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2Ecole normale supérieure, Paris, France

Abstract. Trace and revoke systems allow for the secure distribution of digital content in such a way
that malicious users, who collude to produce pirate decoders, can be traced back and revoked from the
system. In this paper, we consider such schemes in the identity-based setting, by extending the model of
identity-based traitor tracing scheme by Abdalla et al. to support revocation.
The proposed constructions rely on the subset cover framework. We first propose a generic construction
which transforms an identity-based encryption with wildcard (WIBE) of depth log(N) (N being the number
of users) into an identity-based trace and revoke scheme by relying on the complete subtree framework (of
depth log(N)). This leads, however, to a scheme with log(N) private key size (as in a complete subtree
scheme). We improve this scheme by introducing generalized WIBE (GWIBE) and propose a second con-
struction based on GWIBE of two levels. The latter scheme provides the nice feature of having constant
private key size (3 group elements).
In our schemes, we also deal with advanced attacks in the subset cover framework, namely pirate evolution
attacks (PEvoA) and pirates 2.0. The only known strategy to protect schemes in the subset cover framework
against pirate evolution attacks was proposed by Jin and Lotspiech but decreases seriously the efficiency of
the original schemes: each subset is expanded to many others subsets; the total number of subsets to be used
in the encryption could thus be O(N1/b) to prevent a traitor from creating more than b generations. Our
GWIBE based scheme, resisting PEvoA better than the Jin and Lotspiech’s method. Moreover, our method
does not need to change the partitioning procedure in the original complete subtree scheme and therefore,
the resulted schemes are very competitive compared to the original scheme, with r log(N/r) logN−size
ciphertext and constant size private key.

Keywords: Traitor Tracing, Broadcast Encryption, Subset-cover Framework, Pirate Evo-
lution Attacks, Pirates 2.0

1 Introduction

In a system of secure distribution of digital content, a center broadcasts encrypted content to legitimate
recipients. Most solutions to this problem can be categorized into broadcast encryption or traitor
tracing.

Broadcast encryption systems, independently introduced by Berkovits [Ber91] and Fiat-Naor [FN94],
enable a center to encrypt a message for any subset of legitimate users and to prevent any set of re-
voked users from recovering the broadcasted information. Moreover, even if all revoked users collude,
they don’t obtain any information about the content sent by the center.

Traitor tracing schemes, introduced in [CFN94], enable the center to trace users who collude to
produce pirate decoders. The center broadcasts encrypted content so that all users can decrypt this
content. The risk here is that different users successfully collude (they are then called traitors) by
contributing their private keys to build a pirate decoder and distribute this decoder to illegitimate
users. The goal of a traitor tracing system is to allow, when a pirate decoder is found, the authority
to run a tracing procedure to identify the traitors.

Trace and Revoke systems [NP00,NNL01] provide the functionalities of both broadcast encryption
and traitor tracing. The most famous trace and revoke schemes are those from the subset-cover frame-
work [NNL01], namely complete subtree scheme and subset difference scheme. They have been used as
a basis to design the widely spread content protection system for HD-DVDs and Blu-ray disks called
AACS [AAC].

Identity-based cryptography was introduced by Shamir in 1984 [Sha85]. However, it’s only very
recently that identity-based schemes in “one-to-many” settings were introduced, namely identity-based
traitor tracing [ADML+07] and identity-based broadcast encryption [Del07,SF07]. In the first identity-
based traitor tracing scheme, proposed by Abdalla et al. [ADML+07], each group of users has an
identity and the encryption is based on Waters’ WIBE [ACD+06] and on collusion secure codes [BS95].
The use of collusion secure codes results in unfeasibly large public key and ciphertext sizes. The authors
left as an open question the problem of constructing “efficient identity-based traitor tracing scheme,
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even in the random oracle model”. We consider the more general problem of constructing efficient
identity-based trace and revoke systems in the standard model.

Recently, two new types of attack have been proposed which point out some weakness of schemes
in the subset-cover framework, namely pirate evolution attacks [KP07] and pirates 2.0 [BP09].

Pirate evolution [KP07] is an attack concept against a trace and revoke scheme that exploits the
properties of the combined functionality of tracing and revocation in a tree based scheme. Using a
set of users’ keys, the pirate produces an initial pirate decoder. When this pirate decoder is seized,
the pirate evolves the first pirate decoder by issuing a second version that succeeds in decrypting
ciphertexts. The same step can be repeated again and again and the pirate continues to evolve a new
version of the previous decoder.

Pirates 2.0 attacks [BP09] result from traitors collaborating in a public way. In other words, traitors
do not secretly collude but display part of their secret keys in a public place; pirate decoders are then
built from this public information. The distinguishing property of pirates 2.0 attacks is that traitors
only contribute partial information about their secret key material which suffices to produce (possibly
imperfect) pirate decoders while allowing them to remain anonymous. This type of attacks has been
shown to be a real threat for tree based and code based schemes [BP09].

Since schemes from the subset-cover framework have been widely implemented in practice, it’s a
challenge to build new schemes in this framework that can resist these two type of attacks.

