by Hermite in his famous letters [4] to Jacobi, in the language of
quadratic forms. They are very close to the algorithm underlying the proof
of (2), but they do not explicitly rely on Lagrange’s algorithm, although
they try to generalize it. They were historically presented in a recursive
way, but they can easily be made iterative, just like LLL. Hermite’s first
algorithm was described in the first letter [4] to Jacobi: Algorithm 1 is a
simplified version of this algorithm; Hermite’s historical algorithm actually
uses duality, which we ignore for simplicity. It is easy to see that Algorithm 1
terminates, and that the output basis (b1, . . . ,bd) satisfies the following re-
duction notion (which we call H1):

• The basis is size-reduced.

• For all i, b?
i verifies Hermite’s inequality in the projected lattice πi(L):

‖b?
i ‖ ≤ (4/3)(d−i)/4vol(πi(L))1/(d−i+1)

Surprisingly, Hermite notices himself that his first algorithm does not match
with Lagrange’s algorithm in dimension two. It seems to be one of the
reasons why he presents a second algorithm (Algorithm 2) in his second
letter [4] to Jacobi. It is easy to see that this algorithm terminates, and that
the output basis (b1, . . . ,bd) satisfies the following reduction notion (which
we call H2):
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Algorithm 1 A simplified version of Hermite’s first reduction algorithm,
described in the first letter to Jacobi [4].

Input: A basis (b1, . . . ,bd) of a d-rank lattice L.
Output:

1: if d = 1 then
2: output b1

3: end if
4: Apply recursively the algorithm to the basis (π2(b2), . . . , π2(bd)) of the

projected lattice π2(L).
5: Lift the vectors (π2(b2), . . . , π2(bd)) into b2, . . . ,bd ∈ L in such a way

that they are size-reduced with respect to b1.
6: if b1 satisfies Hermite’s inequality, that is ‖b1‖ ≤ (4/3)(d−1)/4vol(L)1/d

then
7: Output (b1, . . . ,bd)
8: end if
9: Swap b1 and b2 since ‖b2‖ < ‖b1‖, and restart from the beginning.

Algorithm 2 Hermite’s second reduction algorithm, described in his second
letter to Jacobi [4].

Input: a basis (b1, . . . ,bd) of a lattice L.
Output: a size-reduced basis (b1, . . . ,bd) such that for all i, ‖b?

i ‖/‖b?
i+1‖ ≤

γ2 =
√

4/3. In particular, each b?
i satisfies Hermite’s inequality in the

projected lattice πi(L).
1: if d = 1 then
2: output b1

3: end if
4: By making swaps if necessary, ensure that ‖b1‖ ≤ ‖bi‖ for all i ≥ 2.
5: Apply recursively the algorithm to the basis (π2(b2), . . . , π2(bd)) of the

projected lattice π2(L).
6: Lift the vectors (π2(b2), . . . , π2(bd)) to b2, . . . ,bd ∈ L in such a way

that they are size-reduced with respect to b1.
7: if ‖b1‖ ≤ ‖bi‖ for all i ≥ 2 then
8: output (b1, . . . ,bd)
9: else

10: restart from the beginning.
11: end if
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• The basis is size-reduced.

• For all i, b?
i has minimal norm among all the vectors of the ba-

sis (πi(bi), πi(bi+1) . . . , πi(bd)) of the projected lattice πi(L), that is
‖b?

i ‖ ≤ ‖πi(bj)‖ for all 1 ≤ i ≤ j ≤ d.

Notice that an H2-reduced basis necessarily satisfies (4), that is for all i :

‖b?
i ‖/‖b?

i+1‖ ≤ γ2 =
√

4/3.

This implies that its orthogonality defect is bounded:

d∏
i=1

‖b?
i ‖ ≤ (4/3)d(d−1)/4vol(L(b1, . . . ,bd)).

And this also shows that an H2-reduced basis is necessarily H1-reduced.
Yes, this second algorithm is still not known to be efficient.

3 The LLL algorithm

Surprisingly, it is unknown if Hermite’s algorithms are polynomial time for
varying dimension. It is also the case for Lenstra’s algorithm [7], which is a
relaxed variant of Hermite’s second algorithm, where the inequalities ‖b?

i ‖ ≤
‖πi(bj)‖ are replaced by c‖b?

i ‖ ≤ ‖πi(bj)‖ where c is a constant such that
1/4 < c < 1. However, Lenstra proved that his algorithm was polynomial
time for any fixed dimension, which was sufficient for his celebrated result
on integer programming [7].

