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Abstract. We address the problem of designing an efficient broadcast encryption scheme which is also capa-
ble of tracing traitors. We introduce a code framework to formalize the problem. Then, we give a probabilistic
construction of a code which supports both traceability and revocation. Given N users with at most r revoked
users and at most t traitors, our code construction gives rise to a Trace&Revoke system with private keys
of size O((r + t) logN) (which can also be reduced to constant size based on an additional computational
assumption), ciphertexts of size O((r+ t) logN), and O(1) decryption time. Our scheme can deal with certain
classes of pirate decoders, which we believe are sufficiently powerful to capture practical pirate strategies.
In particular, our code construction is based on a combinatorial object called (r, s)-disjunct matrix, which
is designed to capture both the classic traceability notion of disjunct matrix and the new requirement of
revocation capability. We then probabilistically construct (r, s)-disjunct matrices which help design efficient
Black-Box Trace&Revoke systems. For dealing with “smart” pirates, we introduce a tracing technique called
“shadow group testing” that uses (close to) legitimate broadcast signals for tracing. Along the way, we also
proved several bounds on the number of queries needed for black-box tracing under different assumptions
about the pirate’s strategies.
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1 Introduction

In many real-world applications such as Pay-TV, satellite radio, and the distribution of copyright-
protected materials, a content provider needs to broadcast digital information to a specific set of users
(e.g., subscribers) who were given key(s) for decrypting the content. Two natural requirements arise in
such setting. First, the broadcast system should be able to painlessly revoke the receiving rights of an
arbitrary subset of subscribers, probably because they unsubscribed from the service or violated some
rules. This is the essence of the broadcast encryption problem [Ber91,FN94]. Second, some users might
collude to build a pirate decoder and distribute it, for a fee or not. Or, a pirate might achieve similar
effects via hacking accounts of legitimate users. Either way, such users are called traitors. It is thus de-
sirable for the system to be able to trace (and then revoke) at least one traitor by examining the pirate
decoder. This is the traitor tracing problem [CFN94]. All in all, broadcast encryption systems which are
capable of both tracing and revoking would be widely useful.

Many existing works studied the two problems separately, leading to inefficiency when applying the
solution to one problem to cope with the other. For example, collusion-secure codes [BS95] provide a
powerful tool against the illegal distribution of fingerprinted material in settings satisfying the so-called
Marking Assumption [BS95,Tar03]. Though designed for fingerprinting large digital objects, these codes
have been widely applied in the context of multi-user encryption for tracing traitor, motivated by the
work of Kiayias and Yung [KY02] in which a black-box tracing scheme with constant ciphertext rate was
proposed. The schemes in [FNP07,Sir07,BN08,BP08] belong to this class.

A drawback of employing collusion-secure codes for multi-user encryption is the resulting relatively
large key size. For the marking assumption to be valid, each user – characterized by a codeword – should
be assigned one out of two (or one out of many, with larger alphabet such as in IPP codes [SSW00])
keys for each position of the codeword. Indeed, the lower bound established in [Tar03] shows that the
code length must be ⌦(t2 log(N/✏)) for a system of N users with at most t traitors and with the failure
probability ✏ of the tracing procedure. This means the private key sizes of users cannot be improved
beyond this bound. The construction in [Tar03] has a code length of about 100t2 log(N/✏), making the
schemes inefficient for general practical usage.
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Due to the quadratic dependency on the number of traitors, code-based schemes are only suitable for
applications where the number of traitors is relatively small, say t = O(logN). For example, in the Pay-
TV application the users’ secret keys are stored in tamper-resistant smartcards, making it difficult and
time-consuming to recover a key: recovering one key in a tamper-resistant smartcard does not necessarily
help speed up the recover of another key in another tamper-resistant smartcard. In such applications, it
is probably reasonable to assume a small value of t. However, even when the number of traitors is small,
collusion-secure codes can still be quite inefficient. For instance, for a system of four millions users and
at most t = 22 traitors, Tardos’ code induces a system where each user’s private key is composed of more
than one million sub-keys.

Recently, schemes based on collusion-secure codes allowing erasure have been made more practical
in terms of ciphertext size (as small as a constant, as shown in [BN08,BP08]). However, in this case the
code length and thus the private key size should be even longer.

A relatively small number of proposed systems, called trace&revoke systems [NP00,NNL01,BW06],
do address both traitor tracing and broadcast encryption. These schemes can roughly be classified into
three categories: schemes based on some forms of polynomial interpolation [NP00,DF03], schemes in
the tree-based subset-cover framework [NNL01,HS02,DF02], and pairing-based schemes that support full
collusion [BW06].

However, there are still fundamental shortcomings. The schemes in [NP00,DF03] have to fix an a-
priori bound of the size of the collusion and as soon as the pirate could collect more than this bound of
keys, from traitors or revoked users, it can totally break the schemes (by reconstructing the master secret
key). The schemes [NNL01,DF02] are rather efficient but they can only deal with a non-standard notion
of traitor tracing where the tracer can either identify a traitor or render pirate decoder useless (this is
mentioned in [NNL01]). The scheme [BW06] can deal with full collusion but with a large ciphertext size
of O(

p
N) even when there is no traitor in the system.

The major objective of our paper is to propose a new code-based framework for constructing black-
box Trace&Revoke systems which have small private key and ciphertext sizes. We will deal with black-box
tracing, which means the traitors are traced by simple interactions with the pirate decoder. The decoder
can be reset as many times as we want, i.e. it is stateless.

Contributions and paper outline. Section 2 formalizes the notion of revocable codes, and efficient
conjunction revocable codes in particular. The Complete-Subtree scheme [NNL01] is a type of conjunction
revocable code. The decoding possibility of a user (i.e. a codeword) is captured by a predicate, which is
a binary relation indicating whether a codeword is capable of decrypting a signal.

Section 3 formalizes the traceability of codes. We introduce two notions in order to formalize the
capability and the strategy of pirate decoders:

– Each pirate decoder, produced by a collusion C, is associated to a word in a Useful Feasible Set of
C. Roughly, this set is defined such that if a signal can be decrypted by every member of C then
it can also be decrypted by a word in the useful feasible set. This notion formalizes useful pirate
decoders because the pirate decoder should assure the “minimum" capability of the collusion: when
all members in the collusion can decrypt a signal, the pirate decoder should also be able to decrypt
that same signal. However, Useful Feasible Set alone does not capture “smart" decoders in the sense
that it does not use any strategy: whenever it can decrypt, it will decrypt.

– The pirate decoder could of course choose an anti-tracing strategy by refusing to decrypt signals
that it considers abnormal or coming from a tracing procedure. We introduce the notion of qualified
signals to formalize the anti-tracing strategies of pirates.

We borrow the notion of useful feasible set from collusion-secure codes to formalize the capability of the
colluders. We note that, in collusion-secure codes, a word in the feasible set is also associated to a perfect
decoder and in order to deal with smarter pirate decoders, one should use a collusion-secure code with
an all-or-nothing transform [KY02] or one should use a robust collusion-secure codes that allow erasure
[Sir07,BP08,BN08]. In our setting, the pirate’s strategy is formalized by the notion of qualified signals.

In Section 3, we also indicate a simple connection between traceability of codes with the so-called
disjunct matrices, a classic combinatorial object which has “built-in" tracing capability.
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The problem with disjunct matrices is that they have no “built-in" efficient revocation capability.
Indeed, disjunct matrices or equivalently cover-free families have been used for traitor tracing in [TSN06].
However, by following the tracing framework of [BF99] it cannot be used for revocation. We deal with
this problem in Section 4 by introducing a new combinatorial object called (r, s)-disjunct matrices, which
retains the tracing-capability of disjunct matrices while also supports revocation. As disjunct matrices
have applications in diversely many areas [DH00], we believe that the new and stronger notion of (r, s)-
disjunct matrices will be widely applicable as well.

Section 5 is the heart of the paper, where we present a method for constructing good (r, s)-disjunct
matrices which allow for tracing and efficient revocation. The resulting code yields a Trace&Revoke
scheme with private key size and ciphertext length O((t + r) log(N/(t + r))) for N users, at most r
revoked users and at most t traitors. The constants hidden in the big-O are small ( 8). This randomized
construction yields a key assignment scheme where users pick their keys independently from the same
distribution and all keys have the same role. Thus, unlike the complete-subtree method which leads to a
highly asymmetric key assignment making it not suitable for tracing smart pirate decoders, our code has
better “built-in" support for traceability against non-trivial pirate strategies.

Rigorously, we deal with non-trivial pirates (that are characterized by some qualified predicates).
For a probabilistic code where codewords are picked independently from the same distribution and all
keys used in encryption have the same role, a non-trivial pirate can estimate the number of keys used
in a normal encryption and can refuse to decrypt a ciphertext that contains too few or too many keys
that lies outside its estimated interval. This strategy of pirate, called weight-limited pirate, is formalized
under interval qualified predicate. To cope with this strategy of pirate decoder, we introduce a tracing
technique called shadow group testing that uses (close to) legitimate broadcast signals for tracing. In
particular, in one setting, we consider general pirate decoders that can used any strategy. We show that
the problem of deciding whether a given signal is a legitimate broadcast signal (here, broadcast signal
is a ciphertext targeted to all users) or a tracing signal is NP-hard. We thus establish that the shadow
group testing technique can be used in conjunction with our code to construct revocable codes that are
traceable against non-trivial pirates (modulo the computational hardness), in the conventional stateless
setting where the pirate decoder could be resettable. This does not show that our trace&revoke code can
be used to deal with any pirate decoder but it can be seen as a step toward this goal.

For tracing a particular type of pirate decoder which only decrypts signals of certain weights, we
prove upper and lower bounds on the number of tests needed for a variant of group testing where each
test must consist of a given number of items.