1.1 Our Contribution

We propose the first Identity-based Trace and Revoke system, along with an efficient method for
fighting pirates 2.0 and pirate evolution attacks. Our constructions can be considered as variants
of the complete subtree scheme. The first scheme makes use of an identity-based encryption with
wildcards [ACD+06] (WIBE for short) scheme with linear pirate key size in the depth of the tree. In
order to improve this, we first propose a generalized WIBE (GWIBE for short) and then propose a
second scheme that relies on 2-level GWIBE. Our second scheme have the following properties:

– It outperforms, in term of efficiency, the identity based traitor tracing scheme in [ADML+07] as
it does not need to use a collusion secure code. Note that the scheme in [ADML+07] does not
support revocability.

– It resists known pirate evolution attacks [KP07] and pirates 2.0 attacks [BP09].

– It is, asymptotically, very competitive with the original scheme, namely the complete subtree and
subset difference schemes (detailed comparisons is given in Table 1.). Moreover, in our scheme,
private keys of users are of constant sizes.

1.2 Related Works

Recently, [JL09] proposed a new method to defend against pirate evolution attacks in the subset
difference framework. However, their method decreases seriously the efficiency of the original schemes
because each subset need to be expanded to many others subsets; the total number of subsets to be
used in the encryption becomes sub-linear in the total number of users in the system.

A new method has recently proposed in [DdP11] to defend against pirates 2.0 in the subset-
cover framework by integrating the Naor-Pinkas scheme[NP00] into complete subtree scheme (CS) or
subset difference scheme (SD). However, because of integrating polynomial interpolation method of
Naor-Pinkas [NP00], their method decreases the efficiency of the original schemes and cannot support
unbounded number of traitors as in subset-cover schemes.

Finally, in a recently proposed work [ZZ11], the authors also proposed a method to deal with pirates
2.0 in code-based schemes. In fact, their method is essentially similar to the method in [ADML+07]
except that they split the second level in [ADML+07] into L levels (L is the length of code). This
work shows an interesting result that the scheme [ADML+07] can made to be resistant against pirates
2.0 with almost no additional cost. Note however that code-based schemes actually do not support
revocation, they are thus not a trace and revoke system. Table 1 shows that our schemes are by far more
efficient than the above mentioned schemes. In fact, our scheme are, asymptotically, very competitive
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with the original schemes in [NNL01], namely the complete subtree scheme and the subset difference
scheme. Because these schemes are widely implemented in practice, our results could also give a
significant impact in practice.

We now figure out the general literature about broadcast encryption and traitor tracing. Tree based
schemes were independently proposed by Wallner et al. [WHA99] and Wong et al. [WGL98]. They
employ a logical key tree structure and receivers have to refresh their decryption key using information
given in broadcasted messages every time users are revoked or a new user joins the system. These are
thus stateful broadcast schemes and can only be aimed at practical applications where the set of
privileged users is rarely updated and in a marginal way.

Stateless broadcast schemes have been introduced in order to avoid the rekeying problem [KRS99],
[GSW00,NNL01]. Among these schemes, the NNL schemes [NNL01] seem to be the most practical ones
and they were used as a basis to design the widely spread content protection system for HD-DVDs
and Blu-ray disks called AACS [AAC].

Some methods for combining key tree structure with other techniques have been proposed: Sherman-
McGrew [SM03] used a one-way function, Canetti et al. [CMN99] used a pseudo-random generator,
and Kim et al. [KPT00] used a Diffie-Hellman key exchange scheme. Some interesting schemes with
constant size private keys were proposed by Asano [Asa02] and [AK05].

Dodis and Fazio [DF02] introduced a way to transform NNL schemes from a secret setting to a
public-key setting by using IBE and HIBE. Though based on the same primitive, namely HIBE, each
user’s private key is still composed by a set of sub-keys and therefore, these schemes suffer from pirates
2.0 and pirate evolution attacks.

In addition to combinatoric schemes, many algebraic schemes with very nice features have been in-
troduced. Kurosawa-Desmedt [KD98] and Boneh-Franklin [BF99] proposed the first elegant algebraic
constructions with a deterministic tracing procedure. Boneh and Waters designed a fully collusion
resistant trace and revoke scheme [BW06]. This last scheme is very interesting from a theoretical
point of view as it is the first scheme that supports full collusion with sub-linear ciphertext size. It is,
however, hard to implement in practice because the size of ciphertext is always O(

√
N) whatever the

size of collusion, i.e. even if there are very few traitors.

Public-key broadcast schemes with constant-size ciphertexts have been proposed in [BGW05] and
in [DPP07]. These schemes require decryption keys of size linear in the number of users (a receiver
has a constant-size private key, but needs the encryption key to perform a decryption). This storage
may be excessive for low-cost devices.

Adaptive security has been investigated in [DF03,GW09]. Attribute based broadcast encryption
scheme has recently been proposed in [LS08]

Traitor tracing schemes based on codes have been much investigated since the seminal work of
Boneh and Shaw [BS95] on collusion secure codes: Kiayias and Yung [KY02b] proposed a scheme with
constant rate. [BP08,BN08] recently achieved constant size ciphertexts. One of the main shortcoming
of the code based schemes remains that the user’s key is very large (linear in the length of codewords).