It is Lenstra, Lenstra and Lovász [6] who invented in 1982 the first
polynomial-time reduction algorithm outputting bases nearly as reduced as
Hermite’s. This algorithm, known as LLL or L3, is essentially a relaxed vari-
ant of Hermite’s second algorithm: László Lovász discovered that a crucial
modification guaranteed a polynomial running-time; more precisely, com-
pared to the H2 reduction notion, one replaces for each i all the inequalities
‖b?

i ‖ ≤ ‖πi(bj)‖ by a single inequality c‖b?
i ‖ ≤ ‖πi(bi+1)‖ where c is a

constant such that 1/4 < c < 1. The final algorithm was published in [6].
Let δ be a real in ]14 , 1]. A numbered basis (b1, . . . ,bd) of L is said to

be LLL-reduced with factor δ if it is size-reduced, and if it satisfies Lovász’
condition: for all 1 < i ≤ d,∥∥b?

i+1 + µi+1,ib
?
i

∥∥2 ≥ δ‖b?
i ‖2.
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Let us explain this mysterious condition. Since Gram-Schmidt orthogonal-
ization depends on the order of the vectors, its vectors change if bi and
bi+1 are swapped; in fact, only b?

i and b?
i+1 can possibly change. And the

new b?
i is simply b?

i+1 +µi+1,ib
?
i , therefore Lovász’ condition means that by

swapping bi and bi+1, the norm of b?
i does not decrease too much, where

the loss is quantified by δ: one cannot gain much on ‖b?
i ‖ by swap. In other

words:
δ‖b?

i ‖2 ≤ ‖πi(bi+1)‖2,

which illustrates the link with the H2 reduction notion. The most natural
value for the constant δ is therefore δ = 1 (in dimension 2, this matches with
Lagrange’s reduction), but then, it is unknown if such a reduced basis can be
computed in polynomial time. The LLL-reduction was initially1 presented
in [6] with the factor δ = 3

4 , so that in the literature, LLL-reduction usually
means LLL-reduction with the factor δ = 3

4 .
Lovász’ condition can also be rewritten equivalently: for all i,

‖b?
i+1‖2 ≥

(
δ − µ2i+1,i

)
‖b?

i ‖2,

which is a relaxation of (4). Thus, LLL reduction guarantees that each b?
i+1

cannot be much shorter than b?
i : the decrease is at most geometric. This

proves the following result:

Theorem 3.1 Assume that 1
4 < δ ≤ 1, and let α = 1/(δ − 1

4). Let
(b1, . . . ,bd) be an LLL-reduced basis with factor δ of a lattice L in Rn.
Then:

1. ‖b1‖ ≤ α(d−1)/4(volL)1/d.

2. For all i ∈ {1, . . . , d}: ‖bi‖ ≤ α(d−1)/2λi(L).

3. ‖b1‖ × · · · × ‖bd‖ ≤ αd(d−1)/4 detL.

Proof. We know that:

‖b?
i+1‖2 ≥

(
δ − µ2i+1,i

)
‖b?

i ‖2 ≥ α‖b?
i ‖2.

Thus by iteration:
‖b?

i ‖2 ≥ αi−1 ‖b1‖2.

Therefore:

volL =
d∏

i=1

‖b?
i ‖ ≥ ‖b1‖dα1+2+···+(d−1),

1This simplifies the exposition.
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so
‖b1‖ ≤ α(d−1)/4(volL)1/d.

For the second and third items, show that λi(L) ≥ mini≤j≤d ‖b?
j‖ and that

for all j ≥ i: ‖bi‖2 ≤ αj−1 ‖b?
j‖2. ut

Thus, an LLL-reduced basis provides an approximation of the lattice re-
duction problem. By taking δ very close to 1, one falls back on Hermite’s
inequality in an approximate way, where the constant 4/3 is replaced by
4/3 + ε.

The other interest of this reduction notion is that there exists a sim-
ple algorithm to compute such reduced bases, and which is rather close to
Hermite’s second algorithm (Algorithm 2). In its simplest form, the LLL
algorithm corresponds to Algorithm 3. Compared to this simple version, the

Algorithm 3 The basic LLL algorithm.

Input: a basis (b1, . . . ,bd) of a lattice L.
Output: the basis (b1, . . . ,bd) is LLL-reduced with factor δ.

1: Size-reduce (b1, . . . ,bd) (using Algorithm ??).
2: if there exists an index j which does not satisfy Lovász’ condition then
3: swap bj and bj+1, then return to Step 1.
4: end if

so-called iterative versions of the LLL algorithm consider instead the small-
est index j not satisfying Lovász’ condition: in contrast, Hermite’s second
algorithm considered the greatest index j refuting H2.

Theorem 3.2 Assume that 1
4 < δ < 1. If each bi ∈ Qn, Algorithm 3

computes an LLL-reduced basis in time polynomial in the maximal bit-length
of the coefficients of the bi’s, the lattice rank d, and the space dimension n.

