
MPRI 2-12-1: Phong Nguyen Fall 2024

Lecture 2: Fundamental Lattice Algorithms

We presented lattices from a mathematical point of view. Here, we
introduce the most fundamental lattice algorithms.

In practice, one only deals with rational lattices, that is, lattices included
in Qn. In this case, by a suitable multiplication, one only needs to be able to
deal with integer lattices, those which are included in Zn. Such lattices are
usually represented by a basis, that is, a matrix with integral coefficients.
When we explicitly give such a matrix, we will adopt a row representation:
the row vectors of the matrix will be the basis vectors. The size of the
lattice is measured by the dimensions of the matrix (the number d of rows,
which correspond to the lattice rank, and the number n of columns), and the
maximal bit-length logB of the matrix coefficients: thus, the whole matrix
can be stored using dn logB bits.

We start with a list of elementary problems over lattices:

• Given a generating set of an integer lattice L, find a basis of the lattice
L. In other words, given arbitrary vectors a1, . . . ,an ∈ Zm, find a basis
of the lattice L(a1, . . . ,an) generated by the ai’s.

• Given a basis of an integer lattice L ⊆ Zn and a target vector v ∈ Zn,
decide if v ∈ L, and if so, find the Z-decomposition of v with respect
to the basis.

• Given bases of two integer lattices L1 and L2, decide if L1 = L2,
compute a basis of the intersection lattice L1 ∩ L2.

• Given bases of an integer lattice L and a rational subspace E, compute
a basis of the intersection lattice L ∩ E.

All these problems turn out to be solvable in deterministic polynomial time.
They are typically solved by one or a combination of the following important
tools: the Hermite normal form, duality and Gram-Schmidt orthogonaliza-
tion.

1

Lecture 2: Fundamental Lattice Algorithms 2

1 The Hermite normal form

Unlike real lattices, it turns out that integer lattices have a canonical ba-
sis, known as the Hermite normal form. In this section, to simplify the
exposition, we will restrict to full-rank integer lattices:

Theorem 1.1 Let L be a full-rank lattice in Zn. Then:

1. Zn/L is a finite abelian group.

2. L has a basis whose row representation is a lower-triangular matrix.

3. There is one and only basis of L whose row representation is a lower-
triangular matrix (hi,j)1≤i,j≤n such that: hi,i > 0 for all i, and 0 ≤
hi,j < hj,j for all i > j.

4. The order [Zn : L| of Zn/L is covol(L).

Proof. By definition, Zn/L is an abelian group. Let (b1, . . . ,bn) be a basis
of L. Let P = {

∑n
i=1 xibi, 0 ≤ xi < 1} be the parallelepiped spanned by the

bi’s. We claim that any coset u + L (where u ∈ Zn) intersects P. Indeed,
if u ∈ Zn, there exist u1, . . . , un ∈ R such that u =

∑n
i=1 uibi. Therefore

u−
∑n

i=1buicbi ∈ P ∩ (u+L). So any coset u+L has an element in Zn∩P.
However, Zn is a lattice, so the intersection Zn ∩P is finite. Hence, Zn/L is
finite, whose order is denoted by [Zn : L].

By Lagrange’s theorem, [Zn : L]Zn ⊆ L. Consider the rows of the n× n
identity matrix multiplied by [Zn : L]: these are n linearly independent
vectors in L. In the previous lecture notes, we showed a theorem proving
that there exists a lattice basis, which is generating the same subspaces as
these linearly independent vectors. This basis is therefore represented by a
lower-triangular matrix, which proves 2).

Now, by possibly changing signs, we can always make the diagonal coef-
ficients > 0. Each off-diagonal coefficient can be made ≥ 0 and strictly less
than the diagonal coefficient in its row, by subtracting a suitable linear com-
binations of the previous rows: this may modify the previous off-diagonal
coefficient in its row, so we need to start with the most-right coefficient
in each row to obtain the existence in 3). The unicity can be proved by
induction.

Using this lower-triangular basis, one sees that any coset u + L has
one and only element in

∏n
i=1{0, 1, . . . , hi,i−1}. This proves that the order

[Zn : L] is equal to
∏n
i=1 hi,i = covol(L). ut

The one and only basis of item 3) is called the Hermite normal form of L.