1.3 About the Model of PEvoA and Pirates 2.0

We remark that the considerer model of PEvoA and Pirates 2.0 in our paper is not the most general
one. However, this model covers the main idea of the attacks presented in [KP07] and [BP09], it also
covers the proposed attacks in these original papers. Moreover, the countermeasures mentioned above
[JL09], [DdP11] and [ZZ11] are all under our model. Formal definitions of our model of PEvoA and
Pirates 2.0 will be given in the paper. Informally speaking, this model requires that the pirate needs
to have a sub-key to be able to decrypt a sub-ciphertext. We recall that in combinatoric schemes, a
ciphertext is composed by a set of sub-ciphertext each of them is encrypted by a sub-key. The known
PEvoA and Pirates 2.0 exploit the fact that a pirate can combine some sub-keys to break the system.
The most general model for PEvoA and Pirates 2.0 would be the case that a pirate can combine partial
information about sub-keys to break the whole scheme. This model is not considered in this paper
neither in previous papers and it is still an open question to find out a countermeasures for the most
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general form of PEvoA and Pirates 2.0. It appears that this closely relates to the subject of key-leakage
resilient cryptography .

2 Fighting Pirates 2.0 and Pirate Evolution Attacks in Tree Based Systems

In this section we present the ideas behind our constructions. The main problem of schemes in the
tree-based framework (or more generally, in the combinatoric setting) is that the users’ keys contain
many sub-keys. Each sub-key corresponds to an internal node of the tree. Consequently, each sub-
key can be shared between many users. Thus, if a user only publish sub-keys of a certain level (to
ensure that there are many users that share that sub-key), this user cannot be traced but pirates can
efficiently collect different sub-keys to build a practical decoder.

Our method for fighting pirates 2.0 and pirate evolution attacks consists of two steps: making pri-
vate keys indecomposable (the private keys are not composed of sub-keys) and avoiding the derivation
of sub-keys of any internal node from the private keys.

2.1 Framework

First Step: Making Private Keys Indecomposable Since the core of pirates 2.0 attacks is the
public contribution of partial private key, a natural idea is to render private keys indecomposable. But
this condition is not sufficient.

Asano [Asa02] and [AK05] proposed very interesting schemes with constant size private keys.
Because private keys in these scheme are of constant size, one might think traitors cannot contribute
a partial key information to the public and that pirates 2.0 can then be excluded. However, this is
not the case. Indeed, in order for a user U to be able to decrypt a ciphertext at a node in the path
from U to the root, U has to be able to derive the corresponding key at that node. This is the reason
why these schemes are still vulnerable to pirates 2.0 and pirate evolution attacks. The user U does
not need to contribute his key but can compute and contribute any key corresponding to the nodes
on the path from U to the root.

Second Step: No Intermediate Key Should be Derived From a Private Key The goal in
this step is to construct a scheme that, along with the undecomposability of private keys, enjoying
the following additional property: no key at internal nodes can be derived from a private key. This
property ensures preventing a traitor to derive and then publish keys at internal nodes and therefore
it can only contribute its own key which leaks its identity.

Main Idea: Delegation of Ciphertexts Our main idea is to allow a sub-ciphertext at a node being
publicly modifiable to be another sub-ciphertext at any descendant node. This way, by possessing a
private key at a leaf, a user can decrypt any sub-ciphertext at its ancestor node. We illustrate the idea
in the figure 1. The sub-ciphertext C could be publicly modified to be a ciphertext CU that can be
decryptable by any user U lying in the sub-tree rooted at the corresponding node C. At this stage,
we see that the user U could have just one key, this key cannot be used to derive sub-keys for other
nodes but it can decrypt ciphertexts at any node in the path from U to the root.

The construction of WIBE in [ACD+06] implicitly gives a delegation of ciphertexts as we need.
This is indeed our first solution which is quite inefficient. We then introduce a generalized notion of
WIBE and propose a much more efficient solution.

2.2 Solutions

First Solution: Integration of WIBE Into a Complete Subtree Scheme In our framework 2,
the first step is to propose a scheme so that a user is unable to derive any key corresponding to its
ancestor node. This requirement fits perfectly hierarchical identity based encryption systems (HIBE
for short). However, an HIBE system cannot be directly employed for dealing with the second step
because a user at a lower level cannot decrypt a ciphertext at a higher level. Fortunately, identity-based
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Fig. 1. Compairison between Asano’s method and our method. In Asano’s method, from a private
key, a user U can derive keys at any nodes on the path from its leave to the root. Our method can
be seen as a dual of Asano’s method where a ciphertext at a node can be modified to be decryptable
with keys at lower nodes.

encryption with wildcards [ACD+06] (WIBE for short) can be used to solve this issue. The main idea
in constructions of current WIBE is to be able to modify the ciphertext so that a legitimate user can
put information on the ciphertext to obtain a new ciphertext specifically crafted for him and then can
decrypt this modified ciphertext as in HIBE system. This completes the second step. We discuss this
with a concrete construction later on.
Our first scheme incorporates a special WIBE with complete subtree structure. In the WIBE used in
our first scheme, at each level in hierarchy, there are just two possible identities, say 0 and 1. If we
want to encrypt with a node S, we simply put wildcards for lower levels of S and consequent, any user
in the subtree rooted by S is able to decrypt. This is illustrated in figure 2.

