The Learning With Errors Problem

Oded Regev
Tel Aviv University

(for more details, see survey prepared for CCC’2010)

Paris, 2010/5/29
Organization
Learning With Errors (LWE) Problem

- A secret vector \(s \) in \(\mathbb{Z}_{17}^4 \)
- We are given an arbitrary number of equations, each correct up to \(\pm 1 \)
- Can you find \(s \)?

\[
\begin{align*}
14s_1 + 15s_2 + 5s_3 + 2s_4 & \equiv 8 \pmod{17} \\
13s_1 + 14s_2 + 14s_3 + 6s_4 & \equiv 16 \pmod{17} \\
6s_1 + 10s_2 + 13s_3 + 1s_4 & \equiv 3 \pmod{17} \\
10s_1 + 4s_2 + 12s_3 + 16s_4 & \equiv 12 \pmod{17} \\
9s_1 + 5s_2 + 9s_3 + 6s_4 & \equiv 9 \pmod{17} \\
3s_1 + 6s_2 + 4s_3 + 5s_4 & \equiv 16 \pmod{17} \\
6s_1 + 7s_2 + 16s_3 + 2s_4 & \equiv 3 \pmod{17}
\end{align*}
\]
LWE’s Claim to Fame

✓ Known to be as hard as worst-case lattice problems, which are believed to be exponentially hard (even against quantum computers)
✓ Extremely versatile
✓ Basis for provably secure and efficient cryptographic constructions
LWE’s Origins

- The problem was first defined in [R05]
- Already (very) implicit in the first work on lattice-based public key cryptography [AjtaiDwork97] (and slightly more explicit in [R03])
- See the survey paper for more details
LWE – More Precisely

• There is a secret vector s in \mathbb{Z}_q^n
• An oracle (who knows s) generates a uniform vector a in \mathbb{Z}_q^n and noise $e \in \mathbb{Z}$ distributed normally with standard deviation αq.
• The oracle outputs $(a, b=\langle a, s \rangle + e \mod q)$
• This procedure is repeated with the same s and fresh a and e
• Our task is to find s
LWE – Parameters: n, q, α

- The main parameter is n, the dimension
- The modulus q is typically $\text{poly}(n)$
 - Choosing exponential q increases size of input and makes applications much less efficient (but hardness is somewhat better understood)
 - (The case $q=2$ is known as Learning Parity with Noise (LPN))
- The noise element e is chosen from a normal distribution with standard deviation αq:

- The security proof requires $\alpha q > \sqrt{n}$
- The noise parameter α is typically $1/\text{poly}(n)$

- The number of equations does not really matter
Algorithms
Algorithm 1: More Luck Than Sense

• Ask for equations until seeing several “s₁ ≈ ...”. E.g.,

 \[1s_1 + 0s_2 + 0s_3 + 0s_4 \approx 8 \pmod{17} \]

 \[1s_1 + 0s_2 + 0s_3 + 0s_4 \approx 7 \pmod{17} \]

 \[1s_1 + 0s_2 + 0s_3 + 0s_4 \approx 8 \pmod{17} \]

• This allows us to deduce s₁ and we can do the same for the other coordinates.

• Running time and number of equations is 2^{O(n \log n)}
Algorithm 2: Maximum Likelihood

• Easy to show: After about $O(n)$ equations, the secret s is the only assignment that approximately satisfies the equations (hence LWE is well defined)

• Hence we can find s by trying all possible q^n assignments

• We obtain an algorithm with running time $q^n = 2^{O(n \log n)}$ using only $O(n)$ equations
Algorithm 3: [BlumKalaiWasserman’03]

• Running time and number of equations is $2^{O(n)}$
• Best known algorithm for LWE (with usual setting of parameters)
• Idea:
 • First, find a small set S of equations (say, $|S|=n$) such that $\sum_S a_i = (1,0,\ldots,0)$. Do this by partitioning the n coordinates into $\log n$ blocks of size $n/\log n$ and construct S recursively by finding collisions in blocks
 • The sum of these equations gives a guess for s_i that is quite good
Algorithm 4: [AroraGe’10]

• Running time and number of equations is $2^{O((\alpha q)^2)}$

• So for $\alpha q < \sqrt{n}$, this gives a sub-exponential algorithm

• Interestingly, the LWE hardness proof [RO5] requires $\alpha q > \sqrt{n}$; only now we ‘know’ why!

