
The Discrete Gaussian Distribution

The Gaussian function of parameter s > 0 is defined over all ~x ∈ Rm by :

ρs(~x) = e−π
‖~x‖2

s2 .

For any countable subset A ⊆ Rm, we denote the Gaussian mass of A by ρs(A) =
∑

~x∈A ρs(~x) when
the sum converges.

1. Gaussian integrals. (?)

Show that for any n-dimensional subspace E of Rm :∫
~x∈E

ρs(~x)d~x = sn.

2. Gaussian mass. (??)

If L is a lattice and ~x ∈ Rm, show that ρs(~x + L) is well-defined for any s > 0. Hint : the Gaussian
heuristic holds for sufficiently large balls.
The discrete Gaussian distribution over L centered at ~c ∈ Rm and width s > 0 is defined as follows :
each vector ~v ∈ L has mass ρs(~v−~c)/ρs(L−~c), so that the sum of all masses is 1 and the most likely
lattice points are the ones closest to ~c. If ~c is omitted, it means that ~c = 0. Alternatively, this general
distribution over L can be viewed as a distribution over any coset L−~c : each element ~y ∈ L−~c has
mass ρs(~y)/ρs(L− ~c).

3. The One-Dimensional Case. (?)

Show that :

1. For any s > 0, we have : 1 ≤ ρs(Z) ≤ 1 + s.

2. For any s > 0, 0 ≤ c < 1, and any n ≥ 1 :

ρs(Z∗ − c) ≤
nn/2sn

(1− c)n
.

4. Poisson’s summation. (?)

Poisson’s summation transforms a sum over a lattice L into a sum over the dual lattice L×, by
studying the Fourier series of a function periodic with respect to L : it shows that for all sufficiently
“nice” functions f over the linear span of L,∑

~v∈L

f(~v) =
1

volL

∑
~w∈L×

f̂(~w),

where f̂ is the Fourier transform of f . The Gaussian function is one such nice function, and because
its Fourier transform is proportional to itself, Poisson’s summation shows in particular the following
fundamental equality for any n-rank lattice L and ~x ∈ span(L) :

ρs(~x+ L) =
sn

volL

∑
~y∈L×

ρ1/s(~y)e2iπ〈~y,~x〉.

Deduce that :
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1. ρs(L) = sn

volL
ρ1/s(L

×) and ρs(L) ≥ sn

volL

2. ρs(L) ≤ snρ1(L) if s ≥ 1.

3. ρs(~x + L) ≤ ρs(L) and ρs(L)e−πd
2/s2 ≤ ρs(~x + L) where d = min~y∈~x+L ‖~y‖ is

the distance between −~x and L.

4. max~x∈span(L)
∣∣ρs(~x+ L)− sn

volL

∣∣ =
snρ1/s(L

×\{0})
volL

5. The smoothing parameter. (??)

For ε > 0, Micciancio and Regev introduced the smoothing parameter ηε(L) of L as the smallest
s > 0 such that ρ1/s(L

× \ {0}) ≤ ε. Show that :

1. For any s ≥ ηε(L) :

max
~x∈span(L)

∣∣∣∣ρs(~x+ L)− sn

volL

∣∣∣∣ ≤ ε
sn

volL
.

In particular, this shows that beyond the smoothing parameter, all Gaussian
masses ρs(~x + L) are close to each other, independently of the shift ~x. This
property is crucial for the discrete Gaussian sampler of [GPV08] and for
worst-case to average-case reductions.

2. For 0 < ε < 1,
√

log(2/ε)
π

≤ ηε(Z) ≤
√

log(2(1+1/ε))
π

and more generally

ηε(Zn) ≤
√

log(2n(1+1/ε))
π

.

3. For ε > 0, ηε(L) ≤ λn(L)ηε(Zn). Hint : there is a basis (~b1, . . . ,~bn) of L such

that ‖~b?i ‖ ≤ λi(L).

6. Gram-Schmidt Lattices. (?)

Let B = (~b1, . . . ,~bn) be a basis of a lattice L. Let LB be the lattice spanned by the Gram-Schmidt

vectors ~b?1, . . . ,
~b?n. Show that :

ρs(L) ≤ ρs(LB) =
n∏
i=1

ρs(‖~b?i ‖Z) ≤
n∏
i=1

(
1 +

s

‖~b?i ‖

)
.

7. Sublattices. (?)

Let L be an n-rank lattice. Let L′ ⊆ L be a sublattice of L such that L/L′ is finite. Show that for
any s > 0 :

1

[L : L′]
≤ ρs(L

′)

ρs(L)
and if s ≥ ηε(L

′),
ρs(L

′)

ρs(L)
≤ 1

[L : L′]
(1 + ε).

Show that if s ≥ ηε(L
′) and ~x ∈ L is chosen at random from the discrete Gaussian distribution over

L, then the distribution of ~x + L′ ∈ L/L′ is close to uniform over L/L′. This property is crucial for
the SIS worst-case to average-case distribution.
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8. Linear independence. (??)

Let L be an n-rank lattice. Show that for sufficiently large s, if ~v1, . . . , ~vn are chosen independently
at random from the discrete Gaussian distribution over L, then ~v1, . . . , ~vn are linearly independent
with probability asymptotically close to 1 as n grows to infinity.

9. Gaussian concentration. (? ? ?)

Let L be an n-rank lattice and ~c in the linear span of L. Let B be the unit ball of the linear span of
L.

1. Show that for all s > 0 and u ≥ 1/
√

2π :

ρs((L− ~c) \ us
√
nB) ≤ (2πeu2)n/2e−πu

2nρs(L).

2. Let d = min~y∈L−~c ‖~y‖ be the distance between ~c and L. Let r > 0 be such

that r >
√

n
2π
s, r > d and r2 > d2 + ns2

π
log(2πd

2

ns2
). When ~v ∈ L is chosen

at random from the discrete Gaussian distribution over L with center ~c and
width s, the probability that ‖~v − ~c‖ > r is :

< (2e)n/2+1e−πy
2/2,

where y =
√
r2 − d2/s. This means that most Gaussian lattice points ~y are

within distance O(s
√
n) from ~c.

For more information on the discrete Gaussian distribution, and proofs of many results, see Noah
Stephens-Davidowitz’s 2017 PhD Thesis : On the Gaussian Measure Over Lattices.
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