Fig. 2. First scheme based on complete subtree and WIBE: leaves correspond to users, S1, . . . , S6 is
the covering that excludes revoked users in black while allowing other users to decrypt derived from
the steiner tree associated to the set of revoked users R. The WIBE is used to encrypt each identity
corresponding to Si, i = 1, . . . , 6. For S4 for example, we encrypt with WIBE(1|0|∗ |∗) (the right branch
corresponds to bit 1 and the left branch corresponds to bit 0)

The current constructions of WIBE are mainly based on HIBE. Therefore, a private key of a user
cannot be used to derive keys of nodes at higher level. This completes the first step. The main idea
in constructions of current WIBE is to be able to modify the ciphertext so that a legitimate user can
put information on the ciphertext to obtain a new ciphertext specifically crafted for him and then can
decrypt this modified ciphertext as in HIBE system. This completes the second step. We discuss this
with a concrete construction later on.

Main Solution: Introduction of Generalized WIBE Primitive A shortcoming in our first scheme
is that the private key size is linearly in the depth of the tree. To overcome this issue, we propose a
new primitive, called generalized WIBE (GWIBE for short) where the wildcard does not need to replace
the whole identity at a given level but can be part of the identity at each level. Figure 3 illustrates
our method. We group all levels below the root into a single level and put the wildcard as part of the
identity. Therefore, we only need a 2-level GWIBE for encryption.
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Fig. 3. From l-level WIBE based construction to 2-level GWIBE based construction.

2.3 Efficiency Comparison

Besides the property of resisting pirates 2.0 and pirate evolution attacks, our schemes are also very
competitive in terms of efficiency. The only previous traitor tracing scheme in the identity based setting
is much less efficient than ours, especially when the number of traitors is large.

Compared to the complete subtree and subset difference schemes, the ciphertext in ours schemes
is larger (more a factor of log(N)) but our second scheme has constant size private keys.

Dodis and Fazio [DF02] showed a way to transform NNL schemes from a secret setting to a public-
key setting by using IBE and HIBE. Their best schemes are denoted by DF-CS (transforming complete
subtree scheme to public-key setting by using the Waters IBE in [Wat05]) and DF-SD (transforming
subset difference scheme to public-key setting by using the BBG scheme [BBG05]).

A more detailed comparison is given in Table 1.

Resisting PEvoA Private key Public key Ciphertext EncTime DecTime
/Pirates 2.0

CS scheme [NNL01] no/no O(log(N)) 0 O(r log(N
r

)) O(r log(N
r

)) O(1)

SD scheme [NNL01] no/no O(log2(N)) 0 O(r) O(r) O(1)

IBTT [ADML+07] −/yes O(1) O(c2 log(N) O(c2 log(N) O(c2 log(N) O(log(N))
+log(1/ε)) +log(1/ε)) +log(1/ε))

DF-CS (with IBE-Wa) no/no O(log(N)) O(log(N)) O(r log(N
r

)) O(r log(N
r

)) O(1)

DF-SD (with BBG) no/no O(log3(N)) O(log(N)) O(r) O(r log(N)) O(log(N))

[DdP11] (with CS) no/yes O(log(N)) O(t) O(t · r log(N
r

)) O(t · r log(N
r

)) O(t)

[DdP11] (with SD) no/yes O(log2(N)) O(t) O(t · r) O(t · r) O(t)

[ZZ11] (with BBG) −/yes O(1) O(c2 log(N) O(c2 log(N) O(c2 log(N) O(log(N))
+log(1/ε)) +log(1/ε)) +log(1/ε))

Jin-Lotspiech [JL09] yes/− O(log2(N)) 0 O(N1/b) O(N1/b) O(1)

Wa-WIBE-IDTR 3.6 yes/yes O(log(N)) O(log(N)) O(r log(N
r

) O(r log(N
r

) O(log(N))
. log(N)) . log(N))

2level-Wa-GWIBE-IDTR 4.4 yes/yes O(1) O(log(N)) O(r log(N
r

) O(r log(N
r

) O(log(N))
. log(N)) . log(N))

Table 1. Comparison between our schemes and previous schemes. The complete subtree, subset
difference schemes, and Jin-Lotspiech method are in the symmetric key setting. The IBTT and [ZZ11]
(with BBG) schemes need to fix before set up the maximum number of traitors c and the tracing
procedure might have a error with probability ε. r denotes the number of revoked users, t denotes the
maximum number of colluded users in each subset Si, ’-’ denotes ”actually not known”. Note that the
IBTT and [ZZ11] (with BBG) schemes do not support revocation.
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3 Construction of Identity-Based Trace and Revoke From WIBE (WIBE-IDTR)

3.1 Background

The definition of an identity-based trace and revoke scheme IDTR, as well as the adaptive security
model for IDTR systems, can be found in Appendix A. Our model follows the model of identity-based
traitor tracing [ADML+07] in which each group of users has an identity and the broadcaster encrypts
messages to a group by using the group’s identity. We also deal with revocation, the encryption
depends thus on the group’s identity and the set of revoked users in that group.We first recall the
basic definitions of WIBE, and its security model.