• Idea: apply a polynomial that zeroes the noise, and solve by linearization
Versatility
LWE is Versatile

✓ Search to decision reduction

✓ Worst-case to average-case reduction (i.e., secret can be uniformly chosen)

 - The secret can be chosen from a normal distribution itself [ApplebaumCashPeikertSahai09], or from a weak random source [GoldwasserKalaiPeikertVaikuntanathan10]

 - The normal error distribution is ‘LWE complete’

 - The number of samples does not matter
Decision LWE Problem

World 1

- s fixed in \mathbb{Z}_q^n
- a_i uniform in \mathbb{Z}_q^n
- e_i random normal

\[a_1, a_2, \ldots, a_m, s, e \] + \[e \] = \[b \]

World 2

- (a_i, b_i) uniform in $\mathbb{Z}_q^n \times \mathbb{Z}_q$

Decision LWE Solver

I am in World 1 (or 2)
What We Want to Construct

- s fixed in \mathbb{Z}_q^n
- a_i uniform in \mathbb{Z}_q^n
- e_i random normal
- $(a_1, b_1 = a_1 s + e_1)$
- $(a_2, b_2 = a_2 s + e_2)$
- ...$
- (a_k, b_k = a_k s + e_k)$

Search LWE Solver

Decision LWE Oracle

I am in World 1 (or 2)
Search LWE \textless Decision LWE

- Idea: Use the Decision oracle to figure out the coordinates of s one at a time

- Let $g \in \mathbb{Z}_q$ be our guess for the first coordinate of s
- Repeat the following:
 - Receive LWE pair (a,b)
 - Pick random r in \mathbb{Z}_q
 - Send $(a+(r,0,\ldots,0), b+rg)$ to the decision oracle:

1. If g is right, then we are sending a distribution from World 1
2. If g is wrong, then we are sending a distribution from World 2 (here we use that q is prime)

- We will find the right g after at most q attempts
- Use the same idea to recover all coefficients of s one at a time
Worst Case to Average Case

- We are given an oracle that distinguishes World 1 from World 2 for a non-negligible fraction of secrets \(s \in \mathbb{Z}_q^n \)

- Our goal is to distinguish the two worlds for \textit{all} secrets \(s \)

- Choose \(t \in \mathbb{Z}_q^n \) uniformly

Repeat the following:

- Receive LWE pair \((a,b)\)

 \[
 \begin{array}{c}
 2 \\
 13 \\
 7 \\
 3 \\
 \end{array}
 \quad + \quad
 \begin{array}{c}
 8 \\
 3 \\
 12 \\
 5 \\
 \end{array}
 =
 \begin{array}{c}
 13 \\
 \end{array}
 \]

- Send sample \((a,b+\langle a,t \rangle)\) to the oracle:

 \[
 \begin{array}{c}
 2 \\
 13 \\
 7 \\
 3 \\
 \end{array}
 \quad + \quad
 \begin{array}{c}
 13 + \langle a,t \rangle \\
 \end{array}
 \]

1. If our input is from World 1 with secret \(s \), then our output is from World 1 with secret \(s+t \)
2. If our input is from World 2 then our output is also from World 2

- Since \(s+t \) is uniform in \(\mathbb{Z}_q^n \), we will distinguish the two cases with non-negligible probability (over \(t \))
Simple Cryptosystem
Public Key Encryption Based on LWE

Secret Key: s in \mathbb{Z}_q^n
Public Key: A in $\mathbb{Z}_q^{m \times n}$, $b = As + e$
(where $m = 2n \cdot \log q$)

To encrypt a single bit $z \in \{0, 1\}$: Pick r in $\{0, 1\}^m$ and send $(rA, r \cdot b + z \cdot q/2)$
Proof of Semantic Security

1. The public key is pseudo-random: based on LWE

2. If A, b is truly random, then the distribution of $(rA, r \cdot b)$ (over r chosen from $\{0,1\}^m$) is statistically extremely close to uniform so decryption is impossible
Other Applications

