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o History of Lattice-based Crypto

o Background on Lattices

o Lattice-based Crypto vs. "Classical” PKC
o Program of the Day



Lattice-
Based
Crypto: A
long story




Lattices and Cryptology
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o Two years stand out:
01982
01996



g ADVANCES IN
o CRYPTOLOGY
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Factoring Polynomials with Rational Coefficients
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In this paper we present a polynomial-time algorithm to solve the following Leonard M. Adleman*
problem: given a non-zero polynomial fe Q[X] in one variable with rational
coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well

Our method of attack uses recent results of Lenstra
and Lovacz [2]. We treat the cryptographic problem as a
lattice problem, rather than a linear programming problem
as in Shamir's result. Like Shamir, we are unable to
present a rigorous proof that the algorithm works. However,
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probabilistic polynomial time algorithm which finds a short vector in a random lattice

with a probability of at least 1 then there is also a probabilistic polynomial time

algorithm which solves the following three lattice problems in every lattice in Z™ with

a probability exponentially close to one. (1) Find the length of a shortest nonzero
vector in an n-dimensional lattice, approximately, up to a polynomial factor. (2) Find
the shortest nonzero vector in an n-dimensional lattice L where the shortest vector v
is unique in the sense that any other vector whose length is at most n°||v|| is parallel
to v, where ¢ is a sufficiently large absolute constant. (3) Find a basis by, ..., b, in the
n-dimensional lattice L whose length, defined as max!_, ||b;|, is the smallest possible

up to a polynomial factor.




Lattices and Cryptology
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o Two years stand out:

01982: First use of lattices in
cryptanalysis

01996: First crypto schemes based on
hard lattice problems



Lattice-based Crypto

N e B e e it L ke L PRI S S NeRy S P

o Somewhat a revival oF knapsack crypto
(MerkleHellman78,...)

o Two Families:

o "Theoretical”: [Ajtai96...] focus on security
proofs.

o “"Applied”: [NTRU96...] focus on efficiency.

o They “interact” more and more:
[Micc02,GPV08,Gentry09,Peikertl0,LPRI10,...]



Lattice Problems in Crypto
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o In many crypto schemes, one actually deals
with problems not defined using lattices:

o SIS. ‘'minicrypt’: OWF, hashing, signatures,
identification.

o LWE. ‘cryptomania’: pk-encryption, (H)IBE,
oblivious transfer.

o Both are connected to lattice problems.
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o Consider R" with the usual topology of a
Euclidean space: let {u,v) be the dot

product and |lwll the norm.

o A lattice is a discrete subgroup of R".

o Ex: Z" and its subgroups.




Equivalent Definition
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olLet L be a non- emp’ry set oF R" There is
equivalence between: '

oL Is a latftice.

o There exist linearly independent vectors
b1,bz,..bd such that

L=L(bi,b2,...b4)=Zb1+Zb2+...+Zby.

o Such vectors form a basis of a lattice L.



Volume of a Lattice
O Each bClSIS spans a paralleleplped whose
volume only depends on the lattice. This is
the lattice volume.

o By scaling, we can c.llwa.ys ensure that the
volume is 1 like Z".



Lattices in Crypto
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o Most of the time, lattice-based crypto
restricts to full-rank integer lattices,
and sometimes even more (Ajtais
lattices)...

o For a full-rank lattice L in Z", the
quotient Z"/L is a finite group and
vol(L)=[Z":L].
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Complexity of Lattice Problems
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o Since 1996, lattices are very trendy in
complexity: classical and quantum.

o Depending on the approximation factor

with respect to the dimension: 1
o NP-hardness 0(])

o non NP-hardness (NPnco-NP) N

o worst-case/average-case reduction O( n l()gn )

o polynomial-time algorithms 20(n log log n/logn) \/

co



The Shortest Vector Problem (SVP)
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o Input: a basis of a d-dim lattice L

o Qutput: nonzero velL minimizing [Ivl|.
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The Closest Vector Problem (CVP)
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o Input: a basis of a lattice L of dim d, and
a target vector t.

o Qutput: veL minimizing |lv-tll.

o Bounded Distance Decoding (BDD): CVP
where t is close to L.