Identity-based encryption with wildcards schemes are essentially a generalization of HIBE
schemes where at the time of encryption, the sender can decide to make the ciphertext decryptable
by a whole range of users whose identities match a certain pattern. Such a pattern is described by a
vector P = (P1, ..., Pl) ∈ ({0, 1}∗ ∪ {∗})l , where ∗ is a special wildcard symbol. We say that identity
ID = (ID1, ..., IDl′ ) matches P , denoted ID ∈∗ P , if and only if l

′ ≤ l and ∀i = 1...l
′
: IDi = Pi

or Pi = ∗. Note that under this definition, any ancestor of a matching identity is also a matching
identity. This is reasonable for our purposes because any ancestor can derive the secret key of a
matching descendant identity anyway.
More formally, a WIBE scheme is a tuple of algorithms WIBE = (Setup, KeyDer, Enc, Dec) providing
the following functionality. The Setup and KeyDer algorithms behave exactly as those of an HIBE
scheme. To create a ciphertext of message m ∈ {0, 1}∗ intended for all identities matching pattern P ,

the sender computes C
$← Enc(mpk, P,m). Any of the intended recipients ID ∈∗ P can decrypt the

ciphertext using its own decryption key as m← Dec(dID, C). Correctness requires that for all key pairs
(mpk,msk) output by Setup, all messages m ∈ {0, 1}∗, all 0 ≤ l ≤ L, all patterns P ∈ ({0, 1}∗∪{∗})l,
and all identities ID ∈∗ P , Dec(Keyder(msk, ID),Enc(mpk, P,m)) = m with probability one.

Security Model for WIBE. We recall the define of the security of WIBE schemes in [ACD+06]. In
the first phase the adversary is run on input the master public key of a freshly generated key pair

(mpk,msk)
$← Setup(1k). In a chosen-plaintext attack (IND-WID-CPA), the adversary is given access

to a key derivation oracle that on input ID = (ID1, · · · , IDk) returns dID
$← Keyder(msk, ID).

At the end of the first phase, the adversary outputs two equal length challenge messages m0,m1 and
a challenge pattern P ∗ = (P ∗1 , · · · , P ∗k∗) where 0 ≤ k∗ ≤ L, L is the depth of the root tree. The

adversary is given a challenge ciphertext C∗
$← Enc(mpk, P ∗,mb) for a randomly chosen bit b, and is

given access to the same oracles as during the first phase of the attack. The second phase ends when
the adversary outputs a bit b′ . The adversary is said to win the IND-WID-CPA game if b = b′ and if
it never queried the key derivation oracle for the keys of any identity that matches the target pattern
(i.e., any ID such that ID ∈∗ P ∗).

Definition 1. A WIBE scheme is (t, qK , ε) IND-WID-CPA-secure if all t-time adversaries making at
most qK queries to the key derivation oracle have at most advantage ε in winning the IND-WID-CPA
game described above. It is said to be (t, qK , qD, ε) IND-WID-CCA-secure if all such adversaries that
additionally make at most qD queries to the decryption oracle have advantage at most ε in winning
the IND-WID-CCA game described above.

3.2 Generic Construction

Fig. 4. Identity based Trace and Revoke in Complete Subtree structure
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We combine WIBE with the complete subtree method: each group ID ∈ {0, 1}∗ represents a binary
tree and each user id ∈ {0, 1}l (we write id = id1id2 · · · idl, idi ∈ {0, 1}) in a group ID is assigned to
be a leaf of the binary tree rooted at ID. For encryption, we will use a WIBE of depth l+ 1, each user
is associated with a vector (ID, id1, · · · , idl). This is illustrated in Figure 4.
Concretely, the WIBE-IDTR system works as follows:

Setup(1k, N): Take a security parameter k and the maximum number of user in each group N (thus
l = dlog2Ne). Run the setup algorithm of WIBE with the security parameter k and the hierarchical
depth L = l+ 1 which returns (mpk,msk). The setup then outputs (mpk,msk). As in the complete
subtree method, the setup also defines a data encapsulation method EK : {0, 1}∗ → {0, 1}∗ and
its corresponding decapsulation DK . The session key K used will be chosen fresh for each message
M as a random bit string. EK should be a fast method and should not expand the plaintext.

Keyder(msk, ID, id): Run the key derivation of WIBE for l+1 level identityWID = (ID, id1, id2, . . . , idl)
(the j-th component corresponds to the j-th bit of the identity id) and get the decryption key
dWID. Output dID,id = dWID.

Enc(mpk, ID,RID,M): A sender wants to send a message M to a group ID with the revocation list
RID. The revocation works as in the complete subtree scheme. Considering a group ID with its
revocation list RID, the users in NID\RID are partitioned into disjoint subsets Si1 , . . . , Siw which
are all the subtrees of the original tree (rooted at ID) that hang off the Steiner tree defined by
the set RID.
Each subset Sij , 1 ≤ j ≤ w, is associated to an l+1 vector identity IDSij

= (ID, idij ,1, . . . , idij ,k, ∗, ∗.., ∗)
where idij ,1, . . . , idij ,k is the path from the root ID to the node Sij and the number of wildcards
∗ is l − k.
The encryption algorithm randomly chooses a session key K, encrypts M under the key K by using
an symetric encryption, and outputs as a header the encryption of WIBE for each IDSi1

, . . . , IDSiw
.