Last but not least, we prove upper- and lower-bounds for the number of black-box queries necessary
in the information-theoretic limit when the pirate only decrypts signals which are legitimate broadcast
signals (and when it has the keys). This result applies to arbitrary Trace&Revoke system, not just code-
based ones like ours, as long as the pirate decryption assumption is valid.

Section 6 discusses the questions of how to optimize code lengths (using multi-user tracing families),
private key size (down to a constant using Asano’ method [Asa02]), and how to deal with unbounded
number of traitors/revoked users.

2 Revocable Codes

2.1 General settings

Broadcast encryption (BE) schemes enable the sender of a message to specify a subset of the users the
message will be sent to, called the target set or the privileged set. The complement of the target set is
called the revoked set. To revoke the receiving rights of some desired subset of users, a BE scheme typically
generates three pieces of data: (a) the Id Header, which is a bit-string that unambiguously identifies the
target set/revoked set; (b) the Key Header, which encapsulates a session key for the privileged users; and
(c) the Message Body, which contains the payload encrypted with the session key.

In what follows, we describe a BE scheme based on codes. Roughly speaking, each user is associated
with a “codeword” which determines the private key(s) assigned to that user. To revoke a subset of
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users, a code-based BE scheme generates a “signal” c which is a word (not necessarily a codeword) from
which the Key Header will be constructed. The signal c will have to be “compatible” with the codewords
assigned to privileged users and “incompatible” with revoked users so that only privileged users can
decode. The notation of compatibility is captured by a Boolean predicate associated with the code. The
formal definitions of broadcast encapsulation, public-key encryption and secret sharing schemes are given
in Appendix A.1.

Definition 1 ((`, N)-Code). Given a finite alphabet ⌃, and positive integers ` and N , an (`, N)-code
� is an N -subset of ⌃`, namely � ✓ ⌃` and |� | = N . Members of ⌃` are called words. Members of �
are called codewords. The quantity ` is called the length, and N the size of the code.

In order to build a BE scheme, we associate a codeword w to each user. Henceforth, without loss of
generality we use codewords to identify users. Given a set R ✓ � of revoked users, the code-based BE
scheme broadcasts by first generates a signal c 2 ⌃` which is not necessarily a codeword. The signal
will be used to generate the session key for broadcasting. A user w is “compatible” with a signal w iff a
corresponding predicate is true:

Definition 2 (Predicate). We associate a code � with a predicate D : ⌃` ⇥⌃` ! {0, 1}. The boolean
value D(w, c) indicates whether the word/user w is compatible with the signal c. The practical semantic
is that user w is able to recover the content associated with the signal c iff D(w, c) = 1.

Given signal c, the predicate D specifies the target set (the set {w | w 2 � ^D(w, c) = 1}), or equivalently
the revoked set. A subset of revoked users might somehow be able to collude, and combine their keys to
recover the content. By combining their codewords, the colluders can generate new words (not necessarily
codewords) which potentially can be used to decode signals which were not meant to be decodable by
any one of them. We formalize this capability of a collusion by the following notion.

Definition 3 (Feasible Set). A collusion C of users can produce new words from their own codewords.
This derivation of new words depends on the structure of the code. The set of words that can be derived
from a subset C of codewords is called the feasible set, and is denoted by F(C;� ). When there is no
ambiguity, we omit � and use F(C) to denote the feasible set.

We can now define the notion of revocable code which is a basic building block for BE schemes.

Definition 4 ((Efficiently) Revocable Code). Let � = {w1, · · · , wN} be an (`, N)-code. The code
� is called r-revocable if there is a predicate D such that for all R ✓ � of size |R|  r, there exists a
signal c 2 ⌃` satisfying the following conditions: 8u 2 � � R : D(u, c) = 1 and 8v 2 F(R) : D(v, c) = 0.
If, in addition, there is a poly-time algorithm RevAlgo that, given R, outputs a signal c satisfying the
above condition, then the code is said to be efficiently r-revocable.

2.2 Conjunction Codes and Broadcast Encryption

In order to clarify the above formalism, we now present a specific family of binary revocable codes called
k-conjunction codes and a BE scheme based on this family. For any two vectors u, c 2 {0, 1}`, let u ^ c
(resp. u_ c) denote the bitwise AND (resp. OR) of two vectors u and c. Let wH(c) denote the Hamming
weight of any word c 2 {0, 1}`.

Let k  ` be a positive integer, a k-conjunction code is a subset of {0, 1}` with the following associated
predicate and feasible set.

Definition 5 (Predicate for k-Conjunction Codes). For any u, c 2 {0, 1}`, the predicate Dk(u, c) :=
(wH(u ^ c) � k) is called the k-conjunction predicate.

Definition 6 (Feasible Set for k-Conjunction Codes). For any set C = {u1, · · · , uc} ✓ � . Define

F(C) = F (C;� ) =

8
<

:w 2 {0, 1}` s.t 8i 2 [l], wi 2 {0} [
c[

j=1

{uji}

9
=

; .
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Each word w = (wi)
`
i=1 2 {0, 1}` can be thought of as a subset of [`]: the subset of indices i for which

wi = 1. Then, the above definitions can be translated as: Dk(u, c) = 1 iff the intersection of u and c has
size at least k, and F (C) is the collection of all subsets of the union

S
c2C c.

The notion of revocable codes can now be made more precise for this family.

Definition 7 ((Efficiently) Revocable k-Conjunction Code). A binary (`, N)-code � is called
(r, s)-Revocable k-Conjunction if for all R ✓ � and |R|  r, there exists a signal c 2 {0, 1}`, with
wH(c)  s satisfying the following conditions: 8u 2 � �R : Dk(u, c) = 1 and 8v 2 F(R) : Dk(v, c) = 0. If
in addition there is a polynomial time algorithm RevAlgo that computes c given R, then the code is said
to be efficiently revocable.

Example 8 (The Complete-subtree scheme as a 1-conjunctive code). The Complete-Subtree scheme [NNL01]
can be roughly described as follows. Imagine a full binary tree T with N nodes. Each user is associated
with a leaf of the three. To each tree node there corresponds a distinguished encryption key. A user is
given the set of keys corresponding to all the internal nodes from the leaf to the root of the tree. To
revoke a subset R of users (i.e. leaves of the tree), we first construct a minimal subtree T 0 of T that
spans R and the root. Let K be the set of nodes of T that are “hanging off” of T 0. Then, it is easy to
see that each non-revoked user has some key in the set K, and no revoked user has any key in the set
K. The system can then use the set K of keys to encrypt the broadcast message, whose length will be
proportional to |K|, which can be shown to be O(|R| log(N/|R|)).

The above key assignment scheme can be casted in terms of a 1-conjunction code as follows. There is
a codeword for each leaf of the N -leaf full binary tree T . The code length is ` = 2N�1, each position (i.e.
coordinate) of the code corresponds to a node of the tree. For each codeword w, there is a 1 in a position
if the corresponding node is on the path from w to the root. We will refer to this code the CS-code.

Following the results in [NNL01] and our brief description above, the following proposition is straight-
forward.

Proposition 9. For any r 2 [N ], the CS-Code is a 1-conjunction (r, r log(N/r))-revocable (2N � 1, N)-
code.

We now present a broadcast encryption scheme that implements our above predicate for a general
k-conjunction binary code. The new trick is to combine the secret sharing with the k-conjunction code
such that only legitimate users possesses sufficient shares to be able to decrypt. This is a generalization of
the previous schemes [NNL01] where the secret sharing is not involved. In fact, under our construction,
the previous schemes [NNL01] correspond to the case k = 1 and the 1-out-of-m secret sharing becomes
trivial.

Definition 10 (BE from Conjunction Codes). Let us be given a generator of Efficiently (r, s)-
Revocable k-Conjunction binary (`, N)-Codes, a secret sharing scheme SSS, and a secure public-key
encryption scheme PKE . We build a BE scheme ⇧ that can revoke up to r users in the following way.

– Setup(1

�, N)

1. Run the code generating algorithm on (N, k, r) to obtain an Efficiently (r, s)-Revocable k-
Conjunction (`, N)-Code � .

2. Run PKE .Setup(1

�
) to get the public parameters param for the encryption scheme;

3. For i = 1, . . . , `, run the key generation algorithm PKE .KeyGen(param) to get the pair (dki, eki).
4. Set MSK = (�, {dki}), and EK = {eki}.
5. For i = 1, . . . , N , the user i is associated with the codeword wi 2 � , we write wi

= wi
1 . . . w

i
` and

set uski  {dkj/wi
j = 1, j = 1, . . . , `}.

– Encaps(EK, R):
1. For a revoked set R of size at most r, since the code � is efficiently (r, s)-revocable, one can find

out a signal c of weight at most s, such that Dk(u, c) = 0, for any u 2 F (R), and D(u, c) = 1 for
any u 2 [N ]�R. We denote by m = wH(c) this weight;
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2. Denote by i1, . . . , im the positions of m 1-bits in c, i.e., cij = 1, for j = 1, . . . ,m;
3. Call Share(, k,m), a k-out-of-m secret sharing scheme of a -bit secret. The Share(, k,m)

algorithm outputs a secret K
$ {0, 1} and m shares s1, . . . sm;

4. Set eij = PKE .Enc(pkij , sj), for j = 1, . . . ,m.
5. Output K and H = (c, (eij ), j = 1, . . . ,m).

– Decaps(uskj , R,H):
1. If j is in [N ]�R, then Dk(wj , c) = 1. This means wH(wj ^ c) � k.
2. Denote by i1, . . . , ik the positions of the first k 1-bit in wj ^ c.
3. Compute sj = PKE .Dec(skij , eij ), for j = 1, . . . , k. With the Combine algorithm on these k

shares, reconstruct K.
The case k = 1 is the simplest case: the secret sharing scheme simply consists in choosing a random
K

$ {0, 1}, and then to set si = K for all i.

