Manipulating Data while It Is
Encrypted

Craig Gentry

IBM Watson

Lattice Crypto Day,
May 2010

The Goal

A way to delegate processing of my data,
without giving away access to it.

Application: Private Google Search

I want to delegate processing of my data,
without giving away access to it.

d Do a private Google search

B You encrypt your query, so that Google
cannot “see” it

d Somehow Google processes your
encrypted query

B You get an encrypted response, and decrypt it

Application: Cloud Computing

I want to delegate processing of my data,
without giving away access to it.

d You store your files on the cloud
B Encrypt them to protect your information

d Later, you want to retrieve files containing
“cloud” within 5 words of "computing”.

B Cloud should return only these (encrypted)
files, without knowing the key

J Privacy combo: Encrypted query on encrypted data

Outline

d Fully homomorphic encryption (FHE) at a
high level

J A construction
1 Known Attacks
d Performance / Implementation

Can we separate processing from access?

Actually, separating processing from access
even makes sense in the physical world...

An Analogy: Alice’s Jewelry Store

J Workers assemble raw materials into
jewelry

1 But Alice =

%
=

d about theft

ers process the raw
having accesssto th

4 3

An Analogy: Alice’s Jewelry Store

d Alice puts materials in locked glovebox
B For which only she has the key

J Workers assemble jewelry in the box
J Alice unlocks box to get “results”

An Encryption Glovebox?

J Alice delegated processing without
giving away access.

 But does this work for encryption?

B Can we create an “encryption glovebox”

that would allow the cloud to process data
while it remains encrypted?

Public-key Encryption

d Three procedures: KeyGen, Enc, Dec
B (sk,pk) € KeyGen(A)
» Generate random public/secret key-pair
B c <€ Enc(pk, m)
» Encrypt a message with the public key
B m < Dec(sk, c)
» Decrypt a ciphertext with the secret key

Homomorphic Public-key Encryption

d Another procedure: Eval (for Evaluate)
B c < Eval(pk, f, c4,...,C)

Encryptions of
inputs my,...,m. to f

Encryption of f(my,...,m,).
I.e., Dec(sk, c) = f(mq, ...

B No info about my, ..., my, f(m,, ...m,) is leaked

m f(m,, ..m,) is the “ring” made from raw
materials m4, ..., m, inside the encryption box

f Concept due to Rivest,
W
Fully Homomorphic Public-key Encryption

d Another procedure: Eval (for Evaluate)
B c < Eval(pk, f, c4,...,C)

Encryptions of
inputs my,...,m. to f

Encryption of f(my,...,m,).
I.e., Dec(sk, c) = f(mq, ...

m,)

B FHE scheme should:
» Work for any well-defined function f
> Be efficient

c € Eval(pk, f, cy,...,C0),

Back to Our Applications pecsk o = fim.. . “my)

d Private Google search
B Encrypt bits of my query: ¢, € Enc(pk, m;)
B Send pk and the ¢'s to Google

B Google expresses its search algorithm as a
boolean function f of a user query

B Google sends c < Eval(pk, f, ¢4,...,C)
B] decrypt to obtain my result f(my, ..., my)

c € Eval(pk, f, cy,...,C0),

Back to Our Applications pecsk o = fim.. . “my)

d Cloud Computing with Privacy

Encrypt bits of my files ¢ < Enc(pk, m,)
Store pk and the ¢'s on the cloud

Later, I send query :"cloud” within 5 words
of “computing”

Let f be the boolean function representing
the cloud’s response if data was unencrypted

Cloud sends c €« Eval(pk, f, c4,...,C)
I decrypt to obtain my result f(my, ..., m)

FHE: What does “"Efficient” Mean?

d c <« Eval(pk, f, c4,...,C,) is efficient:

B runs in time g(A) « T, where g is a polynomial and
T, is the Turing complexity of f

J KeyGen, Enc, and Dec are efficient:

B Run in time polynomial in A

» Alice’s work should be independent of the complexity of f
In particular, ciphertexts output by Eval should look “normal”

» The point is to delegate processing!!

