THE DISCRETE GAUSSIAN DISTRIBUTION

The Gaussian function of parameter s > 0 is defined over all € R™ by :
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For any countable subset A C R™, we denote the Gaussian mass of A by ps(A) = > -, ps(Z) when
the sum converges.

1. Gaussian integrals. (%)

Show that for any n-dimensional subspace £ of R™ :

/ ps(2)dx = s".
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2. Gaussian mass. )
If L is a lattice and & € R™, show that ps(Z + L) is well-defined for any s > 0. Hint : the Gaussian
heuristic holds for sufficiently large balls.

The discrete Gaussian distribution over L centered at ¢ € R™ and width s > 0 is defined as follows :
each vector ¥ € L has mass ps(U— ¢)/ps(L — ©), so that the sum of all masses is 1 and the most likely
lattice points are the ones closest to ¢. If ¢ is omitted, it means that ¢ = 0. Alternatively, this general
distribution over L can be viewed as a distribution over any coset L — ¢ : each element i € L — ¢ has

mass ps(4)/ps(L — ©).

3. The One-Dimensional Case. (%)
Show that :

1. For any s > 0, we have : 1 < ps(Z) < 1+ s.
2. Foranys>0,0<c<1, and anyn>1:
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ps(Z* —¢) < Ao

4. Poisson’s summation. (%)

Poisson’s summation transforms a sum over a lattice L into a sum over the dual lattice L*, by
studying the Fourier series of a function periodic with respect to L : it shows that for all sufficiently
“nice” functions f over the linear span of L,
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where f is the Fourier transform of f. The Gaussian function is one such nice function, and because
its Fourier transform is proportional to itself, Poisson’s summation shows in particular the following
fundamental equality for any n-rank lattice L and Z € span(L) :
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Deduce that :
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1. PS(L) = vf)%pl/s([/x) and ps(L) > vilL

2. ps(L) < s"pi(L) if s > 1.

3. ps(Z+ L) < ps(L) and py(L)e ™/ < p(Z + L) where d = mingezy 1, ||7]| is
the distance between —% and L.
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5. The smoothing parameter. (%)

For ¢ > 0, Micciancio and Regev introduced the smoothing parameter n.(L) of L as the smallest
s > 0 such that py/,(L* \ {0}) < e. Show that :

1. For any s > n.(L) :

n n

s
volL

s
€ )
— volL

ps(T+ L) —

max
Zespan(L)

In particular, this shows that beyond the smoothing parameter, all Gaussian
masses ps(Z + L) are close to each other, independently of the shift . This
property is crucial for the discrete Gaussian sampler of [GPV08] and for
worst-case to average-case reductions.

2. For 0 < & < 1, % < n.(2) < w and more generally

775<Zn) < log(2n(141/¢)) )
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3. Fore >0, n.(L) < A\u(L)n.(Z"™). Hint : there is a basis (by, ..., by) of L such
that [|bf]] < \i(L).

6. Gram-Schmidt Lattices. (%)

Let B = (bl7 e l;n) be a basis of a lattice L. Let Lg be the lattice spanned by the Gram-Schmidt
vectors b’{, ..., by. Show that :

ps(L) < ps(Lp) = Hps 15;12) < H( Ib*||>
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7. Sublattices. (%)

Let L be an n-rank lattice. Let L’ C L be a sublattice of L such that L/L’ is finite. Show that for
any s > 0 :
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and if s > n.(L'), 1+e¢).

Show that if s > n.(L') and & € L is chosen at random from the discrete Gaussian distribution over
L, then the distribution of # + L' € L/L' is close to uniform over L/L’. This property is crucial for
the SIS worst-case to average-case distribution.



8. Linear independence. (5x)

Let L be an n-rank lattice. Show that for sufficiently large s, if ¢7,..., 9, are chosen independently
at random from the discrete Gaussian distribution over L, then 7, ..., v, are linearly independent
with probability asymptotically close to 1 as n grows to infinity.

9. Gaussian concentration. (5 % %)

Let L be an n-rank lattice and ¢ in the linear span of L. Let B be the unit ball of the linear span of
L.

1. Show that for all s >0 and u > 1/+/27 :
ps((L = &)\ usv/nB) < (2meu®)"*e ™ " p,(L).

2. Let d = minger_z||y]| be the distance between ¢ and L. Let r > 0 be such
that 1 > \/o=s, > d and r* > d* + ”Tszlog(%). When v € L is chosen
at random from the discrete Gaussian distribution over L with center ¢ and
width s, the probability that |0 — ¢|| > r is :

< (2e)n/2+1€—7ry2/2
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where y = /12— d?/s. This means that most Gaussian lattice points i are
within distance O(s\/n) from €.

For more information on the discrete Gaussian distribution, and proofs of many results, see Noah
Stephens-Davidowitz’s 2017 PhD Thesis : On the Gaussian Measure Over Lattices.