3 Traceable Codes

Traitors are users who collude to build (and distribute) a pirate decoder. The goal of traitor tracing
schemes is to allow an authority to trace back, from a pirate decoder, at least one codeword which was
used and thus at least one traitor. More precisely, let T ⇢ ⌃` denote the set of (codewords of) at most
t traitors. From this set of codewords the “pirate” produces a pirate decoder D that efficiently decrypts
some broadcast signals c 2 {0, 1}`. We view D as boolean function on predicates c 2 {0, 1}`: D(c) = 1

means D correctly decrypts c, and D(c) = 0 otherwise.
The main task of the traitor tracing scheme is to identify at least one codeword in T (i.e. one

traitor) by “examining” the pirate decoder. In this paper we are only concerned with the commonly used
“blackbox tracing” model, where the tracer can only query the decoder function D [CFN94,KY02]. In
reality, querying D is roughly equivalent to the act of sending a broadcast signal to the physical decoding
device, examining its output (whether it decrypts the content correctly), and then resetting the device.
While it is true that some devices may not be stateless (say, some data is stored in a ROM), the blackbox
tracing model is still a reasonably practical model.

Our plan is as follows. We first define the notion of a traceable code. The code is designed such that
from a word w belonging to the “useful feasible set” of words, the code allows us to trace back at least
one traitor. Recall that the feasible set F(T ) is the set of all words that the traitors can derive. (We can
roughly think of F(T ) as the set of decryption keys that the traitors can derive from their private keys.)
The useful feasible set UF(T ) is a subset of the feasible set, whose meaning is define below. Then, we give
a specific family of 1-conjunction traceable codes based on disjunct matrices. Finally, we describe how we
might possibly get a hold of a word from the UF(T ). This task is highly dependent on the “anti-tracing”
strategy used by the pirate, and thus we will model the anti-tracing strategy with the notion of “qualified
signals.”

3.1 Traceable Codes

The feasible set models the collection of all words which can be “constructed” by the traitors from their
codewords. A word in the feasible set F(T ) may or may not be useful for decrypting broadcast contents.
We consider a word w from a collusion T useful if it satisfies the following condition: for any signal, if
every user in T is able to decrypt it, then w should be also able to decrypt it.

Definition 11 (Useful Feasible Set). The useful feasible set, denoted by UF(T ;� ) (or UF(T )) from
a collusion T is the subset of words w in F(T ) such that, for any signal c 2 ⌃`, if D(u, c) = 1, 8u 2 T ,
then D(w, c) = 1.

It follows from the definition that T 0 ✓ T implies UF(T 0
) ✓ UF(T ). To see this, consider a word

w 2 UF(T 0
) ✓ F(T ) and an arbitrary signal c. If D(u, c) = 18u 2 T , then D(u, c) = 18u 2 T 0, which

in turns implies D(w, c) = 1. Hence, w 2 UF(T ). Roughly, adding more traitors to a traitor set leads to
more useful words. Intuitively, the pirate should at least be able to decrypt signals that all traitors are
able of decrypting. Hence, the above definition is in some sense the weakest requirement of being useful.
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Useful Feasible Set of 1-conjunction codes To illustrate the concept of useful feasible set, let us characterize
the useful feasible sets of 1-conjunction codes. Let � be a 1-conjunction (`, N)-code, and T ✓ � be an
arbitrary set of traitors. Recall that the alphabet is binary in this case. Each word w = (wi)

`
i=1 2 {0, 1}`

can naturally be viewed as a subset of [`]: the set of all positions i 2 [`] for which wi = 1. This way,
the intersection and union of words are also words in {0, 1}`. Also, we can write w ⇢ v for two words
w, v 2 {0, 1}` without ambiguity.

Proposition 12. Let T ✓ � be an arbitrary non-empty set of codewords of a 1-conjunction (`, N)-code.
Then,

UF(T ) = {w 2 F(T ) | 9u ⇢ T, u ✓ w} .

In words, a word w in the feasible set F(T ) is useful if w contains some member of T .

Proof. The fact that {w 2 F(T ) | 9u ⇢ T, u ✓ w} ✓ UF(T ) is straightforward from definitions. We prove
the converse. Assume to the contrary that there is some w 2 UF(T ) what does not contain any u 2 T .
Let c be a signal, viewed as a subset of [`], constructed by collecting arbitrarily one member from each
of the set u \w for each u 2 T . Then, D1(u, c) = 1 for all u 2 T yet D1(w, c) = 0 because w \ c = ;. This
is a contradiction.

We are now ready to formalize the notion of traceable codes.

Definition 13 ((Efficiently) Traceable Code). An (`, N)-code � is t-traceable if from any collusion
T ⇢ � of size at most t, and any word w in the useful feasible set UF(T ), there is an algorithm that on
input w outputs a codeword in T . This algorithm is a tracing algorithm. If there is a polynomial time
tracing algorithm, then the code is said to be efficiently traceable.

We have not specified how one might be able to construct a traceable code, efficiently or not, even in
the 1-conjunction code case. Given a generic 1-conjunction code, and a word w 2 UF(T ), we can construct
a set Tw of candidate codewords which are all codewords u which contains w. However, we can not be
sure which of the words in Tw belong to the traitor set T . We will enlist the help of disjunct matrices to
construct 1-conjunction traceable codes.

3.2 Traceable codes from disjunct matrices

The classic combinatorial structure allowing for a very common type of tracing is the so-called disjunct
matrices [DH00]. Roughly speaking, an r-disjunct matrix is a binary matrix satisfying the following
property: given the (boolean) union of at most r unknown columns of the matrix we can identify all the
unknown columns in time linear in the size of the matrix. Disjunct matrices turn out to be very useful in
constructing efficiently traceable 1-conjunction codes, so we formally define and discuss their properties
next.

Let M be an `⇥N binary matrix. As in the previous section, we will also view each column of M as
a subset of [`], In particular, the set of columns of M is a family of subsets of [`]. Similarly, the rows of
M form a family of subsets of [N ].

Definition 14 (r-Disjunct Matrix). An `⇥N binary matrix M is said to be r-disjunct if no column
(viewed as a subset of [`]) is contained in the union of any r other columns.

This concept is equivalent to the notion of r-cover-free set family [EFF85]. Disjunct matrices are used
to design non-adaptive group tests in the following sense. There is a set of at most r positive items in a
population of N items. The rest of the items are negatives. We must identify the positives using as few
non-adaptive “tests" as possible. Each test is a subset of items. A test returns positive iff at least one
positive item is contained in the test. In the original group testing application [Dor43], each item is a
blood sample, and a test is a pool of blood samples which indicates if any sample in the pool is positive
for syphilis. That application explains the “positive" and “negative" terms.
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Associate each column of an `⇥N binary matrix M with an item. Each row of M represents a test,
which consists of all columns with a 1 on the row. The test outcome vector is precisely the union of the
positive columns, where 1 represents positive test outcome and 0 negative. It is well-known [DH00] that,
if M is r-disjunct, then there is a O(`N)-time algorithm that identifies all the positives given the test
outcome vector. The algorithm eliminates all items that participate in a negative test. The remaining
items are identified as positives. The matrix is r-disjunct if and only if this elimination procedure returns
the correct positive set, for an arbitrary set of at most r positives.

The following proposition explains a slightly stronger capability of disjunct matrices. The proposition
allows for a disjunct matrix to identify a subset of positives when the outcome vector which is not
necessarily an exact union of some positives.

Proposition 15. Let M be an r-disjunct matrix with dimension `⇥N . Let M(j) denote the jth column
of M. Let T be any (unknown) subset of at most r columns of M. Let ; 6= S ⇢ T and w 2 {0, 1}` be a
vector such that

S
j2S M(j) ✓ w ✓

S
j2T M(j). Then, from the vector w we can identify a set of columns

U in time O(`N) such that S ✓ U ✓ T .

Proof. Let M = (mij), and w = (wi)
`
i=1. Remove any column j such that mij = 1 and wi = 0 for some

i 2 [`]. Let U be the set of remaining columns. We claim that S ✓ U ✓ T . First, consider any column
j /2 T . By the definition of r-disjunctness, column M(j) is not contained in the union of columns in T .
In particular, M(j) is not contained in w. Thus, there is some row i 2 [`] such that mij = 1 and wi = 0.
Column j is thus removed by the algorithm. We conclude that U ✓ T . Next, consider any column j 2 S.
Since M(j) ✓ w column j is not removed. Consequently, S ✓ U as desired.

We can also think of an ` ⇥ N binary matrix as an (`, N)-code where the codewords are defined to
be the columns of the matrix. The following corollary follows from Propositions 15 and 12.

Corollary 16. Let � be the collection of columns of an `⇥N t-disjunct matrix. Then, � is an efficiently
t-traceable 1-conjunction code.

3.3 Black-box Traceability and Decoders’ Strategies

So far, we have defined traceable codes and specified how to obtain efficiently traceable 1-conjunction
codes from disjunct matrices. Traceable codes allow us to pin-point at least one traitor from any given
useful feasible word. So the remaining question is how to get a hold of a useful feasible word.

Our ability to identify a useful feasible word depends intimately on the “anti-tracing” strategy adopted
by the pirate (decoder). The anti-tracing strategy attempts to decrypt some signal while ignores others.
We call the set of signals that the pirate (decoder) attempts to decrypt the “qualified signals,” and this
set is modeled with a relation as in the following definition.

Definition 17 (Qualified signals). Let T ⇢ � be the set of traitors. Let Q to be the binary relation
Q over T ⇢ � and signals c 2 {0, 1}` defined by Q(T, c) = 1 if the pirate decoder attempts to decrypt
broadcast messages associated with the signal c, and Q(T, c) = 0 otherwise.

Recall that D denotes the pirate decoder, which is a boolean function, where D(c) = 1 iff the decoder
successfully decode signal c. For any subset T of words, define D(T, c) = ^u2TD(u, c). We certainly can
not hope to trace pirate decoders that do not decode any signal at all. Our aim is to be able to trace
decoders which decode signals that it aims to decode with a non-negligible probability.

