
Optimal Public Key Traitor Tracing Scheme
in Non-Black Box Model

Philippe Guillot1, Abdelkrim Nimour2, Duong Hieu Phan1, and
Viet Cuong Trinh1

1Université Paris 8, LAGA, CNRS, (UMR 7539), Université Paris 13, Sorbonne Paris
Cité 2 rue de la liberté, F-93526 Saint-Denis, Cedex

2Canal+, Paris, France

Abstract. In the context of secure content distribution, the content
is encrypted and then broadcasted in a public channel, each legitimate
user is provided a decoder and a secret key for decrypting the received
signals. One of the main threat for such a system is that the decoder
can be cloned and then sold out with the pirate secret keys. Traitor
tracing allows the authority to identify the malicious users (are then
called traitors) who successfully collude to build pirate decoders and
pirate secret keys. This primitive is introduced by Chor, Fiat and Naor
in ’94 and a breakthrough in construction is given by Boneh and Franklin
at Crypto ’99 in which they consider three models of traitor tracing: non-
black-box tracing model, single-key black box tracing model, and general
black box tracing model.
Beside the most important open problem of optimizing the black-box
tracing, Boneh-Franklin also left an open problem concerning non-black-
box tracing, by mentioning: “it seems reasonable to believe that there
exists an efficient public key traitor tracing scheme that is completely
collusion resistant. In such a scheme, any number of private keys cannot
be combined to form a new key. Similarly, the complexity of encryption
and decryption is independent of the size of the coalition under the pi-
rate’s control. An efficient construction for such a scheme will provide a
useful solution to the public key traitor tracing problem”.
As far as we know, this problem is still open. In this paper, we resolve this
question in the affirmative way, by constructing a very efficient scheme
with all parameters are of constant size and in which the full collusion
of traitors cannot produce a new key. Our proposed scheme is moreover
dynamic.

Keywords: traitor tracing, non-black-box tracing, full collusion, pair-
ings

1 Introduction

Traitor tracing, introduced in [12], is an important cryptographic primitive in
the context of secure content distribution. Traitor tracing is a main ingredient in
many practical applications of global networking such as pay-per-view television,



satellite transmission. In secure content distribution, the content is encrypted
and broadcasted in a public channel, each legitimate user is provided a decoder
and a secret key for decrypting the received signals. The main threat in this
context is that the decoder can be cloned or be produced and then sold out
with the pirate secret keys. Traitor tracing allows the authority to identify the
malicious users (are then called traitors) who successfully collude to build pirate
decoders and pirate secret keys.

A breakthrough was proposed by Boneh-Franklin in [6] in which an efficient
public key traitor tracing scheme was introduced. They considered three follow-
ing tracing models:

1. Non-black-box tracing model considers the situation where the collusion of
t traitors can derive a new valid secret key. The tracing algorithm takes as
inputs this new valid secret key and outputs at least a traitor in the collusion.

2. Single-key black box tracing model extends a bit the non-black-box tracing
model. It always considers the scenario that the collusion of t traitors can
derive a new valid secret key and then this new valid secret key is embedded
in a pirate decoder. The tracing algorithm takes as inputs the pirate decoder
and should be able to output the identity of one of the traitors.

3. General black box tracing model is the strongest model of tracing in which
the tracer cannot open the pirate decoder and only interact with it in a black
box manner by sending the ciphertext and observing the output of the pirate
decoder. It is required that whenever the pirate can decrypt the ciphertext,
the tracer should be able to trace back one of the traitors.

1.1 Non-Black-Box Tracing vs. General Black Box Tracing

The general black box tracing is evidently the most desired model as it covers all
the possible strategies of the pirate. However, all the schemes in this model are
still quite impractical. The most efficient black box traitor tracing are code based
schemes [15,2,8,17]. However, the main weakness of code based schemes is that
the user’s secret key is long (at least O(t2 logN) where t,N are the number of
traitors and of users in the system) and thus it cannot be highly protected as one
cannot put a long key in a tamper-resistant memory in a smart-card. Moreover,
the leakage of some small part of the key can be efficiently used in the attack as
shown in Pirates 2.0 [3]. Therefore, these schemes are still far to be applicable
in practice. Algebraic schemes achieve the general black box tracing [6,16,9,10] in
inefficient ways: either the tracing algorithm is of exponential time complexity
[6,16], or the ciphertext size is still large (i.e., O(

√
N)) and the constructions

make use of bilinear maps in groups of composite order [9,10]. These two last
schemes are very interesting in the sense that they can deal with full collusion.

While it seems a very difficult and challenging problem to achieve a practical
general black box tracing, it’s of practical interest in considering the weaker mod-
els of the non-black-box tracing and the single-key black box tracing. Moreover,
these models are also very practical, there are many scenarios that these models
are suitable, as also discussed in [19,14].