Let us sketch a proof of this fundamental result, assuming to simplify that
bi ∈ Zn. First of all, it is clear that if the algorithm terminates, then the
output basis is LLL-reduced with factor δ. To see why the algorithm termi-
nates, let us analyze each swap (Step 3). When bj and bj+1 are swapped,
only b?

j and b?
j+1 can be modified among all the Gram-Schmidt vectors.

Let us therefore denote by c?j and c?j+1 the new Gram-Schmidt vectors after
swapping. Since the product of all the Gram-Schmidt vector norms is equal
to vol(L), we have:

‖c?j‖ × ‖c?j+1‖ = ‖b?
j‖ × ‖b?

j+1‖.
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Since Lovász’ condition is not satisfied: ‖c?j‖2 < δ‖b?
j‖2. Hence:

‖c?j‖2(d−j+1)‖c?j+1‖2(d−j) < δ‖b?
j‖2(d−j+1)‖b?

j+1‖2(d−j).

This suggests to consider the following quantity:

D = ‖b?
1‖2d‖b?

2‖2(d−1) × · · · × ‖b?
d‖2.

At each swap, D decreases by a factor δ < 1. Notice that D can be decom-
posed as a product of d Gram determinants Di = ∆(b1, . . . ,bi) for i going
through 1 to d. Therefore, D is in fact an integer, since bi ∈ Zn. It follows
that the number of swaps is at most logarithmic in the initial value of D,
which can be upper bounded by B2d where B is the maximum of the initial
norms ‖bi‖. To bound the complexity of the algorithm, one also needs to
upper bound the size of the rational coefficients µi,j and ‖b?

i ‖2 during the re-
duction. A careful analysis based on the Di’s shows that all the µi,j ’s always
have polynomial size (see [6, 8, 1, 3]). Crucially, our analysis of swaps can
actually show that during the execution of LLL, mini ‖b?

i ‖ never decreases,
and maxi ‖b?

i ‖ never increases.
By coupling Th. 3.1 with Th. 3.2, we can summarize the LLL result as

follows:

Corollary 3.3 There exists an algorithm which, given as input a basis of a
d-dimensional integer lattice L ⊆ Zn and a reduction factor ε > 0, outputs a
basis (b1, . . . ,bd) of L, in time polynomial in 1/ε and the size of the basis,
such that:

‖b1‖/vol(L)1/d ≤
(

(1 + ε)
√

4/3
)(d−1)/2

‖bi‖/λi(L) ≤
(

(1 + ε)
√

4/3
)d−1

, 1 ≤ i ≤ d(
d∏

i=1

‖bi‖

)
/vol(L) ≤

(
(1 + ε)

√
4/3
)d(d−1)/2

4 LLL in practice

The LLL bound ‖b1‖/vol(L)1/d ≤
(

(1 + ε)
√

4/3
)(d−1)/2

is tight in the worst

case: one notes that there is a lattice L and an LLL-reduced basis of L whose
first vector b1 satisfies:

‖b1‖/vol(L)1/d =
(

(1 + ε)
√

4/3
)(d−1)/2

.
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However, it has been observed since the discovery of LLL that LLL returns
better vectors in practice, which has made LLL very useful: see [9] for a de-
tailed description of this phenomenon. Roughly speaking, in practice, given
any lattice L of sufficiently high dimension, by running LLL on a suitably
random input basis, one can experimentally obtain a non-zero lattice vector
b1 such that

‖b1‖/vol(L)1/d ≤ (1.02 . . . )d.

Depending on the structure of L, b1 might be shorter, but never worse.
It is an longstanding open problem to prove such a phenomenon. For

instance, one would like to prove the existence of a constant α < (4/3)1/4

such that given as input the Hermite normal form of a random integer lattice
L (for a suitable distribution), the first vector returned by LLL satisfies with
overwhelming probability

‖b1‖/vol(L)1/d ≤ αd−1.

And finding the least possible value of α would be very interesting.
Surprisingly, Kim and Venkatesh [5] showed that in a random lattice,

most LLL bases have a first vector close to the worst case:

‖b1‖/vol(L)1/d ≈
(

(1 + ε)
√

4/3
)(d−1)/2

.

This means that the LLL algorithm does not output a random LLL-reduced
basis: its output distribution is significantly biased.

However, a model explaining the average-case behaviour of LLL has
been proposed recently by [2], based on sandpiles: it is not a proof that LLL
behaves better than its worst-case bounds, but the model seems to match
very well the typical shape of the bases output by LLL.
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[9] P. Q. Nguyen and D. Stehlé. LLL on the average. In Proc. of ANTS-VII,
volume 4076 of LNCS. Springer-Verlag, 2006.

[10] C. L. Siegel. Lectures on the Geometry of Numbers. Springer-Verlag,
1989.