Definition 18 (Effective Decoder). A pirate decoder D is called (Q, p)-effective if for any signal
c 2 ⌃`, Pr[D(c) = 1 | D(T, c) = 1 and Q(T, c) = 1] � p, where T is the set of codewords (traitors) used
to build the decoder.

We will consider black-box tracing procedures, which trace traitors by simple interactions with the
pirate decoder. We assume that the decoder can be reset as many time as one wants, thus is it stateless
and can be modeled with the function D as described earlier. However, the decoder can have a specific
strategy Q. The only thing that is going for us is that the pirate decoder has to be (Q, p)-effective.
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Definition 19 (Black-box (Efficiently) Traceable Code). An (`, N)-code � is (Q, p, �)-blackbox
t-traceable if there exists a tracing algorithm Trace such that, for any collusion T of size at most t, and
any (Q, p)-effective decoder D, the tracing algorithm TraceD, with oracle access to the decoder, outputs
a traitor in T with probability at least �. If there is a tracing algorithm which runs in time poly(N), then
the code is said to be (Q, p, �)-blackbox efficiently t-traceable code. In particular, such an algorithm can
only issue poly(N) queries to the decoder.

To illustrate the above concepts, let us consider several anti-tracing strategies.

Example 20 (Naive Decoder). We first consider the case when the pirate has no strategy at all. The
following decoder was called a “perfect decoder" in [BN08]. A naive decoder is a decoder that tries to
decrypt any word c with no strategy: Q(T, c) = 1 for any collusion T and any signal c.

This is of course the weakest adversary for a tracing algorithm. For example, the CS-Code [NNL01]
described in Example 8 and the disjunct matrix-based code described in Corollary 16 are both black-box
efficiently traceable. Assuming the decoder D is naive, the tracing algorithm works as follows. It queries
the decoder D with all weight-1 signals c 2 {0, 1}`. These are the signals with 1 in some coordinate and
0s elsewhere. By repeating the queries many times, we can amplify the success probability (to be more
than �, see Lemma 21 below) of identifying the set of positions i 2 [`] at which some codeword in T has
a 1. From these positions, we obtain a useful feasible word w for which u ✓ w for every codeword u 2 T .
This useful feasible word w is precisely the union of the traitor codewords. Hence, the set of all traitors
can be traced if the code is based on a t-disjunct matrix.

For the CS-code, we apply the tracing algorithm described in [NNL01]. Recall that in the CS-code
codewords are constructed from leaves of a full binary tree with N leaves. Each codeword is of length
` = 2N � 1, one position for each node in the tree. A codeword has 1s in the positions corresponding to
the nodes from the associated leaf up to the root. Now, from the feasible word w above, we know of all
the paths from the traitors to the root and thus we can easily identify the traitors.

The following simple lemma shows us how to amplify the success probability of a tracing procedure.
Each query to a pirate decoder is some signal c, and we would like to know whether D(c) = 1 or 0 with
high confidence.

Lemma 21. Consider a probabilistic pirate decoder that, for each query c, if it is able to decrypt c then
it gives the correct answer D(c) = 1 with probability at least p, and if it cannot decrypt c then it always
outputs D(c) = 0. Suppose we want to issue q different queries c1, · · · , cq to this pirate decoder. Then, by

repeating each query O

 
ln
(

q
1�� )

ln
⇣

1
1�p

⌘

!
times, we will obtain all q correct answers with probability more than

�. (If p = 1 then each query is issued once only, for a total of q queries.)

Proof. Suppose we repeat each query m times, and outputs 1 only if at least one of the m copies of the
query returns D(c) = 1. Then, we will be wrong with probability at most (1� p)m. Hence, for q different
queries c1, · · · , cq we will be wrong on some of them with probability at most q(1 � p)m by the union

bound. By picking m = O

 
ln
(

q
1�� )

ln
⇣

1
1�p

⌘

!
we then can ensure that the probability that we are wrong is less

than 1� �.

We have been relatively brief in the above description on the naive decoder because the decoder is
too simple to spend much space on. In practice, we certainly cannot assume that a decoder will accept to
decrypt any signal, even if it could. For example, against the CS-code the pirate decoder can employ the
following strategy: it does not decrypt any weight-1 signal where the 1 is in the position of a traitor leaf
node. Under this strategy, the CS-Code is not blackbox-traceable, unless with error probability greater
the 1/2 because no tracing algorithm can distinguish between a traitor (a leaf node) and its sibling in
the full binary tree. Note that the sibling may very well be a non-traitor. The CS-Code cannot deal with
this type of pirate’s strategy because the code has a rigid structure where each position in the code plays
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a specific role and corresponds to a subset of users of different sizes. For probabilistic constructions of
codes where all the code positions have the same role, the strategy of refusing to decrypt some position
has no significant impact on the tracing algorithm. Our probabilistic constructions, described in the next
sections, can deal with the above pirate’s strategy against CS-Code for that reason.

However, the pirate’s strategy can certainly be smarter than rejecting some position(s) of the code.
For example, for a probabilistic code where the codewords are chosen independently from the same
distribution and all positions play the same role, a non-trivial pirate can estimate the (Hamming) weight
of signals used in broadcast encryption and can refuse to decrypt a ciphertext that correspond to a signal
containing too few or too many 1s. This strategy of pirate, called the “weight-limited pirate," is formalized
as follow:

Definition 22 (Weight-Limited Decoder). A Weight-Limited Decoder is a decoder that only
decrypts signals c with Hamming weight in an interval [a, b]: Q(T, c) := (wH(c) 2 [a, b]).

If the tracing algorithm works for a weight-limited decoder with interval [a, a], then it a fortiori works
for a weight-limited decoder with interval [u, v], for any u  a  v. Therefore, the most interesting case
is a singleton interval. We will denote Qa the Weight-Limited Strategy Q for the singleton interval [a, a].
The following simple proposition should help clarify the concepts of weight-limited decoder and blackbox
efficiently traceable codes.

Proposition 23. The column set of a t-disjunct `⇥N matrix is a 1-conjunction code which is (Q1, p, �)-
blackbox efficiently t-traceable code, where the number of queries the tracer issues to the decoder is

O

 
`
ln
(

`
1�� )

ln
⇣

1
1�p

⌘

!
.

Proof. We issue ` different weight-1 queries (with repetitions) to a (Q1, p)-effective decoder D. From

Lemma 21, the total number of queries issued is O

 
`
ln
(

`
1�� )

ln
⇣

1
1�p

⌘

!
. From the results of these queries, we will

be able to recover a useful feasible word w which is the boolean union of all the traitors participated in
constructing the decoder. From Proposition 15, we can identify all the traitors in O(`N) time.

4 Trace&Revoke Codes

4.1 1-Conjunction Trace&Revoke Codes and (r, s)-disjunct matrices

Sections 2 and 3 defined and presented basic examples of revocable and traceable codes. This section
defines trace&revoke codes which are capable of both revoking users and tracing traitors. Roughly, in a
trace and revoke code, one can still trace traitors even after revoking a set of users. The codes we discuss
from this section on will be 1-conjunction codes.

As usual, we interchangeably think of w 2 {0, 1}` as a subset of [`]. In particular, for any position
j 2 [`], we write j 2 w iff wj = 1 and j /2 w otherwise. Let � be an (`, N)-code. For any subset P ⇢ [`], let
�P ✓ ⌃P denote the restrictions of all codewords in � onto positions in P ; namely �P = {w|P : w 2 �},
where w|P denotes the projection of w onto positions in P .

Let R ✓ � be any set of codewords, then P (R) denotes the positions i 2 [`] for which wi = 1 for some
w 2 R. Let ¯P (R) = [`]�R. Then, define �R̄ = (� �R)P̄ (R). In words, �R̄ is the set of all codewords not
in R restricted to the positions not in P (R). We can think of �R̄ as � with R being “modded out.”

Definition 24 (1-Conjunction Trace&Revoke Code). An (`, N)-code � is called an (efficient) 1-
conjunction (r, s, t)-trace&revoke if:

1. � is a 1-conjunction (efficiently) (r, s)-revocable code;

2. For any subset R 2 � of at most r codewords, the code �R̄ is a (efficiently) t-traceable code.
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The main intuition behind the definition should be clear: after revoking users in R, the remaining
codewords form a t-traceable code so that we can trace after revoke. But how do we construct (r, s, t)-
trace&revoke codes? We will impose an extra constraint on disjunct matrices to add revoking capability
to disjunct matrices.

In Section 3.2, we motivated the use of disjunct matrix for tracing. However, general disjunct matrices
do not necessarily have efficient revocation capability. For example, the identity matrix is r-disjunct for
any r, but it would represent a horrible 1-conjunction revoke code because a broadcast signal must have
weight ⌦(N) leading to large broadcast messages.

This section introduces “(r, s)-disjunct matrices” that retain the traceability of disjunct matrices yet
also attain efficient revocation capability. Constructions of good (r, s)-disjunct matrices are presented in
Section 5.

Let R ✓ [N ] be a non-empty subset of columns of a binary matrix M with ` rows and N columns. A
row set I ✓ [`] is said to eliminate R if the union of the rows in I is precisely [N ]�R.

Definition 25 ((r, s)-disjunct). An ` ⇥ N matrix M is said to be (r, s)-disjunct if it satisfies the
following property. Given an arbitrary set R of up to r columns of M, there is a set I ✓ [`] of at most s
rows which eliminates R.

Finally, we show how the new notion of disjunct matrices leads to 1-conjunction trace and revoke
codes.

Theorem 26. For any (r+t, s)-disjunct matrix M with ` rows and N columns. Then, the set of columns
of M forms a 1-conjunction (r, s, t)-trace&revoke code.