We had "somewhat homomorphic”
schemes in the past

d Eval only works for some functions f
B RSA works for MULT gates (mod N)
B Paillier, GM, work for ADD, XOR
B BGNOS5 works for quadratic formulas
o

MGHOS8 works for low-degree polynomials

» size of c €« Eval(pk, f, c4,...,C;) grows
exponentially with degree of polynomial f.

B Before 2009, no efficient FHE scheme

A Construction of FHE...

Not my original STOC09 scheme. Smart and
Rather, a simpler scheme by, Vercauteren
Marten van Dijk, me, Shai Halevi, described an

: : optimization of the
and Vinod Vaikuntanathan STOCO9 scheme in

PKC10.

Step 1: Construct a Useful
“Somewhat Homomorphic”
Scheme

Why a somewhat homomorphic scheme?

1 Can’t we construct a FHE scheme
directly?

B If I knew how, I would tell you.
B |Later...

somewhat hom. + bootstrappable — FHE

A homomorphic symmetric encryption

 Shared secret key: odd number p
d To encrypt a bit min {0,1}:
B Choose at random small r, large g

The “noise” Noise much
B Outputc=m + 2r + pg smaller than p

» Ciphertext is close to a multiple of p
> m = LSB of distance to nearest multiple of p

d To decrypt c:

B Output m = (c mod p) mod 2
> m = Cc-p-+[c/p] mod?2
= Cc - [c/p] mod 2
- = LSB(c) XOR LSB([e/p])

A homomorphic symmetric encryption

d Shared secret key: odd number 101
d To encrypt a bit min {0,1}:
B Choose at random small r, large g

The “noise” Noise much
B Outputc=m + 2r + pg smaller than p

» Ciphertext is close to a multiple of p
> m = LSB of distance to nearest multiple of p

d To decrypt c:

B Output m = (c mod p) mod 2
> m = Cc-p-+[c/p] mod?2
= Cc - [c/p] mod 2
- = LSB(c) XOR LSB([e/p])

A homomorphic symmetric encryption

d Shared secret key: odd number 101
d To encrypt a bit min {0,1}: (say, m=1)

B Choose at random small r, large g

The “noise” Noise much
B Outputc=m + 2r + pg smaller than p

» Ciphertext is close to a multiple of p
> m = LSB of distance to nearest multiple of p

d To decrypt c:

B Output m = (c mod p) mod 2
> m = Cc-p-+[c/p] mod?2
= Cc - [c/p] mod 2
- = LSB(c) XOR LSB([e/p])

A homomorphic symmetric encryption

d Shared secret key: odd number 101
d To encrypt a bit min {0,1}: (say, m=1)

B Choose at random small r (=5), large g (=9)
The “noise” Noise much
B Outputc=m + 2r + pg smaller than p

» Ciphertext is close to a multiple of p
> m = LSB of distance to nearest multiple of p

d To decrypt c:

B Output m = (c mod p) mod 2
> m = Cc-p-+[c/p] mod?2
= Cc - [c/p] mod 2
- = LSB(c) XOR LSB([e/p])

A homomorphic symmetric encryption

d Shared secret key: odd number 101

d To encrypt a bit min {0,1}: (say, m=1)

B Choose at random small r (=5), large g (=9)
The “noise”

B Outputc=m+ 2r+ pg =11 + 909 = 920
» Ciphertext is close to a multiple of p
> m = LSB of distance to nearest multiple of p

d To decrypt c:

B Output m = (c mod p) mod 2
> m = Cc-p-+[c/p] mod?2
= Cc - [c/p] mod 2
- = LSB(c) XOR LSB([e/p])

A homomorphic symmetric encryption

d Shared secret key: odd number 101

d To encrypt a bit min {0,1}: (say, m=1)

B Choose at random small r (=5), large g (=9)
The “noise”

