LATTICE EXERCISES

Notation :

- $\langle \vec{u}, \vec{v} \rangle$ is the standard Euclidean inner product of \mathbb{R}^n , that is $\langle \vec{u}, \vec{v} \rangle = \sum_{i=1}^n u_i v_i$.
- The Euclidean norm : $\|\vec{u}\|^2 = \langle \vec{u}, \vec{u} \rangle$.
- span() denotes the subspace generated by the vectors or the set inside the parentheses. It is the smallest subspace containing the vectors or the set inside the parentheses.
- $-\mathcal{B}_r(\vec{v}) = \{ \vec{w} \in \mathbb{R}^n, \| \vec{v} \vec{w} \| < r \} \text{ is the open ball of } \mathbb{R}^n \text{ of center } \vec{v} \text{ and radius } r.$

1. Gram-Schmidt Orthogonalization.

Let $\vec{b}_1, \ldots, \vec{b}_n \in \mathbb{R}^m$. For $1 \le i \le n$, let \vec{b}_i^* be the orthogonal projection of \vec{b}_i over span $(\vec{b}_1, \ldots, \vec{b}_{i-1})^{\perp}$: in particular, $\vec{b}_1^* = \vec{b}_1$. Show that :

- 1. The Gram-Schmidt vectors \vec{b}_i^{\star} 's are pairwise orthogonal.
- 2. $\operatorname{vol}(\vec{b}_1, \dots, \vec{b}_n) = \prod_{i=1}^n \|\vec{b}_i^{\star}\|.$
- 3. The vectors $\vec{b}_1, \ldots, \vec{b}_n$ are linearly independent iff the Gram-Schmidt vectors \vec{b}_i^{\star} 's are all non zero.
- 4. For any $1 \leq i \leq n$, there exist $\mu_{i,1}, \ldots, \mu_{i,i-1}$ such that $\vec{b}_i = \vec{b}_i^{\star} + \sum_{j=1}^{i-1} \mu_{i,j} \vec{b}_j^{\star}$. If $\vec{b}_1, \ldots, \vec{b}_n$ are linearly independent, then the $\mu_{i,j}$'s are unique.

2. Filtered Basis.

Let L be a d-rank lattice. Let $\vec{c}_1, \ldots, \vec{c}_d \in L$ be linearly independent. For all $1 \leq i \leq d$, let $L_i = \operatorname{span}(\vec{c}_1, \ldots, \vec{c}_i) \cap L$.

- 1. Show that for all $i \in \{1, ..., d\}$, L_i is a lattice and that its rank is equal to i.
- 2. Let $2 \leq i \leq d$. Show that if $(\vec{b}_1, \ldots, \vec{b}_{i-1})$ is a basis of L_{i-1} , there exists $\vec{b}_i \in L_i$ such that $\vec{b}_i \notin L_{i-1}$ and $(\vec{b}_1, \ldots, \vec{b}_i)$ is a basis of L_i .
- 3. Deduce the existence of a basis $(\vec{b}_1, \ldots, \vec{b}_d)$ of L such that $\operatorname{span}(\vec{b}_1, \ldots, \vec{b}_i) = \operatorname{span}(\vec{c}_1, \ldots, \vec{c}_i)$ for all $1 \le i \le d$.

3. Short Bases.

Let L be a d-rank lattice. Let $\vec{c_1}, \ldots, \vec{c_d} \in L$ be linearly independent. Show that :

- 1. There exists a basis $B = (\vec{b}_1, \ldots, \vec{b}_d)$ of L such that $\|\vec{b}_i^{\star}\| \leq \|\vec{c}_i^{\star}\|$ and $\operatorname{span}(\vec{b}_1, \ldots, \vec{b}_i) = \operatorname{span}(\vec{c}_1, \ldots, \vec{c}_i)$ for $1 \leq i \leq d$.
- 2. One can further satisfy : $\|\vec{b}_i\|^2 \le \|\vec{b}_i^\star\|^2 + \sum_{j=1}^{i-1} \|\vec{b}_j^\star\|^2/4$.

4. Integral Gram-Schmidt.

Let $\vec{b}_1, \ldots, \vec{b}_n \in \mathbb{Z}^m$ be linearly independent. Let the \vec{b}_i^{\star} be its Gram-Schmidt vectors. Show that :

 $(\star\star)$

 $(\star\star)$

 $(\star\star)$

 (\star)

- 1. For $1 \le j < i$, $\mu_{i,j} = \langle \vec{b}_i, \vec{b}_j^{\star} \rangle / \|\vec{b}_j^{\star}\|^2 \in \mathbb{Q}$. 2. $\|\vec{b}_i^{\star}\|^2 = \|\vec{b}_i\|^2 - \sum_{j=1}^{i-1} \mu_{i,j}^2 \|\vec{b}_j^{\star}\|^2$ for $1 \le i \le n$. 3. For $1 \le j < i$, $\mu_{i,j} = \frac{\langle \vec{b}_i, \vec{b}_j \rangle - \sum_{k=1}^{j-1} \mu_{j,k} \mu_{i,k} \|\vec{b}_k^{\star}\|^2}{\|\vec{b}_j^{\star}\|^2}$. 4. If $d_0 = 1$ and $d_k = \det_{1 \le i, j \le k} \langle \vec{b}_i, \vec{b}_j \rangle$ for $1 \le k \le n$, then $d_{k-1}\vec{b}_k^{\star} \in L(\vec{b}_1, \dots, \vec{b}_k)$ for $1 \le k \le n$ and $\lambda_{i,j} = d_j \mu_{i,j} \in \mathbb{Z}$ for $1 \le j < i$.
- 5. One can compute all the integers d_k 's and $\lambda_{i,j}$'s in polynomial time.

