
MPRI 2-12-1: Phong Nguyen Fall 2024

Lecture 3: Hard Lattice Problems

We introduce hard lattice problems.

1 The Shortest Vector Problem

The most famous lattice problem is the so-called shortest vector problem
(SVP), which asks to find a shortest non-zero vector in an integer lattice L
given by a basis, that is, a non-zero vector of the form a1b1 + · · · + anbn
(where ai ∈ Z) and of minimal Euclidean norm λ1(L). SVP can be viewed as
a geometric generalization of gcd computations: Euclid’s algorithm actually
computes the smallest (in absolute value) non-zero linear combination of two
integers, since gcd(a, b)Z = aZ+ bZ, which means that we are replacing the
integers a and b by an arbitrary number of vectors b1, . . . ,bn with integer
coordinates.

1.1 Variants

We introduce the main variants of SVP, but there are many others, such as
one changes the norm, replacing the Euclidean norm by a different norm.

Problem 1.1 (Decisional-SVP) Given as input a basis of an integer lat-
tice L, and an integer t, decide if λ1(L)2 ≤ t.

Problem 1.2 (Optimization-SVP) Given as input a basis of an integer
lattice L, return the integer λ1(L)2.

Clearly, Optimization-SVP is at least as hard as Decisional-SVP. Recipro-
cally, using dichotomy, if we had an oracle solving Decisional-SVP in poly-
nomial time, we could also solve Optimization-SVP in polynomial time. So
Decisional-SVP is as hard as Optimization-SVP.

It can be proved that Optimization-SVP is equivalent to SVP.
GapSVP is the approximate version of Decisional-SVP, which is used to

study the hardness of approximating SVP:
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Problem 1.3 (GapSVP) Given as input a basis of an integer lattice L
and two rational numbers t and γ, decide if λ1(L) ≤ t or λ1(L) > tγ. Here,
we are promised to be in one of the two previous cases: there is no constraint
on the answer if t < λ1(L) ≤ tγ.

There are natural approximate versions of SVP:

Problem 1.4 (Approx-SVP) Given as input a basis of an integer lattice
L and an approximation factor γ ≥ 1, find a non-zero u ∈ L such that
‖u‖ ≤ γλ1(L).

Problem 1.5 (Hermite-SVP) Given as input a basis of a d-rank integer
lattice L and an approximation factor γ ≥ 1, find a non-zero u ∈ L such
that ‖u‖ ≤ γcovol(L)1/d.

Hermite-SVP is different from SVP and all previous variants in the sense
that its result can be checked: the inequality ‖u‖ ≤ γcovol(L)1/d can be
checked in polynomial time.

Obviously, if one can solve Approx-SVP with factor γ, then one can solve
Hermite-SVP with factor γ

√
γd. Surprisingly, Lovász [8] proved that if one

can solve Hermite-SVP with a non-decreasing factor γ, then one can solve
Approx-SVP with factor γ2:

Theorem 1.6 Assume that one can solve Hermite-SVP with factor f(d)
where d is the input lattice rank, then one can solve Approx-SVP in polyno-
mial time with factor max1 ≤i≤d f(i)2.

Proof. One is given a basis (b1, . . . ,bd) of a lattice L and a HSVP oracle O.
Call the oracle twice on L and L× to obtain c1 ∈ L and d1 ∈ L× such that
‖c1‖ ≤ f(d)covol(L)1/d and ‖d1‖ ≤ f(d)covol(L×)1/d. Thus ‖c1‖ × ‖d1‖ ≤
f(d)2. Let L2 = L∩span(d1)

⊥. Call the oracle twice on L2 and L×2 to obtain
c2 ∈ L2 and d2 ∈ L×2 such that ‖c2‖ ≤ f(d− 1)covol(L2)

1/(d−1) and ‖d2‖ ≤
f(d−1)covol(L×2 )1/(d−1). Thus ‖c2‖×‖d2‖ ≤ f(d−1)2. By iterating with the
lattice Li = L∩ span(d1, . . . ,di−1)

⊥ and its dual, we obtain c1, . . . , cd) ∈ L
and d1, . . . ,dd) ∈ Rn such that ‖ci‖ ×‖di‖ ≤ f(d− i+1)2 for all 1 ≤ i ≤ d.

Let us show that 1/max1≤i≤d ‖di‖ ≤ λ1(L). We note that the di’s are
pairwise orthogonal because di ∈ span(d1, . . . ,di−1)

⊥. Let u ∈ L such
that ‖u‖ = λ1(L). We claim that there exists i ∈ {1, . . . , d} such that
〈u,di〉 ∈ Z \ {0}. Since d1 ∈ L×, we know that 〈u,d1〉 ∈ Z. If 〈u,d1〉 6= 0,
we are done. Otherwise, 〈u,d1〉 = 0, which means that u ∈ L2. Since
d2 ∈ L×2 , we know that 〈u,d2〉 ∈ Z. If 〈u,d2〉 6= 0, we are done. Otherwise,
we iterate the process, and we note that u cannot be orthogonal to all the
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di’s, since the di span span(L). So there must be an index i such that u ∈ Li
and 〈u,di〉 ∈ Z \ {0}.