Let us explain some details in the context of pay-TV. In the majority of
the existing systems, each user has been provided a Set-Top box (STB) and a
smartcard. The secret key of the user is stored in the smartcard which has the role
of decrypting the session key for every crypto-period (between 2 and 10 seconds),
this session key is then transmitted to the STB for decrypting the content. The
pirate always wants to minimize the cost of distribution of his solution and in
practice, he really wants to try to produce new pirate smartcard to be used
in already deployed STBs. It is thus necessary that these pirate smartcard are
compatible with the STBs in the fields (including the legitimate STBs). As a
consequence, the smartcard should preserve the functionality of the legitimate
smartcard and it has to embed a pirate but valid key in the memory. It is often
in reality that the authority can reverse this key in the memory of the pirate
smartcard and the scenario exactly falls in the non-black-box tracing model.
Even if the tracer cannot reserve the memory of the pirate smartcard, we argue
that the single-key pirate tracing model is suitable. Indeed, in the modern CAS
(Conditional Access Systems), the session key is delivered at the last moment
so that there is only a small delay between the time the smartcard decrypts the
session key and the time the decoder receive the encrypted content. Therefore,
if the pirate card (which is evidently cannot more performant than a legitimate
smartcard) always try to decrypt the session key with different, say two, keys,
it will fails to decrypt the content in time and will give the STB the session key
after the encrypted content arrive for that crypto-period. One could wonder what
happens if the pirate decoder only try to detect the presence of tracing algorithm
from time to time. Fortunately, the single-key black box tracing algorithms, as
in Boneh-Franklin schemes and in our scheme, only need to ask just one query
and the decoder is resettable in practice, this strategy of pirate does not work.
All in all, we would like to argue that the non-black-box tracing model and the
single-key black box tracing model, though much weaker than the general black
box tracing model and cannot thus cover all the strategies of the pirate, are
still very practical. In fact, there are quite a lot of interesting works that only
concentrate on these models, namely [19,14,1].

In a theoretical point of view, it’s also a very interesting problem to consider
non-black-box tracing because there is still no optimal solution, far from that, in
spite of many efforts. Indeed, the Boneh-Fraklin is efficient with respect to the
non-black-box tracing and single-key black box tracing but its ciphertext size
is still linear in the number of traitors. The Tonien-Safavi scheme [19] and the
Junod-Karlov-Lenstra sheme [14] managed to improve the tracing algorithm but
the ciphertext size is always linear in the number of traitors. A side effect of this
high ciphertext size in the number of traitors is that these schemes cannot be used
with full collusion because in this later case, these schemes are worse than the
trivial scheme of assigning each user an independent key. Agrawal et. al. [1] go one
step further by achieving an intermediate level between bounded tracing (when
one assumes a maxmixum t number of traitors) and full collusion: they allow the
pirate to collect up to t keys and get some bounded partial information about the
others keys. We notice that the authors in [1] only considers the non-black-box



tracing model and therefore a full collusion resistant scheme in the non-black-
box tracing model satisfies immediately their security notion proposed. All in
all, there is still an important gap between the efficiency of all these schemes
and an optimal solution: the ciphertext size depends on the number of traitors
and none of them can deal with full collusion. Our objective is to close this gap.

1.2 Our Contributions

We consider the non-black-box tracing and the single-key black box tracing mod-
els for which we propose an optimal scheme in the sense that all the parameters
including private key size, public key size, ciphertext size, encryption and de-
cryption time complexity are constant. In addition, our scheme also achieves
two interesting properties of a public key traitor tracing scheme: it is fully collu-
sion resistant and dynamic where there is no need to update any parameter when
a user joins the system. We also highly improve the time complexity in tracing al-
gorithms, in particular we achieve O(1)−time non-black-box tracing. Regarding
the single-key black box tracing, we consider both the full access model (where
the decoder pirate has to return the correct message for any valid ciphertext)
and the minimal access model (where the pirate decoder only needs to return
a single bit signifying whether the ciphertext is valid or not). We then design a
O(logN)−time full access single-key black box tracing and a O(N)−time mini-
mal access single-key black box tracing.

The detailed comparison between our scheme and other schemes is given in
the full version of this paper [18]. We notice that our scheme is the only scheme
that allows minimal access single-key black box tracing.

The main weakness in our scheme is that the security for the tracing problem
is based on a type of q-assumption. However, we notice that these types of
assumptions have been widely used in security proofs, for example in [4,5], [7,11].
We also prove that the proposed assumptions hold in the generic group.

2 Preliminaries

2.1 Traitor Tracing Scheme

We refine the definition of a non-black-box public key traitor tracing scheme
from [6]. Formally, a non-black-box public key traitor tracing encryption scheme
is made up of the following algorithms:

Setup(λ): Takes as input the security parameter λ, it returns a master key msk
and a public key mpk.

Joint(i,msk): Takes as inputs a user’s index i, together with the master key,
and outputs a user’s secret key ski.

Encrypt(M,mpk): Takes as inputs a message M , together with the public key,
and outputs a ciphertext C.

Decrypt(ski,mpk, C): Takes as inputs a secret key ski, public key, and a ci-
phertext C, outputs the corresponding message M .