C = 〈[i1, . . . , iw][WIBE.Enc(mpk, IDSi1
,K), . . . ,WIBE.Enc(mpk, IDSiw

,K)], EK(M)〉

Dec(dID,id, C): The user received the ciphertext C as above. First, find j such that id ∈ Sij (in case
id ∈ RID the result is null). Second, use private key dID,id to decrypt WIBE.Enc(mpk, IDSij

,K)

to obtain K. Finally, compute DK(EK(M)) to recover the message M .
TraceD(msk, ID): Our tracing algorithm is similar to the one in [NNL01]. It takes as input msk, ID,

an illegal decryption box D, returns either a subset consisting at least one traitor or a new partition
of NID\RID that renders the illegal decryption box useless. We note that this is not the strongest
notion of traceability. In a black-box traitor tracing, one can identify at least one traitor. Our
tracing algorithm relies on the tracing algorithms in NNL framework and target the same notion
of traceability. However, unlike the tracing algorithms in NNL, our tracing algorithm can deal
with PEvoA and Pirates 2.0, as will be shown in the next sections.

3.3 Security of WIBE-IDTR

Theorem 2. If the WIBE of depth l is (t
′
, q
′
K , ε

′
) IND-WID-CPA-secure, then the WIBE-IDTR is

(t∗, q∗K , ε
∗) IND-CPA-secure with

t∗ ≤ t′/(r log(
N

r
)), q∗K ≤ q

′
K , ε∗ ≤ r log(

N

r
)× ε′

where N is the bound on the number of users and r is the number of revoked users.

The proof is provided in Appendix B. We note that r log(Nr ) is the upper-bound on the number of
subsets in the partition of non-revoked users. Like in NNL schemes, we should also pay a factor of
r log(Nr ) in the reduction cost to the security of the chosen primitive for encryption, here is the security
of WIBE.

We also present an Instantiation as well as the security analysis of our identity-based trace and
revoke from Waters’ WIBE in Appendix F. We briefly remark here that, for a general construction
of WIBE, the security can be reduced to the security of the underlying primitive HIBE with a lost of
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an exponential factor (in the hierarchical depth) in the security reduction [ACD+06]. This is due to
the fact the simulator has to guess the positions of the wildcards. Fortunately, in our scheme, all the
wildcards are regrouped at the end and therefore, the simulator only needs to guess the position of
the first wildcard: the lost becomes linear in the hierarchical depth, which is acceptable.

3.4 Resistance to Pirate Evolution Attacks - PEvoA

Pirate evolution is a new kind of attack which decreases the efficiency of the system. In the initial
phase, the adversary corrupts t traitor keys and uses this set of keys to create a master pirate box
decoder B. B spawns successively a sequence of pirate boxes decoders B1, B2, . . . . After a current
version of pirate box Bi (i = 1, . . . ) is captured and rendered useless, the master box B spawns a
new version of pirate box Bi+1 that can decrypt the ciphertext encrypted at that time. The center
continues to run the tracing algorithm to render Bi+1 useless. The iteration repeats until B cannot
spawn a new version of pirate box decoder. If B can spawn a number of pirate boxes greater than t,
the system takes a long time to eradicate pirates in this attack. In this case we say that the system is
susceptible to the pirate evolution attacks.

The Method of Jin and Lotspiech. Recently, [JL09] proposed a new method to defend against pirate
evolution attacks in the subset cover framework but their method seriously decreases the efficiency of
the original scheme. We present the detailed analysis in Appendix D.

Formalization of PEvoA. Before proving that our scheme resists to this type of attack, we propose a
formalization of pirate evolution attack that covers all known attacks of this type.

Definition 3 (PEvoA in Subset-Cover Systems). In a subset-cover system with N users, each
user ui, i = 1, . . . , N , possesses a set of decryption keys Kui = (Kui,1 , . . . ,Kui,hi

). A master pirate box
B is built from t traitors (u1, . . . , ut) should possess a set of decryption keys (Ku1 , . . . ,Kut).
A pirate evolution attack is an attack in which B spawns successively a sequence of pirate boxes
decoders B1, B2, . . . corresponding to each iterations 1, 2, . . . . The evolution from the iteration i to
the iteration i+ 1 is defined as follows:

– At each iteration i, after the tracing algorithm creates a new partition Si+1 which renders the
pirate box Bi useless or which revokes some set of users. B spawns a new version Bi+1 of pirate
box, where Bi+1 must contain at least a decryption key di+1 such that, by using this decryption key
di+1, Bi+1 can decrypt the ciphertext encrypted based on the new partition Si+1 with probability
higher than a given threshold q.

– The iteration repeats until B cannot spawn a new version of the pirate box decoder.

The progress of PEvoA can be formalized by an algorithm evo[PEvoA] =PEvoA(Ku1 , · · · ,Kut) where
u1, · · · , ut are traitors:

1. (Ku1 , · · · ,KuN ) ← G(1λ, ρ,N) where ρ← coins
2. Kt ⊆ (Ku1 , · · · ,KuN ) and | Kt |= t
3. l = 0

repeat l = l+1
Bl(dl,1, · · · , dl,yl) ← B(Kt) where dl,1, · · · , dl,yl are decryption keys at iteration l
until Prob[Bl(dl,j , E

B1,··· ,Bl−1(m)) = m] < q where j = 1, · · · , yl
EB1,··· ,Bl−1(m) is the ciphertext at iteration l, q is given threshold, m ∈M

4. output l, the number of pirate box decoders that B can spawn.