B Outputc=m+ 2r+ pg =11 + 909 = 920
» Ciphertext is close to a multiple of p
> m = LSB of distance to nearest multiple of p

d To decrypt c:

B Outputm=(cmodp)mod2 =11 mod2 =1
> m = Cc-p-+[c/p] mod?2
= Cc - [c/p] mod 2
- = LSB(c) XOR LSB([e/p])

Homomorphic Public-Key Encryption

J Secret key is an odd p as before

J Public key is many “encryptions of 0”
B X, =[qp + 2r],, fori=1,2,...,n

4 Enc,, (m) =[subset-sum(x;’s)+m+2r],,

1 Dec,(c) = (c mod p) mod 2

Quite similar to Regev’s ‘04

scheme. Main difference: we use

much more aggressive
parameters...

— ————

Security of E

d Approximate GCD (approx-gcd) Problem:
B Given many x; = s; + q;p, output p
B Example params: s, ~ 2), p ~ 202 q. ~ 2073,
where A is security parameter
> Best known attacks (lattices) require 22 time

J I'll discuss attacks on approx-gcd later

J Reduction:
B if approx-gcd is hard, E is semantically secure

Why is E homomorphic?

1 Basically because:

B If you add or multiply two near-multiples of p,
you get another near multiple of p...

Why is E homomorphic?

d ci=my+2r;+q.p, Co=m>+2r,+Qg-5p

Noise: Distance to nearest multlsle of p

dc+c, = (my+my) + 2(r+ry) + (CI1+C|2)I3
B (m,+m,)+2(r,+r,) still much smaller than p
2>C,+C, mod p = (m;+m,) + 2(r,;+r,)
=2 (c;+C, mod p) mod 2 = m;+m, mod 2

4 Ci XC = (m1+2r1)(m2+2r2) +(¢;0,+4:C¢,-9:05)P
B (m,+2r,)(m,+2r,) still much smaller than p
=2 C,XC, mod p = (m;+2r;)(mM,+2r,)
=>(c{XCc, mod p) mod 2 = m;xm, mod 2

Why is E homomorphic?

d c,=my+2r;+qyp, ..., =M A+2r+q.p

d Let f be a multivariate poly with integer
coefficients (sequence of +'s and x’s)

d Let ¢ = Eval(pk, f, ¢, ..., ¢) = f(cy, ..., C)
Suppose this noise is much smaller than p
m f(c,, .., ¢) = f(my+2ry, ..., m+2r,) + gp

B Then (c mod p) mod 2 = f(my4, ..., m{) mod 2

That's what we want!

Why is E somewhat homomorphic?

d What if |f(m,;+2r, ..., m+2r)| > p/2?
= c=f(cy ..., ¢) = f(Mmy+2ry, ..., mA+2r) + gp
» Nearest p-multiple to cis g'p for g’ #¢
= (cmod p) = f(my+2ry, ..., mA+2r,) + (q-9°)p
= (cmodp) mod 2
= f(my, ..., my) + (g-q°) mod 2
= 227

d We say E can handle f if:

= |f(Xq, 0 X)| < p/4
= whenever all [x;] < B, where B is a bound on
the noise of a fresh ciphertext output by Ence

Example of a Function that E Handle

d Elementary symmetric poly of degree d:

F(X1, coor X¢) = XX Xg + oo + Xeegr1 Xeega 2 Xy
d Has (t choose d) < t4 monomials: a lot!!

a If |x;|<B, then |f(X4, ..., X{)|<td-Bd
d E can handle f if:

td.Bd < p/4 — basically if: d < (log p)/(log tB)
3 Example params: B ~ 22, p ~ 2772

B Eval. can handle an elem symm poly of
degree approximately A.

Step 2: Somewhat Homomorphic +
Bootstrappable — FHE

Back to Alice’s Jewelry Store

T
- SR

d Suppose Alice’s boxes are defective.