Trace(D, sk∗, tracing − key)→ i: Takes as input the public key mpk, the
tracing − key, a pirate decoder D and some valid secret key sk∗ embedded
in D and outputs an index i corresponding to an accused traitor.

When the knowledge of the tracer about the pirate decoder is more restricted,
one can get the stronger following notions, which were discussed in [6]:

– in the single-key black box tracing model, the tracing algorithm only takes
as inputs the public key mpk, the tracing − key, and interact with a pirate
decoder D with the assumption that the pirate decoder only embed a single
valid key sk∗.

– in the general black box tracing model, there is no any assumption on the
pirate decoder and the tracer can only interact with it. It is however re-
quired that D can decrypt the well-form ciphertexts with a non-negligible
probability because otherwise the pirate decoder is useless.

For correctness, we require that for all i ∈ N, if (msk,mpk) ← Setup(λ),
ski ← Joint(i,msk) and C ← Encrypt(M,mpk) then one should get M =
Decrypt(ski, C).
The security of the scheme is defined in terms of two properties: semantic security
and tracing security.

Semantic security The standard notion of semantic security requires that, for
any PPT A, we have |Pr[A wins]− 1/2| is negligible in the following game:

– In the setup phase, the challenger runs Setup(λ) algorithm to get a master
key msk and a public key mpk. It then gives mpk to A.

– In the challenge phase, A outputs two messages M0,M1. The challenger then
chooses a bit b ∈ {0, 1} at random, sets C ← Encrypt(Mb,mpk), and gives
C to A.

– In the guess phase, the attacker A outputs a bit b′. We say A wins if b′ = b.

non-black-box tracing security We say that a secret key sk is a valid secret key iff
there exists some messageM in message-domain such that if C = Encrypt(M,mpk)
then one should get M = Decrypt(sk, C) with probability at least 1

2 .
We say that non-black-box tracing security holds if, for any PPT A, we have
|Pr[challenger wins]− 1/2| is considerable in the following game:

– In the setup phase, the challenger runs Setup(λ) algorithm to get a master
key msk and a public key mpk. It then gives mpk to A.

– In the query phase, A may adaptively ask corrupt query for user index i and
gets ski.

– At some point A outputs some sk∗ and a pirate decoder D in which sk∗

is embedded in. The challenger then runs Trace(D, sk∗, tracing − key) → i.
We say that the challenger wins if the secret key sk∗ is a valid secret key
and the traced index i is in the set of corrupted indexes.



In the single-key black box tracing security, A only outputs a decoder D in which
only sk∗,mpk are embedded in it. In the general black box tracing security, A
only outputs a decoder D with a requirement that D can decrypt the well-
form ciphertexts with a non-negligible probability because otherwise the pirate
decoder is useless.

Full access black box tracing vs Minimal access black box tracing These two types
of models are discussed in [6].

1. In the full access black box tracing model, the tracer can query the pirate de-
coder on a ciphertext C, if C is a well-form ciphertext, he will always receive
the corresponding plantext M . Otherwise, the pirate decoder can return an
arbitrary output (it can return a signal indicating that the ciphertext C is
invalid or can maliciously choose a random message M ′ and return M ′).

2. In the minimal access black box tracing model, the tracer queries the pirate
decoder on a pair (C,M) and only receives a signal: valid if the ciphertex C
is a valid encryption of M , invalid if not.

Dynamic public key traitor tracing scheme We adapt the definition of a dynamic
broadcast encryption in [13] for a public key traitor tracing scheme, note that
our definition is in the strongest sense because it requires no any update in the
parameters of the systems. Indeed:

1. the system setup as well as the ciphertext size are fully independent from
the number of users in the system. The number of users in the system is
flexible,

2. a new user can join the system at anytime without implying a modification
of preexisting user decryption keys and of the encryption key.

2.2 Bilinear Maps

Our scheme employs bilinear maps and related assumptions, which we now recall.
Let G and GT denote two finite multiplicative abelian groups of large prime order
p > 2λ where λ is the security parameter. Let g be a generator of G. We assume
that there exists an admissible bilinear map e : G×G→ GT , meaning that for
all a, b ∈ Zp
(1) e(ga, gb) = e(g, g)ab,
(2) e(ga, gb) = 1 iff a = 0 or b = 0,
(3) e(ga, gb) is efficiently computable.
(p,G,GT , e(·, ·)) is then called a bilinear map group system. We now recall the
generalization of the Diffie-Hellman exponent assumption in [5] on bilinear map
group system.
Let (p,G,GT , e(·, ·)) a bilinear map group system and g ∈ G be a generator
of G, and set gT = e(g, g) ∈ GT . Let s, n be positive integers and P,Q ∈
Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials over Fp. Thus, P and
Q are just two lists containing s multivariate polynomials each. We write P =



(p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs) and impose that p1 = q1 = 1. For any
function h : Fp → Ω and vector (x1, . . . , xn) ∈ Fnp , h(P (x1, . . . , xn)) stands
for (h(p1(x1, . . . , xn)), . . . , h(ps(x1, . . . , xn))) ∈ Ωs. We use a similar notation
for the s-tuple Q. Let f ∈ Fp[X1, . . . , Xn]. It is said that f depends on (P,Q),
which denotes f ∈ 〈P,Q〉, when there exists a linear decomposition

f =
∑

1≤i,j≤s

ai,j · pi · pj +
∑

1≤i≤s

bi · qi, ai,j , bi ∈ Zp

Let P,Q be as above and f ∈ Fp[X1, . . . , Xn]. The (P,Q, f)− GDDHE problem
is defined as follows.