Definition 4 (Resistance to PEvoA). A system is susceptible to PEvoA if the maximum number of
pirate box decoders that B can spawn is greater than the number of traitors t. The system is immune
from PEvoA if the maximum number of pirate box decoders is less than or equal to t.

In our definition, we closely follow the formalization of [KP07] but we refine the user’s private key and
evolution step: each user possesses a set of decryption keys, and at each iteration i a pirate box Bi must
contain at least a decryption key which is used to decrypt the ciphertext encrypted at that iteration.
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This consideration might fail to cover attacks who can derive some partial decryption keys from a set
of its key and then could use the partial key to break the security. In any case, our formalization covers
the idea of the type of attacks described in [KP07]: each user in [NNL01] possesses a set of decryption
keys (a set of long lived keys), and at each iteration master pirate box B spawns a new version of
pirate box Bi, where Bi contains at least a decryption key (a long lived key) at some node in the tree.

We also note that the previous schemes in the subset-cover framework are susceptible to pirate evo-
lution attacks because each user can always possess (or derive, in Asano et. al’s schemes [Asa02,AK05])
keys corresponding to intermediate nodes in the tree. Therefore, the traitors can easily produce many
pirate boxes. This way of attacks are covered in our formalization.

We now show that our WIBE-IDTR scheme resist pirate evolution attacks.

Theorem 5 (Resistance of WIBE-IDTR to Pirate Evolution Attacks). If there exists a pirate
evolution adversary B on WIBE-IDTR of depth L, then there exists an adversary B′ that breaks the
security of HIBE.

Proof. The main idea how our scheme can resist to this type of attacks is come from the property of
the underlying HIBE. In our scheme, each user has only a private key corresponding to its identity at
depth L. By the property of HIBE, no key at any intermediate node can be derived from the users’
key. Therefore, the traitors can only produce pirate box by putting in it their collected keys and the
number of pirate box is thus the number of traitors.
Formally, we first prove the following simple lemma.

Lemma 6. Considering a WIBE-IDTR scheme of depth L, if there is an adversary B, by corrupting t
user private keys (dID1 , · · · , dIDt) for its chosen identities (ID1, · · · , IDt) of depth L, is able to derives
a new private key dID∗ for an identity ID∗ different than (ID1, · · · , IDt), then one can construct an
adversary B′ that breaks the semantic security of HIBE.

Proof. The proof is simple, we run B′ to simulate B and use the output of B to break the security of
HIBE.

– In the setup phase, the challenger of B′ runs setup algorithm of HIBE to create the public pa-
rameters and secret parameters. It gives the public parameters to the B′, B′ passes these public
parameters to the B. The public parameters in two systems are the same.

– Phase 1: B chooses arbitrarily t identities (ID1, . . . , IDt) where each identity IDi (i = 1, . . . , t)
is an identity of depth L. B′ queries its challenger key derivation oracle t times on such identities
and returns the results to B.

– The challenge phase: When B outputs the private key dID∗ corresponding to identity ID∗, B′

submits two equal length messages M0,M1 and identity ID∗ to its challenger. B′ can use ID∗ as
a target identity because ID∗ and its prefix never be queried on the phase 1. The challenger picks
a random bit b ∈ {0, 1} and set C = Encrypt(ID∗,Mb). The ciphertext C is passed to B′.

– Phase 2: B′ uses dID∗ to decrypt C and outputs b.

From the above simulation, we induce that if there exists adversary B then there exists adversary B′

with the same probability. ut

Assume now that the adversary B corrupts t traitor keys (du1 , . . . , dut). The above lemma shows that
B cannot derive a new decryption key du′ not in (du1 , . . . , dut). Therefore, at each iteration i when B
spawns a new version of pirate box decoder Bi; Bi must contain at least a new key among the t traitor
keys. This implies that the maximum number of pirate box decoders that B can spawn is t. ut

3.5 Resistance to Pirates 2.0

Pirates 2.0 is a new type of attack against traitor tracing schemes. This type of attack results from
traitors collaborating together in a public way and display part of their secret keys in a public place,
allowing pirate decoders to be built from this public information. Traitors contribute part of their
secret keys in an appropriate way in order to remain anonymous. Moreover, the traitors can contribute
information at their discretion and they can publicly collude in groups of very large size.
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The Method in [DdP11]. [DdP11] proposed a new method to defend against pirates 2.0 in the subset-
cover framework by integrating [NP00] into CS or SD. However, because of using [NP00], their method
inherits the weakness of [NP00] scheme, means, only resists maximum t users collude in each subset
Si. We present the detailed analysis in Appendix E.

The Method in [ZZ11]. [ZZ11] also proposed a new method to defend against pirates 2.0 in codebase
schemes. However, their method is similar to the method in [ADML+07] except they split the second
level in [ADML+07] into L levels (L is the length of code). Note that, their scheme does not support
revocability. We present the detailed analysis in Appendix E.

