GRAM-SCHMIDT ORTHOGONALIZATION

Notation :

- $\langle \vec{u}, \vec{v} \rangle$ is the standard Euclidean inner product of \mathbb{R}^n , that is $\langle \vec{u}, \vec{v} \rangle = \sum_{i=1}^n u_i v_i$.
- The Euclidean norm : $\|\vec{u}\|^2 = \langle \vec{u}, \vec{u} \rangle$.
- span() denotes the subspace generated by the vectors or the set inside the parentheses. It is the smallest subspace containing the vectors or the set inside the parentheses.

1. Gram-Schmidt Orthogonalization.

 (\star)

Let $\vec{b_1, \ldots, \vec{b_n}} \in \mathbb{R}^m$. For $1 \le i \le n$, let $\vec{b_i^*}$ be the orthogonal projection of $\vec{b_i}$ over $\operatorname{span}(\vec{b_1, \ldots, \vec{b_{i-1}}})^{\perp}$: $\vec{b_i^*}$ is orthogonal to $\operatorname{span}(\vec{b_1, \ldots, \vec{b_{i-1}}})$, and $\vec{b_i} - \vec{b_i^*}$ belongs to $\operatorname{span}(\vec{b_1, \ldots, \vec{b_{i-1}}})$. In particular, $\vec{b_1^*} = \vec{b_1}$. Show that :

- 1. The Gram-Schmidt vectors \vec{b}_i^{\star} 's are pairwise orthogonal.
- 2. The vectors $\vec{b}_1, \ldots, \vec{b}_n$ are linearly independent iff the Gram-Schmidt vectors \vec{b}_i^* 's are all non zero.
- 3. For any $1 \le i \le n$, there exist $\mu_{i,1}, \ldots, \mu_{i,i-1}$ such that $\vec{b}_i = \vec{b}_i^{\star} + \sum_{j=1}^{i-1} \mu_{i,j} \vec{b}_j^{\star}$. If $\vec{b}_j^{\star} \ne 0$, then $\mu_{i,j} = \langle \vec{b}_i, \vec{b}_j^{\star} \rangle / \|\vec{b}_j^{\star}\|^2$.
- 4. $\operatorname{vol}(\vec{b}_1, \dots, \vec{b}_n) = \prod_{i=1}^n \|\vec{b}_i^{\star}\|.$

2. Integral Gram-Schmidt.

Let $\vec{b}_1, \ldots, \vec{b}_n \in \mathbb{Z}^m$ be linearly independent. Let the \vec{b}_i^{\star} 's be its Gram-Schmidt vectors. Show that :

1. For
$$1 \le j < i$$
, $\mu_{i,j} = \langle \vec{b}_i, \vec{b}_j^* \rangle / \|\vec{b}_j^*\|^2 \in \mathbb{Q}$.
2. $\|\vec{b}_i^*\|^2 = \|\vec{b}_i\|^2 - \sum_{j=1}^{i-1} \mu_{i,j}^2 \|\vec{b}_j^*\|^2$ for $1 \le i \le n$.
3. For $1 \le j < i$, $\mu_{i,j} = \frac{\langle \vec{b}_i, \vec{b}_j \rangle - \sum_{k=1}^{j-1} \mu_{j,k} \mu_{i,k} \|\vec{b}_k^*\|^2}{\|\vec{b}_j^*\|^2}$.
4. If $d_0 = 1$ and $d_k = \det_{1 \le i, j \le k} \langle \vec{b}_i, \vec{b}_j \rangle$ for $1 \le k \le n$, then $d_{k-1} \vec{b}_k^* \in L(\vec{b}_1, \dots, \vec{b}_k)$
for $1 \le k \le n$ and $\lambda_{i,j} = d_j \mu_{i,j} \in \mathbb{Z}$ for $1 \le j < i$.

5. One can compute all the integers d_k 's and $\lambda_{i,j}$'s in polynomial time.

3. The Gram-Schmidt Lattice.

Let $B = (\vec{b}_1, \ldots, \vec{b}_n)$ be a basis of a lattice $L \subseteq \mathbb{R}^m$. Let L_B be the lattice generated by its Gram-Schmidt vectors \vec{b}_i^{\star} .

- 1. Show that $\operatorname{vol}(L_B) = \operatorname{vol}(L)$.
- 2. Show that $\lambda_1(L_B) = \min_i \|\vec{b}_i^*\|$.
- 3. Show that $\lambda_1(L) \geq \lambda_1(L_B)$.
- 4. Let $\mu(L)$ denote the covering radius of L: this is the maximal distance between L and a point of span(L). What is $\mu(L_B)$? Show that $\mu(L) \leq \mu(L_B)$.

 $(\star\star)$

 $(\star\star)$