Definition 1. ((P,Q, f)− GDDHE) [5].
Given H(x1, . . . , xn) ∈ Gs × GsT as above and T ∈ GT decide whether T =

g
f(x1,...,xn)
T .

The (P,Q, f)− GDDHE assumption says that it is hard to solve the (P,Q, f)−
GDDHE problem if f is independent of (P,Q). In this paper, we will prove our
scheme is semantically secure under this assumption.

3 Construction

Let (p,G,GT , e(·, ·)) a bilinear map group system and g ∈ G be a generator of
G, our scheme is constructed as follows:

Setup(λ). The algorithm chooses e1, e2, v
$← Zp then sets d1 = e−11 , d2 = e−12

The master key msk is (e1, e2, v). The system public keys mpk is:

(gd1 , e(g, g)d2 , gd1·d2 , e(g, g), e(g, g)v, e(g, g)d2·v)

Joint(i,msk). For each user i chooses ai
$← Zp such that ai 6= −1,−v, d2 − 1.

The secret key for user i is set as: Ai = ge1(ai+v), Bi = 1
(ai+1) − e2. We call

the secret keys in the case ai = −v or ai = d2 − 1 are special keys. The
users in the system can be assigned to all secret keys in the secret key space
except these special keys. Note that the special key, in the case ai = −v, is
not useful for decryption.

Encrypt(M,mpk). Encryptor picks a random k in Zp, then computes:

C1 = gd1·k, C2 = e(g, g)d2·k, C3 = gd1·d2·k,

C4 = e(g, g)k·v, C5 = e(g, g)d2·k·v, C6 = e(g, g)−k ·M

Finally, outputs C = (C1, C2, C3, C4, C5, C6).

Decrypt(Ai, Bi, C). User i′th first computes:

e(Ai, C1)

C4
·CBi−12 ·(e(Ai, C3)

C5
)Bi =

e(ge1(ai+v), gd1·k)

e(g, g)k·v
·e(g, g)

d2·k·( 1
(ai+1)

−e2−1)·



·
(
e(ge1(ai+v), gd1·d2·k)

e(g, g)d2·k·v

) 1
(ai+1)

−e2

=

= e(g, g)k·ai ·e(g, g)
d2·k

(ai+1) ·e(g, g)−k·e(g, g)−d2·k·e(g, g)
k·ai·( d2

(ai+1)
−1)

= e(g, g)−k.

then outputs M = C6/e(g, g)−k.

Intuition about our construction In the decryption, we emphasize that the crucial

element is ( e(Ai,C3)
C5

)Bi . We remark that, though a pirate can perform a linear
combination on the elements Ai in his collected keys, there is no way for the
pirate to exploit the combination of his keys to do a linear combination for the

elements ( e(Ai,C3)
C5

) because C5 is changed for each encryption. Therefore the
well-known pirate’s strategy of making a linear combination on the collected
keys do not work for our scheme. The next section is devoted for formal analysis
of security.

4 Security

Definition 2 (GDDHE1 Assumption). The (t, ε)−GDDHE1 assumption says
that for any t-time adversary A that is given input = (g, gx, gy, gxy, gkx, gky, gkxy)
cannot distinguish between a value e(g, g)k ∈ GT or a random value T ∈ GT ,
where x, y, k ∈ Zp, g ∈ G, with advantage greater than ε:

AdvGDDHE1(A) =

∣∣∣∣Pr[A(input, e(g, g)k) = 1]
−Pr[A(input, T ) = 1]

∣∣∣∣ ≤ ε.
It is not hard to see that GDDHE1 assumption is a special case of (P,Q, f) −
GDDHE assumption. Indeed, we set P = (p1 = 1, p2 = X, p3 = Y, p4 = XY,
p5 = KX, p6 = KY, p7 = KXY ), Q = (q1 = 1), f = K. Suppose that f is not
independent to 〈P,Q〉, i.e., one can find a8 6= 0 such that the following equation
holds for all X,Y,K ∈ Zp

a8f =
∑

1≤i,j≤7

ai,j ·pi·pj+b1·q1

⇐⇒ a8K = (KX+KY+KXY )(a1+a2X+a3Y+a4XY+a5KX+a6KY+a7KXY )

⇐⇒ a8 = (X+Y+XY )(a1+a2X+a3Y+a4XY+a5KX+a6KY+a7KXY )

⇐⇒ (X+Y+XY )(a1+a2X+a3Y+a4XY+a5KX+a6KY+a7KXY )−a8 = 0

This implies that the constant term a8 = 0 which is a contradiction with the
requirement that a8 6= 0. Therefore, f is independent to 〈P,Q〉.