Lecture 2: Fundamental Lattice Algorithms 3

We now show to compute the Hermite normal form of L, given an arbi-
trary basis of a full-rank integer lattice L. The proof of Th. 1.1 shows that
it suffices to find a lower-triangular basis. The simplest idea to find such a
basis would be to perform an integral variant of Gaussian elimination, but
the natural approach is actually not efficient, due to coefficient blow-up.
The underlying idea, which will also be used for efficient HNF computations
is the following:

Lemma 1.2 Given (a, b) ∈ Z2, one can compute in deterministic polyno-
mial time a unimodular matrix U ∈ GL2(Z) such that:

U

(
a
b

)
=

(
0

gcd(a, b)

)
.

Proof. If gcd(a, b) = 0, one can take the identity matrix for U . Otherwise,
Euclid’s extended gcd algorithm outputs (α, β) ∈ Z2 such that aα + bβ =
gcd(a, b), so one can take:

U =

(
b/ gcd(a, b) −a/ gcd(a, b)

α β

)
ut

This transformation U allows to modify a basis to cancel any chosen coor-
dinate: starting with an arbitrary basis, we can repeatedly apply a trans-
formation U to make all basis vectors ending with a zero coordinate, except
the last basis vector. Then we iterate over the first n− 2 vectors to zero the
second-to-last coordinate, and so on until we get a lower-triangular matrix.
The algorithm we described gives an alternate proof of the existence of the
Hermite normal form. However, this algorithm might be inefficient, because
when we apply transformations U repeatedly to zero certain coordinates,
nothing prevents other coordinates to blow up, and such a blow up can re-
ally occur in practice: if we perform a polynomial number of operations,
but each operation doubles the size of the operands, then the total running
time is not polynomial. To avoid such a blow up, we just need to be able
to reduce the coefficients after applying a transformation U : this can be
achieved incrementally, as in Alg. 1, where a given HNF of a sublattice is
used to reduce the coefficients of any lattice vector.

Lemma 1.3 Let L be a full-rank integer lattice of Zd, and a ∈ Zd. Given
a and the HNF of L, Alg. 1 outputs the HNF of the lattice L + Za in time
polynomial in d, log covol(L) and the maximal size of the coefficients of a.

Lecture 2: Fundamental Lattice Algorithms 4

Proof. All the coefficients of the HNF of L are ≥ 0 and ≤ covol(L). By
Lemma 1.2, the size of the coefficients of U is polynomial in log covol(L)
and the maximal size of the coefficients of a. Thus, after Step. 5 the size of
each coefficient of b and c is also polynomial in log covol(L) and the size of a:
denote by sb and sc the maximal coefficient sizes. Let sh be the maximal size
of a coefficient of the input HNF. In Step. 7, the size of dbi/hi,ic is bounded
by the size of the current coefficients of b. It follows that Step. 7 increases
additively the size of sb by at most sh. So during the loop of Step. 6, the
size of any coefficient is always bounded by sb + dsh, and the final size sb is
less than sh, since the i-th coefficient of b is always less than hi,i. The same
reasoning holds for the second loop of Step. 10. It follows that the running
time of Alg. 1 is polynomial in d, log covol(L) and the maximal size of the
coefficients of a. ut

Algorithm 1 Incremental HNF.

Input: The HNF (h1, . . . ,hd) of a full-rank integer lattice L ⊆ Zd and a
vector a ∈ Zd.

Output: The HNF of the augmented lattice L+ Za.
1: if d = 1 then
2: return gcd(h1,1, a1)
3: else

4: Compute the transformation U from Lemma 1.2 such that U

(
hd,d
ad

)
=(

0
gcd(hd,d, ad)

)
.

5: Let

(
b
c

)
←− U

(
hd
a

)
6: for i = d− 1 downto 1 do
7: b←− b− dbi/hi,ichi
8: end for
9: Call recursively Incremental HNF on (h1, . . . ,hd−1) and b, where the

d-th entry of each row vector (which is zero) is ignored. Let H = (hi,j)
be the (d− 1)× d output HNF, where the last column of H is zero.

10: for i = d− 1 down 1 do
11: c←− c− dci/hi,ichi
12: end for
13: return the row concatenation of H with c.
14: end if

The incremental Alg. 1 gives rise to a simple polynomial-time HNF al-

Lecture 2: Fundamental Lattice Algorithms 5

gorithm: Alg. 2:

Theorem 1.4 Let L be a full-rank integer lattice of Zd. Given a basis of
L, Alg. 2 outputs the HNF of the lattice L in time polynomial in the size of
the input basis.