Proof. Let � denote the set of columns of M. Let R be any subset of columns of M with size |R|  r <
r+ t. Then, there is a subset I ✓ [`] of at most s rows that eliminates R because M is (r+ t, s)-disjunct.
Let c 2 {0, 1}` be the characteristic vector of I, i.e. ci = 1 for i 2 I and ci = 0 for i 2 [`]� I. Then, c is a
signal for which D1(c, w) = 0 for all w 2 R and D1(c, w) = 1 for all w /2 R. Furthermore, the Hamming
weight of c is at most s. Consequently, � is an (r, s)-revocable code.

Next, we show that for any set R of at most r columns of M, �R̄ is t-traceable. Let MR̄ denote the
matrix obtained from M by removing all columns in R and all rows in P (R). Then, by Corollary 16 it
is sufficient to show that MR̄ is t-disjunct. Let T be an arbitrary set of at most t columns of MR̄, which
by extension is also a set of at most t columns of M. Let w be a column of MR̄ not in T . If w – as a
column of MR̄ is contained in the union of columns in T , then w – as a column of M – is contained in
the union of all columns in R[T because all positions in P (R) are covered by columns in R. This means
M is not (r + t)-disjunct; and in particular M is not (r + t, s)-disjunct, a contradiction!

4.2 Trace&revoke schemes from 1-conjunction blackbox trace&revoke codes

Finally, we incorporate the notion of blackbox tracing and pirate strategy Q into the code definition.

Definition 27 (Black-box 1-Conjunction Trace&Revoke Code). An (`, N)-code � is (r, s,Q, p, �, t)-
blackbox (efficient) trace&revoke if

1. � is a 1-conjunction (efficient) (r, s)-revocable code, and
2. For any set R of at most r codewords, the code �R̄ is a 1-conjunction (Q, p, �)-blackbox (efficiently)

t-traceable code.

Given such a blackbox trace and revoke code, we can transform it into a trace and revoke system
in a similar fashion to the the one from a revocable code to a broadcast encryption in Definition 10.
The details (definition of a trace&revoke scheme and the transformation) can be found in Appendix A.1
(Definitions 37 and 41).
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5 Constructions of and tracing with (r, s)-disjunct matrices

We have shown that (r, s)-disjunct matrices give rise to trace and revoke codes. In this section we first
show how to construct (r, s)-disjunct matrices probabilistically. Then, we use these matrices to construct
blackbox trace and revoke codes.

5.1 Constructions of 1-Conjunction (r, s, t)-trace&revoke codes

A distribution of binary matrices. Let N, b, n be arbitrary positive integers. Let ` = nb, and
M(N, b, n) denote the distribution of ` ⇥ N binary matrices generated as follows. Partition the set
[`] into n parts, each part has b “bins." The parts are P1 = {1, · · · , b}, · · · , Pn = {(n� 1)b+ 1, · · · , nb}.

To generate a matrix M 2M(N, b, n) with ` = bn rows and N columns, we generate columns of M
independently in the following way. Each column of M, viewed as a subset of [`], is chosen by picking
uniformly (with probability 1/b) exactly one bin from each part. In particular, each column of M has
exactly n elements.

We can think of each column as a “ball," and each part is a collection of b bins. The distribution
M(N, b, n) is defined by throwing N balls to b bins belonging to a part, and repeat that experiment
n times, one for each part. This type of matrix distribution is used in constructing compressed sensing
matrices. The resulting random matrix can also be thought of as the incidence matrix of concatenating
a random code of length n with the identity code [NPR12].

Construction of (r, s)-disjunct matrices. Given two integer parameters 1  r < N , our goal is to
(randomly) construct a `⇥N binary matrix M which is (r, s)-disjunct with s as small as possible. The
idea is to choose a matrix M at random from M(N, b, n) with suitably chosen parameters n and b, and
show that M is (r, s)-disjunct with high probability.

Theorem 28. Let 1  r < N be given positive integers. Let z, b, n be positive integers such that r < b
and z | n. Let M be a matrix chosen from the distribution M(N, b, n). (Recall that M has ` = nb rows
and N columns. And, each column of M has weight exactly n.) Then, with probability at least

1�
✓
Ne

r

◆r

Nn/z
(r/b)n

the matrix M satisfies both of the following conditions:

(i) let R be an arbitrary set of at most r columns of M. Then there is a set I of rows which eliminates
R, where |I|  zb and I ✓ {zb(i � 1) + 1, · · · , zbi} for some i 2 {1, · · · , n/z}. In particular, M is
(r, zb)-disjunct.

(ii) finding I given R takes time at most O(`N).

Proof. Recall that [`] is partitioned into n parts, each part has b “bins": Pj = {(j � 1)b + 1, · · · , jb},
j 2 [n]. Fix a set R of at most r columns of M. Let R ✓ [`] be the union of columns in R. Define

I = P1 [ · · · [ Pz \R.

In other words, I is the set of bins in the first z parts which contain none of the columns in R. In each
of the first z parts, the columns in R can be in at most r bins. Hence, z(b� r)  |I|  zb.

We bound the probability that I does not eliminate R, which happens if some column in [N ] � R
belongs to no bin in I. A fixed column in [N ]�R belongs to no bin in I with probability at most (r/b)z.
Hence, by the union bound the probability that some column in [N ]�R belongs to no bin in I is at most
(N � r)(r/b)z < N(r/b)z. In other words, I does not eliminate R with probability at most N(r/b)z.

Now, if we define I to be
I = Pz+1 [ · · · [ P2z \R,
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then by the same reasoning the probability that I does not eliminate R is also at most N(r/b)z. The
same conclusion holds for the next group of z parts, and so forth. Since n parts can be partitioned in to
n/z groups of z parts each, and they are all independent, the probability that R cannot be eliminated
by any one of these I is at most (N(r/b)z)n/z = Nn/z

(r/b)n.
Finally, by the union bound over all choices of R (including R = ;) we conclude that M does not

satisfy property (i) with probability at most

rX

j=0

✓
N

j

◆
Nn/z

(r/b)n 
✓
Ne

r

◆r

Nn/z
(r/b)n.

Property (ii) follows straightforwardly from the above analysis, because we can simply check each block
of z consecutive parts, one by one, and verify if I satisfies the desired property. ut

Corollary 29 (Concrete parameters for an (r, s, t)-trace&revoke code). For any 1  r + t < N ,
there exists an efficient 1-conjunction (r, s, t)-trace&revoke (`, N)-code of length ` = 2(2(r + t)2 + r +

t)(log2N + 1), where s = (4r + 4t+ 2)(log2N + 1).

The above corollary was obtain from Theorem 26 and Theorem 28 by setting n = (r+t) log2(N
2e/(r+

t)), b = 2(r+ t) + 1, and z = n/(r+ t). However, the corollary only shows the existence of such codes, it
does not give an efficient strategy for constructing such codes. There are several directions one can take.

– Deterministically, in exponential time we can easily construct a matrix satisfying all conditions in the
theorem with the parameters in the corollary because the theorem shows that such a matrix exists.

– Probabilistically, by slightly worsen some parameters, the theorem implies that we can construct
probabilistically a good (r, s)-disjunct matrix with overwhelmingly large probability. For example,
by setting n = (r+t) log2(N

2e/(r+t)), b = 4(r+t), and z = n/(r+t), the probability that a random
matrix from M(N, b, n) satisfies all properties in the theorem is at least 1�

⇣
(r+t)
N2e

⌘r+t
. In this case, we

obtain with extremely high probability an efficient 1-conjunction (r+t, 8(r+t)(log2N+1))-revocable
code of size N and length ` = 8(r + t)2(log2N + 1).

– If desired, we can obtain a deterministic construction with a Las Vegas algorithm by repeating the
above experiment independently multiple times. In each iteration, we can check in time O(NO((r+t))

)

whether the randomly selected matrix satisfies the properties.

5.2 Combinatorial Group Testing with Prescribed-Weight Tests

From Corollary 29, we knows how to construct a trace and revoke code where after revoking at most r
users R, we can identify at least one out of t traitors if we have access to a useful feasible word of the code
�R̄. The identification of a useful feasible word, of course, depends intimately on the anti-tracing strategy
of the pirate decoder. In this section, we develop the shadow group testing technique for identifying a
useful feasible word when the pirate decoder is a limited-weight decoder (recall Definition 22). As we
have observed earlier, it is sufficient to deal with constant-weight decoder strategy Qa. To describe the
shadow group testing technique, we first derive some results regarding group testing where all pools have
the same given size.

The non-adaptive case. Given positive integers r, z,N where r + z  N , the following gives upper
and lower bounds the optimal number of non-adaptive tests for identifying  r unknown items from
the population of N items, where each test must have weight exactly z. Furthermore, the proof also
presents two methods for constructing the tests achieving the upper-bound, one deterministic and the
other randomized.

Theorem 30. Let M be an `⇥N matrix which is r-disjunct with a uniform row weight of z. Then,

` � N � r

z
· ezr/N . (1)
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Given parameters r + z  N , there is a deterministic algorithm which constructs a ` ⇥N matrix which
is r-disjunct with a uniform row weight of z, where

` =
N � r

z
e

rz
N�r�z+1

✓
1 + r + ln z + r ln

✓
(N � z)

r

◆◆
. (2)

Furthermore, by choosing weight-z rows uniformly at random, we can also construct such a matrix with
success probability � 1� ✏, for any given ✏ 2 (0, 1), where

` = O

✓
N

z
r ln

✓
N

✏r

◆
e

rz
N�r�z+1

◆
. (3)

Proof. Let X be the set of all pairs (j, A) where A ⇢ [N ] is an r-subset of [N ], and j 2 [N ] � A. Note
that |X| =

�N
r

�
(N � r) = N

�N�1
r

�
.

