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Lecture 1: Introduction to Lattices

1 Background

We consider Rn with its usual topology of an Euclidean vector space. We will
use bold letters to denote vectors, usually in row notation. The Euclidean
inner product of two vectors x = (xi)

n
i=1 and y = (yi)

n
i=1 is denoted by:

〈x,y〉 =
n∑
i=1

xiyi.

The corresponding Euclidean norm is denoted by:

‖x‖ =
√
x21 + · · ·+ x2n.

Denote by B(x, r) the open ball of radius r centered at x:

B(x, r) = {y ∈ Rn : ‖x− y‖ < r}.

A subset D of Rn is called discrete when it has no limit point, that is: for
all x ∈ D, there exists ρ > 0 such that B(x, ρ) ∩D = {x}. As an example,
Zn is discrete (because ρ = 1/2 works), while Qn and Rn are not. The set
{1/n : n ∈ N∗} is discrete, but the set {0} ∪ {1/n : n ∈ N∗} is not. Any
subset of a discrete set is discrete.

For any ring R, we denote byMn,m(R) (resp. Mn(R)) the set of n×m
(resp. n× n) matrices with coefficients in R. GLn(R) denotes the group of
invertible matrices in the ring Mn(R).

For any subset S of Rn, we define the linear span of S, denoted by
span(S), as the minimal vector subspace (of Rn) containing S. And we
denote by S⊥ the subspace orthogonal to span(S):

S⊥ = {y ∈ Rn : 〈x,y〉 = 0 for all x ∈ S}.

Let b1, . . . ,bm be in Rn. The vectors bi’s are said to be linearly depen-
dent if there exist x1, . . . , xm ∈ R which are not all zero and such that:

m∑
i=1

xibi = 0.
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Otherwise, they are said to be linearly independent.
The Gram determinant of b1, . . . ,bm ∈ Rn, denoted by ∆(b1, . . . ,bm),

is by definition the determinant of the Gram matrix (〈bi,bj〉)1≤i,j≤m. This
real number ∆(b1, . . . ,bm) is always ≥ 0, and it turns out to be zero if and
only if the bi’s are linearly dependent. The Gram determinant is invariant by
any permutation of the m vectors, and by any integral linear transformation
of determinant ±1 such as adding to one of the vectors a linear combination
of the others. The Gram determinant has a very useful geometric inter-
pretation: when the bi’s are linearly independent,

√
∆(b1, . . . ,bm) is the

m-dimensional volume of the parallelepiped spanned by the bi’s.

2 Lattices

We call lattice of Rn any discrete subgroup of (Rn,+); that is any subgroup
of (Rn,+) which has the discreteness property. We remark that a group is
discrete if and only if 0 is not a limit point:

Lemma 2.1 Let L be a subgroup of (Rn,+). Then L is discrete if and only
if there exists ρ > 0 such that L ∩B(0, ρ) = {0}.

Proof. By definition, we only need to prove the converse. Let L be a
subgroup of (Rn,+) such that L ∩ B(0, ρ) = {0}. We claim that for all
x ∈ L, L ∩ B(x, ρ) = {x}. Let x ∈ L and y ∈ L ∩ B(x, ρ). Because L
is a group, we have y − x ∈ L. But we also have ‖y − x‖ < ρ because
y ∈ B(x, ρ). Therefore y − x ∈ L ∩ B(0, ρ) = {0}, so y = x. This shows
that L is discrete. ut
Thus, a lattice is any non-empty set L ⊆ Rn stable by subtraction (in
other words: for all x and y in L, x − y belongs to L), and such that
L ∩B(0, ρ) = {0} for some ρ > 0.

With this definition, the first examples of lattices which come to mind
are the zero lattice {0} and the lattice of integers Zn. Our definition implies
that any subgroup of a lattice is a lattice, and therefore, any subgroup of
(Zn,+) is a lattice. Such lattices are called integral lattices. As an example,
consider two integers a and b ∈ Z: the set aZ + bZ of all integral linear
combinations of a and b is a subgroup of Z, and therefore a lattice; it is
actually the set gcd(a, b)Z of all multiples of the gcd of a and b. For another
example, consider n integers a1, . . . , an, together with a modulus M . Then
the set of all (x1, . . . , xn) ∈ Zn such that

∑n
i=1 aixi ≡ 0 (mod M) is a lattice

in Zn because it is clearly a subgroup of Zn.
We give a few basic properties of lattices:
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Proposition 2.2 Let L be a lattice in Rn.