B After the worker works on the jewel for 1 minute,
the gloves stiffen!

d Some complicated pieces take 10 minutes to make.
d Can Alice still use her boxes?
d Hint: you can put one box inside another.

Back to Alice’s Jewelry Store

Yes! Alice gives worker more boxes with a copy of her key
Worker assembles jewel inside box #1 for 1 minute.

Then, worker puts box #1 inside box #2!

With box #2's gloves, worker opens box #1 with key, takes
jewel out, and continues assembling till box #2’s gloves stiffen.

U000

And so on...

)

Back to Alice’s Jewelry Store

Cool! This works if there is
enough time (before the gloves

stiffen) to unlock a box and do a
little work on the piece!

d Yes! Alice gives worker a boxes with a copy of her key
d Worker assembles jewel inside box #1 for 1
3
d

Then, worker puts box #1 inside box #2!

With box #2's gloves, worker opens box #1 with key, takes
jewel out, and continues assembling till box #2’s gloves stiffen.

Back to Alice’s Jewelry Store

A weird question: Is it safe to
put a key inside a glove box?
What if the key can unlock the
box from the inside?

d Yes! Alice gives worker a boxes with a copy of her key
d Worker assembles jewel inside box #1 for 1
3
d

Then, worker puts box #1 inside box #2!

With box #2's gloves, worker opens box #1 with key, takes
jewel out, and continues assembling till box #2’s gloves stiffen.

Back to Alice’s Jewelry Store

In any case, it definitely should
be safe to have distinct keys,
and to put the key for box #1
inside box #2, and so on...

d Yes! Alice gives worker a boxes with a copy of her key
d Worker assembles jewel inside box #1 for 1
3
d

Then, worker puts box #1 inside box #2!

With box #2's gloves, worker opens box #1 with key, takes
jewel out, and continues assembling till box #2’s gloves stiffen.

How is it Analogous?

 Alice’s jewelry store: Worker can assemble
any piece if gloves can “handle” unlocking a
box (plus a bit) before they stiffen

J Encryption:

= If E can handle Dec; (plus a bit), then we
can use E to construct a FHE scheme EFHE

Warm-up: Applying Eval to Dec.

Blue means box #2.
It also means encrypted
under key PK..

SK,

c, M > 'm

Red means box #1.
It also means encrypted
under key PKj.

Warm-up: Applying Eval to Dec.

d Suppose ¢ = Enc(pk, m)

d Decg(sk,1), ..., sk;®, c,(1), .., c;(¥)) =m,
where I have split sk and c into bits

d Let sk;*) and ¢;{1, be ciphertexts that
encrypt sk,(1) and c,{1), and so on, under pk..

d Then,
Eval(pk,, Decg, sky¥), ..., sk, ¢,(1), ..., ¢;1)) =m

i.e., a ciphertext that encrypts m under pk..

Applying Eval to (Dec then Add¢)

Blue means box #2.
It also means encrypted
under key PK..

SKy - m,
- Dece func _,
7 hen Add. +
my > my / m-
m, > m,

Red means box #1.
It also means encrypted
under key PKj.

Applying Eval to (Dec. then Mult;)

Blue means box #2.
It also means encrypted
under key PK..

/If E can evaluate (Dec then AddE)\
and (Decg then Multy), then we call
E “bootstrappable” (a self-

S referential property). D

SK; - m,
Dece func\ _,
/hen Mult, =
Hi > | My / m,
m, > m,

Red means box #1.
It also means encrypted
under key PKj.

And now the recursion...

Green
means
encrypted
under PKs.

Blue means
encrypted
under PK>.

m; + m
Dec func\ _, (M + m2)
hen Mult -

(M3 x my)

And so on...

Arbitrary Functions

 Suppose E is bootstrappable - i.e., it can handle
Dec. augmented by Add. and Mult; efficiently.

d Then, there is a scheme E, that evaluates
arbitrary functions with d “levels”.

d Ciphertexts: Same size in E; as in E.

d Public key:
= Consists of (d+1) E pub keys: pk,, ..., pky
= and encrypted secret keys: {Enc(pk;, sk.1))}

= Sjze: linear in d. Constant in d, if you assume
encryption is “circular secure.”

