Recall that using $\varepsilon = 1/4$, given as input a basis of an integer lattice L of rank d, the LLL algorithm outputs in polynomial time a non-zero vector $\vec{u} \in L$ such that $\|\vec{u}\| \leq 2^{(d-1)/4} \operatorname{vol}(L)^{1/d}$.

1. Coppersmith's Theorem.

Let $P(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree δ : the coefficient of its x^{δ} monomial is 1. Let N be a positive integer, whose factorization is unknown. We say that $Q(x) \in \mathbb{Q}[x]$ is (N, P)-good if for every integer $x_0 \in \mathbb{Z}$ such that $P(x_0) \equiv 0 \pmod{N}$, we have $Q(x_0) \in \mathbb{Z}$. If $Q(x) = \sum_{i=0}^d q_i x^i \in \mathbb{Q}[x]$, we define $||Q|| = (\sum_{i=0}^{d} q_i^2)^{1/2}$. Let X > 0.

- 1. Assume that $Q(x) \in \mathbb{Q}[x]$ is (N, P)-good and that $||Q(xX)|| < 1/\sqrt{n+1}$ where n is the degree of Q. Show that if $P(x_0) \equiv 0 \pmod{N}$ and $|x_0| \leq X$, then $Q(x_0) = 0$.
- 2. For any integers $u, v \ge 0$, define $Q_{u,v}(x) = x^u (P(x)/N)^v$. Show that any integral linear combinations of polynomials $Q_{u,v}(x)$ is (N, P)-good.
- 3. Given as input N and P(x), show that one can find in polynomial time a non-zero (N, P)-good polynomial $Q(x) \in \mathbb{Q}[x]$ such that Q(x) is an integral linear combination of $Q_{0,0}(x), Q_{1,0}(x), \ldots, Q_{\delta-1,0}(x), Q_{0,1}(x)$ and

$$||Q(xX)|| \le 2^{\delta/4} X^{\delta/2} N^{-1/(\delta+1)}.$$

- 4. Deduce Håstad's theorem : one can find in polynomial time all the integers $x_0 \in \mathbb{Z}$ such that $|x_0| \leq N^{2/(\delta(\delta+1))}$ and $P(x_0) \equiv 0 \pmod{N}$.
- 5. Using the polynomials $Q_{u,v}(x)$ where $0 \le u \le \delta 1$ and $0 \le v \le h$ for some well-chosen integer h, show Coppersmith's theorem : one can find in polynomial time all the integers $x_0 \in \mathbb{Z}$ such that $|x_0| \le N^{1/\delta}$ and $P(x_0) \equiv$ $0 \pmod{N}$.
- 6. What can we do if P(x) is not monic?
- 7. If we want to find all roots x_0 such that $|x_0| \leq C \times N^{1/\delta}$ for some C > 1, what can we do?

2. The GCD generalization.

 $(\star \star \star)$

We take the same notation. Let $\alpha \in \mathbb{Q}$ such that $0 < \alpha \leq 1$. We want to find all $x_0 \in \mathbb{Z}$ such that $gcd(P(x_0), N) \geq N^{\alpha}$.

- 1. Consider an integral linear combination $Q(x) \in \mathbb{Q}[x]$ of the $h\delta$ polynomials $Q_{u,v}(x)$ where $0 \le u \le \delta 1$ and $0 \le v \le h$ for some well-chosen integer h. Show that if $x_0 \in \mathbb{Z}$ and $gcd(P(x_0), N) \ge N^{\alpha}$ then the rational $Q(x_0)$ has a denominator $\le N^{(1-\alpha)h}$.
- 2. Deduce that one can find in polynomial time all the integers $x_0 \in \mathbb{Z}$ such that $gcd(P(x_0), N) \geq N^{\alpha}$ and $|x_0| \leq N^{\alpha^2/\delta}$.