1. There exists ρ > 0 such that for all x ∈ L:

L ∩B(x, ρ) = {x}.

2. L is closed.

3. For all bounded subsets S of Rn, L ∩ S is finite.

4. L is countable.

Proof. Property 1 follows from Lemma 2.1. It follows that any convergent
sequence of L is stationary, which proves property 2. If S is a bounded
subset, it must be included in some closed ball B. The set L ∩ B is closed
and bounded, thus compact. Suppose ad absurdum that L ∩ S is infinite:
there is an injective sequence (xi)i in L ∩ S. By compacity, we may extract
a convergent injective sequence (yi)i in L∩S, which contradicts property 1.
This proves property 3. Since Rn is the union of all B(0, r) for r ∈ N, we
obtain property 4. ut
Notice that a set which satisfies either property 1 or 3 is necessarily discrete,
but an arbitrary discrete subset of Rn does not necessarily satisfy property
1 nor 3. It is the group structure of lattices which allows such additional
properties.

2.1 The rank

We define the dimension or rank of a lattice L, denoted by rank(L), as the
dimension d of its linear span denoted by span(L). The rank is the maximal
number of linearly independent lattice vectors. If rank(L) ≥ 1, Prop. 2.2
allows to define the first minimum λ1(L) of L as the shortest non-zero norm
of a lattice vector:

λ1(L) = min
x∈L,x 6=0

‖x‖.

It is useful to know what rank-one lattices look like:

Lemma 2.3 Let L be a rank-one lattice in Rn. There exists a non-zero
v ∈ L such that L = Zv.

Proof. There exists v ∈ L such that ‖v‖ = λ1(L). We have Zv ⊆ L because
L is a group. Reciprocally, let w ∈ L. Because span(L) = span(v), there
exists µ ∈ R such that w = µv. Then w − bµev ∈ L because L is a group,
where bµe denotes an integer closest to µ. And ‖w−bµev‖ = ‖(µ−bµe)v‖ ≤
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1
2‖v‖. Since ‖v‖ = λ1(L), this implies that µ = bµe, so µ ∈ Z. This proves
L ⊆ Zv, and therefore the equality. ut
The projection of a lattice may not be discrete, but any set of linearly
independent lattice vectors induces by projection a lattice of lower rank, as
follows:

Theorem 2.4 Let L be a d-rank lattice in Rn. Let v1, . . . ,vk ∈ L be lin-
early independent: 1 ≤ k ≤ d. Let π be the orthogonal projection over
span(v1, . . . ,vk)

⊥. Then π(L) is a lattice of rank d− k.

Proof. Since π(L) is a subgroup of Rn, it suffices to prove that 0 is not a
limit point. Suppose ad absurdum that there exists an injective sequence
(π(xi))i converging to 0, where xi ∈ L. By definition of the projection, we
have:

‖xi‖2 = ‖π(xi)‖2 + ‖xi − π(xi)‖2.

Here, the left term ‖π(xi)‖2 is bounded because it converges to zero. And we
note that the right term ‖xi−π(xi)‖2 can always be made ≤ (

∑n
j=1 ‖vj‖)2.

Indeed, xi − π(xi) ∈ span(v1, . . . ,vk), so there exist real numbers t1, . . . , tk
such that:

xi − π(xi) =

k∑
j=1

tjvj .

By subtracting
∑n

j=1btjcvj to xi, we make the tj ’s belong to [0, 1], so that
‖xi−π(xi)‖ ≤

∑n
j=1 ‖vj‖, without changing π(xi) nor the fact that xi ∈ L.

Thus, the sequence (xi)i of lattice vectors can be made bounded, so it cannot
be injective by Prop. 2.2, which contradicts the injectivity of (π(xi))i.

ut

2.2 Lattice bases

Let b1, . . . ,bm be arbitrary vectors in Rn. Denote by L(b1, . . . ,bm) the set
of all integral linear combinations of the bi’s:

L(b1, . . . ,bm) =

{
m∑
i=1

nibi : n1, . . . , nm ∈ Z

}

This set is a subgroup of Rn, but it is not necessarily discrete. For instance,
one can show that L((1), (

√
2)) is not discrete because

√
2 6∈ Q. However,

notice that if the bi’s are in Qn, then L(b1, . . . ,bm) is discrete, and so is
a lattice. When L = L(b1, . . . ,bm) is a lattice, we say that L is spanned
by the bi’s, and that the bi’s are generators. When the bi’s are further
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linearly independent, we say that (b1, . . . ,bm) is a basis of the lattice L,
in which case each lattice vector decomposes itself uniquely as an integral
linear combination of the bi’s.

