1. **Lagrange reduction.**

Let L be a two-rank lattice. Lagrange’s algorithm (from another sheet) shows the existence of a basis (\vec{u}, \vec{v}) of L such that if $\| \vec{u} \| \leq \| \vec{v} \|$ and $|\langle \vec{u}, \vec{v} \rangle| \leq \| \vec{u} \|^2 / 2$. We call reduced any such basis (\vec{u}, \vec{v}). Show that in such a case:

1. For any $(x, y) \in \mathbb{Z}^2$:
 \[\| x\vec{u} + y\vec{v} \|^2 \geq (x^2 - |xy|)\| \vec{u} \|^2 + y^2\| \vec{v} \|^2. \]

2. Deduce that $\| \vec{u} \| = \lambda_1(L)$ and $\| \vec{v} \| = \lambda_2(L)$.

3. Show that $\| \vec{u} \| \leq (4/3)^{1/4}\text{vol}(L)^{1/2}$.

4. There exists a lattice L such that $\lambda_1(L) = (4/3)^{1/4}\text{vol}(L)^{1/2}$.

2. **Hermite’s Inequality.**

Let L be a d-rank lattice of \mathbb{R}^n, and \vec{u} be a shortest non-zero vector of L. Let π denote the (orthogonal) projection over the hyperplane \vec{u}^\perp orthogonal to \vec{u}. Let $L' = \pi(L)$.

1. Show that L' is a lattice of \mathbb{R}^n : what is the rank of L'?

2. Show that $\text{vol}(L) = \| \vec{u} \| \text{vol}(L')$.

3. Show that for any $\vec{v}' \in L'$ there exists $\vec{v} \in L$ such that $\vec{v}' = \pi(\vec{v})$ and:
 \[\| \vec{v} \|^2 \leq \| \vec{v}' \|^2 + \| \vec{u} \|^2 / 4. \]

4. Show that:
 \[\| \vec{u} \| \leq (4/3)^{(d-1)/4}\text{vol}(L)^{1/d}. \]

This was proved by Hermite in the middle of the 19th century : it is equivalent to Hermite’s inequality $\gamma_d \leq (4/3)^{(d-1)/2}$. The LLL algorithm is an efficient algorithmic version of Hermite’s inequality : given any basis of $L \subseteq \mathbb{Q}^n$ and $\varepsilon > 0$, LLL finds, in time polynomial in $1/\varepsilon$ and the size of the input basis, a non-zero $\vec{v} \in L$ such that $\| \vec{v} \| \leq (4/3 + \varepsilon)^{(d-1)/4}\text{vol}(L)^{1/d}$.

3. **Siegel reduction.**

Let $B = (\vec{b}_1, \ldots, \vec{b}_d)$ be a basis of a lattice L. Assume that B is Siegel-reduced for some $\alpha \geq 1$, that is, B is size-reduced and its Gram-Schmidt orthogonalization satisfies: $\| \vec{b}_i \| / \| \vec{b}_{i+1} \| \leq \alpha$ for all $i \in \{1, 2, \ldots, d-1\}$. Notice that an LLL-reduced basis is Siegel-reduced.

1. Show that $\| \vec{b}_1 \| \leq \alpha^{(d-1)/2}\text{vol}(L)^{1/d}$.

2. Show that $\prod_{i=1}^d \| \vec{b}_i \| \leq \alpha^{d(d-1)/2}\text{vol}(L)$.

3. Show that $\| \vec{b}_i \| \leq \alpha^{d-1}\lambda_i(L)$ for all $i \in \{1, 2, \ldots, d\}$.

1
4. Approximating the Closest Vector Problem. \(\star\star\star\)

Let \(B = (b_1, \ldots, b_d)\) be a Siegel-reduced basis of a lattice \(L \subseteq \mathbb{Z}^n\) for some \(\alpha > 0\).

1. Show that for any \(\vec{t} \in \text{span}(L) \cap \mathbb{Q}^n\), there exists \(\vec{w} \in L\) and \((w_1, \ldots, w_d) \in \mathbb{Q}^n\) such that \(\vec{t} - \vec{w} = \sum_{j=1}^d w_j b^*_j\) and all \(|w_j| \leq \frac{1}{2}\). How can one compute \(\vec{w}\)?

2. Assume that there exists \(\vec{u} \in L\) such that \(\|\vec{t} - \vec{u}\| < \frac{1}{2} \min_{j=1}^d \|b^*_j\|\). Show that \(\vec{w} = \vec{u}\). (Hint: \(\vec{w} - \vec{u} \in L\)).

3. Let \(\vec{u} \in L\) be a closest vector to \(\vec{t}\) in the lattice \(L\) such that \(\vec{u} \neq \vec{w}\). Show that \(\|\vec{t} - \vec{u}\| \geq \frac{1}{2} \min_{j=1}^d \|b^*_j\|\).

4. Show that \(\|\vec{t} - \vec{w}\| \leq \alpha d \text{dist}(\vec{t}, L)\). Thus, \(\vec{w}\) approximates CVP to within an exponential factor.