To prove the lower bound (1), fix an `⇥N r-disjunct matrix M = (mij) with constant row weight z.
A row i of M is said to mask a member (j, A) 2 X if row i “intersects" column j (i.e. mij = 1) and does
not intersect any column j0 2 A (i.e. mij0 = 0, 8j0 2 A). In order for M = (mij) to be r-disjunct, every
member of X must be masked by some row. A weight-z row masks exactly z

�N�z
r

�
members of X. Thus,

` �
(N � r)

�N
r

�

z
�N�z

r

� =

N � r

z
· N

N � z
· N � 1

N � z � 1

· · · N � r + 1

N � z � r + 1

>
N � r

z
·
✓

N

N � z

◆r

=

N � r

z
· 1

(1� z/N)

r
>

N � r

z
· ezr/N

We next derive an upperbound, we present two methods of constructing constant row-weight disjunct
matrices, one deterministic and one probabilistic.

The deterministic construction works by casting the problem as an instance of the set cover problem
and using the well-known greedy algorithm for set cover. The construction problem can be viewed as
a set cover instance as follows. The universe to be covered is X. Each “set" is represented by a weight-z
row s. The elements in the universe that belong to the set s are precisely the members of X which s
masks. Thus, each “set" s contains exactly z

�N�z
r

�
elements. A member (j, A) 2 X is covered by exactly�N�r�1

z�1

�
sets. A classic result by Lovasz [Lov75] (and independently by Chvatal [Chv79]) implies that the

greedy algorithm finds a set cover for X of size at most

` 
�N
z

�
�N�r�1

z�1

�
✓
1 + ln

✓
z

✓
N � z

r

◆◆◆

=

N � r

z
· N

N � r
· N � 1

N � r � 1

· · · N � z + 1

N � r � z + 1

✓
1 + ln

✓
z

✓
N � z

r

◆◆◆

<
N � r

z

✓
N � z + 1

N � r � z + 1

◆z ✓
1 + ln z + r ln

✓
e(N � z)

r

◆◆

=

N � r

z

✓
1 +

r

N � r � z + 1

◆z ✓
1 + r + ln z + r ln

✓
(N � z)

r

◆◆

<
N � r

z
e

rz
N�r�z+1

✓
1 + r + ln z + r ln

✓
(N � z)

r

◆◆
.

This fact can also be seen from the dual-fitting analysis of the greedy algorithm for set cover. This set
cover is exactly the set of rows of the r-disjunct matrix we are looking for. The final expression might
seem a little unwieldy. Note, however, that compared to the lower bound (1), we are only off by a factor
of about O(r ln(N/r)). For most meaningful ranges of z and r, the factor

⇣
1 + r + ln z + r ln

⇣
(N�z)

r

⌘⌘

can safely be thought of as O(r ln(N/r)). Last but not least, if rz = O(N) then e
rz

N�r�z+1
= O(1) and

the number of rows l is not exponential. Also, when rz = ⇥(N) the overall cost is l = O(r2 log(N/r)),
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matching the best known bound for disjunct matrices. This optimality only applies when we are free to
choose z in terms of N and r; in particular, when we have this freedom we will pick z = ⇥(N/r).

The probabilistic construction works as follows. We think of members of X as “coupons" and the
weight-z row vectors as boxes of coupons. Each box has precisely z

�N�z
r

�
different coupons in it. We

want to collect as few boxes as possible to have a complete coupon collection. Let’s pick the boxes

uniformly at random, one by one. The probability that a given coupon is chosen in each round is (

N�r�1
z�1 )

(

N
z )

.
Hence, by the union bound, after ` rounds the probability that at least one coupon is not collected is at
most

|X|
 
1�

�N�r�1
z�1

�
�N
z

�

!`

 N

✓
N � 1

r

◆
e
�`

(

N�r�1
z�1 )

(

N
z ) .

This is an upper bound on our failure probability. If we want a guarantee of at most ✏ < 1 failure
probability, then we can simply choose ` such that

N

✓
N � 1

r

◆
e
�t
(

N�r�1
z�1 )

(

N
z )  ✏.

Similar to the above analysis,

` = O

✓
N

z
r ln

✓
N

✏r

◆
e

rz
N�r�z+1

◆

is sufficient. ut

The adaptive case. One might hope that adaptive tests may help overcome the ˜⌦(erz/N )-barrier. Unfor-
tunately, such is not the case.

Theorem 31. Any adaptive group testing strategies for a population of N items with less than r positives
in which each test has weight z must use ⌦(erz/N ) tests. Furthermore, there exists a randomized testing
strategy which uses, in expectation, erz/(N�r)

+N � z tests.

Proof. We will show that if there are ` < 1
2e

rz/N adaptive tests, then there are at least two different sets of
positive items which give identical (adaptive) test results and thus the adaptive tests cannot distinguish
between these two sets of positive items.

Each adaptive test is a z-subset Fi ✓ [N ]. Consider any sequence of ` adaptive tests F1, · · · , F`, where
` < 1

2e
rz/N . We will show that there are two different r-sets of items S and T such that S intersects all of

the Fi and T also intersects all of the Fi. Thus, if S were the set of positives then all of the tests return
positive. And, if T were the set of positives then all of the tests also return positive. Consequently, ` tests
are not sufficient to distinguish between S and T . (Remark: to be a little more rigorous, we could model
the adaptive test strategy as a binary tree, where each node represents a z-subset, and the two children
of a node correspond to whether a test turns positive or not. Here, the sequence F1, · · · , F` corresponds
to the all-positive branch of the tree.)

We use the probabilistic method. We pick a subset S of size r of [N ] uniformly at random, and show
that the probability that S intersects all of the Fi is at least 2/

�N
z

�
, which would establish the claim.

For a fixed Fi, we have

Pr[S \ Fi = ;] =
�N�z

r

�
�N
r

� =

N � z

N
· N � z � 1

N � 1

· · · N � z � r + 1

N � r + 1


✓
N � z

N

◆r

< e�zr/N .

By the union bound,
Pr [S \ Fi = ;, for some i] < ` · e�rz/N  1

2

.

Thus,
Pr [S \ Fi 6= ;, for all i] >

1

2

� 2

�N
r

� .
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For the upper-bound, we can pick a random test T (of size z) until the test returns negative. Let S be
the set of positive items, then

Pr[T returns negative] = Pr[S \ T = ;] �
�N�r

z

�
�N
z

� .

Hence, the expected number of random tests we need is at most
�N
z

�
�N�r

z

� =

N

N � r
· · · N � z + 1

N � r � z + 1


✓
1 +

r

N � r

◆z

 ezr/(N�r).

After the negative test T is obtained, we can then construct new tests by replacing a negative item in T
with an item outside of it one at a time until we found all of the positive items. ut

5.3 The shadow group testing technique and 1-Conjunction Qa-blackbox trace&revoke
codes

When the pirate decoder only answers queries with weight a (this is the meaning of the Qa qualified
signals), we will only use weight-a queries to trace because other signals do not give reliable answers. The
following theorem explains how we can trace such pirate decoders.

Theorem 32 (Qa tracing with shadow group tests). Let 1  t < N and ` be integers, and let
� be the 1-conjunction code formed by the columns of a t-disjunct matrix with ` rows and N columns.
Additionally, suppose the union of any t codewords has weight at most D. Then, the code � is also
a (Qa, 1, 1, t)-traceable code where the number of queries the tracer issues to the decoder is at most
O
⇣

`
aD log

�
`
t

�
e

Da
`�D�a+1

⌘
.

Proof. Thanks to Proposition 15, instead of identifying a traitor, we can just identify a vector w 2 {0, 1}`
that is contained in the union of all traitors’ codewords and that contains at least one traitor’s codeword.
Such a vector is in the useful feasible set (see Proposition 12) of the code.

Identifying w = (w1, · · · , w`) is equivalent to identifying all the coordinates i of w for which wi = 1.
Thus, there is a subset U ✓ [`] of at most D unknown coordinates that we want to identify. We need to
query the pirate decoder with weight-a signals c to identify U . Each query c is the characteristic vector of
a subset of size a of [`]. So we think of each query as an a-subset A of [`]. The decoder is able to decrypt
query A if and only if there is at least one traitor whose codeword intersects A. In other words, each
query A is a group test for the “positives” U in the population [`]. We thus have a group testing problem
“inside” another group testing problem. We refer to the “inner” group tests as the shadow tests, because
they are not used to identify the traitors directly; rather, they are used to identify the shadow U of the
traitors.

Finally, we directly apply Theorem 30 and use the non-adaptive (but deterministic) construction in
the theorem (equation (2)) to attain the desired number of queries. ut

Now, we incorporate the shadow group testing technique to construct blackbox trace and revoke
codes. From Corollary 29 and the discussion after that we know how to construct a 1-conjunction (r, s, t)-
trace&revoke code � . This code can easily be turned into a trace&revoke system as described in Section
4.2. Let R be any set of at most r traitors, we know that �R̄ is a 1-conjunction t-traceable code. In fact,
from the construction of the (r + t, s)-disjunct matrix that leads to the (r, s, t)-trace&revoke code, we
know that the Hamming weight of each codeword is n = O((r + t) log(N/(r + t))); hence, the Hamming
weight of the union of at most t columns is D = tn = O(t(r + t) log(N/(r + t))). Now, if the pirate
decoder applies the Qa anti-tracing strategy, then we will only trace with weight-a signals using the
shadow group test technique from Theorem 32. The number of queries the tracer needs is going to be
q = O

⇣
`
aD log

�
`
t

�
e

Da
`�D�a+1

⌘
.
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The question is, which value of weight a makes the most sense to the pirate? The answer to this
question depends on how we broadcast after revoking the users in R. Looking back at the proof of
Theorem 28, we chose a subset I that eliminates R where the size of I is at most bz. In fact, once I
eliminates R we can add more elements to I so that |I| = bz. We use the set I to construct a broadcast
signal c; I is the support set of c. Hence, all broadcast signals will have weight s = bz (before or after
revoking R). In other words, it will only make sense for the pirate decoder with the anti-tracing strategy
Qa to set a = s = ⇥((r + t) log(N/(r + t))). Also recall that ` = ⇥((r + t)2 log(N/(r + t))). Hence,
`/a = O(r+ t), and e

Da
`�D�a+1

= O((N/(r+ t))O(t)
). Combining with Lemma 21, we obtain the following

corollary.

