THE LLL ALGORITHM

1. Lagrange reduction.

Let *L* be a two-rank lattice. Lagrange's algorithm (from another sheet) shows the existence of a basis (\vec{u}, \vec{v}) of *L* such that if $\|\vec{u}\| \leq \|\vec{v}\|$ and $|\langle \vec{u}, \vec{v} \rangle| \leq \|\vec{u}\|^2/2$. We call reduced any such basis (\vec{u}, \vec{v}) . Show that in such a case :

1. For any $(x, y) \in \mathbb{Z}^2$:

$$||x\vec{u} + y\vec{v}||^2 \ge (x^2 - |xy|)||\vec{u}||^2 + y^2||\vec{v}||^2.$$

- 2. Deduce that $\|\vec{u}\| = \lambda_1(L)$ and $\|\vec{v}\| = \lambda_2(L)$.
- 3. Show that $\|\vec{u}\| \leq (4/3)^{1/4} \operatorname{vol}(L)^{1/2}$.
- 4. There exists a lattice L such that $\lambda_1(L) = (4/3)^{1/4} \operatorname{vol}(L)^{1/2}$.

2. Hermite's Inequality.

Let L be a d-rank lattice of \mathbb{R}^n , and \vec{u} be a shortest non-zero vector of L. Let π denote the (orthogonal) projection over the hyperplane \vec{u}^{\perp} orthogonal to \vec{u} . Let $L' = \pi(L)$.

- 1. Show that L' is a lattice of \mathbb{R}^n : what is the rank of L'?
- 2. Show that $\operatorname{vol}(L) = \|\vec{u}\| \operatorname{vol}(L')$.
- 3. Show that for any $\vec{v'} \in L'$ there exists $\vec{v} \in L$ such that $\vec{v'} = \pi(\vec{v})$ and :

$$\|\vec{v}\|^2 \le \|\vec{v'}\|^2 + \|\vec{u}\|^2/4.$$

4. Show that :

$$\|\vec{u}\| \le (4/3)^{(d-1)/4} \operatorname{vol}(L)^{1/d}$$

This was proved by Hermite in the middle of the 19th century : it is equivalent to Hermite's inequality $\gamma_d \leq (4/3)^{(d-1)/2}$. The LLL algorithm is an efficient algorithmic version of Hermite's inequality : given any basis of $L \subseteq \mathbb{Q}^n$ and $\varepsilon > 0$, LLL finds, in time polynomial in $1/\varepsilon$ and the size of the input basis, a non-zero $\vec{v} \in L$ such that $\|\vec{v}\| \leq (4/3 + \varepsilon)^{(d-1)/4} \operatorname{vol}(L)^{1/d}$.

3. Siegel reduction.

Let $B = (\vec{b}_1, \ldots, \vec{b}_d)$ be a basis of a lattice L. Assume that B is Siegel-reduced for some $\alpha \geq 1$, that is, B is size-reduced and its Gram-Schmidt orthogonalization satisfies : $\|\vec{b}_i^*\|/\|\vec{b}_{i+1}^*\| \leq \alpha$ for all $i \in \{1, 2, \ldots, d-1\}$. Notice that an LLL-reduced basis is Siegel-reduced.

1. Show that $\|\vec{b}_1\| \leq \alpha^{(d-1)/2} \operatorname{vol}(L)^{1/d}$.

- 2. Show that $\prod_{i=1}^{d} \|\vec{b}_i\| \leq \alpha^{d(d-1)/2} \operatorname{vol}(L)$.
- 3. Show that $\|\vec{b}_i\| \leq \alpha^{d-1}\lambda_i(L)$ for all $i \in \{1, 2, \dots, d\}$.

 (\star)

 $(\star\star)$

 $(\star\star)$

4. Approximating the Closest Vector Problem.

Let $B = (\vec{b}_1, \ldots, \vec{b}_d)$ be a Siegel-reduced basis of a lattice $L \subseteq \mathbb{Z}^n$ for some $\alpha > 0$.

- 1. Show that for any $\vec{t} \in \text{span}(L) \cap \mathbb{Q}^n$, there exists $\vec{w} \in L$ and $(w_1, ..., w_d) \in \mathbb{Q}^n$ such that $\vec{t} - \vec{w} = \sum_{j=1}^d w_j \vec{b}_j^*$ and all $|w_j| \leq \frac{1}{2}$. How can one compute \vec{w} ?
- 2. Assume that there exists $\vec{u} \in L$ such that $\|\vec{t} \vec{u}\| < \frac{1}{2} \min_{j=1}^{d} \|\vec{b}_{j}^{\star}\|$. Show that $\vec{w} = \vec{u}$. (Hint : $\vec{w} \vec{u} \in L$).
- 3. Let $\vec{u} \in L$ be a closest vector to \vec{t} in the lattice L such that $\vec{u} \neq \vec{w}$. Show that $\|\vec{t} \vec{u}\| \geq \frac{1}{2} \min_{j=1}^{d} \|\vec{b}_{j}^{\star}\|.$
- 4. Show that $\|\vec{t} \vec{w}\| \leq \alpha^d \operatorname{dist}(\vec{t}, L)$. Thus, \vec{w} approximates CVP to within an exponential factor.