Proof. We assume it is known that the determinant can be computed in poly-
nomial time: for instance, one can select a prime number p larger than the
determinant (which is bounded by Hadamard’s inequality), and do Gaussian
elimination to compute the determinant modulo p, which turns out the be
the exact value of the determinant. Then it suffices to apply Lemma. 1.3 it-
eratively, by noticing that during the loop, each coefficient of the temporary
HNF is between 0 and covol(L), so the running time given by Lemma. 1.3
is polynomial in d, the size of covol(L) and the maximal size of a coefficient
of a, where a is one of the input basis vector. ut

Algorithm 2 Computing the HNF.

Input: A basis B = (b1, . . . ,bd) of a full-rank integer lattice L.
Output: The HNF of L.
1: Compute V = | detB|: if the (group) exponent of Zn/L is known, then

take the exponent as V .
2: Let H be the d× d identity matrix, multiplied by V .
3: for i = 1 to d do
4: H ←− Incremental HNF (H,bi)
5: end for
6: Return H

The HNF has many applications: it can be used to decide if two lattices
are identical, and it can be used to efficiently decide if a vector belongs to
the lattice or not, and if so, find its decomposition with respect to the HNF:

Theorem 1.5 Given as input the HNF of a full-rank lattice L ⊆ Zd and a
vector a ∈ Zd, Alg. 3 runs in polynomial time, and decides if a ∈ L, and if
so, return the decomposition of a with respect to the HNF.

Proof. It is clear that the each operation is polynomial time, and using
the same argument as in Lemma. 1.3, one shows that each coefficient of a
remains polynomially sized during the loop. ut

2 Duality

We introduce the dual lattice:

Lecture 2: Fundamental Lattice Algorithms 6

Algorithm 3 Lattice membership

Input: The HNF (h1, . . . ,hd) of a full-rank integer lattice L ⊆ Zd and a
vector a = (a1, . . . , ad) ∈ Zd.

Output: Decide if a ∈ L, and if so, return x1, . . . , xd ∈ Z such that
a =

∑d
i=1 xihi.

1: for i = d down 1 do
2: if ai is not divisible by hi,i then
3: return a 6∈ L
4: else
5: xi ←− ai/hi,i
6: a←− a− xihi
7: end if
8: end for
9: return a ∈ L and (x1, . . . , xd).

Definition 2.1 Let L be a lattice in Rn. The dual lattice of L is defined
as:

L× = {y ∈ span(L) such that〈x,y〉 ∈ Z for all x ∈ L}.

Theorem 2.2 If L is a d-rank lattice of Rn, then L× is a d-rank lattice of
Rn. If B = (b1, . . . ,bd) is a (row) basis of L, then (BBt)−1B is a (row)
basis of L×, called the dual basis of B. And

covol(L)× covol(L×) = 1.

Proof. By definition, L× is a subgroup of Rn. Let (b1, . . . ,bd) be a basis of
a lattice L. Let y ∈ L× be non-zero. Then y ∈ span(L) and 〈y,bi〉 ∈ Z for
all 1 ≤ i ≤ d. Since y 6= 0, there exists i ∈ {1, . . . , d} such that |〈y,bi〉| ≥ 1.
By Cauchy-Schwarz, this implies that ‖y‖ ≥ 1/‖bi‖. Hence, we proved that
the intersection of L× with the open ball of radius mini 1/‖bi‖ is equal to
{0}. This shows that L× is discrete, and therefore a lattice in Rn.

Let y ∈ L×. Then 〈y,bi〉 ∈ Z for all 1 ≤ i ≤ d. So yBt ∈ Zd.
Since L× ⊆ span(L), there exists x ∈ Rd such that y = xB. Therefore
xBBt ∈ Zd, which means that x ∈ Zd(BBt)−1, thus y ∈ Zd(BBt)−1B.
Reciprocally, each row of (BBt)−1B belongs to L×. Hence, (BBt)−1B is a
(row) basis of L× and rank(L×) = d.

It follows that:

covol(L×)2 = det(BBt)−1B[(BBt)−1B]t = det(BBt)−1 = 1/covol(L)2.

Lecture 2: Fundamental Lattice Algorithms 7

ut
Duality also allows to consider sublattices of lower dimension, which can be
used in proofs by induction. For instance, if L is a d-rank lattice and v is a
non-zero vector of L×, then L ∩H is a (d − 1)-rank sublattice of L, where
H = v⊥ denotes the hyperplane orthogonal to v. And the projection of L
over H⊥ = span(v) is Zv/‖v‖2.