Therefore |〈u,di〉| ≥ 1, which implies by Cauchy-Schwarz that 1/‖di‖ ≤
‖u‖ = λ1(L). Hence min1≤i≤d 1/‖di‖ ≤ λ1(L).

We choose c ∈ L among the ci’s such that di’s is maximized. Then
both 1/‖di‖ ≤ λ1(L) and ‖ci‖ × ‖di‖ ≤ f(d − i + 1)2. It follows that
‖c‖ ≤ max1 ≤i≤d f(i)2. ut

1.2 Complexity results

SVP was conjectured NP-hard as early as 1981 [5] (see also [8]). Ajtai
showed NP-hardness under randomized reductions in 1998 [2]: this implies
that if we could solve SVP efficiently, then we would also have an efficient
randomized algorithm for any problem in NP, which is considered unlikely.
However, it is a long-standing open problem to prove that SVP is NP-hard
under deterministic reductions: surprisingly, NP-hardness under determin-
istic reductions is known for the analogue problem in coding theory. The
best result so far suggests that it is unlikely that one can efficiently approx-
imate SVP to within quasi-polynomial factors. But NP-hardness results
have limits: essentially, approximating SVP within a factor

√
d/ log d is

unlikely to be NP-hard. More precisely, Aharonov and Regev [1] showed
that there exists a constant c such that approximating SVP with a factor
c
√
d is in the l’intersection NP∩coNP, while Goldreich and Goldwasser [6]

showed that each constant c, approximating SVP with a factor c
√
d/ log d

is in NP∩coAM.

2 The Closest Vector Problem

The closest vector problem (CVP) is the inhomogeneous variant of SVP:
given an integer lattice L ⊆ Zn given by a basis and a target t ∈ Zn, find
u ∈ L minimizing ‖u − t‖. This can be viewed as some sort of higher-
dimensional generalization of the Euclidean division. SVP is not a special
case of CVP: if one asks for the closest vector to t = 0, the answer is zero.
However, Goldreich et al. [7] observed that SVP is not harder than CVP: if
one can solve CVP, then one can also solve SVP efficiently.

Theorem 2.1 ( [7]) Given an oracle for CVP, one can solve SVP in poly-
nomial time.

Proof. We are given a basis (b1, . . . ,bn) of a lattice L, and we want to
find x ∈ L such that ‖x‖ = λ1(L). There exist x1, . . . , xn ∈ Z such that
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x =
∑n

i=1 xibi. For 1 ≤ i ≤ n, let Li be the sublattice generated by the 2bi
and the bj ’s for j 6= i. We note that there must exist an index i such that
xi is odd, otherwise x/2 would be a non-zero lattice vector shorter than
x. Then xi = 2yi + 1 for some integer yi. Therefore x = y + bi where
y = yi(2bi) +

∑
j 6=i xjbj ∈ Li. So x ∈ bi + Li. By definition, bi 6∈ Li so

bi + Li ⊆ L \ {0}. It follows that x is a shortest element of bi + Li, which
means that y ∈ Li is a closest vector to −bi.

We deduce the following algorithm: for every index i, call the CVP oracle
on Li and target −bi. This outputs a closest vector yi ∈ Li. Compute
xi = yi + bi and output the shortest vector among the xi’s. ut

Most variants of SVP can be adapted to CVP:

Problem 2.2 (Approx-CVP) Given as input a basis of an integer lattice
L ⊆ Zn, a target t ∈ Zn, and an approximation factor γ ≥ 1, find u ∈ L
such that ‖u− t‖ ≤ γ dist (t, L).

Problem 2.3 (Decisional-CVP) Given as input a basis of an integer lat-
tice L ⊆ Zn, a target t ∈ Zn, and an integer k, decide if dist (t, L)2 ≤ k.

Problem 2.4 (Optimization-CVP) Given as input a basis of an integer
lattice L ⊆ Zn, a target t ∈ Zn, return the integer dist (t, L)2.

Similarly to SVP, Decisional-CVP is as hard as Optimization-CVP. And it
is very easy to show that Decisional-CVP is NP-complete:

Theorem 2.5 The subset sum problem can be reduced to Decisional-CVP
in deterministic polynomial time.

Proof. We are given s, a1, . . . , an ∈ Z and we want to know if s is of the
form s =

∑n
i=1 xiai where xi ∈ {0, 1}. We consider the lattice L spanned

by the rows of the following n× (n+ 1) matrix:

B =


a1 2 0 . . . 0

a2 0 2
. . .