» The question of circular security is like whether it is
“safe” to put a key for box i inside box i.

Step 2b: Is our Somewhat
Homomorphic Scheme Already
Bootstrappable?

No.

Why not?

1 The boolean function Decg(p,c) sets:
m = LSB(c) xXor LSB([c/p])

d Unfortunately, f(c,p-1) = LSB([cxp1]) is a
high degree formula in the bits of c and p-1i.

B If c and p each have t > log p bits, the degree
is more than t.

B But if f has degree > log p, then |[f(Xy, ..., X{)|
could definitely be bigger than p

» And E can handle f only with guarantee that
|f(X11) Xt)l < P/4

d E is not bootstrappable. ®

Step 3 (Final Step): Modify our
Somewhat Homomorphic Scheme to
Make it Bootstrappable

The Goal

1 Modify E — get E™ that is bootstrappable.

. Properties of E*
B E* can handle any function that E can

B Dec.. is a lower-degree poly than Decg, so
that E* can handle it

How do we “simplify” decryption?

Old m
decryption 1
algorithm

Dec;
Tt 1
sk C

d Crazy idea: Put hint about sk in E* public key!

Hint lets anyone post-process the ciphertext,
leaving less work for Decg« to do.

d This idea is used in server-aided cryptography.

How do we “simplify” decryption?

m
Ne 1
Old approach
decryption /D/\
algorithm SCex [Processed J
m M1t ciphertext c*
e N
1 The hint sk* cx <
about sk Tt

\in pub key)
Dec;
Post-
M1 MM Process
sk C

T Tt TTTT
> h(sk, r)

Hint in pub key lets anyone post-process the ciphertext,
leaving less work for Decg« to do.

How do we “simplify” decryption?

m
Ne 1
Old _ approach
decryption /D/\
algorithm SCex [Processed J
m M1t ciphertext c*
e N
T The hint sk* cx <
about sk Tt

\in pub key)
Dec;
Post-
1T MM Process
sk C

T Tt TTTT
> h(sk, r)

((Post-Process, Decg«) should work on]
any c that Dec. works on)

How do we “simplify” decryption?

m
Ne 1
Old approach
decryption /D/\
algorithm SCex [Processed J
m M1t ciphertext c*
e N
1 The hint sk* cx <
about sk Tt

\in pub key)
Dec;
Post-
M1 MM Process
sk C

T Tt TTTT
> h(sk, r)

E* is semantically secure if E is, if h(sk,r) is computationally
indistinguishable from h(0,r") given sk, but not sk*.

Concretely, what is hint about p?

d E*'s pub key includes real numbers
— rlerI ey r-n € [012]
B 3 sparse subset S for which 2,_cr, = 1/p

d Security: Sparse Subset Sum Prob (SSSP)

B Given integers X, ..., X, with a subset S with
z..s X, = 0, output S.
» Studied w.r.t. server-aided cryptosystems

» Potentially hard when n > log max{|x| }.

e Then, there are exponentially many subsets T
(not necessarily sparse) such that Z,_c x, = 0

> Params: n ~ A2 and |S| ~ A.
B Reduction:
» If SSSP is hard, our hint is indist. from h(0O,r)

How E* works...

d Post-processing: output y,=c X r;
B Together with c itself
B The y, have about log n bits of precision

d New secret key is bit-vector s,,...,s,
B s=1ifieS, s;=0 otherwise
1 Decg«(s,c)= LSB(c) xor LSB([Z; s\y;])
1 E* can handle any function E can:
B c/p=cZsr =2% Sy, up to precision
B Precision errors do not changing the rounding

» Precision errors from v, imprecision < 1/8
» c/p is with 1/4 of an integer

Are we bootstrappable yet?