3 Gram-Schmidt orthogonalization

Gram-Schmidt orthogonalization is a classical tool in bilinear algebra to
construct orthogonal bases: it is also widely used in lattice algorithms.

Definition 3.1 Let b1, . . . ,bd be vectors in Rn. Their Gram-Schmidt or-
thogonalization (GSO) is the sequence (b?1, . . . ,b

?
d) defined as follows: b?1 =

b1 and more generally b?i = πi(bi) for 1 ≤ i ≤ d, where πi denotes the
orthogonal projection over the orthogonal supplement of the linear span of
b1, . . . ,bi−1, which means that πi(x) is the component of x which is orthog-
onal to b1, . . . ,bi−1.

Notice that the GSO depends on the order of the vectors. We start with
elementary properties:

Theorem 3.2 Let b1, . . . ,bd be vectors in Rn, with Gram-Schmidt orthog-
onalization (b?1, . . . ,b

?
d). Then:

1. For all 1 ≤ i ≤ d, span(b?1, . . . ,b
?
i) = span(b1, . . . ,bi).

2. For all i 6= j, 〈b?i ,b?j 〉 = 0.

3. The b?i ’s which are non-zero are linearly independent.

4. For 1 ≤ j < i ≤ d, let µi,j =
〈bi,b

?
j 〉

‖b?
j‖

2 if b?j 6= 0, and zero otherwise.

Then we have the recursive fomula:

b?i = bi −
i−1∑
j=1

µi,jb
?
j , 1 ≤ i ≤ d (1)

5. vol(b1, . . . ,bd) =
∏d
i=1 ‖b?i ‖.

Lecture 2: Fundamental Lattice Algorithms 8

6. We have for all 1 ≤ i ≤ d:

‖bi‖2 = ‖b?i ‖2 +

i−1∑
j=1

µ2i,j‖b?j‖2 (2)

7. If 1 ≤ j < i ≤ d and b?j 6= 0, then:

µi,j =
〈bi,bj〉 −

∑j−1
k=1 µj,k µi,k‖b

?
k‖2

‖b?j‖2
(3)

Proof. The first two items follow from the definition b?i = πi(bi). The third
item follows from the second item. Let 1 ≤ i ≤ d. If i = 1, there is nothing
to prove, so assume that i ≥ 2. Then bi − b?i ∈ span(b1, . . . ,bi−1) =
span(b?1, . . . ,b

?
i−1). Because of item 3), there exist x1, . . . , xi−1 ∈ R such

that bi − b?i =
∑i−1

j=1 xjb
?
j . If 1 ≤ j < i, by taking the inner product with

b?j , and using item 2), we obtain that 〈bi,b?j 〉 = xj‖b?j‖2. If b?j 6= 0, this
shows that xj = µi,j . This proves (1). The fifth item follows from (1): the
Gram determinant of b1, . . . ,bd is equal to that of b?1, . . . ,b

?
d, which is the

product of the ‖b?i ‖2 by orthogonality. The equation (2) follows from (1)
and orthogonality of the b?i ’s. And (3) follows by plugging (1) in the formula
for µi,j . ut

The HNF allowed us to work with triangular bases. The Gram-Schmidt
orthogonalization is widely used in lattice reduction because it also al-
lows us to triangularize the basis, in a different way. More precisely, the
family (b?1/‖b?1‖, . . . ,b?d/‖b?d‖) is an orthonormal basis of Rn. And if we
express the row vectors b1, . . . ,bd with respect to the orthonormal basis
(b?1/‖b?1‖, . . . ,b?d/‖b?d‖) (rather than the canonical basis), we obtain the fol-
lowing lower-triangular matrix, with diagonal coefficients ‖b?1‖, . . . , ‖b?d‖:

‖b?1‖ 0 . . . 0

µ2,1‖b?1‖ ‖b?2‖
. . .

. . .
. . .

...
...

. . .
. . . 0

µd,1‖b?1‖ . . . µd,d−1‖b?d−1‖ ‖b?d‖

(4)

This can be summarized by the matrix equality B = µB?, where B is the
d× n matrix whose rows are b1, . . . ,bd, B

? is the d× n matrix whose rows
are b?1, . . . ,b

?
d, and µ is the d×d lower-triangular matrix, whose diagonal co-

efficients are all equal to 1, and whose off-diagonal coefficients are the µi,j ’s.