- Public Key Encryption [R05, KawachiTanakaXagawa07, PeikertVaikuntanathanWaters08]
- CCA-Secure PKE [PeikertWaters08, Peikert09]
- Identity-Based Encryption [GentryPeikertVaikuntanathan08]
- Oblivious Transfer [PeikertVaikuntanathanWaters08]
- Circular-Secure Encryption [ApplebaumCashPeikertSahai09]
- Hierarchical Identity-Based Encryption [CashHofheinzKiltzPeikert09, AgrawalBonehBoyen09]
- Learning Theory [KlivansSherstov06]
- And more...
Hardness
Hardness

• The best known algorithms run in exponential time
 • Even quantum algorithms don’t do any better
• LWE is an extension of LPN, a central problem in learning theory and coding theory (decoding from random linear codes)
Hardness

• More importantly, LWE is as hard as worst-case lattice problems \[\text{[R05, Peikert09]} \]

• More precisely,
 • For \(q=2^{O(n)} \), as hard as GapSVP \[\text{[Peikert09]} \]
 • For \(q=\text{poly}(n) \),
 • As hard as GapSVP given a somewhat short basis \[\text{[Peikert09]} \]
 • As hard as GapSVP and SIVP using a quantum reduction \[\text{[R05]} \]
The SIS problem

- The “Small Integer Solution” problem is a ‘dual’ problem to LWE:
 - Given a_1, a_2, \ldots uniformly chosen from \mathbb{Z}_q^n, find a subset of them that sums to zero
- SIS is used for ‘minicrypt’ constructions, such as:
 - One-way functions [Ajtai96]
 - Collision resistant hash functions [GoldreichGoldwasserHalevi96]
 - Digital signatures [GentryPeikertVaikuntanathan'08, CashHofheinzKiltzPeikert09]
 - Identification schemes [MicciancioVadhan03, Lyubashevsky08, KawachiTanakaXagawa08]
- The hardness of SIS is well understood [MicciancioR04]:
 - For any $q > \text{poly}(n)$ solving SIS implies a solution to standard lattice problems such as SIVP and GapSVP
Hardness of LWE

• We will present the hardness results of LWE \([R05, \text{Peikert09}]\) including simplifications due to \([\text{LyubashevskyMicciancio09}]\)

• Recently, \([\text{StehléSteinfeldTanakaXagawa09}]\) gave an interesting alternative hardness proof by a (quantum) reduction from the SIS problem
 • Unfortunately leads to qualitatively weaker results
 • We will not describe it here
Lattices

- For vectors \(v_1, \ldots, v_n \) in \(\mathbb{R}^n \) we define the lattice generated by them as
 \[
 \Lambda = \{ \alpha_1 v_1 + \ldots + \alpha_n v_n \mid \alpha_i \text{ integers} \}
 \]
- We call \(v_1, \ldots, v_n \) a basis of \(\Lambda \)
- The dual lattice of \(\Lambda \) is
 \[
 \Lambda^* = \{ x \in \mathbb{R}^n \mid \forall y \in \Lambda, \langle x, y \rangle \in \mathbb{Z} \}
 \]
- For instance, \((\mathbb{Z}^n)^* = \mathbb{Z}^n\)
Discrete Gaussian Distribution

- For $r > 0$, the distribution $D_{\Lambda, r}$ assigns mass proportional to $e^{-\|x/r\|^2}$ to each point $x \in \Lambda$.
- Points sampled from $D_{\Lambda, r}$ are lattice vectors of norm roughly $r\sqrt{n}$.
Computational Problems on Lattices

- ‘Algebraic’ lattice problems are easy; ‘geometric’ problems are hard

- Shortest Vector Problem (GapSVP$_\gamma$): given a lattice Λ, approximate length of shortest (nonzero) vector $\lambda_1(\Lambda)$ to within γ

- Another lattice problem: SIVP$_\gamma$. Asks to find n short linearly independent lattice vectors.
Lattice Problems Are Hard