1 Decg«(s,c)= LSB(c) xXoRrR LSB([Z; syy;])
J Notice: s has low Hamming weight
- hamely |S|

d We can compute LSB([Z; s,y;]) as a
low-degree poly (about |S|).

d To bootstrap:

d Just make |S| smaller than the
degree (about A) that our scheme
E* can handle!

Yay! We have a FHE scheme!

Great. But is
It secure?

Known Attacks...

Two Problems We Hope Are Hard

d Approximate GCD (approx-gcd)
Problem:
B Given many x; = s; + q;p, output p
B Example params: s, ~ 2}, p ~ 202 g ~
275 where A is security parameter
d Sparse Subset Sum Problem (SSSP)

B Given integers X, ..., X, with a subset S with
z.s X = 0, output S.

B Example params: n ~ A2 and |S| ~ A.

B (Studied by Phong and others in connection
with server-aided cryptosystems.)

Hardness of Approximate-GCD

 Several lattice-based approaches for
solving approximate-GCD

B Related to Simultaneous Diophantine
Approximation (SDA)

B Studied in [Hawgrave-GrahamO1]
> We considered some extensions of his attacks

3 All run out of steam when |qg,|>|p]?,
where |p| is number of bits of p
B In our case |p| ~ A2, |q| ~ A5 » |p]?

Relation to SDA

al Xi = qiP + & (ri <P« qi)l | = 011121---
By, = X/Xg = (q;+5))/p, S; ~ /P « 1
m vy, Y, ..Iisan instance of SDA
> (g, is a denominator that approximates all y,’s
d Use Lagarias’s algorithm:
B Consider the rows of this matrix:

B Find a short vector in the @xl X5 ... xt\
lattice that they span -Xq

B <q,,qy,...,9:>-L is short = o

B Hopefully we will find it

Relation to SDA (cont.)

d When will Lagarias’ algorithm succeed?

B <q,44,...,9.>-L should be shortest in lattice
> In particular shorter than ~det(L)1/t+1

_ Minkowski
B This only holds for t > |q.|/|p]

The dimension of the lattice is t+1

B Quality of lattice-reduction deteriorates
exponentially with t

B When |qo| > ([p])* (so t>[p]),
LLL-type reduction isn’t good enough
anymore

Relation to SDA (cont.)

d When will Lagarias’ algorithm succeed?

B <q,44,...,9.>-L should be shortest in lattice
> In particular shorter than ~det(L)1/t+1

B This only holds for t > log Q/log
B The dimension of the lattice is t+1

B Rule of thumb: takes 2%k time to get 2k
approximation of SVP/CVP in lattice of dim t.

> 2la,l/Ip1”2 = 2A time to get 2IPl = p approx.

d Bottom line: no known eff. attack on approx-gcd

n

Lattice-based scheme seems "more secure

d The security of the somewhat
homomorphic scheme (quantumly) can
be based on the worst-case hardness
of SIVP over ideal lattices. (Crypto '10)

d This worst-case / average-case
reduction is quite different from the
reduction for ring-LWE [LPR EC'10]

A working implementation!!!

... and its surprisingly not-entirely-miserable performance

Performance

J Well, a little slow...

B In E, a ciphertext is ¢, is about A° bits.
B Decg. works in time quasi-linear in A>.

B Applying Eval.. to Decg.« takes quasi-A1Y.
> To bootstrap E* to E*FHE, and to compute

Evale«rpe(pk, f, ¢4, ..., ¢), we apply Evalgx to
Decc« once for each Add and Mult gate of f.

> Total time: quasi- A0 « S, where S, is the
circuit complexity of f.

Performance

d STOCO9 lattice-based scheme performs
better:

m Originally, applying Eval to Dec took O(A%)
computation if you want 2* security
against known attacks.

B Stehle and Steinfeld recently got the
complexity down to O(A3)!

So what. Regev said O(A2)
is horrible in practice...