Lecture 2: Fundamental Lattice Algorithms 9

The basis triangularization could have been obtained with other factoriza-
tions. For instance, if we had used Iwasa’s decomposition of the row matrix
B corresponding to (b1, . . . ,bd), we would have obtained B = UDO where
U is a lower-triangular matrix with unit diagonal, D is diagonal, and O is
an orthogonal matrix. In other words, U would be the matrix defined by the
µi,j ’s (lower-triangular with unit diagonal, where the remaining coefficients
are the µi,j ’s), D would be the diagonal matrix defined by the ‖b?i ‖’s, and
O would be the row representation of (b?1/‖b?1‖, . . . ,b?d/‖b?d‖).

3.1 Relationship with Duality

Gram-Schmidt orthogonalization is related to duality.
For any i ∈ {2, . . . , d}, the vector b?i /‖b?i ‖2 is orthogonal to b1, . . . ,bi−1,

and we have 〈b?i /‖b?i ‖2,bi〉 = 1, which implies that:

b?i /‖b?i ‖2 ∈ L(b1, . . . ,bi)
×.

3.2 Computing Gram-Schmidt

The formulas (1), (2) and (3) proves the following by induction:

Lemma 3.3 If bi ∈ Qn, then its GSO satisfies: b?i ∈ Qn, µi,j ∈ Q and
‖b?i ‖2 ∈ Q.

It is now natural to ask whether these rational quantities can be computed in
polynomial time. First, we need to find out polynomial-sized denominators.

From now on, we assume that b1, . . . ,bn ∈ Zm and we letM = max1≤i≤n ‖bi‖.
We define the following integers:

• d0 = 1.

• di = Gram(b1, . . . ,bi) =
∏i
j=1 ‖b?j‖2, so 1 ≤ di ≤M2i.

We obtain good denominators as follows:

Theorem 3.4 Let b1, . . . ,bn ∈ Zm. Then for all 1 ≤ j < i ≤ n:

• di−1b
?
i ∈ L(b1, . . . ,bi) ⊆ Zm where ‖di−1b?i ‖ ≤M2i−1.

• λi,j = djµi,j ∈ Z where |λi,j | ≤M2j.

Proof. We may assume that di−1 6= 0, otherwise there is nothing to prove.
Let L = L((b1, . . . ,bi) and denote by L× be its dual lattice. Then

[L× : L] = covol(L)2 = di. By duality, we know that b?i /‖b?i ‖2 ∈ L×, so
[L× : L]b?i /‖b?i ‖2 ∈ L which means that di−1b

?
i ∈ L(b1, . . . ,bi) ⊆ Zm. ut

Lecture 2: Fundamental Lattice Algorithms 10

The integers di’s and λi,j are called the integral Gram-Schmidt orthogonal-
ization of (b1, . . . ,bn):

Theorem 3.5 Given as input linearly independent vectors b1, . . . ,bn ∈
Zm, one can compute in polynomial time the integers di =

∏i
j=1 ‖b?j‖2 and

λi,j = djµi,j by the following formulas:

di = di−1‖bi‖2 −
i−1∑
j=1

di−1λ
2
i,j

djdj−1
(5)

λi,j = dj−1〈bi,bj〉 −
j−1∑
k=1

dj−1 λj,kλi,k
dkdk−1

(6)

Furthermore:

b?i = bi −
i−1∑
j=1

λi,j
dj

b?j (7)

‖b?i ‖2 =
di
di−1

(8)

Proof. (2) can be rewritten as:

‖b?i ‖2 =
di
di−1

= ‖b?i ‖2 −
i−1∑
j=1

µ2i,j‖b?j‖2 = ‖b?i ‖2 −
i−1∑
j=1

λ2i,j
d2j
‖b?j‖2,

which becomes (5) by multiplication by di−1. ut
Equations (5) and (6) can be unified if we let λi,i = di. So let λ0,0 = 1

and for all 1 ≤ i ≤ d, let: λi,i =
∏i
j=1 ‖b∗j‖2 = vol(b1, . . . ,bi)

2 ∈ Z. Then

we let λi,j = µi,jλj,j for all j < i, so that µi,j =
λi,j
λj,j

. Since ‖b?i ‖2 =

λi,i/λi−1,i−1, it follows that the GSO can be derived from the integral ma-
trix λ = (λi,j)1≤i,j≤d. Alg. 4 computes the matrix integral matrix λ =
(λi,j)1≤i,j≤d in polynomial time.

