
Lattice Exercises

Notation :
— 〈~u,~v〉 is the standard Euclidean inner product of Rn, that is 〈~u,~v〉 =

∑n
i=1 uivi.

— The Euclidean norm : ‖~u‖2 = 〈~u, ~u〉.
— span() denotes the subspace generated by the vectors or the set inside the parentheses. It is

the smallest subspace containing the vectors or the set inside the parentheses.
— Br(~v) = {~w ∈ Rn, ‖~v − ~w‖ < r} is the open ball of Rn of center ~v and radius r.

1. Gram-Schmidt Orthogonalization. (?)

Let ~b1, . . . ,~bn ∈ Rm. For 1 ≤ i ≤ n, let ~b?i be the orthogonal projection of ~bi over span(~b1, . . . ,~bi−1)
⊥ :

in particular, ~b?1 = ~b1. Show that :

1. The Gram-Schmidt vectors ~b?i ’s are pairwise orthogonal.

2. vol(~b1, . . . ,~bn) =
∏n

i=1 ‖~b?i ‖.
3. The vectors ~b1, . . . ,~bn are linearly independent iff the Gram-Schmidt vectors
~b?i ’s are all non zero.

4. For any 1 ≤ i ≤ n, there exist µi,1, . . . , µi,i−1 such that ~bi = ~b?i +
∑i−1

j=1 µi,j
~b?j .

If ~b1, . . . ,~bn are linearly independent, then the µi,j’s are unique.

2. Filtered Basis. (??)

Let L be a d-rank lattice. Let ~c1, . . . ,~cd ∈ L be linearly independent. For all 1 ≤ i ≤ d, let Li =
span(~c1, . . . ,~ci) ∩ L.

1. Show that for all i ∈ {1, . . . , d}, Li is a lattice and that its rank is equal to i.

2. Let 2 ≤ i ≤ d. Show that if (~b1, . . . ,~bi−1) is a basis of Li−1, there exists ~bi ∈ Li
such that ~bi 6∈ Li−1 and (~b1, . . . ,~bi) is a basis of Li.

3. Deduce the existence of a basis (~b1, . . . ,~bd) of L such that span(~b1, . . . ,~bi) =
span(~c1, . . . ,~ci) for all 1 ≤ i ≤ d.

3. Short Bases. (??)

Let L be a d-rank lattice. Let ~c1, . . . ,~cd ∈ L be linearly independent. Show that :

1. There exists a basis B = (~b1, . . . ,~bd) of L such that ‖~b?i ‖ ≤ ‖~c?i ‖ and

span(~b1, . . . ,~bi) = span(~c1, . . . ,~ci) for 1 ≤ i ≤ d.

2. One can further satisfy : ‖~bi‖2 ≤ ‖~b?i ‖2 +
∑i−1

j=1 ‖~b?j‖2/4.

4. Integral Gram-Schmidt. (??)

Let ~b1, . . . ,~bn ∈ Zm be linearly independent. Let the ~b?i be its Gram-Schmidt vectors. Show that :
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1. For 1 ≤ j < i, µi,j = 〈~bi,~b?j〉/‖~b?j‖2 ∈ Q.

2. ‖~b?i ‖2 = ‖~bi‖2 −
∑i−1

j=1 µ
2
i,j‖~b?j‖2 for 1 ≤ i ≤ n.

3. For 1 ≤ j < i, µi,j =
〈~bi,~bj〉−

∑j−1
k=1 µj,kµi,k‖~b

?
k‖

2

‖~b?j‖2
.

4. If d0 = 1 and dk = det1≤i,j≤k〈~bi,~bj〉 for 1 ≤ k ≤ n, then dk−1~b
?
k ∈ L(~b1, . . . ,~bk)

for 1 ≤ k ≤ n and λi,j = djµi,j ∈ Z for 1 ≤ j < i.

