HARD LATTICE PROBLEMS

1. Lagrange reduction.

Let *L* be a two-rank lattice. A basis (\vec{u}, \vec{v}) of *L* is *Lagrange-reduced* if $\|\vec{u}\| \le \|\vec{v}\|$ and $|\langle \vec{u}, \vec{v} \rangle| \le \|\vec{u}\|^2/2$. Show that :

- 1. If (\vec{u}, \vec{v}) is reduced, then $\|\vec{u}\| = \lambda_1(L) \le (4/3)^{1/4} \operatorname{vol}(L)^{1/2}$ and $\|\vec{v}\| = \lambda_2(L)$.
- 2. There exists a reduced basis (\vec{u}, \vec{v}) of L.
- 3. There exists a lattice L such that $\lambda_1(L) = (4/3)^{1/4} \operatorname{vol}(L)^{1/2}$.

2. Lagrange's Algorithm.

 $(\star\star)$

 $(\star\star)$

In 1773, Lagrange published the following two-dimensional reduction algorithm. Lagrange's reduction algorithm.

Input: a basis (\vec{u}, \vec{v}) of a two-rank lattice L.

Output: a Lagrange-reduced basis of *L*.

1: if $\|\vec{u}\| < \|\vec{v}\|$ then 2: swap \vec{u} and \vec{v} 3: end if 4: repeat 5: $\vec{r} \leftarrow \vec{u} - q\vec{v}$ where $q = \left\lfloor \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{v}\|^2} \right\rfloor$ and $\lfloor x \rfloor$ denotes an integer closest to x. 6: $\vec{u} \leftarrow \vec{v}$ 7: $\vec{v} \leftarrow \vec{r}$ 8: until $\|\vec{u}\| \le \|\vec{v}\|$ 9: Output (\vec{u}, \vec{v}) .

- 1. Consider Line 5 of Algorithm : show that this choice of $q \in \mathbb{Z}$ minimizes $\|\vec{u} q\vec{v}\|$.
- 2. Show that Lagrange's algorithm terminates, i.e. that the repeat/until loop is not infinite, and that the output basis is Lagrange-reduced.
- 3. Consider the integer q of Step 5. Show that :
 if q = 0, then this must be the last iteration of the loop.
 if |q| = 1, then this must be either the first or last iteration of the loop.
- 4. Show that the number τ of iterations of the repeat/until loop is bounded by : $\tau = O(1 + \log B - \log \lambda_1(L))$ where B denotes the maximal Euclidean norm of the input basis vectors \vec{u} and \vec{v} .
- 5. Show that when $L \subseteq \mathbb{Z}^n$, the bit-complexity of Lagrange's algorithm is polynomial in $\log B$.

3. <u>CVP is NP-hard.</u>

Given integers a_1, a_n and a target t, the NP-complete subset sum problem asks if there exist $x_1, \ldots, x_n \in \{0, 1\}$ s.t. $t = \sum_{i=1}^n x_i a_i$.

- 1. Let L be the set of all $(z_1, \ldots, z_n) \in \mathbb{Z}^n$ such that $\sum_{i=1}^n z_i a_i = 0$. Show that L is a lattice of \mathbb{Z}^n , of rank n-1. What is the volume of L?
- 2. Let d be the gcd of a_1, \ldots, a_n . Show that if d does not divide t, then the subset sum has no solution. Otherwise, show that one can compute in polynomial time $(y_1, \ldots, y_n) \in \mathbb{Z}^n$ such that $t = \sum_{i=1}^n y_i a_i$.
- 3. Given a CVP-oracle for L, show that one can decide the subset sum problem in polynomial time. This shows that CVP is NP-hard.

4. <u>SIS and LWE Lattices.</u>

Let G be a finite Abelian group : we view G as \mathbb{Z} -module, so that the notation ng for $(n, g) \in \mathbb{Z} \times G$ is defined. Let $g_1, \ldots, g_m \in G$. Show that :

- 1. The set L of $(x_1, \ldots, x_m) \in \mathbb{Z}^m$ such that $\sum_{i=1}^m x_i g_i = 0$ in G is a lattice in \mathbb{Z}^m .
- 2. The rank of L is m.
- 3. The volume of L divides the order of G.
- 4. The dual lattice of L is the lattice Λ defined as the set of all $(y_1, \ldots, y_m) \in \mathbb{R}^m$ such that there exists a morphism $s : G \to \mathbb{R}/\mathbb{Z}$ satisfying $s(g_i) = y_i \mod 1$ for all $1 \le i \le m$. Such a map s is called an additive character of G.
- 5. The set of additive characters of G is an additive group, isomorphic to G.

 (\star)