3.3 Size reduction

A basis B of a lattice L is said to be size-reduced if its GSO satisfies: |µi,j | ≤
1/2 for all j < i. From the triangular representation of the basis, it is very
easy to see how to size-reduce a basis in polynomial time (See Alg. 5): the
vectors bi’s are modified, but not their projections b?i . Here, Alg. 5 used the
rational coefficients µi,j , but it is easy to rewrite Alg. 5 using the integral λ
matrix.

Lecture 2: Fundamental Lattice Algorithms 11

Algorithm 4 Integral Gram-Schmidt

Input: A set of d linearly independent vectors [b1, ...,bd] of Zn
Output: The λ matrix of the GSO of [b1, ...,bd].
1: for i = 1 to d do
2: λi,1 ← 〈bi,b1〉
3: for j = 2 to i do
4: S = λi,1λj,1
5: for k = 2 to j − 1 do
6: S ← (λk,kS + λj,kλi,k)/λk−1,k−1
7: end for
8: λi,j ← 〈bi,bj〉λj−1,j−1 − S
9: end for

10: end for

Algorithm 5 Size reduction.

Input: A basis (b1, . . . ,bd) of a lattice L.
Output: The basis (b1, . . . ,bd) becomes size reduced without changing the

Gram-Schmidt vectors.
1: Compute all the Gram-Schmidt coefficients µi,j .
2: for i = 2 to d do
3: for j = i− 1 downto 1 do
4: bi ←− bi − dµi,jcbj
5: for k = 1 to j do
6: µi,k ←− µi,k − dµi,jcµj,k
7: end for
8: end for
9: end for

Lecture 2: Fundamental Lattice Algorithms 12

3.4 Lattice Membership

The HNF allowed us to decide membership, thanks to its triangular form.
We can do the same with the GSO: Alg. 6 is the GSO variant of Alg. 3, and
it works for any integer lattice, not necessarily full-rank. We write Alg. 6
using a rational GSO, but it can easily be adapted with the integral GSO.

Theorem 3.6 Given as input a basis of a lattice L ⊆ Zn and a vector
a ∈ Zn, Alg. 6 runs in polynomial time, and decides if a ∈ L, and if so,
return the decomposition of a with respect to the input basis.

Proof. This is similar arguments as in Alg. 3: one needs to show that each
rational coefficient remains polynomially sized during the loop. ut

Algorithm 6 Lattice membership using the GSO

Input: A basis (b1, . . . ,bd) of an integer lattice L ⊆ Zn and a vector a ∈ Zn.
Output: Decide if a ∈ L, and if so, return x1, . . . , xd ∈ Z such that

a =
∑d

i=1 xibi.
1: Compute the GSO of (b1, . . . ,bd,a) using Alg. 4.
2: for i = d downto 1 do
3: if µd+1,i 6∈ Z then
4: return a 6∈ L
5: else
6: xi ←− µd+1,i

7: a←− a− xibi
8: for k = 1 to i− 1 do
9: µd+1,k ←− µd+1,k − xiµi,k // Update the GSO

10: end for
11: end if
12: end for
13: if a = 0 then
14: return a ∈ L and (x1, . . . , xd).
15: else
16: return a 6∈ L
17: end if

4 Computing a basis

We present two algorithms to compute a lattice basis from generators.

Lecture 2: Fundamental Lattice Algorithms 13

4.1 Computing a basis with swaps

The first algorithm is Alg. 7, which iteratively modifies the sequence (b1, . . . ,bn)
of generators given as input. It uses two indices j and z such that: b1, . . . ,bz
are zero vectors, but bz+1, . . . ,bj−1 are linearly independent. At the end of
the algorithm, j−1 = n, which implies that (bz+1, . . . ,bn) is a basis. It can
be checked that if the input matrix is actually a basis, then the algorithm
returns the same basis. The main result on Alg. 7 is the following:

Theorem 4.1 Given as input a row integral matrix B0, Alg. 7 runs in time
polynomial in the size of B0, and outputs a basis B of the lattice L spanned
by the rows of B0 such that ‖B‖ ≤

√
rank(L)‖B0‖. where ‖.‖ denotes the

maximal row norm.