...
...

...
. . .

. . . 0
an 0 . . . . 0 2


Any vector of L is of the shape x = (

∑
i=1 nxiai, 2x1, . . . , 2xn) where xi ∈ Z.

One can check that s is of the form s =
∑n

i=1 xiai where xi ∈ {0, 1} if and
only if there exists x ∈ L such that ‖x− t‖ ≤

√
n where t = (s, 1, 1, . . . , 1).

ut
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Theorem 2.6 If one can solve Optimization-CVP efficiently, then one can
solve CVP in polynomial time.

Proof. We are given a CVP instance: a basis (b1, . . . ,bn) of a lattice L,
and a target t. We want to find x ∈ L such that ‖x − t‖ = dist (t, L),
but there could be many solutions. There exist x1, . . . , xn ∈ Z such that
x =

∑n
i=1 xibi: the size of the xi’s can be bounded by the same polynomial

bound, for all solutions x.
Let Mi be the sublattice of L generated by the bj ’s for j 6= i. First,

we call the optimization oracle if dist (t, L) = dist (t,M1). If it is, then we
know that there is a solution with x1 = 0, so we can replace L by M1 and
decrease the lattice rank by 1. Otherwise, we’re going to recover x1 bit by
bit. Like in the proof of Th. 2.1, for 1 ≤ i ≤ n, let Li be the sublattice
generated by the 2bi and the bj ’s for j 6= i. We call the optimization oracle
to check if dist (t, L) = dist (t, L1):

• If dist (t, L) = dist (t, L1), we know that there is a solution x such
that x1 is even, so we replace L by L1.

• Otherwise, we know that for all closest vectors, the x1 coordinate is
odd. Then x1 = 2y1 + 1 for some integer y1. Therefore x = y + b1

where y = y1(2b1) +
∑

j 6=i xjbj ∈ L1. So x ∈ b1 + L1. Thus, we
replace (t, L) by (t− b1, L1).

In both cases, we have removed one bit of x1 for at least one solution.
Since all x1’s have (uniform) polynomial size, we must eventually recover
the full x1 of one solution. After that, we do the same iteratively for all the
remaining coordinates x2, x3, . . . , xn. ut

GapCVP is the approximate version of Decisional-CVP, which is used
to study the hardness of approximating CVP:

Problem 2.7 (GapCVP) Given as input a basis of an integer lattice L ⊆
Zn, a target t ∈ Zn, and two rationals k and γ, decide if dist (t, L) ≤ k
or dist (t, L) > kγ. Here, we are promised to be in one of the two previous
cases.

An important special case of CVP is the following:

Problem 2.8 (Bounded Distance Decoding (BDD)) Given as input
a basis of an integer lattice L ⊆ Zn, a target t ∈ Zn such that dist (t, L) ≤
cλ1(L) for some given c < 1/2, find the closest lattice point to t.

Because dist (t, L) < λ1(L)/2, the solution is unique.
There are many other lattice problems, but we introduced the main ones.

Complexity theory studies the relationships between these problems.
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3 Low Dimension

The most interesting lattice problems become very hard as the dimension
increases. However, in fixed dimension, most problems are easy: they can
be solved in time polynomial in the size of the input basis.

3.1 Dimension 1

SVP is trivial in dimension 1, since a one-dimensional basis is unique, up to
sign. For CVP, we have the following elementary result:

Lemma 3.1 Let L be a 1-rank lattice generated by b ∈ Rn. Then a closest
lattice vector to t ∈ Rn is given by:

u = b〈t,b〉
‖b‖2

evecb.

If b and t are in Zn, then u can be computed in deterministic polynomial
time.

Proof. Let x ∈ Z. Then:

‖t− xb‖2 = ‖t‖2 + x2‖b‖2 − 2x〈t,b〉.

Thus, ‖t − xb‖ is minimized when (x − 〈t,b〉‖b‖2 )2 is minimized, which proves

the claim. ut

3.2 Dimension 2

In dimension 2, there’s a natural SVP algorithm published by Lagrange
in 1773, which is very similar to Euclid’s algorithm. We start by defining
reduction in the sense of Lagrange:

Definition 3.2 (Lagrange reduction) Let L be a two-rank lattice. A ba-
sis (u,v) of L is Lagrange-reduced if ‖u‖ ≤ ‖v‖ and |〈u,v〉| ≤ ‖u‖2/2.