Theorem 1. Under the GDDHE1 assumption, our scheme is semantically se-
cure.



Proof. Assume that there exists an adversary B who is successful in breaking
the semantic security of our scheme, we prove that there also exists an adversary
A which attacks the GDDHE1 assumption with the same advantage.
We show that A can simulate the interaction with B and then use the output of
B to break the GDDHE1 assumption as follow:
In the setup, A receives the inputs from his challenger:

(g, gx, gy, gxy, gkx, gky, gkxy, T )

and needs to distinguish T is either e(g, g)k or a random value in GT .
In the next step, A provides the inputs for B as follow:
He chooses randomly z ∈ Zp, implicitly sets d1 = zy, d2 = x, v = y, then
computes the public key:

gd1 = (gy)z, e(g, g)d2 = e(g, gx), gd1·d2 = (gxy)z, e(g, g), e(g, g)v = e(g, gy),

e(g, g)d2·v = e(g, gxy)

In the challenge phase, B outputs two messages M0 and M1. A chooses randomly
a bit b ∈ {0, 1} then computes the challenge ciphertext as follow:

C1 = (gky)z = gd1·k, C2 = e(g, gkx) = e(g, g)d2·k, C3 = (gkxy)z = gd1·d2·k,
C4 = e(g, gky) = e(g, g)k·v, C5 = e(g, gkxy) = e(g, g)d2·k·v, C6 = 1

T ·Mb

then gives it to B.
B outputs its guess b′ for b. If b′ = b the algorithm A outputs 0 (indicating that
T = e(g, g)k). Otherwise, it outputs 1 (indicating that T is random in GT ).
As the simulation of A is perfect, A can thus break GDDHE1 assumption with
the same advantage that B can break the semantic security.

5 Traitor Tracing

5.1 Non-Black-Box Tracing

Definition 3 (GDDHE2 Assumption). The (t, ε)−GDDHE2 assumption says
that for any t-time adversary A that is given (b1, . . . , bl, input) in which b1, . . . , bl
are random in Zp and 6= 0,

input =

(
gd1 , gd1d2 , g

1
d1 , g

d2−b1d2−1

d1(b1d2+1) , . . . , g
d2−bld2−1

d1(bld2+1)

)
its probability to output a value g

d2
d1 ∈ G, where d1, d2 ∈ Zp, g ∈ G, is bounded

by ε:

SuccGDDHE2(A) = Pr[A(b1, . . . , bl, input) = g
d2
d1 ] ≤ ε.

We show that this assumption holds in the generic group, the details can be
found in the full version of this paper [18]. Next, we recall the definition of
Modified−l − SDH assumption from [11].



Definition 4 (Modified−l − SDH Assumption).
Given g, gα ∈ G and l − 1 pairs 〈wj , g1/(α+wj)〉 ∈ Zp × G for a fixed parameter
l ∈ N.
Output another pair 〈w, g1/(α+w)〉 ∈ Zp ×G.

Theorem 2. Under the GDDHE2 assumption and Modified−l − SDH assump-
tion, our scheme is secure in the non-black-box tracing model.

Proof. It is sufficient for us to show that the collusion of any number of traitors
cannot derive a new valid secret key. Then, the proof is automatically followed
since at least a traitor’s key must be embedded in the pirate decoder and when
the tracer reverse this key, the identity of the corresponding traitor is revealed.
To prove that the collusion of any number of traitors cannot derive a new valid
secret key, we first prove that they cannot derive a special key A,B in which
a = d2 − 1, we then prove that they also cannot derive any new valid secret key
that differs from this special key.

Lemma 1. Under the GDDHE2 assumption, the collusion of any number of
traitors cannot derive a special key A,B in which a = d2 − 1.

Proof. Assume that there is an adversary B which takes as inputs l traitors’
keys, for any number l, the system public key, and successfully derive a special
key A,B in which a = d2 − 1. We construct an algorithm A which can simulate
the interaction with B and then use the output of B to break the GDDHE2

assumption as follow:
In the setup, A receives the inputs from his challenger:

b1, . . . , bl, g
d1 , gd1d2 , g

1
d1 , g

d2−b1d2−1

d1(b1d2+1) , . . . , g
d2−bld2−1

d1(bld2+1)

And needs to output the value g
d2
d1 .

In the next step, A first chooses randomly v ∈ Zp, then provides the inputs for
B as follow:

– A provides a secret key Ai, Bi, i = 1, . . . , l for B by setting Bi = bi =
1

ai+1 − e2, therefore implicitly ai = d2−bid2−1
(bid2+1) , then computes

Ai = g
d2−bid2−1

d1(bid2+1) · g
v
d1 = g

ai
d1 · g

v
d1 = ge1(ai+v)

where e1 = d−11 , e2 = d−12 . Note that because bi, d1, d2, v are randomly chosen
in Zp, the resulted secret key is also chosen in the same distribution as in
the joint algorithm.