Theorem 2.5 Let b1, . . . ,bd ∈ Rn be linearly independent. Then the set
L(b1, . . . ,bd) is a lattice of rank d.

Proof. Let L = L(b1, . . . ,bd). Since L is a subgroup of Rn, it suffices to
show that 0 is not a limit point of L. Suppose ad absurdum that 0 is a
limit point: there is an injective sequence (xm)m converging to 0. Each xm
decomposes uniquely as xm = ymB, where B is the row matrix representing
the bi’s, and ym ∈ Zd. By expressing ym with respect to xm, one sees
that (ym) must converge to 0, which implies that (ym) is stationary, which
contradicts the injectivity of (xm).

Since the bi’s are linearly independent, the rank is exactly d. ut
Bases and sets of generators are useful to represent lattices, and to per-

form computations. One will typically represent a lattice on a computer
by some lattice basis, which can itself be represented by a matrix with real
coefficients. In practice, one will usually restrict to integral lattices, so that
the underlying matrices are integral matrices.

Any lattice basis of L must have exactly d elements. There always exist d
linearly independent lattice vectors, however such vectors do not necessarily
form a basis, as opposed to the case of vectors spaces. But the following
theorem shows that one can always derive a lattice basis from such vectors:

Theorem 2.6 Let L be a d-rank lattice of Rn. Let c1, . . . , cd be linearly
independent vectors of L. There exists a lower triangular matrix (ui,j) ∈
Md(R) such that |ui,i| ≤ 1 and the vectors b1, . . . ,bd defined as bi =∑i

j=1 ui,jcj form a basis of L.

Proof. We present two proofs.
The first proof is due to Siegel. Let 1 ≤ i ≤ d. Consider the following

set:

Si =

xi ∈]0, 1] : ∃x1, . . . , xi−1 ∈ R such that

i∑
j=1

xjcj ∈ L

 .

This set is actually finite because xi ∈ Si implies that xici +
∑i−1

j=1(xj −
bxjc)cj belongs to L∩B(0,

∑i
j=1 ‖cj‖) which is finite. And Si is not empty

since it contains 1, therefore it has a smallest element which is strictly
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positive, and which we denote by ui,i ∈)0, 1]. By definition, there exist
ui,1, . . . , ui,i−1 ∈ R such that bi =

∑i
j=1 ui,jcj ∈ L.

It remains to prove that the bi’s form a basis. Since ui,i > 0, the
bi’s are linearly independent. Now, let y ∈ L. Since the bi’s are linearly
independent, there exist y1, . . . , yn ∈ R such that y =

∑d
i=1 yibi. Define

x =
∑d

i=1 xibi where xi = yi − byic. We have x ∈ L and 0 ≤ xi < 1.
Suppose ad absurdum that not all the yi’s are integral: let k be the largest
index such that yk 6∈ Z. Then xk > 0 and xi = 0 if i > k. Thus:

x = uk,kxkck +

k−1∑
j=1

uk,jxkcj +

k−1∑
i=1

xi

i∑
j=1

ui,jcj .

Since 0 < xk < 1, 0 < uk,kxk < uk,k which contradicts the fact that uk,k is
the smallest element of Sk.

We now give a second proof. For all 1 ≤ i ≤ d, let Ei = span(c1, . . . , ci)
and Li = Ei ∩ L. Clearly, each Ei is an i-dimensional subspace, and each
Li is a lattice of rank i. By Lemma 2.3, L1 is of the form L1 = Zb1 where
‖b1‖ ≤ ‖c1‖. We claim that if (b1, . . . ,bi−1) is a basis of Li−1 for some
i ≥ 2, then there exists bi ∈ Li such that bi 6∈ Li−1 and (b1, . . . ,bi) is a
basis of Li. Consider the orthogonal projection πi over E⊥i−1. By Th. 2.4,
πi(Li) is a rank-one lattice, so by Lemma 2.3 it is of the form Zπi(bi) for
some bi ∈ Li. We must have bi 6∈ Li−1, otherwise πi(bi) = 0. It remains to
prove that (b1, . . . ,bi) is a basis of Li. They are clearly linearly independent.
Let v ∈ Li. Then there exists xi ∈ Z such that πi(v) = xiπi(bi). Therefore
πi(v − xibi) = 0, so v − xibi ∈ Ei−1. And by definition, v − xibi ∈ L, so
v − xibi ∈ L ∩ Ei−1 = Li−1. Thus, there exist x1, . . . , xi−1 ∈ Z such that:

v − xibi =
i−1∑
j=1

xjbj ,

and therefore

v =
i∑

j=1

xjbj .