= Qngoing_work with Shai Halevi —
But we have an implementation!

d Somewhat similar to [Smart-Vercauteren
PKC'10]. But maybe better. ©

4 Initially planned to use IBM's Blue-
but ended up not needing it Xeon E5440 /

2.83 GHz (64-
B Implementation using NTL/GMP
B Timing on a “strong” 1-CPU machi

J Gen’ed/tested instances in 4 dimensions:
d Toy(2°), Small(211), Med(213), Large(21>)

bit, quad-core)
24 GB memory

Underlying Somewhat HE

d PK is 2 integers, SK is one integer

Dimension KeyGen
512 0.16 sec

200,000-bit

integers

2048 1.25 sec
800,000-bit

integers

8192 10 sec
3,200,000-bit

integers

32728 95 sec

13,000,000-bit
integers

Enc
(amortized)

4 millisec

60 millisec 23 millisec

0.7 sec

5.3 sec

Dec

4 millisec

0.12 sec

0.6 sec

Degree

~200

~200

~200

~200

Fully Homomorphic Scheme

d Re-Crypt polynomial of degree 15

Dimension

512
200,000-bit
integers

2048
800,000-bit
integers

8192
3,200,000-bit
integers

32728
13,000,000-bit
integers

KeyGen PK size

2.4 sec 17 MByte

40 sec /0 MByte

8 min 285 MByte

2 hours 2.3 GByte

Re-Crypt

6 sec

31 sec

3 min

30 min

Thank You! Questions?

Can Evalg handle Dec.?

1 The boolean function Decg(p,c) sets:
m = LSB(c) XOrR LSB([c/p])

1 Can E handle (i.e., Evaluate) Dec,
followed by Add. or Mult.?

B If so, then E is bootstrappable, and we can
use E to construct an FHE scheme EFHE,

d Most complicated part:

f(c,p™t) = LSB([cxp])

B The numbers c and p-! are in binary rep.

Multiplying Numbers fcp = tssicp)

d Let’s multiply a and b, rep’d in binary:
(3¢, ..., 9g) x (b, ..., by)
J It involves adding the t+1 numbers:

aghy agby; .. agh; agbg

a;b, a;b.; alb., .. a;b, O

a.b, = ab, ab, O . 0 0

Adding Two Numbers fc,p) = LsB(fcp11)

X1Y1+X1XpYot XoYo

Carries:
X2 X1 Xo
Y2 Y1 Yo

XY EX Yt X1+Y1+XgYo Xgt+Yo
Sum: X1XoYoTY1XoYo

d Adding two t-bit numbers:
= Bit of the sum = up to t-degree poly of input bits

Adding Many Numbers fc,p) = Lse(icp1)

4 3-for-2 trick:

= 3 numbers — 2 numbers with same sum
= Qutput bits are up to degree-2 in input bits

Xy X1 Xo
Y> Y1 Yo
Z, Z, Z

XotY,+z, Xit+yi+zy XptYoetZzg
Xo¥o+XZ, XiY1+XiZy XgYotXpZg
+Y,2Z, +Y12Z4 +YoZg

= t numbers — 2 numbers with same sum
= Qutput bits are degree 20932t = tlogs2 2 = tl.71

Back to Multiplying f(c,pt) = LSB([cxp-1])

d Multiplying two t-bit numbers:

= Add t t-bit numbers of degree 2
= 3-for-2 trick — two t-bit numbers, deg. 2t!-71,
= Adding final 2 humbers— deg. t(2t1.71) = 2t2.71,

3 Consider f(c,pt) = LSB([cxp1])

= p-! must have log c > log p bits of precision to
ensure the rounding is correct

= So, f has degree at least 2(log p)271.

d Can our scheme E handle a polynomial f
of such high degree?

= Unfortunately, no.

f(c,p?) = LSB([cxp™])

Why Isn't E Bootstrappable?