– For the public key, A computes:

gd1 , e(g, g)d2 = e(gd1d2 , g
1
d1 ), gd1d2 , e(g, g) = e(gd1 , g

1
d1 ), e(g, g)v,

e(g, g)v·d2 = e(gd1d2 , g
v
d1 )



When B outputs the special secret key A,B in which a = d2 − 1

A = ge1(d2+v−1), B = 0

then A outputs

A · g
1
d1

g
v
d1

= g
d2
d1

As a result, the probability that the collusion of any number of traitors can
derive a special key A,B in which a = d2− 1 is the same as the probability that
a t-time adversary A who breaks the security of the GDDHE2 assumption.

Lemma 2. Under the Modified−l−SDH assumption, the collusion of any num-
ber of traitors cannot derive any new valid secret key that differs from the special
key above.

Proof. Assume that there is an adversary B which takes as inputs l− 2 traitors’
keys, for any number l, the system public key, and successfully derive a new valid
secret key which is different from these l − 2 traitors’ keys and the special key
above. We construct an algorithm A which can simulate the interaction with
B and then use the output of B to break the Modified−l − SDH assumption as
follow:
In the setup, A receives the inputs from his challenger:

(w1, . . . , wl−1, g, g
α, g

1
α+w1 , . . . , g

1
α+wl−1 )

In the next step, A provides the inputs for B as follow:
He first chooses randomly e1, v ∈ Zp, then implicitly sets e2 = α + w1 thus

g
1

α+w1 = g
1
e2 = gd2 . A can easily compute the system public keys and gives

them to B.
To compute Ai, Bi, i = 2, . . . , l − 1, A sets Bi = 1

ai+1 − e2 = wi − w1 thus

ai = 1
e2+wi−w1

− 1 and

Ai = (g
1

α+wi )e1 · ge1(v−1) = g
e1(

1
e2+wi−w1

+v−1)
= ge1(ai+v)

Note that α = e2 − w1.
When B outputs a new secret key

A = ge1(a+v), B =
1

(a+ 1)
− e2

where a 6= −1, d2−1, a2, . . . , al−1, then A outputs w = B+w1 = 1
(a+1) −e2 +w1

thus a = 1
e2+w−w1

− 1, and

g
1

α+w = (
A

ge1(v−1)
)

1
e1 =

ga+v

gv−1
= ga+1 = g

1
e2+w−w1

−1+1 = g
1

e2+w−w1 = g
1

α+w

Note that a 6= −1, d2 − 1, a2, . . . , al−1 thus w 6= w1, . . . , wl−1.
As the simulation of A is perfect, A can thus break Modified−l−SDH assumption
with the same advantage that B can successfully derive a new valid secret key.



5.2 Single-key Black Box Tracing

Definition 5 (GDDHE3 Assumption). The (t, ε)−GDDHE3 assumption says
that for any t-time adversary A that is given a pair (b, input) in which b 6= 0 is
random in Zp and

input =
(
g, gd1 , gd1d2 , g

v
d1 , g

d2−bd2−1

d1(bd2+1) , gkd1 , gkd1d2 , e(g, g)d2 , e(g, g)k
)

cannot distinguish between a value e(g, g)kd2 ∈ GT and a random value T ∈ GT ,
where d1, d2, v, k ∈ Zp, g ∈ G, with an advantage greater than ε:

AdvGDDHE3(A) =

∣∣∣∣Pr[A(b, input, e(g, g)kd2) = 1]
−Pr[A(b, input, T ) = 1]

∣∣∣∣ ≤ ε
We notice that, unlike the Modified−l−SDH assumption, this is a static assump-
tion. We show that this assumption holds in the generic group, the details can
be found in the full version of this paper [18].

Theorem 3. Under the GDDHE3 assumption, our scheme is secure in the single-
key black box tracing model.

Proof. We note that in the single-key black box tracing model, there are two
separate functions which are called the key-builder and the box-builder. In the
first one, the traitors will collude to derive a new valid secret key. In the second
one, one receives this new secret key and build a pirate decoder based on it.
In our proof we first prove that the pirate decoder takes as inputs a secret
key and the public key, cannot distinguish a probe ciphertext and a well-form
ciphertext, therefore it will run the decryption algorithm normally. Finally, we
present a tracing algorithm in which the tracer creates a probe ciphertext and
then queries the pirate decoder on this probe ciphertext. After the pirate decoder
outputs the answer, the tracer can identify the secret key that pirate decoder is
using to decrypt.

Assume that there is a pirates decoder B, on inputs a secret key and the public
key, can successfully distinguish a probe ciphertext and a well-form ciphertext.
We show that A can simulate the interaction with B and then use the output of
B to break the GDDHE3 assumption:
In the setup, A receives the inputs from his challenger:

b, g, gd1 , gd1d2 , g
v
d1 , g

d2−bd2−1

d1(bd2+1) , gkd1 , gkd1d2 , e(g, g)d2 , e(g, g)k, T

with b, d1, d2, v, k are randomly chosen in Zp, and needs to distinguish T is
e(g, g)kd2 or not.
In the next step, A provides the inputs for B as follow:



– A provides a secret key for B by setting B = b = 1
a+1−e2, therefore implicitly

a = d2−bd2−1
(bd2+1) , then computes

A = g
d2−bd2−1

d1(bd2+1) · g
v
d1 = g

a
d1 · g

v
d1 = ge1(a+v)

where e1 = d−11 , e2 = d−12 . Note that because b, d1, d2, v are randomly chosen
in Zp, the resulted secret key is also chosen in the same distribution as in
the joint algorithm.