Proof. Let L be the lattice spanned by the rows of the input matrix B0.
It can easily be checked that during the algorithm, we always have L =
L(b1, . . . ,bn), i.e. the bi’s generate L.

We first prove the correctness of the algorithm. To do so, note that the
following invariants hold at Steps 3 and 22:

1. j ≥ z + 2

2. If 1 ≤ i ≤ z, then bi = 0.

3. If z < i < j, then b?i 6= 0.

Property 1 is obvious. Property 2 holds initially when z = 0, and the only
operation which increases z is Step 17, where a zero vector is inserted at
index z + 1. Property 3 also holds initially when j = 2 because the input
b1 6= 0: the only operations which can change j are Steps 4 and 20. Step 4
preserves 3 by definition. For Step 20, b?j−1 and b?j have been changed:
either j decreases which preserves 3 no matter, or j = z + 2, which implies
that bz+1 has been replaced by bj 6= 0, and therefore b?z+1 = bj 6= 0 which
proves 3. Now if the algorithm terminates, then j = n + 1: 3 implies that
bz+1, . . . ,bn are linearly independent, and together with 2, it implies that
they form a basis of L: hence, the output returned by Step 24 is indeed a
basis of L.

Next, we study the running time of the algorithm. We consider the
potential D = DL ×DR where:

DL =

dim(L)∏
i=1

di and DR =
∏

‖Starbi‖=0

2i.

Lecture 2: Fundamental Lattice Algorithms 14

with di the product of the i first non-zero ‖b?i ‖2’s. It is known that the di’s
are strictly positive integers, and so are therefore DL, DR and D.

We use D to upper bound the number of iterations of the while loop,
and we study the evolution of ‖B?‖. Initially, we have:

D ≤ ‖B0‖dim(L)22n
2

and ‖B?‖ ≤ ‖B0‖.
Since size-reduction does not change the Gram-Schmidt vectors, the only
operations which can change D or ‖B?‖ are Steps 14-17 (then) and Step 19.

Steps 14-17 do not change DL, but they decrease DR by a multiplicative
factor ≥ 2: indeed, 1 implies that at least one non-zero vector is moved, and
a zero vector is inserted at index z + 2. Thus, Steps 14-17 decrease D by a
multiplicative factor ≥ 2, and they do not change ‖B∗‖.

Now, consider the effect of Step 19 on the Gram-Schmidt vectors:

• The new b?j−1 is µj,j−1b
?
j−1 where |µj,j−1| ≤ 1/2 by size-reduction.

• The new b?j is either zero if µj,j−1 6= 0, or b?j−1 otherwise.

• All the other Gram-Schmidt vectors are preserved.

This implies that Step 19 cannot increase ‖B?‖, and there are two cases:

• If µj,j−1 6= 0, then DL decreases by a multiplicative factor≥ 4 (because
0 < µ2j,j−1 ≤ 1/4) and DR increases by a factor 2.

• Otherwise µj,j−1 = 0, which preserves DL, but decreases DR decreases
by a multiplicative factor 2.

To summarize, ‖B?‖ never increases, and D decreases by a multiplicative
factor ≥ 2 at each Step. 5. This proves that the number of loop iterations is
upper bounded by O(log ‖B0‖dim(L)22n

2
), which is polynomial in size(B0).

It remains to bound the cost of each iteration.
The only operation which can change ‖B‖ is the size-reduction (Step. 6):

at this point, we know that b?j = 0, therefore bj =
∑j−1

i=1 µj,ib
?
i where |µj,i| ≤

1/2 and the b?i ’s are pairwise orthogonal, thus ‖bj‖ ≤ ‖B?‖
√

dim(L)/2
because at most dim(L) coefficients µj,i’s are non-zero. Hence, we always
have:

‖B‖ ≤
√

dim(L)× ‖B0‖.
This shows that the size of the bi’s is always polynomial in size(B0), and it
follows that each loop iteration runs in time polynomial in size(B0). ut
Alg. 7 has many applications: for instance, it can be used to extend a
primitive set to a lattice basis: if E is a subspace and L is a lattice, then
E ∩L is a sublattice such that any Z-basis of E ∩L is a primitive set, which
means that it can be extended into a Z-basis of L.