- **Conjecture**: for any $\gamma = \text{poly}(n)$, GapSVP$_\gamma$ is hard
 - Best known algorithms run in time 2^n
 [AjtaiKumarSivakumar01, MicciancioVoulgaris10]
 - Quantum computation doesn’t seem to help
 - On the other hand, not believed to be NP-hard
 [GoldreichGoldwasser00, AharonovR04]
Bounded Distance Decoding (BDD)

- **BDD$_d$**: given a lattice Λ and a point x within distance d of Λ, find the nearest lattice point
Solving BDD using Gaussian Samples

- The following was shown in [AharonovR04, LiuLyubashevskyMicciancio06]:

- **Proposition:**
 - Assume we have a polynomial number of samples from $D_{\Lambda^*,r}$ for some lattice Λ and a not too small $r>0$.
 - Then we can solve BDD on Λ to within distance $1/r$.
The core of the LWE hardness result is the following:

Proposition [R05]:
- Assume we have access to an oracle that solves LWE with modulus \(q \) and error parameter \(\alpha \).
- Assume we also have a polynomial number of samples from \(D_{\Lambda^*,r} \) for some lattice \(\Lambda \) and a not too small \(r > 0 \).
- Then we can solve BDD on \(\Lambda \) to within distance \(\alpha q / r \).

This is already some kind of hardness result: without the LWE oracle, the best known algorithms for solving the above task require exponential time, assuming \(\alpha q \geq \sqrt{n} \).
[Peikert09] showed a reduction from GapSVP to solving BDD to within distance $\lambda_1(\Lambda)/\text{poly}(n)$.

Hence, if $\alpha q/r \geq \lambda_1(\Lambda)/\text{poly}(n)$ (i.e., $r \geq q \cdot \text{poly}(n)/\lambda_1(\Lambda)$) then we get a solution to the standard lattice problem GapSVP.

But how do we obtain samples from $D_{\Lambda^*,r}$?

[GentryPeikertVaikuntanathan08] showed that such samples can be obtained from a basis with vectors of length r.

- So using the [LLL82] algorithm (that efficiently produces a basis of length $2^n/\lambda_1(\Lambda)$), we get hardness of LWE with $q=2^{O(n)}$ based on GapSVP.
- For polynomial q, we get hardness based on GapSVP given a somewhat short basis.
• [Peikert09] showed a reduction from GapSVP to solving BDD to within distance $\lambda_1(\Lambda)/\text{poly}(n)$

• Since sampling from $D_{\Lambda^*,r}$ for $r=2^n/\lambda_1(\Lambda)$ can be done efficiently, we obtain hardness of LWE for exponential moduli q

• Alternatively, we can use the sampler in [GentryPeikertVaikuntanathan08] to show hardness of LWE with polynomial moduli q based the assumption that GapSVP is hard even given a somewhat short vector
• Alternatively, [Ro5] showed a quantum reduction from sampling $D_{\Lambda^*, \sqrt{n/d}}$ to solving BDD in Λ with distance d.
• Assume $\alpha q \geq 2\sqrt{n}$, and combine with the core proposition:

- Samples from $D_{\Lambda^*, r}$
- Samples from $D_{\Lambda^*, r/2}$
- Samples from $D_{\Lambda^*, r/4}$

 - Solution to $\text{BDD}_{\Lambda, \alpha q/r}$
 - Solution to $\text{BDD}_{\Lambda, 2\alpha q/r}$
 - Solution to $\text{BDD}_{\Lambda, 4\alpha q/r}$

 ...
Proof of Core Proposition (1/2)

- For simplicity, assume $\Lambda = \mathbb{Z}^n$ (and ignore the fact that this lattice is ‘easy’).
- We are given:
 - An oracle that solves LWE with modulus q and parameter α
 - Samples from $D_{\mathbb{Z}^n, r}$
- Our input is a point $x \in \mathbb{R}^n$ within distance $\alpha q/r$ of some unknown $v \in \mathbb{Z}^n$
- Our goal is to output v
- We will show how to generate LWE samples with secret $s = (v \mod q)$
- Using the LWE oracle, we can find $v \mod q$; this allows to find v itself using a straightforward reduction
- Summarizing:
 - Given: samples from $D_{\mathbb{Z}^n, r}$
 - Input: a point $x \in \mathbb{R}^n$ within distance $\alpha q/r$ of some unknown $v \in \mathbb{Z}^n$
 - Goal: generate LWE samples with secret $s = (v \mod q)$
Proof of Core Proposition (2/2)

