Comparing Dynamics: Deep Neural Networks versus Glassy systems

Smile seminar: COLT/ICML debrief

January 14, 2020
Outline

1. Introduction
2. Basic facts on glassy dynamics
3. Models and results
4. Discussion
Motivation and precautions

Motivations

- Nice ideas:
 - Experimental paper
 - Lots of different people talking together
 - Another point of view: out of equilibrium statistical physics
Motivation and precautions

Motivations

- Nice ideas:
 - Experimental paper
 - Lots of different people talking together
 - Another point of view: out of equilibrium statistical physics

- Nice people on a trendy topic
Motivation and precautions

Motivations

- Nice ideas:
 - Experimental paper
 - Lots of different people talking together
 - Another point of view: out of equilibrium statistical physics

- Nice people on a trendy topic

Precautions

- A different notion of “showing”
- They take precautions in the paper
Comparison with dynamics of glassy systems

Aim of the article: numerical analysis of the training dynamics of Deep Neural Networks (DNN).

1. Comparison with *glassy systems*
2. Infer energy landscape and dynamics of DNN
Comparison with dynamics of glassy systems

Aim of the article: numerical analysis of the training dynamics of Deep Neural Networks (DNN).

1. Comparison with glassy systems
2. Infer energy landscape and dynamics of DNN

Model comparison:

<table>
<thead>
<tr>
<th>DNN</th>
<th>Glassy systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>loss function</td>
<td>energy</td>
</tr>
<tr>
<td>weights</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>data set</td>
<td>parameter defining energy</td>
</tr>
<tr>
<td>SGD</td>
<td>quench and Langevin dynamics</td>
</tr>
</tbody>
</table>
Basic facts on glassy dynamics

Model: 3-spin model.

- N spins \((\sigma_i)_{i \leq N}\) such that \(\sum_i \sigma_i^2 = N\).
- Interactions: \(J\) i.i.d. centered Gaussian with variance \(3/N^2\).
- Energy of the system:

\[
E = - \sum_{i_1,i_2,i_3} J_{i_1,i_2,i_3} \sigma_{i_1} \sigma_{i_2} \sigma_{i_3}
\]

Dynamics: model transition at \(T^*\).

1. Quench from \(T_i = \infty\) to \(T_f < T^*\)
2. Relaxation follows Langevin dynamics.
Two main observables: Energy

Energy of the 3-spin model
Exponential decay

Energy

E vs t

E vs t

Exponential decay
Two main observables: Mean square displacement

Off-equilibrium: Δ depends on t_w

$$\Delta(t_w, t_w + t) = \frac{1}{N} \sum_{i=1}^{n} (\sigma_i(t_w) - \sigma_i(t_w + t))^2$$

Aging
- The longer t_w, the longer it takes to decorrelate
- Increasingly slow dynamics due to more and more flat directions.
- Dynamic never converges
Comparison with DNN: Energy

Trained 4 models: from toy model to Resnet18, from MNIST to CIFAR-100.
Show only one: small convolutional network on CIFAR-10.

Comparison with glassy dynamics:
- Almost the same
- Optimization: slower decay for \(t_1 < t < t_2 \)
- Reaches bottom of landscape for \(t_2 < t \)
Comparison with DNN: Mean square displacement

Three regimes

1. $t_w < t_1$: visiting
2. $t_1 < t_w < t_2$: aging: dependence in t_w and plateau
3. $t_w > t_2$: diffusion at the bottom (next slide)
Diffusion at the bottom of the landscape

Difference with spin-glasses: no aging after t_2, but diffusion at the bottom of the landscape. Indeed, after rescaling with the right diffusion factor, curbs collapse after t_2:

\[
\Delta(t_w, t_w + t) / D(t_w)
\]
They exhibit **three different regimes:**

1. Initial exploration

They exhibit **three different regimes**:

1. Initial exploration
2. **Aging** dynamics
They exhibit **three different regimes:**

1. Initial exploration
2. **Aging** dynamics
3. Stationary: **diffusive in the bottom** of the landscape

⇒ **Not barrier crossing** but slowing down due to increasing of **flat directions**
A conjecture: existence of a phase transition

Conjecture the existence of a phase transition:

- Over-parametrized models \rightarrow diffusion in the bottom of the landscape \rightarrow learn well.

- Under-parametrized models \rightarrow Glassy dynamics until the end \rightarrow may take infinite time to learn.