Lecture 2: Fundamental Lattice Algorithms 15

4.2 Computing a basis with XGCDs

In the lecture, we presented a faster variant of Alg. 7, where we collect several
operations together: instead of doing a series of size reductions and swaps,
we perform a series of transformations (based on XGCD) and size-reduction.
This is very similar to the Incremental HNF approach of Alg. 1. In Alg. 8,
we are given a basis (b1, . . . ,bd) of an integer lattice L ⊆ Zn and a vector
bd+1 ∈ Zn, and we want to obtain a basis of the augmented lattice L+Zbd+1.
We may assume that b?d+1 = 0, otherwise we already know a basis. In
Alg. 1, we canceled the last coordinate by applying a well-chosen unimodular
transform over the last two vectors, based on the XGCD algorithm: here, we
want to cancel the projection π over span(b1, . . . ,bd−1)

⊥. Initially, we have

π(bd) = b?d and π(bd+1) = µd+1,db
?
d =

λd+1,d

λd,d
b?d. After transforming bd and

bd+1, we want π(bd) = 0 and π(bd+1) 6= 0. This gives rise to Alg. 8, whose
similarity with Alg. 1 is direct. We immediately obtain a basis algorithm by
iterating the algorithm:

Theorem 4.2 Given as input a row integral matrix A, Alg. 9 runs in time
polynomial in the size of A, and outputs a basis B of the lattice L spanned
by the rows of A such that ‖B‖ ≤

√
rank(L)‖A‖. where ‖.‖ denotes the

maximal row norm.

Lecture 2: Fundamental Lattice Algorithms 16

Algorithm 7 Computing a basis of a lattice given by generators

Input: A row matrix B = (b1, . . . ,bn) ∈ Zn×m such that b1 6= 0.
Output: A basis of the lattice L = L(b1, . . . ,bn) spanned by the rows of

B.
1: z ← 0, j ← 2
2: while j ≤ n do
3: if b∗j 6= 0 then
4: j ← j + 1
5: else
6: Size-reduce bj {with respect to the previous vectors

(bz+1, . . . ,bj−1) as follows}.
7: for i = j − 1 downto z + 1 do
8: bj ←− bj − dµj,icbi
9: for k = 1 to j − 1 do

10: µj,k ←− µj,k − dµj,icµj,k
11: end for
12: end for
13: if bj = 0 then
14: for i = j downto z+ 2 {move bj to the front, and shift the rest}

do
15: bi ← bi−1
16: end for
17: bz+1 ← 0, j ← j + 1; z ← z + 1 {We have found one more

zero-vector}
18: else
19: Swap bj−1 and bj
20: j ← max{z + 2, j − 1}
21: end if
22: end if
23: end while
24: return (bz+1, . . . ,bn)

Lecture 2: Fundamental Lattice Algorithms 17

Algorithm 8 Incremental Basis.

Input: A basis (b1, . . . ,bd) of an integer lattice L ⊆ Zn and a vector bd+1 ∈
Zn.

Output: A basis of the augmented lattice L+ Zbd+1.
1: Compute the λ-GSO of (b1, . . . ,bd+1)
2: if b?d+1 6= 0, i.e. λd+1,d 6= 0 then
3: return (b1, . . . ,bd+1)
4: else
5: Compute the transformation U from Lemma 1.2 such that

U

(
λd,d
λd+1,d

)
=

(
0

gcd(λd,d, λd+1,d)

)
.

6:

(
bd

bd+1

)
←− U

(
bd

bd+1

)
7: if d = 1 then
8: return bd+1

9: else
10: // Size-reduce bd and bd+1

11: for i = d− 1 downto 1 do
12: bd ←− bd − dµd,icbi
13: for k = 1 to i− 1 do
14: µd,k ←− µd,k − dµd,icµi,k
15: end for
16: end for
17: for i = d downto 1 do
18: bd+1 ←− bd+1 − dµd+1,icbi
19: for k = 1 to i− 1 do
20: µd+1,k ←− µd+1,k − dµd+1,icµi,k
21: end for
22: end for
23: Call recursively Incremental Basis on (b1, . . . ,bd−1) and bd
24: return The row concatenation of the output with bd+1.
25: end if
26: end if

Lecture 2: Fundamental Lattice Algorithms 18

Algorithm 9 Computing a basis incrementally.

Input: Integral vectors (a1, . . . ,am) in Zn.
Output: A Z-basis of the lattice L spanned by the ai’s.
1: Make a1 6= 0 by removing all the front zero vectors.
2: Let B = a1 be an 1× n matrix.
3: for i = 2 to m do
4: Call Alg. 8 on (B,ai): the output is the new B.
5: end for
6: Return B