5. <u>Kernel Lattices.</u>

Let A be an $m \times n$ matrix over \mathbb{Z} . Let L_A be the set of $\vec{x} \in \mathbb{Z}^m$ such that $\vec{x}A \equiv 0 \pmod{q}$. Show that :

- 1. L_A is a full-rank lattice in \mathbb{Z}^m .
- 2. $\operatorname{vol}(L_A)$ is an integer dividing q^n .
- 3. The dual lattice of L_A is $(1/q)\Lambda_A$ where Λ_A is the set of $\vec{y} \in \mathbb{Z}^m$ such that $\vec{y}\hat{A} \equiv \vec{z}A^t \pmod{q}$ for some $\vec{z} \in \mathbb{Z}^n$, where A^t denotes the transpose of A.

6. <u>SIS and LWE Lattices.</u>

Let G be a finite Abelian group : we view G as \mathbb{Z} -module, so that the notation ng for $(n, g) \in \mathbb{Z} \times G$ is defined. Let $g_1, \ldots, g_m \in G$. Show that :

- 1. The set L of $(x_1, \ldots, x_m) \in \mathbb{Z}^m$ such that $\sum_{i=1}^m x_i g_i = 0$ in G is a lattice in \mathbb{Z}^m .
- 2. The rank of L is m.
- 3. The volume of L divides the order of G.
- 4. The dual lattice of L is the lattice Λ defined as the set of all $(y_1, \ldots, y_m) \in \mathbb{R}^m$ such that there exists a morphism $s : G \to \mathbb{R}/\mathbb{Z}$ satisfying $s(g_i) = y_i \mod 1$ for all $1 \leq i \leq m$. Such a map s is called an additive character of G.
- 5. The set of additive characters of G is an additive group, isomorphic to G.

7. Computing a Basis.

For any vectors $\vec{b}_1, \ldots, \vec{b}_m \in \mathbb{R}^n$, we let $: L(\vec{b}_1, \ldots, \vec{b}_m) = \left\{ \sum_{i=1}^m x_i \vec{b}_i, x_i \in \mathbb{Z} \right\}$. For $1 \le i \le m$, let \vec{b}_i^{\star} be the orthogonal projection of \vec{b}_i over span $((\vec{b}_1, \ldots, \vec{b}_{i-1})^{\perp})$: in particular, $\vec{b}_1^{\star} = \vec{b}_1$. We define for $1 \le j < i \le m$: $\mu_{i,j} = \frac{\langle \vec{b}_i, \vec{b}_j^{\star} \rangle}{\|\vec{b}_j^{\star}\|^2}$ if $\vec{b}_j^{\star} \ne 0$, and 0 otherwise. Then, for each $1 \le i \le m$: $\vec{b}_i = \vec{b}_i^{\star} + \sum_{j=1}^{i-1} \mu_{i,j} \vec{b}_j^{\star}$. We recall that if the \vec{b}_i 's are in \mathbb{Z}^n :

- all $\mu_{i,j} \in \mathbb{Q}$ and can be computed in time polynomial in M, n and m, where $M = \log(1 + \max_{i=1}^{m} \|\vec{b}_i\|)$.
- Given any $1 \leq i \leq n$, the size-reduction algorithm can modify \vec{b}_i in polynomial time without changing $L(\vec{b}_1, \ldots, \vec{b}_m)$ in such a way that $|\mu_{i,j}| \leq 1/2$ for all j < i, .

 $(\star\star)$

 (\star)

 (\star)

- 1. Assume first that $\vec{b}_1, \ldots, \vec{b}_m \in \mathbb{Z}^n$ such that $\vec{b}_m^* = 0$ and $\vec{b}_i^* \neq 0$ for all $1 \leq i \leq m-1$. Let π be the orthogonal projection over $\operatorname{span}((\vec{b}_1, \ldots, \vec{b}_{m-2})^{\perp})$. Show that $\pi(\vec{b}_{m-1}) = \vec{b}_{m-1}^*$ and $\pi(\vec{b}_m) = \mu_{m,m-1}\vec{b}_{m-1}^*$.
- 2. Next, write $\mu_{m,m-1} = \frac{p}{q}$ as an irreducible fraction. Given (p,q), Euclid's extended algorithm computes $(u,v) \in \mathbb{Z}^2$ in polynomial time such that up + vq = 1. Show that if we replace $(\vec{b}_{m-1}, \vec{b}_m)$ by $(p\vec{b}_{m-1} - q\vec{b}_m, v\vec{b}_{m-1} + u\vec{b}_m)$, then $L(\vec{b}_1, \ldots, \vec{b}_m)$ does not change and the new Gram-Schmidt vectors satisfy : $\vec{b}_{m-1}^* = 0$ and $\vec{b}_m^* \neq 0$.
- 3. Deduce a polynomial-time algorithm which, given $\vec{b}_1, \ldots, \vec{b}_m \in \mathbb{Z}^n$ such that $\vec{b}_m^{\star} = 0$ and $\vec{b}_i^{\star} \neq 0$ for all $1 \leq i \leq m-1$, outputs a basis of the lattice $L(\vec{b}_1, \ldots, \vec{b}_m)$. Hint : Use size-reduction and make sure that $\max_{i=1}^m \|\vec{b}_i^{\star}\|$ never increases during the execution of the algorithm.
- 4. Deduce a polynomial-time algorithm which, given $\vec{b}_1, \ldots, \vec{b}_m \in \mathbb{Z}^n$, outputs a basis of the lattice $L(\vec{b}_1, \ldots, \vec{b}_m)$.