Corollary 33. For any 1  r + t < N , there exists an (r, s,Qs, p, �, t)-blackbox trace&revoke code � ,
where s = O((r + t) logN) is the weight of broadcast signals, and the number of queries issued to the

pirate decoder is O

 
q · ln

(

q
1�� )

ln
⇣

1
1�p

⌘

!
, where

q = O

 
t(t+ r)2 log(N/(r + t)) log

✓
(r + t)2 log((N/(r + t))

t

◆
·
✓

N

r + t

◆O(t)
!
.

5.4 Toward Traceability Against Arbitrary Pirate Decoders

We now discuss the case of arbitrary pirate decoders. Our goal is to be able to deal with any qualified
predicate Q. We propose a slightly modified version of the main scheme described in Corollary 33 for this
aim. However, we have to introduce an additional assumption: the pirate decoder should decrypt (with
non-negligible probability) broadcast signals that correspond to the case of non-revocation, i.e., when
R = ;. The tracing process in our Trace&Revoke scheme is thus not in the standard model but it seems
still practical as it requires the pirate decoder to be able to decrypt ciphertexts in the most usual case
(at least in some applications) where there is no detected malicious users in the system. Anyway, our
scheme satisfies both the definition of a traitor tracing scheme (in which the revoked set is by definition
an empty set) for arbitrary pirate decoders and the definition of a revoke system (in which the scheme
can revoke users and does not require a tracing procedure).

As shown in Theorem 30, we can ask random queries to the pirate decoder, the number of queries
is asymptotically similar to the deterministic case. Each random query consists of a set of �4r rows
randomly chosen from ` rows of the matrix M. In our code based trace&revoke scheme (Definition 41
in Appendix A.1), the number of chosen rows in a ciphertext (the weight of the signal c) varies from 4r
(when there is no revoked users, 4r rows from any block cover all users) to 8r log(N/r) (when there are
r revoked users).

Assume the pirate knows our strategy of choosing rows in the encapsulation and if it can detect
whether a query – though corresponding to an encapsulation for some R – cannot be an output of the
Encaps(EK, R), then it will not decrypt. The key point here is to issue (random) tracing queries so that
it is computationally hard for the pirate to distinguish between a given tracing query and an output of
Encaps(EK, ;) (i.e. broadcast signals in the non-revoke mode).

We now described the modified scheme. To impose the computational hardness on the pirate, we first
permute randomly the rows of the matrix M to obtain a matrix M⇤. We will use the matrix M⇤ as
the code, instead of M, as the (`, N)�code in our encryption in Definition 41 (appendix A.1). We also
slightly change the Encaps(EK, R) in Definition 41 when there is no revoked users, i.e., R = ;. In this
case, 4r rows from a block cover all users and the Encaps(EK, ;) procedure will normally use these rows
for encryption. However, in this case, we will add (� � 1)4r more random rows and let Encaps(EK, ;)
procedure uses the total �4r rows for encryption. Note that the (��1)4r additional rows have no impact
on the validity of the broadcast because the original 4r rows already covered all users.

We argue that no pirate decoder can distinguish a broadcast signal and a signal in the tracing
procedure. In fact, in order to distinguish between a broadcast signal constructed this way and a random
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set of �4r rows, the pirate must be able to tell whether a given set A of �4r rows contains a subset B ✓ A
of 4r rows which might come from the same row block. We next argue that, even if the pirate has as
many as b = 4r = !(t) codewords, it is computationally hard to detect whether a given set of �4r rows
contains 4r rows from the same block.

Consider the case where the matrix M⇤ is not public and the pirate decoder is resettable, thus can be
reset to the initial state after each query. The pirate has a set T of b = 4r codewords (each codeword is a
column of the matrix M⇤

= (mij)). Each row i in the set A of �b rows of the random query corresponds
to a subset of the set T : the subset of traitors j in T for which mij = 1. The problem of detecting whether
there are b rows of A belonging to the same block thus becomes precisely an instance of the NP-hard
exact cover problem [GJ79] which is like set cover but each element in the universe is to be covered
exactly once. To cover b columns we do not need more than b rows, and hence a solution to the exact

cover problem with additional empty rows will be a solution to the pirate’s problem. Conversely, a
solution to the pirate’s problem obviously is a solution to the exact cover instance. It is not hard
to derive a reduction from 3-sat to exact cover. (See, e.g., [BM08].) Furthermore, if we start from
3-sat-5 (known to be NP-hard [Fei98]) where each clause has at most 3 literals and each literals appear
in at most 5 clauses, then we obtain instances of exact cover where the number of sets is bounded
by a constant (� in our case) times the size of the universe. Therefore, there is no known algorithm in
polynomial time of b = 4r that can solve this problem, even when � is a constant (about 15 or so).

We should however notice that our assumption requires in fact the average case hardness. On the
other hand, we also notice that the pirate possesses only t users’ keys but not b keys, and b = 4r = !(t).
Therefore, we believe that our assumption is reasonable.

5.5 Trace&Revoke in the Information-Theoretic Limit

In the tracing procedure of our scheme, as well as in the tracing procedures of almost all known schemes
in the literature, we rely on the fact that the pirate accepts to decrypt the tracing queries, as it is hard
to distinguish a query in tracing mode and a normal ciphertext. A natural question is, without any
computational assumption about the pirate, can we still trace?

To be concrete, assume the pirate can always verify whether a query comes from Encaps(EK, R), for
some R, and that the pirate decoder only decrypts if and only if this is indeed the case. We can prove
that, for this powerful pirate, the number of queries can no longer be poly(N) for most reasonable values
of r and t. In particular, with q 

�N
t

�
(1 � t

N )/
�r
t

�
queries it is not possible to always identify correctly

at least one traitor. Moreover, in this model of pirate, we present a randomized tracing strategy that
matches this bound in expectation. Note that our lower-bounds apply to any Trace&Revoke systems
given the powerful pirate assumption.

Considering a trace&revoke schemes against the pirates who decrypt, if possible, a ciphertext if and
only if this ciphertext is an output of the algorithm Encaps(EK, R) for some R. We then have a lower
bound of the number of queries for the tracing algorithm.

Theorem 34. Let t  r < N such that t+ r < N . If we pose at most q 
⇣�N

t

�
� 2

⌘
/
�r
t

�
queries, then

it is not possible to always identify correctly the entire traitor set T . If we pose at most q  (

N
t )

(

r
t)
(1� t

N )

queries, then it is not possible to always identify correctly at least one traitor.

Proof. Let c = Encaps(EK, R) for some R. Let T be the set of traitors. If T ✓ R then no traitor can decode
c. If T \ R 6= ;, then some traitor will be able to decode. Thus, the blackbox query can be represented
by subsets R ✓ [N ], |R|  r. A query returns yes if T \R 6= ; and no otherwise.

Let us first consider the case when we want to identify all traitors in T , |T |  t. Suppose we pose q
adaptive (!) black-box queries F1, · · · , Fq. Recall that each query can be represented by a set Fi ✓ [N ],

where |Fi|  r. We will prove that if q  (

N
t )�2

(

r
t)

, then there are two distinct traitor sets T1 and T2 such
that the series of queries F1, · · · , Fq all return yes, and thus no algorithm can distinguish between T1

and T2.
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To this end, fix arbitrary F1, · · · , Fq and pick a set T ✓ [N ] of size t uniformly at random. For each

i 2 [q], Pr[T ⇢ Fi] 
(

r
t)

(

N
t )
. Thus, by the union bound PrT [some query Fi returns no]  q

(

r
t)

(

N
t )
. Put it

another way,

Pr

T
[all queries Fi return yes] � 1� q

�r
t

�
�N
t

� �
2

�N
t

� .

Thus, there exist two different sets T1, T2 such that all queries return yes.
Next, we consider the case when at least one traitor in T need to be identified. Our strategy is to

show that, for an arbitrary query sequence F1, · · · , Fq, there are potential traitor sets T1, · · · , Tk, all of
size t, satisfying the following conditions: (i) for each Tj , all queries Fi returns yes, (ii) there is no single
user that belongs to all the Tj . Thus, the identification of some user in some Tj will be wrong for some
other Tj0 .

To guarantee (ii), we simply pick k =

�N�1
t�1

�
+1. Because

�N�1
t�1

�
is the maximum number of t-subsets

of [N ] which contain a given element. To guarantee (ii), we use the probabilistic argument as above: pick
T uniformly at random.

Pr

T
[all queries Fi return yes] � 1� q

�r
t

�
�N
t

� �
t

N
=

�N�1
t�1

�
�N
t

� .

The last inequality holds because q  (

N
t )

(

r
t)
(1� t

N ). ut

The following upper-bound is asymptotically as good as the above lower-bounds for most practically
meaningful ranges of r and t. However, it is an upper-bound in expectation only.

Theorem 35. Let t  r < N such that t+ r  N . There is an adaptive strategy which uses on average

at most q =

(

N
t )

(

r
t)

+N � r queries.

Proof. We pose random “queries" R of size r to the blackbox decoder. (In reality, the queries are actu-
ally Encaps(EK, R)) until the answer is no. The expected number of such queries is the inverse of the
probability that R contains the traitor set T , which is

�N
r

�
�N�t
r�t

� =

N

r

N � 1

r � 1

· · · N � t+ 1

r � t+ 1

=

�N
t

�
�r
t

� .