Hence, we proved that (b1, . . . ,bi) is a basis of Li. By iterating the process,
starting with b1, we showed the existence of b2, . . . ,bd such that (b1, . . . ,bi)
is a basis of Li for all i. Because πi(Li) is a rank-one lattice generated by
bi ∈ Li, we have ‖πi(bi)‖ ≤ ‖πi(ci)‖, which implies that |ui,i| ≤ 1. ut
This gives the unconditional existence of lattice bases:

Corollary 2.7 Any lattice of Rn has at least one basis.
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Proof. We could have applied the previous result. Instead, we are going to
do a proof by induction on the rank of the lattice. Lemma 2.3 allows to
initialize the induction. Let L be a d-rank lattice. Let v ∈ L be non-zero.
The intersection span(v) ∩ L is a rank-one lattice, so is of the form Zb1 by
Lemma 2.3. Let π be the orthogonal projection over v⊥. By Th. 2.4, π(L)
is a lattice of rank d − 1, so by induction, we may assume it has a basis
(π(b2), . . . , π(bd)).

We claim that (b1, . . . ,bd) is a basis of L. Clearly, the bi’s are linearly
independent. Let u ∈ L. There exist x2, . . . , xd ∈ Z such that:

π(u) =
d∑
j=2

xjπ(bj).

Thus, u−
∑d

j=2 xjbj ∈ span(v) ∩ L = Zb1, so there is x1 ∈ Z such that

u−
d∑
j=2

xjbj = x1b1.

This shows that u is an integral linear combination of the bi’s. ut
Thus, even if sets of the form L(b1, . . . ,bm) may or may not be lattices, all
lattices can be written as L(b1, . . . ,bm) for some linearly independent bi’s.
Corollary 2.7 together with Theorem 2.5 give an alternative definition of a
lattice: a non-empty subset L of Rn is a lattice if only if there exist linearly
independent vectors b1,b2, . . . ,bd in Rn such that:

L = L(b1, . . . ,bd).

This characterization suggests that lattices are discrete analogues of vector
spaces.

Lattice bases are characterized by the following elementary result, whose
proof is omitted:

Theorem 2.8 Let (b1, . . . ,bd) be a basis of a lattice L in Rn. Let c1, . . . , cd
be vectors of L: there exists a d×d integral matrix U = (ui,j)1≤i,j≤d ∈Md(Z)

such that ci =
∑d

j=1 ui,jbj for all 1 ≤ i ≤ d. Then (c1, . . . , cd) is a basis of
L if and only if the matrix U has determinant ±1.

As a result, as soon as the lattice dimension is ≥ 2, there are infinitely many
lattice bases.
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2.3 The covolume

Let (b1, . . . ,bd) and (c1, . . . , cd) be two bases of a lattice L in Rn. By
Theorem 2.8, there exists a d×d integral matrix U = (ui,j)1≤i,j≤d ∈Md(Z)

of determinant ±1 such that ci =
∑d

j=1 ui,jbj for all 1 ≤ i ≤ d. It follows
that the Gram determinant of those two bases are equal:

∆(b1, . . . ,bd) = ∆(c1, . . . , cd) > 0.

The covolume (or determinant) of the lattice L is defined as:

covol(L) = ∆(b1, . . . ,bd)
1/2,

which is independent of the choice of lattice basis (b1, . . . ,bd). For full-rank
lattices, the covolume has the following elementary properties:

Lemma 2.9 Let L be a full-rank lattice in Rn. Then:

1. For any basis (b1, . . . ,bn) of L, covol(L) = | det(b1, . . . ,bn)|.

2. For any r > 0, denote by sL(r) denote the number of x ∈ L such that
‖x‖ ≤ r. Let vn(r) be the volume of the ball of radius r in Rn. Then:

lim
r→∞

sL(r)

vn(r)
= 1/covol(L).