5. One can compute all the integers dk’s and λi,j’s in polynomial time.

5. Kernel Lattices. (?)

Let A be an m × n matrix over Z. Let LA be the set of ~x ∈ Zm such that ~xA ≡ 0 (mod q). Show
that :

1. LA is a full-rank lattice in Zm.

2. vol(LA) is an integer dividing qn.

3. The dual lattice of LA is (1/q)ΛA where ΛA is the set of ~y ∈ Zm such that
~yÂ ≡ ~zAt (mod q) for some ~z ∈ Zn, where At denotes the transpose of A.

6. SIS and LWE Lattices. (?)

Let G be a finite Abelian group : we view G as Z-module, so that the notation ng for (n, g) ∈ Z×G
is defined. Let g1, . . . , gm ∈ G. Show that :

1. The set L of (x1, . . . , xm) ∈ Zm such that
∑m

i=1 xigi = 0 in G is a lattice in
Zm.

2. The rank of L is m.

3. The volume of L divides the order of G.

4. The dual lattice of L is the lattice Λ defined as the set of all (y1, . . . , ym) ∈ Rm

such that there exists a morphism s : G → R/Z satisfying s(gi) = yi mod 1
for all 1 ≤ i ≤ m. Such a map s is called an additive character of G.

5. The set of additive characters of G is an additive group, isomorphic to G.

7. Computing a Basis. (??)

For any vectors ~b1, . . . ,~bm ∈ Rn, we let : L(~b1, . . . ,~bm) =
{∑m

i=1 xi
~bi, xi ∈ Z

}
. For 1 ≤ i ≤ m, let

~b?i be the orthogonal projection of ~bi over span((~b1, . . . ,~bi−1)
⊥) : in particular, ~b?1 = ~b1. We define for

1 ≤ j < i ≤ m : µi,j =
〈~bi,~b?j 〉
‖~b?j‖2

if~b?j 6= 0, and 0 otherwise. Then, for each 1 ≤ i ≤ m :~bi = ~b?i+
∑i−1

j=1 µi,j
~b?j .

We recall that if the ~bi’s are in Zn :
— all µi,j ∈ Q and can be computed in time polynomial in M , n and m, where M = log(1 +

maxmi=1 ‖~bi‖).
— Given any 1 ≤ i ≤ n, the size-reduction algorithm can modify ~bi in polynomial time without

changing L(~b1, . . . ,~bm) in such a way that |µi,j| ≤ 1/2 for all j < i, .
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1. Assume first that ~b1, . . . ,~bm ∈ Zn such that ~b?m = 0 and ~b?i 6= 0 for all 1 ≤ i ≤
m − 1. Let π be the orthogonal projection over span((~b1, . . . ,~bm−2)

⊥). Show

that π(~bm−1) = ~b?m−1 and π(~bm) = µm,m−1~b
?
m−1.

2. Next, write µm,m−1 = p
q

as an irreducible fraction. Given (p, q), Euclid’s exten-

ded algorithm computes (u, v) ∈ Z2 in polynomial time such that up+vq = 1.

Show that if we replace (~bm−1,~bm) by (p~bm−1 − q~bm, v~bm−1 + u~bm), then

L(~b1, . . . ,~bm) does not change and the new Gram-Schmidt vectors satisfy :
~b?m−1 = 0 and ~b?m 6= 0.

3. Deduce a polynomial-time algorithm which, given ~b1, . . . ,~bm ∈ Zn such that
~b?m = 0 and ~b?i 6= 0 for all 1 ≤ i ≤ m − 1, outputs a basis of the lattice

L(~b1, . . . ,~bm). Hint : Use size-reduction and make sure that maxmi=1 ‖~b?i ‖ never
increases during the execution of the algorithm.

4. Deduce a polynomial-time algorithm which, given ~b1, . . . ,~bm ∈ Zn, outputs a
basis of the lattice L(~b1, . . . ,~bm).
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