J Recall: E can handle f if:

= |f(X11 R Xt)l < p/4

= whenever all |x;| < B, where B is a bound on the
noise of a fresh ciphertext output by Enc

d If f has degree > log p, then [f(Xy, ..., X{)]
could definitely be bigger than p

= FE is (apparently) not bootstrappable...

A Different Way to Add Numbers

1 Decg«(s,c)= LSB(c) xoRr LSB([Z: siyi])

A Different Way to Add Numbers
1 Dece«(s,c)= LSB(c) XorR LSB([Z; siyi])

dio
ds o
ds g
d4,0

ds o

an,O

~ ~ ~ ~ ~
1 1 1 1 1
— — - — -

,-log n
,-log n
,-log n
,-log n

,-log n

,-log n

A Different Way to Add Numbers

1 Decg«(s,c)= LSB(c) xoR LSB([Z: siyi])

I:)O,Iog n

/" Let bg be
the binary
rep of

Hamming
_ weight)

di o
ds o

ds o
d4 0

ds o

NS
by,

a; .

~ ~ ~ ~
1 1 1 1
— — - — -

,-log n
,-log n
,-log n
,-log n

,-log n

,-log n

A Different Way to Add Numbers

1 Dece«(s,c)= LSB(c) xor

[Let b_, be
the binary
rep of

Hamming

_ weight)

I:)O,Iog n bO,l

b—1,Iog n

dio
ds o
ds g
d4,0

ds o

B(LZ; syvil)

,-log n
,-log n
,-log n
,-log n

,-log n

,-log n

A Different Way to Add Numbers

1 Decg«(s,c)= LSB(c) xoRr LSB([Z: siyi])

/Let b 1oy be) di 0 di -1 1,-log n
the binary ds o ds 4 a3 _log n

rep O.f ds o ds 1 a3 _log n
Hamming

. weight 94,0 A4,-1 4,-log n
a5,0 a5,—1 a5,—Iog n

an,O an,—l ,-log

A 4

I:)O,Iog n I:)0,1 I30,0
b—1,Iog n b—l,l I:)—1,0

I:')—log nilogn - I:')—Iog n,1 I:’—Iog n,0

A Different Way to Add Numbers

1 Decg«(s,c)= LSB(c) xoRr LSB([Z: siyi])

d dq_ d, .
= Only log n) 1,0 1,-1 1,-log n
numbers with ds o ds -1 a3 -log n
log n bits of ds g ds 1 A3 _jog n
precision. Easy
. to handle. da,0 dg,-1 A4 -log n
aS,O a5,—1 a5,—Iog n
an,O an,—l an,—Iog n
I:)O,Iog n bO,l I:)0,0
I:)—l,log n b—l,l I:)—1,0
I:')—Iog nilogn - I:)—log n,1 I:’—Iog n,0

Computing Sparse Hamming Wgt.

d Dece«(s,c)= LS

1

1
ds g ds 1
d4,0 dg -1
ds o ds 1
an,O an,—l

B(c) XOR LSB([Z: swi])
as o a, a,

,-log n

-log n

-log n

,-log n

,-log n

,-log n

Computing Sparse Hamming Wgt.

1 Decg«(s,c)= LSB(c) xoR LSB([Z: siyi])
[s

di .0 dy -1 A1 -log n
0 0]

0 0) 0)

a4,0 a4,_1 a4,-|0(_Z] n

0 0 0]

an,O an, 1 an,—Iog n

Computing Sparse Hamming Wgt.

1 Dece«(s,c)= LSB(c) XORrR LSB([Z: s;vi])

J Binary rep of Hamming wgt of ay
X = (Xy, ..., Xy) in {0,1}" given by: [0
0

€5A[10g n1(X) Mod2, ..., €;(x) mod2, e,(x) mod2

where e, is the elem symm poly of deg k 94,0
0

d Since we know a priori that

Hamming wgt is |S|, we only need \ ™

€21[10g |517(X) M0d2, ..., e,(x) mod2, e;(x) mod2 G
up to deg < |S|