Proof. The first item follows from ∆(b1, . . . ,bd) = det(BBt) = (detB)2

because B is square.
Let B(r) be the (centered) open ball of radius r in Rn. Let P =

{
∑n

i=1 xibi,−1/2 < xi ≤ 1/2}. Note that the sets v + P form a parti-
tion of Rn as v runs over L, and each cell v +P has measure covol(L). Let
v ∈ B(r) ∩ L. Then:

v + P ⊆ B(r +
n∑
i=1

‖bi‖/2).

It follows that:

sL(r)covol(L) ≤ vol(B(r +

n∑
i=1

‖bi‖/2)) = vn(r +

n∑
i=1

‖bi‖/2).

Hence:

sL(r) ≤
vn(r +

∑n
i=1 ‖bi‖/2)

covol(L)
.
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On the other hand, if r ≥
∑n

i=1 ‖bi‖/2:

B(r −
n∑
i=1

‖bi‖/2) ⊆ ∪v∈B(r)∩Lv + P.

Indeed, if w ∈ B(r −
∑n

i=1 ‖bi‖/2) and w ∈ v + P then v ∈ w − P so
‖v‖ ≤ r. Thus:

sL(r)covol(L) ≥ vol(B(r −
n∑
i=1

‖bi‖/2)) = vn(r −
n∑
i=1

‖bi‖/2).

We have therefore proved:

vn(r −
∑n

i=1 ‖bi‖/2)

covol(L)
≤ sL(r) ≤

vn(r +
∑n

i=1 ‖bi‖/2)

covol(L)
,

and the result follows. ut
The second statement of Lemma 2.9 says that, as the radius r grows to
infinity, the number of lattice vectors inside the ball (centered at zero) of
radius r is asymptotically equivalent to the ratio between the volume of
the n-dimensional ball of radius r and the covolume of the lattice. This
suggests the following heuristic, known as the Gaussian Heuristic: Let L
be a full-rank lattice in Rn, and C be a measurable subset of Rn. The
Gaussian Heuristic “predicts” that the number of points of L∩C is roughly
vol(C)/covol(L). We stress that this is only a heuristic: there are cases
where the heuristic is proved to hold, but there are also cases where the
heuristic is proved to be incorrect.

Given a lattice L, how does one compute the covolume of L? If an
explicit basis of L is known, this amounts to computing a determinant: for
instance, the volume of the hypercubic lattice Zn is clearly equal to one.
But if no explicit basis is known, there is sometimes another way, due to
the following elementary result: if L1 and L2 are two lattices of Rn with the
same dimension such that L1 ⊆ L2, then L2/L1 is a finite group of order
denoted by [L2 : L1] which satisfies

covol(L1) = covol(L2)× [L2 : L1].

As an illustration, consider n integers a1, . . . , an, together with a modulus
M . We have seen in Section 2 that the set L of all (x1, . . . , xn) ∈ Zn such
that

∑n
i=1 aixi ≡ 0 (mod M) is a lattice in Zn because it is a subgroup of

Zn. But there seems to be no trivial basis of L. However, note that L ⊆ Zn
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and that the dimension of L is n because L contains all the vectors of the
canonical basis of Rn multiplied by M . It follows that:

covol(L) = [Zn : L].

Furthermore, the definition of L clearly implies that:

[Zn : L] = M/ gcd(M,a1, a2, . . . , an).

Hence:

covol(L) =
M

gcd(M,a1, a2, . . . , an)
.

2.4 Minkowski’s successive minima and lattice reduction

A fundamental result of linear algebra states that any finite-dimensional
vector space has a basis. We earlier established the analogue result for lat-
tices: any lattice has a basis. In the same vein, a fundamental result of
bilinear algebra states that any finite-dimensional Euclidean space has an
orthonormal basis, that is, a basis consisting of unit vectors which are pair-
wise orthogonal. A natural question is to ask whether lattices also have
orthonormal bases, or at least, orthogonal bases. Unfortunately, it is not
difficult to see that even in dimension two, a lattice may not have an or-
thogonal basis. Informally, the goal of lattice reduction is to circumvent this
problem: more precisely, the theory of lattice reduction shows that in any
lattice, there is always a basis which is not that far from being orthogonal.
Defining precisely what is meant exactly by not being far from being or-
thogonal is tricky, so for now, let us just say that such a basis should consist
of reasonably short lattice vectors, which implies that geometrically, such
vectors are not far from being orthogonal to each other.