– For the public key, A computes:

gd1 , e(g, g)d2 , gd1·d2 , e(g, g), e(g, g)v = e(gd1 , g
v
d1 ), e(g, g)v·d2 = e(gd1d2 , g

v
d1 )

A next chooses a random message M and uses T to compute the challenge
ciphertext and passes it to B:

gkd1 , T, gkd1d2 , e(g
v
d1 , gkd1), e(g

v
d1 , gkd1d2), e(g, g)−k ·M

In the guess phase, if B outputs 0 (indicating that this is well-form ciphertext)
then A outputs 0 (indicating that T is e(g, g)kd2), and otherwise if B outputs 1
(indicating that this is probe ciphertext) then A also outputs 1 (indicating that
T is a random element).
We also note that B can maliciously output a random message M ′ in the case
he knows the challenge ciphertext is a probe ciphertext, however A still knows
the right answer of B because he knows the real message M .
As the simulation of A is perfect, A can thus break GDDHE3 assumption with

the same advantage that B can successfully distinguish a probe ciphertext and
a well-form ciphertext. We can thus construct a single-key black box tracing
algorithm as follow:

Full Access Single-key Black Box Tracing Algorithm: When a user j joins
the system, the tracer computes and stores the pair (j, e(g, g)Bj ) in a sorted
table Tab. The tracing algorithm then works as follow:
1. The tracer picks random k, r ∈ Zp then creates a probe ciphertext:

C1 = gkd1 , C2 = e(g, g)kd2+r, C3 = gkd1d2 , C4 = e(g, g)kv,

C5 = e(g, g)kvd2 , C6 = M ′

2. Assume the decryption key Ai, Bi is embedded in the pirate decoder.
Then the tracer queries the pirate decoder on this probe ciphertext. The
pirate decoder will compute:

K =
e(Ai, C1)

C4
·CBi−12 ·(e(Ai, C3)

C5
)Bi = e(g, g)

kd2ai
ai+1 ·e(g, g)

(kd2+r)(
1

ai+1−
1
d2
−1)

= e(g, g)−k · e(g, g)r(Bi−1)

Then outputs:
C6/K



3. The tracer first recovers K then computes e(g, g)Bi since it knows k, r.
Then the tracer simply verifies if the element e(g, g)Bi is in the table
Tab and eventually outputs the traitor. It is easy to see that our tracing
algorithm never accuses any innocent user and the time complexity of
our tracing security is O(logN). We also notice that, in our system, N
is the effective number of the actual users in the system.

Minimal Access Single-key Black Box Tracing Algorithm: In the setup
phase, the tracer picks random k, r ∈ Zp and a message M , then creates:

C1 = gkd1 , C2 = e(g, g)kd2+r, C3 = gkd1d2 , C4 = e(g, g)kv, C5 = e(g, g)kvd2

and store these values in a table Tab.
When a user j joins the system, the tracer computes

C6,j = e(g, g)−k · e(g, g)r(Bj−1) ·M

and stores the pair (j, C6,j) in the table Tab.
The tracing algorithm then works as follow:
1. For each user’s indices j, the tracer queries the pirate decoder on a pair

(C = (C1, C2, C3, C4, C5, C6,j),M)

2. Assume the decryption key Ai, Bi is embedded in the pirate decoder.
The pirate decoder will compute:

K =
e(Ai, C1)

C4
·CBi−12 ·(e(Ai, C3)

C5
)Bi = e(g, g)

kd2ai
ai+1 ·e(g, g)

(kd2+r)(
1

ai+1−
1
d2
−1)

= e(g, g)−k · e(g, g)r(Bi−1)

Then computes:
M ′ = C6,j/K

3. At user’s indices j, if the tracer receives a signal valid which indicates
that C is a valid encryption of M , then the tracer outputs user’s indices
j is a traitor. It is easy to see that our tracing algorithm never accuses
any innocent user and the time complexity of our tracing security is
O(N). We also notice that, in our system, N is the effective number of
the actual users in the system.

6 Conclusion

In this paper, we restrict ourselves to the non-black-box tracing and the single-
key black box tracing models and proposed an optimal and practical scheme
in these models. As far as we know, this is the first practical fully collusion
resistant traitor tracing scheme. However the most important open problem in
traitor tracing remains the construction of a practical fully collusion resistant



traitor tracing scheme in the general black box tracing model. The schemes in
[2,8] has constant ciphertext size but when considering the full collusion, the
secret key size of user is O(N2) which is impractical. The most relevant schemes
in [9] and in [10] still have large ciphertext size of O(

√
N) and require the use of

bilinear maps in groups of composite order. We also recall that, non-black-box
tracing and the single- key black box tracing models deal with pirates who are
required to implement a key that has the form of the keys distributed to the
users (this consideration is justified and discussed in the introduction) and do
not consider pirates who can produce new form of key that can help to decrypt
ciphertexts. One of the promising direction is to consider a model between the
single-key black box tracing and the general black box tracing model in which
one can still achieve a practical scheme.