- This is done as follows:
 - Take a sample \(y \) from \(D_{\mathbb{Z}^n, r} \)
 - Output the pair
 \[
 (a = y \mod q, \quad b = \left\lfloor \langle y, x \rangle \right\rfloor \mod q) \in \mathbb{Z}_q^n \times \mathbb{Z}_q
 \]

- Analysis:
 - Since \(r \) is not too small, \(a \) is uniformly distributed in \(\mathbb{Z}_q^n \)
 - Now condition on any fixed value of \(a \), and let’s analyze the distribution of \(b \).
 - \(y \) is distributed as a discrete Gaussian on \(q\mathbb{Z}^n + a \)
 - If \(x = v \), then \(b \) is exactly \(\langle a, s \rangle \), so we get LWE samples with no error
 - Otherwise, we get an error term of the form \(\langle y, x - v \rangle \). Since \(x - v \) is a fixed vector of norm \(<\alpha q/r\), and \(y \) is Gaussian of norm \(r \), this inner product is normal with standard deviation \(<\alpha q\).
LWE over Rings
Some Inefficiencies of LWE-Based Schemes

- Public key is $O(n^2)$
- Encryption of 1 bit requires $O(n^2)$ (or $O(n)$) operations
Source of Inefficiency

- Getting just one extra random-looking number requires n random numbers!

- Wishful thinking: get n random numbers and produce $O(n)$ pseudo-random numbers in "one shot"
How do we define multiplication so that the resulting distribution is pseudorandom? (Coordinate-wise multiplication is not secure)

Answer: Define it as multiplication in a polynomial ring

Similar ideas used in the heuristic design of NTRU [HoffsteinPipherSilverman98], and in compact one-way functions [Micciancio02, PeikertRosen06, LyubashevskyMicciancio06,...].
The Ring-LWE Problem

- Let R be the ring $\mathbb{Z}_q[x]/\langle x^n+1 \rangle$
- The secret s is now an element in R
- The elements a are chosen uniformly from R
- The coefficients of the noise polynomial e are chosen as small independent normal vars

\[(a_i, b_i = a_is+e_i)\]
\[(a_2, b_2 = a_2s+e_2)\]
\[...\]
\[(a_k, b_k = a_ks+e_k)\]

Ring-LWE Solver

\[
\begin{array}{ccc}
\alpha & s & e \\
2 & 8 & 1 \\
13 & 3 & -1 \\
7 & 12 & 2 \\
3 & 5 & -1 \\
\end{array}
\]

\[= \]

\[
\begin{array}{ccc}
b \\
8 & 1 \\
1 & 16 \\
6 & \end{array}
\]

\[s\]
Ring-LWE – Known Results

- [LyubashevskyPeikertR10] show that Ring-LWE is as hard as (quantumly) solving the standard lattice problem SIVP (on ideal lattices)
 - The proof is by adapting [R05]'s proof to rings; only the classical part needs to be changed
 - A qualitatively weaker result was independently shown by [Stehlé SteinfeldTanakaXagawa09] using different techniques of independent interest.
- [LPR10] also show that decision Ring-LWE is as hard as (search) Ring-LWE
 - Proof is quite non-trivial!
- Finally [LPR10] show how this can be used to construct very efficient cryptographic applications
 - More details in the survey paper!
Open Questions

- Obtain the ultimate hardness result for LWE (as for SIS)
 - $500 prize
- Hardness of LPN?
 - Or is LPN easier?
 - $250 prize
- Understand practical parameters of LWE [RückertSchneider10]
- More algorithms for LWE
- Further cryptographic applications of LWE
 - Direct construction of efficient pseudorandom functions
 - Fully homomorphic encryption scheme (perhaps based on ring-LWE)?
- ‘Upgrade’ all existing constructions to ring-LWE
- Reduction from LWE to classical problems, similar to what was done in [Feige02]