In order to explain what is a reduced basis, we need to define what is
meant by short lattice vectors. Let L be a lattice of dimension ≥ 1 in Rn.
There exists a non-zero vector u ∈ L. Consider the closed hyperball B of
radius ‖u‖, centered at zero. Then L∩B is finite and contains u, so it must
have a shortest non-zero vector. The Euclidean norm of that shortest non-
zero vector is called the first minimum of L, and is denoted by λ1(L) > 0 or
‖L‖. By definition, any non-zero vector v of L satisfies: ‖v‖ ≥ λ1(L). And
there exists w ∈ L such that ‖w‖ = λ1(L): any such w is called a shortest
vector of L, and it is not unique since −w would also be a shortest vector.
The kissing number of L is the number of shortest vectors in L: it is upper
bounded by some exponential function of the lattice dimension (see [2]).
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If w is a shortest vector of L, then so is −w. Thus, one must be careful
when defining the second-to-shortest vector of a lattice. To circumvent this
problem, Minkowski [6] defined the other minima as follows. For all 1 ≤ i ≤
dim(L), the i-th minimum λi(L) is defined as the minimum of max1≤j≤i ‖vj‖
over all i linearly independent lattice vectors v1, . . . ,vi ∈ L. Clearly, the
minima are increasing: λ1(L) ≤ λ2(L) ≤ · · · ≤ λd(L). And it is possible to
reach them simultaneously:

Lemma 2.10 Let L be a d-rank lattice in Rn. There exist linearly indepen-
dent lattice vectors v1, . . . ,vd such that ‖vi‖ = λi(L) for all 1 ≤ i ≤ d.

Proof. Assume that for some k < d, v1, . . . , vk ∈ L are linearly independent
and such that : vi = λi(L) for 1 ≤ i ≤ k. Clearly, this holds for k = 1.
Let E be the k-dimensional subspace spanned byv1, . . . , vk. Let vk+1 ∈ L
such that L 6∈ E and has minimal norm among such vectors. We claim that
‖vk+1‖ = λk+1(L).

Since v1, . . . , vk+1 are linearly independent, we know that ‖vk+1‖ ≥
λk+1(L).

On the other hand, there exist linearly independent lattice vectors w1, . . . ,wk+1

inside the ball of radius λk+1(L). Note that at least one wj cannot be-
long to E, otherwise the rank of w1, . . . ,wk+1 would be ≤ k. Therefore
‖vk+1‖ ≤ ‖wk+1‖ ≤ λk+1(L).

So ‖vk+1‖ = λk+1(L). We iterate until k + 1 = d. ut
However, surprisingly, as soon as rank(L) ≥ 4, such vectors do not neces-
sarily form a lattice basis. The canonical example is the 4-rank lattice L
defined as the set of all (x1, x2, x3, x4) ∈ Z4 such that

∑4
i=1 xi is even. It is

not difficult to see that dim(L) = 4 and that all the minima of L are equal
to
√

2. Furthermore, it can be checked that the following row vectors form
a basis of L: 

1 −1 0 0
1 1 0 0
1 0 1 0
1 0 0 1

 .

The basis proves in particular that covol(L) = 2. However, the following
row vectors are linearly independent lattice vectors which also reach all the
minima: 

1 −1 0 0
1 1 0 0
0 0 1 1
0 0 1 −1

 .
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But they do not form a basis, since their determinant is equal to 4: another
reason is that for all such vectors, the sum of the first two coordinates is
even, and that property also holds for any integral linear combination of
those vectors, but clearly not for all vectors of the lattice L. More precisely,
the sublattice spanned by those four row vectors has index two in the lattice
L.

Nevertheless, in the lattice L, there still exists at least one basis which
reaches all the minima simultaneously, and we already gave one such basis.
This also holds for any lattice of rank ≤ 4, but it is no longer true in
dimension ≥ 5, as was first noticed by Korkine and Zolotarev in the 19th
century, in the language of quadratic forms. More precisely, it can easily be
checked that the lattice spanned by the rows of the following matrix

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1


has no basis reaching all the minima (which are all equal to two).