After some R containing T is found, we can test each j 2 R individually as follows. Fix j0 2 [N ]�R Let
R0

= R � {j} [ {j0}. If the answer to query R0 is yes then j 2 T . This way, we will be able to identify
all members of T with an additional N � r queries. ut

6 Discussions

Optimization of the Code Length. Given N and r < N , we presented a randomized construction of
`⇥N (r, s)-disjunct matrices with s = O(r log(N/r) and ` = O(r2 log(N/r). Note that, even for r-disjunct
matrices which do not address revocation, no other known construction, including randomized ones, has
asymptotically smaller number of rows. It is also known that ` = ⌦(r2 logr N) for any r-disjunct matrix.
Hence, if we use this matrix for broadcasting then the broadcaster’s key size (or the total number of keys
that will be attributed to users) is O(r2 log(N/r)). In this setting, we can trace back all “active” traitors
(the traitors included in the pirate’s codeword).

We can reduce the broadcaster’s key size by using a related notion called multiple user tracing (MUT)
families. Given positive integers u  r, an (r, u)-MUT family is a non-adaptive group testing matrix which,
given the test outcomes imposed by an arbitrary set of v  r positives, there is a decoding algorithm
that outputs at least min(u, v) out of the v positives. It is known [AA07] that, given N, r, u, an ` ⇥ N
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(r, u)-MUT matrix exists with ` = O
�
(r + u2) logN

�
. There is a method for constructing the MUT

matrix so that even sublinear-time decoding is also reachable. Hence, we can use MUT families to design
broadcast codes which can be used for tracing (assuming the naive pirate) up to

p
r of the traitors while

keeping the broadcaster’s key size O(r logN). Note that in Complete Subtree, the broadcaster’s key size
is 2N � 1.

Optimization of the Private Key Size. In the above construction, the users’ private key size is linear
in the weight of its associated codeword. We can optimize this, for the case of 1�conjunction revocable
code, by using Asano’s method [Asa02]. The users’ private key size then becomes constant. In this case,
the security should also be based on a computational assumption that the RSA inversion is hard. This
optimization is described in Appendix A.1 (Definition 40).

On the a priori-Bounds of Revoked Users and Traitors. Our scheme assumed an a priori -bounds
r, t of revoked users and traitors. If the bound is unknown, a natural way to get around the problem is
to “stack" on top of each other (r, s)-disjunct matrices for different values of r. This way, the resulting
matrix will serve as (r, s)-codes for different r. The sacrifice is in code length. In the encryption mode,
depending on the number of revoked users, we can use the appropriate matrix.
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A Definitions

A.1 Basic Definition

Definition 36 (Broadcast Encapsulation). A broadcast encapsulation scheme is a 3-tuple of algo-
rithms DBE = (Setup,Encaps,Decaps):

– Setup(1

k, N), where k is the security parameter, and N the number of users, it generates the global
parameters param of the system (omitted in the following); and returns a master secret key MSK and
an encryption key EK. It also generates users’ keys upki, for i = 1, . . . , N .

– Encaps(EK, R) takes as input a revoked set R and outputs a key header H and a session key K 2
{0, 1}k.

– Decaps(uski, R,H) takes as input the revoked set R and a user secret key. If i 2 [N ]�R, outputs the
session key K.

The correctness requirement is that for any revoked set R and for any user i 2 [N ] � R then the
decapsulation algorithm gives back the ephemeral session key.

Definition 37 (Trace&Revoke Encapsulation). A trace&revoke encapsulation scheme is a broad-
cast encapsulation scheme with an additional tracing algorithm TraceD(RD, pk,msk): the traitor tracing
algorithm interacts in a black-box manner with a pirate decoder D that is built from a certain set T of
traitors. The algorithm takes as input a subset RD ⇢ [N ] (could be adversarially chosen), the public key
pk, the master key msk and outputs a set TD ✓ [N ].

More precisely, under the conditions:

– there are at most t traitors: |T |  t;
– The minimal revoked set does not contain all the traitors: T 6✓ RD, or equivalently SD = ([N ]�RD)

contains at least a traitor;
– D is “efficient” to decrypt ciphertexts (i.e., decrypts with some non-negligible probability) for some

revoked sets R that include the minimal revoked set RD but do not contain all the traitors (RD ✓ R
but T * R);

then the tracing algorithm outputs at least a traitor in SD, i.e., : ; 6= TD ✓ T \ SD.

Definition 38 (Public-Key Encryption Scheme). PKE = (Setup,KeyGen,Enc,Dec):

– Setup(1

k
), where k is the security parameter, generates the global parameters param of the system;

– KeyGen(param) generates a pair of keys, the public (encryption) key ek and the associated private
(decryption) key dk;

– Enc(ek,m; r) produces a ciphertext c on the input message m and the public key ek, using the random
coins r (we may omit r when the notation is obvious);

– Dec(dk, c) decrypts the ciphertext c under the private key dk. It outputs the plaintext, or ? if the
ciphertext is invalid.

Definition 39 (Secret Sharing Scheme). SSS = (Share,Combine):

– Share(k,m, n), outputs a secret bit string K of length k, as well as n shares s1, . . . , sn, so that any
m of them will allow to recover K.

– Combine({(i, si)}), from m pairs (i, si), it recovers the bit string K.

The correctness requirement is that from any m-subset of {(i, si)} generated by Share(k,m, n), the
Combine algorithm outputs the bit string K generated by Share. Furthermore, the bit string K must
be perfectly uniformly distributed.

Definition 40 (Constant Size Private Key). Suppose there exists an algorithm that generates
1�Conjunction (r, s)�Revocable (`, N)�Code.We build a BE scheme ⇧ that can revoke up to r users
in the following way.
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– Setup(1

�, N)

1. Run the Code generating algorithm on (N, r, d) to obtain a 1�Conjunction (r, s)�Revocable
(`, N)�Code � .

2. Generate two large primes of the same size p, q and publish M = pq
3. Generate ` pairs (dki, eki), i = 1, . . . , ` such that ekdk = 1( mod (p� 1)(q � 1));
4. Choose a random X

$ Z⇤
M

5. Set MSK = (�, X, {dki}), EK = (N, {eki}), and Reg = ;.
– Join(MSK, i)

1. The user i is associated with the codeword wi 2 � .

2. Set uski  X
Q`

j=1 dk
wi
j

j
; upki  i; Reg Reg [ {i}.

– Encaps(EK, R):
1. The revoked set R should contain at most r users;
2. Because � is 1�conjunction (r, s)�revocable, one can find out an word c such that D1(R, c) = 0

and D1(u, c) = 1 for any u 2 [N ]�R, and m = H(c)  d.
3. Denote by i1, . . . , im the positions of m bits 1 in c, i.e., cij = 1, for j = 1, . . . ,m

4. Set eij = Xdkij , for j = 1, . . . ,m.
5. Output Ke and Header = (c, (eij ), j = 1, . . . ,m).

– Decaps(uskj , R,Header):
1. If j is in [N ]�R, then D1(wj , c) = 1. There exists thus an index 1  z  m such that ciz = wj

iz
= 1

2. Compute siz = usk

Q`
s=1,s 6=iz

ekw
i
s

j

j . From the siz , reconstruct Ke

Definition 41 (Trace&Revoke System from 1-Conjunction Trace&Revoke Codes). Let us be
given a generator of (r, s,Q, p, �, t, ⌧)-blackbox Trace&Revoke 1-Conjunction (`, N)-Codes, and a secure
public-key encryption scheme PKE . We build a Trace&Revoke encapsulation scheme ⇧ that can revoke
up to r users, and tracing traitor for a pirate decoder having up to t traitors’ keys, in the following way.

– Setup(1

�, N)

1. Run the code generating algorithm on (Q, N, k, r, t, s) to obtain an (r, s,Q, p, �, t, ⌧)-blackbox
Trace&Revoke 1-Conjunction (`, N)-Codes.

2. Run PKE .Setup(1

�
) to get the public parameters param for the encryption scheme;

3. For i = 1, . . . , `, run the key generation algorithm PKE .KeyGen(param) to get the pair (dki, eki).
4. Set MSK = (�, {dki}), and EK = {eki}.
5. For i = 1, . . . , N , the user i is associated with the codeword wi 2 � : we set uski  {dkj/wi

j =

1, j = 1, . . . , `}.
– Encaps(EK, R):

1. For a revoked set R of size at most r, since the code � is efficiently (r, s)-revocable, one can find
out a signal c of weight at most s, such that D1(u, c) = 0, for any u 2 F (R), and D1(u, c) = 1

for any u 2 [N ]�R. We denote by m = wH(c) this weight;
2. Denote by i1, . . . , im the positions of m 1-bits in c, i.e., cij = 1, for j = 1, . . . ,m;

3. Choose a random session key K
$ {0, 1}.

4. Set eij = PKE .Enc(pkij ,K), for j = 1, . . . ,m.
5. Output K and H = (c, (eij ), j = 1, . . . ,m).

– Decaps(uskj , R,H):
1. If j is in [N ] � R, then D1(wj , c) = 1. This means wH(wj ^ c) � 1 and there exists thus ij in

wj ^ c
2. Compute K = PKE .Enc(skij , eij ).

– TraceD(RD, pk,msk): Running the tracing algorithm for the code, each time the tracer asks a qualified
query c to the pirate decoder, we do as follows: run Encaps(EK, R) but directly use the signal c (in
fact, the revoked set R in this case corresponds to the set of the users that cannot decrypt c) and
query the pirate decoder on the R,H. If the pirate decoder exactly recovers the session key K, we
return 1 to the tracer for the code, and otherwise we return 0.
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It is straightforward that if the pirate decoder RD answers all ciphertexts constructed from qualified
signal c for Q, then the tracing procedure can be directly reduced to the tracing for the code, and thus
we can identify traitors, as in the (r, s,Q, p, �, t, ⌧)-blackbox Trace&Revoke.

In the particular case of Qa, the fact that the pirate decoder RD answers all ciphertexts constructed
from qualified signal c for Qa implies that the pirate decoder decrypts all ciphertext with a header H
containing a encapsulations of the session key, each is encrypted by a key at a row of the matrix.