Acknowledgments

This work was partially supported by the French ANR-09-VERSO-016 BEST
Project and partially conducted within the context of the International Associ-
ated Laboratory Formath Vietnam (LIAFV).

References

1. S. Agrawal, Y. Dodis, V. Vaikuntanathan, and D. Wichs. On continual leakage of
discrete log representations. Cryptology ePrint Archive, Report 2012/367, 2012.
http://eprint.iacr.org/2012/367.

2. O. Billet and D. H. Phan. Efficient Traitor Tracing from Collusion Secure Codes.
In R. Safavi-Naini, editor, Information Theoretic Security—ICITS 2008, volume
5155 of Lecture Notes in Computer Science, pages 171–182. Springer, 2008.

3. O. Billet and D. H. Phan. Traitors collaborating in public: Pirates 2.0. In A. Joux,
editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 189–205. Springer, Apr.
2009.

4. D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin
and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–
73. Springer, May 2004.

5. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In R. Cramer, editor, EUROCRYPT 2005, volume 3494
of LNCS, pages 440–456. Springer, May 2005.

6. D. Boneh and M. K. Franklin. An efficient public key traitor tracing scheme. In
M. J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 338–353. Springer,
Aug. 1999.

7. D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In V. Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 258–275. Springer, Aug. 2005.

8. D. Boneh and M. Naor. Traitor tracing with constant size ciphertext. In P. Ning,
P. F. Syverson, and S. Jha, editors, ACM CCS 08, pages 501–510. ACM Press,
Oct. 2008.

9. D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In S. Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 573–592. Springer, May / June 2006.

http://eprint.iacr.org/2012/367


10. D. Boneh and B. Waters. A fully collusion resistant broadcast, trace, and revoke
system. In A. Juels, R. N. Wright, and S. Vimercati, editors, ACM CCS 06, pages
211–220. ACM Press, Oct. / Nov. 2006.

11. X. Boyen. Mesh signatures. In M. Naor, editor, EUROCRYPT 2007, volume 4515
of LNCS, pages 210–227. Springer, May 2007.

12. B. Chor, A. Fiat, and M. Naor. Tracing traitors. In Y. Desmedt, editor,
CRYPTO’94, volume 839 of LNCS, pages 257–270. Springer, Aug. 1994.

13. C. Delerablée, P. Paillier, and D. Pointcheval. Fully collusion secure dynamic broad-
cast encryption with constant-size ciphertexts or decryption keys. In T. Takagi,
T. Okamoto, E. Okamoto, and T. Okamoto, editors, PAIRING 2007, volume 4575
of LNCS, pages 39–59. Springer, July 2007.

14. P. Junod, A. Karlov, and A. K. Lenstra. Improving the Boneh-Franklin traitor
tracing scheme. In S. Jarecki and G. Tsudik, editors, PKC 2009, volume 5443 of
LNCS, pages 88–104. Springer, Mar. 2009.

15. A. Kiayias and M. Yung. Traitor tracing with constant transmission rate. In
L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 450–465.
Springer, Apr. / May 2002.

16. M. Naor and B. Pinkas. Efficient trace and revoke schemes. In Y. Frankel, editor,
FC 2000, volume 1962 of LNCS, pages 1–20. Springer, Feb. 2000.

17. K. Nuida. A general conversion method of fingerprint codes to (more) robust fin-
gerprint codes against bit erasure. In Information Theoretic Security—ICITS 2009,
volume 5973 of Lecture Notes in Computer Science, pages 194–212. Springer, 2009.

18. D. H. Phan and V. C. Trinh. Optimal Public Key Traitor Tracing Scheme in Non-
Black Box Model. In A. Youssef and A. Nitaj, editors, Africacrypt 2013 Conference,
Lecture Notes in Computer Science Springer, June. 2013. Full version available at
http://www.di.ens.fr/users/phan/2013-africa-a.pdf

19. D. Tonien and R. Safavi-Naini. An efficient single-key pirates tracing scheme using
cover-free families. In J. Zhou, M. Yung, and F. Bao, editors, ACNS 06, volume
3989 of LNCS, pages 82–97. Springer, June 2006.


	Optimal Public Key Traitor Tracing Scheme in Non-Black Box Model
	Introduction
	Non-Black-Box Tracing vs. General Black Box Tracing 
	Our Contributions

	Preliminaries
	Traitor Tracing Scheme
	Bilinear Maps

	Construction
	Security
	Traitor Tracing
	Non-Black-Box Tracing
	Single-key Black Box Tracing

	Conclusion