2.5 Hermite’s constant and Minkowski’s theorems

Now that successive minima have been defined, it is natural to ask how
large those minima can be. Hermite [3] was the first to prove that the
quantity λ1(L)/covol(L)1/d could be upper bounded over all d-rank lattices
L. The supremum of λ1(L)2/covol(L)2/d over all d-rank lattices L is de-
noted by γd, and called Hermite’s constant of dimension d, because Her-
mite was the first to establish its existence in the language of quadratic
forms. The use of quadratic forms explains why Hermite’s constant refers
to maxL λ1(L)2/covol(L)2/d and not to maxL λ1(L)/covol(L)1/d. Clearly, γd
could also be defined as the supremum of λ1(L)2 over all d-rank lattices L
of unit volume.

It is known that γd is reached, that is: for all d ≥ 1, there is a d-rank
lattice L such that γd = λ1(L)2/covol(L)2/d, and any such lattice is called
critical. But finding the exact value of γd is a very difficult problem, which
has been central in Minkowski’s geometry of numbers. The exact value of
γd is known only for 1 ≤ d ≤ 8 and for d = 24 (see [1]): the values are
summarized in the following table.

d 2 3 4 5 6 7 8 24

γd 2/
√
3 21/3

√
2 81/5 (64/3)1/6 641/7 2 4

Approximation 1.1547 1.2599 1.4142 1.5157 1.6654 1.8114 2 4
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Furthermore, the list of all critical lattices (up to scaling and isometry) is
known for each of those dimensions.

However, rather tight asymptotical bounds are known for Hermite’s con-
stant. More precisely, we have:

d

2πe
+

log(πd)

2πe
+ o(1) ≤ γd ≤

1.744d

2πe
(1 + o(1)).

For more information on the proof of those bounds: see [5, Chapter II] for
the lower bound (which comes from the Minkowski-Hlawka theorem), and [2,
Chapter 9] for the upper bound. Thus, γd is essentially linear in d. It is
known that γdd ∈ Q (because there is always an integral critical lattice), but
it is unknown if γd is an increasing sequence.

Hermite’s historical upper bound [3] on his constant was exponential in
the dimension:

γd ≤ (4/3)(d−1)/2.

The first linear upper bound on Hermite’s constant is due to Minkowski,
who viewed it as a consequence of his Convex Body Theorem:

Theorem 2.11 (Minkowski’s Convex Body Theorem) Let L be a full-
rank lattice of Rn. Let C be a measurable subset of Rn, convex, symmetric
with respect to 0, and of measure > 2ncovol(L). Then C contains at least a
non-zero point of L.

This theorem is a direct application of the following elementary lemma
(see [8]), which can be viewed as a generalization of the pigeon-hole principle:

Lemma 2.12 (Blichfeldt) Let L be a full-rank lattice in Rn, and F be a
measurable subset of Rn with measure > covol(L). Then F contains at least
two distinct vectors whose difference is in L.

Indeed, we may consider F = 1
2C, and the assumption in Theorem 2.11.

implies that the measure of F is > covol(L). From Blichfeldt’s lemma, it
follows that there exist x and y in F such that x− y ∈ L \ {0}. But

x− y =
1

2
(2x− 2y)

which belongs to C by convexity, and symmetry with respect to 0. Hence:
x− y ∈ C ∩ (L \ {0}), which completes the proof of Theorem 2.11.

One notices that the bound on the volumes in Theorem 2.11 is the best
possible, by considering

C =

{
n∑
i=1

xibi : |xi| < 1

}
,
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where the bi’s form an arbitrary basis of the lattice. Indeed, in this case,
the measure of C is exactly 2ncovol(L), but by definition of C, no non-zero
vector of L belongs to C.

In Theorem 2.11, the condition on the measure of C is a strict inequality,
but it is not difficult to show that the strict inequality can be relaxed to an
inequality ≥ 2ncovol(L) if C is further assumed to be compact. By choosing
for C a closed hyperball of sufficiently large radius (so that the volume
inequality is satisfied), one obtains that any d-rank lattice L of Rn contains
a non-zero x such that

‖x‖ ≤ 2

(
covol(L)

vd

) 1
d

,

where vd denotes the volume of the closed unitary hyperball of Rd. This
upper bound was historically obtained by Minkowski using a packing argu-
ment. Put a hyperball of radius λ1(L)/2 at every lattice point: this is a
packing. On the other hand, Rd is covered by the sets v + P where P is
a basis parallelepiped like in the proof of Lemma 2.9. It follows that the
volume of the hyperball of radius λ1(L)/2 must be less than that of P, which
is covol(L).