Analogy
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o Certain lattice crypto schemes somewhat look
alike certain schemes from the “classical” PKC
world (RSA, DL, Pairings).

o This is especially the case for the emerging
lattice IBE family (vs. pairing crypto): [GPV08],
[CHKP10], [B10], [ABB10], ..



Differences
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o Finitely generated groups
o Noise
o Probability distributions

o Many parameters: selection?






Probab111ty and PKC
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o Security proofs require (rigorous) probability
distributions and efficient sampling.

o In classical PKC, a typical distribution is the
uniform distribution over a finite group.

o Ex: The lack of nice probability distribution
was problematic for braid cryptography.



Lattices and Probability
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o Distributions on Lattice Points

o Distributions on Lattices



Distribution on Lattice Points
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o The Discrete Gaussian

o Mass proportional to
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o The distribution is -

independent of the
basis.




Sampling Lattice Points
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o This can be done by randomizing Babai's
nearest plane algo [Bab86].

o [KleinOO,GPVO08]: given a lattice basis, one
can sample lattice points according to the
Gaussian discrete distribution in poly-time,
as while as the mean norm is somewhat
larger than the norms of the basis.




Distributions on Lattices
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o Random Lattices
o In Crypfto

o In Mathematics



Random Lattices in Crypto
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o Let n,m,q be integers where m2n log q.

olLet A be a m x n matrix whose coeffs have
uniform distribution mod g.

o La={x€Z™ s.t. xA = 0 mod q}. Is a full-rank

lattice in Z™ whose volume divides q".

o [Ajtai96]: Finding extremely short vectors
in a random (m-dim) La is as hard as finding
short vectors in every n-dim lattice.



Note
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o In practice, an m-dim Ajtai lattice is
typically “easier than usual”, because
of the existence of unusual sublattices.

o See Darmstadts lattice challenges
solved in dim 500-750.



Note: The SIS Problem
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o SIS (Small Integer Solution) = finding
short vectors in a random Ajtai lattice La.

o This is why several crypto schemes
actually only considers such lattices. But
it might be good to keep generality, for
the time being.



Random Lattices in Mathematics
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o Random (Real) Lattices [Siegel1945]
o Random Integer Lattices [GoMa2003]



Random Integer Lattices
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oLet V and n be integers.

o There are only finitely many full-rank
lattices in Z" of volume V.
o A random full-rank integer lattice of

volume V is simply one selected uniformly
at random.

o Sampling random integer lattices is trivial
when V is prime (see Hermite normal form).



Interest
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o This is a natural and simple distribution,
used in all recent benchmarks of lattice
algorithms.

o [GoldsteinMayer2003]: when V->c0 and
we scale such lattices, the distribution
“converges” to the “classical” distribution
on random lattices of volume 1.



Random Real Lattices

A Pty I LA 2 R Ky i L

ALK ot K Tt oS SR P B

o Lebesgues measure is the “"unique”

measure over R" which is invariant by
translation.

o In 1933, Haar generalized Lebesgues
~y Measure to locally compac’r topological
% groups: it is the “unique” measure

Wl A \\hich is invariant by the group action
(left or right multiplication).



Random Real Lattices
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o The set of lattices modulo scale can
be identified with G=SLn(R)/SLA(Z).

o The Haar measure over SL,(R)
projects to a finite measure over G.
For n=2, it is the hyperbolic measure.

o => natural probability measure over G,
giving rise to random lattices, first |7

used in [Siegel45]. “




Random Real Lattices
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o [Ajtai06]: one can efficiently sample
for the classical distribution on
random real lattices.



Schedule
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o 10h: Oded Regev on LWE
o 11h: Vadim Lyubashevsky on Ring-LWE
o 14h: Chris Peikert on IBE and beyond

o 15h: Craig Gentry on fully homomorphic
encryption