Lagrange bases reach both minima:

Theorem 3.3 Let (u,v) be a Lagrange-reduced basis of L. Then: ‖u‖ =
λ1(L) ≤ (4/3)1/4covol(L)1/2 and ‖v‖ = λ2(L).
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Proof. Let (a, b) ∈ Z2 be non zero. Then:

‖au + bv‖2 = a2‖u‖2 + b2‖v‖2 + 2ab〈u,v〉
≥ (a2 + b2 − |ab|)‖u‖2

≥ ‖u‖2

This proves that ‖u‖ = λ1(L). Furthermore, by definition of the Gram
matrix and Lagrange-reduction:

covol(L)2 = ‖u‖2‖v‖2 − 〈u,v〉2 ≥ (1− 1/4)‖u‖4 =
3

4
‖u‖4.

Hence:
‖u‖ ≤ (4/3)1/4covol(L)1/2.

We also proved:

‖au + bv‖2 ≥ b2‖v‖2 + (a2 − |ab|)‖u‖2.

Assume that b 6= 0:

• If |a| ≥ |b| then a2 − |ab| ≥ 0, so ‖au + bv‖2 ≥ b2‖v‖2 ≥ ‖v‖2.

• Otherwise, |a| < |b|, then a2 − |ab| ≤ 0 and:

‖au + bv‖2 ≥ (b2 + a2 − |ab|)‖v‖2

Since a2 − |ab| ≥ a2 − |b|(|b| − 1), we get that:

‖au + bv‖2 ≥ (a2 + |b|)‖v‖2 ≥ ‖v‖2.

Hence, we proved that any lattice point which is not in Zu has norm ≥ ‖v‖.
We therefore proved: ‖v‖ = λ2(L). ut
In 1773, Lagrange published the following two-dimensional reduction algo-
rithm (Alg. 1) to find a Lagrange-reduced basis. Lagrange’s algorithm is a
greedy algorithm: Line 5 of Algorithm 1 selects q ∈ Z minimizing ‖u− qv‖,
which means it find the closest vector to u in the lattice Zv.

Theorem 3.4 Given as input any basis (u,v) of a two-rank lattice L, La-
grange’s algorithm described in Fig. 1 outputs a Lagrange-reduced basis of
the lattice L in time polynomial in log max(‖u‖, ‖v‖).

Proof. Consider the integer q of Step 5. We observe that:
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Algorithm 1 Lagrange’s reduction algorithm.

Input: a basis (u,v) of a two-rank lattice L.
Output: a Lagrange-reduced basis of L.
1: if ‖u‖ < ‖v‖ then
2: swap u and v
3: end if
4: repeat

5: r←− u− qv where q =
⌊
〈u,v〉
‖v‖2

⌉
and bxe denotes an integer closest to

x.
6: u←− v
7: v←− r
8: until ‖u‖ ≤ ‖v‖
9: Output (u,v).

• if q = 0, then this must be the last iteration of the loop, because the
basis is reduced by definition.

• if |q| = 1, then this must be either the first or last iteration of the loop.
Indeed, assume that it is not the last iteration: ‖u−qv‖ < ‖v‖ < ‖u‖.
But ‖u − qv‖ = ‖ v − qu‖ which means that v could be shortened
with u. Due to the greedy strategy, this can only happens at the first
iteration.

Hence, except maybe the first and last iteration, we always have |q| ≥ 2.

Letting µ = 〈u,v〉
‖v‖2 , this means that |µ| ≥ 3/2 . But µv is the projection of u

over span(u) so:

‖u‖2 ≥ ‖µv‖2 ≥ 9

4
‖v‖2.

Therefore ‖v‖2 ≤ 4
9‖u‖

2. Thus, except maybe the first and last iteration,
the norm decreases by at least a factor 4/9, so the number of iterations is
linear in log max(‖u‖, ‖v‖). ut

3.3 High dimension

In high dimension n, there are two type of algorithms:

a) Exact algorithms. These algorithms provably find a shortest vector,
but they are expensive, with a running time at least exponential in
the dimension. There are two types of algorithms, depending on the
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memory usage: polynomial-space algorithms and exponential-space al-
gorithms. Exponential-space algorithms have the fastest running time
known: the best exponential-space algorithms run in 2O(n) polynomial-
time operations. The first such algorithm was the sieve algorithm of
Ajtai, Kumar and Sivakumar (AKS) [3, 9]. On the other hand, the best
polynomial-space algorithms have super-exponential running time: in
theory, the best polynomial-space algorithm known is Kannan’s enu-
meration algorithm, which runs in time nn/(2πe)+o(n) polynomial-time
operations.

b) Approximation algorithms. We will later see the LLL algorithm, which
can approximate SVP within some exponential factor. All polynomial-
time approximation algorithms known can be viewed as (more or less
tight) algorithmic versions of upper bounds on Hermite’s constant. For
instance, LLL can be viewed as an algorithmic version of Hermite’s in-
equality. Stronger algorithms correspond to Mordell’s inequality.
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