Using the well-known formula for vd = πd/2/Γ(1+d/2) where Γ is Euler’s
gamma function, one can derive a linear bound on Hermite’s constant, for
instance:

∀d, γd ≤ 1 +
d

4
.

One can obtain an analogous result for the max-norm:

Theorem 2.13 Let L be a d-rank lattice. Then there exists a non-zero x
in L such that:

‖x‖∞ ≤ covol(L)1/d.

Notice that this bound is reached by L = Zd.
Now that we know how to bound the first minimum, it is natural to ask

if a similar bound can be obtained for the other minima. Unfortunately, one
cannot hope to upper bound separately the other minima, because the suc-
cessive minima could be unbalanced. For instance, consider the rectangular
2-rank lattice L spanned by the following row matrix:(

ε 0
0 1/ε

)
,

where ε > 0 is small. The volume of L is one, and by definition of L, it is
clear that λ1(L) = ε and λ2(L) = 1/ε if ε ≤ 1. Here, λ2(L) can be arbitrarily
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large compared to the lattice volume, while λ1(L) can be arbitrarily small
compared to the upper bound given by Hermite’s constant.

However, it is always possible to upper bound the geometric mean of the
first consecutive minima, as summarized by the following theorem (for an
elementary proof, see [8, 4]):

Theorem 2.14 (Minkowski’s Second Theorem) Let L be a d-rank lat-
tice of Rn. Then for any integer r such that 1 ≤ r ≤ d:(

r∏
i=1

λi(L)

)1/r

≤ √γdcovol(L)1/d.

2.6 The covering radius

Let L be a d-rank lattice in Rn. The covering radius µ(L) is defined as the
maximal distance to the lattice:

µ(L) = sup
t∈span(L)

min
v ∈L

‖t− v‖.

For instance, µ(Zn) =
√
n/4 =

√
n/2 which is much larger than λ1(L)/2 =

1/2. The covering radius is the minimal radius of the ball B such that
the balls v + B cover span(L) when v runs over L. One has the following
elementary bounds:

Theorem 2.15 Let L be a d-rank lattice in Rn. Then:

λd(L)

2
≤ µ(L) ≤

√∑d
i=1 λ

2
i (L)

2
.

2.7 Random Lattices

The upper bound on the first minimum derived from Hermite’s constant is
only tight for critical lattices, which are very special lattices. One might
wonder what happens for more general lattices, say random lattices. But
what is a random lattice? Surprisingly, from a mathematical point of view,
there is a natural (albeit technically involved) notion of random lattice,
which follows from a measure on full-rank lattices with determinant 1 in-
troduced by Siegel [7] back in 1945. This measure is derived from Haar
measures of classical groups. No formal definition of random lattices will be
given here: the interested reader is referred to the theses [?, ?]. Instead, we
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list a few important properties of random lattices, to give more intuition.
We saw in Section 2.5 that an n-rank lattice L satisfies:

λ1(L) ≤ √γncovol(L)1/n ≤
√

1 + n/4covol(L)1/n. (1)

As n grows to infinity, a random n-rank lattice L satisfies with overwhelming
probability:

λ1(L) ≈
√

n

2πe
covol(L)1/n.

This also holds for the few first minima, but in general we only know with
overwhelming probability:

λi(L) = O(
√
n)covol(L)1/n.

In particular, the bound on the first minimum derived from Hermite’s con-
stant is not that far from being tight in the random case: the ratio between
the two upper bounds is bounded independently of the dimension. Thus,
even though it is easy to construct lattices for which the first minimum is
arbitrarily small compared to Hermite’s bound, such lattices are far from
being random: the first minimum of random lattices is almost as large as
the one of critical lattices.

As n grows to infinity, a random n-rank lattice L satisfies with over-
whelming probability:

µ(L) ≈
√

n

2πe
covol(L)1/n.

Theorem 2.6, together with the bounds on the minima, allow to prove
that, asymptotically, in a random n-rank lattice L, there exists with over-
whelming probability a lattice basis (b1, . . . ,bn) such that:

∀ 1 ≤ i ≤ n, ‖bi‖ = O(n)covol(L)1/n.

The previous properties are useful to distinguish specific lattices from
random lattices. For instance, in cryptography, one often encounters lat-
tices for which the first minimum is provably much smaller than Hermite’s
bound (1), so such lattices cannot be random, and they might have excep-
tional properties which can be exploited. And when a lattice is very far
from being random, certain computational problems which are hard in the
general case may become easy.
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