Pirates 2.0. We consider the Pirates 2.0 model for subset-cover framework. Recall that, in this frame-
work, a traitor is a legitimate user ui who possesses a set of decryption keys Kui = (Kui,1 , · · · ,Kui,hi

).
We suppose that traitors leaks a subset of their decryption keys to the public domain in a discrete pro-
cess. When pirates want to decrypt a ciphertext C, they should collect relevant decryption keys from
their public environment in order to produce a pirate decoder. We consider that a pirate decoder should
contain at least a decryption key that can be based on it to decrypt C. Our consideration, though not
in the most general form, exactly reflects the attacks described in [BP09] against subset-cover schemes.
We also note that the previous schemes in the subset-cover framework are susceptible to pirates 2.0

attacks because each user can always possess (or derive, in Asano et. al’s schemes [Asa02,AK05]) keys
corresponding to intermediate nodes in the tree. Therefore, the traitors can easily contribute to the
public domain a subset of their decryption keys leading to the production of a pirate decoder. These
attack are covered by our considered formalization.

Following the same argument as in the case of pirate evolution attacks, we can show that our
WIBE-IDTR scheme resists pirates 2.0.

Theorem 7 (Resistance of WIBE-IDTR to Pirates 2.0). For any pirates 2.0 adversary B against
WIBE-IDTR of depth L, there exists an efficient algorithm to output at least a traitor in the collusion
that produced B.

Proof. In our scheme, each user has only a private key corresponding to its identity at depth L. By
Lemma 6, no key at any intermediate node can be derived from the users’ key. Consider now a traitor
ui contributing a subset of decryption keys S of Kui to the public domain. In this case, because Kui

is its single decryption key, this immediately implies that S is the leave at user ui. By definition, the
anonymity level of ui is 1, meaning that ui is traced to be a traitor.

3.6 Instantiation

We give a concrete construction of IDTR From Waters’ WIBE-2 as well as the security analysis of the
scheme in Appendix F.

4 Identity-Based Encryption With Generalized Wildcards - GWIBE

Identity-based encryption with generalized wildcards schemes are essentially generalizations of WIBE
schemes. The difference is that, in WIBE, at each level, the wildcard is added to replace the whole
identity at that level, while in GWIBE, the wildcard might be employed to replace a part of the identity.

More formally, at the time of encryption, the sender can decide to make the ciphertext decryptable
by a whole range of users whose identities match a certain pattern. For an l-level GWIBE, such a
pattern is described by a vector P = (P1, ..., Pl). Each Pi, 1 ≤ i ≤ l, is a bit string of length n, and
can contain a wildcard. The wildcard is determined by its starting position and its final position. For
example, for an identity “univ*math” of size 16, the starting position of the wildcard is 5 and the final
position is 12, the size of the wildcard is 8. When encrypting with the identity “univ*math”, any user
who has a key corresponding to identities “univ-paris6.math” or “univ-paris9.math”, . . . should be able
to decrypt.

The starting position is in {1, 2, .., n, n + 1} with the convention that the value n + 1 implies no
wildcard in Pi. If Pi contains a wildcard (that means a starting position is between 1 and n) we call
Pi a generalized wildcard.
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At this point, each Pi can be rewritten as Pi = Pip|| ∗ ||Pis where Pip, Pis are the bit strings of
length ip, is; 0 ≤ ip, is ≤ n. The size of the wildcard is n− ip− is, its starting position is ip+ 1 and
its final position is n− is.

We say that an identity ID = (ID1, · · · , IDl′) matches P , denote ID ∈∗ P , if and only if l′ ≤ l
and ∀i = 1, ..., l′ : IDi = Pi or IDi and Pi have the form Pi = Pip|| ∗ ||Pis and IDi = Pip||ID∗||Pis
where ID∗ is some bit string of length n− ip− is.

From the above generalized notions of pattern and matching, the definition and the security model
of GWIBE follows exactly the one of WIBE.

The generic construction of IDTR from 2-Level GWIBE is similar to the generic construction of
IDTR from WIBE in Section 3.2. The only difference is that, instead of encrypting with WIBE, we will
encrypt with 2-level GWIBE. The Theorem 2 can be adapted as follows.

Theorem 8. If the GWIBE of depth 2 is (t
′
, q
′
K , ε

′
) IND-WID-CPA-secure, then the 2level-GWIBE-IDTR

is (t∗, q∗K , ε
∗) IND-CPA-secure with

t∗ ≤ t′/(r log(
N

r
)), q∗K ≤ q

′
K , ε∗ ≤ r log(

N

r
)× ε′

where N is the upper bound on the number of users in the system and r is the number of revoked users.

The main contributions in this section are about constructing a GWIBE scheme and then applying
it to obtain an efficient trace and revoke system. We now detail these parts.

4.1 Concrete Construction of GWIBE Based on Waters’ HIBE (Wa-GWIBE)

We first explain some notation and the high level of the construction. A user’s identity is given by a
vector ID = (ID1, ID2, · · · , IDl) where each IDi is an n − bit string, applying a collision resistant
hash function if neccesary. When we write j ∈ IDi, we mean that the variable j iterates over all bit
positions of string of IDi where the j -th bit of IDi is one. Using this notation, for i = 1, . . . , l, the
Waters’ hash function Fi is defined as

Fi(IDi) := ui,0
∏
j∈IDi

ui,j

where the ui,j are the elements in the master public key.

Now, for a generalized wildcard IDip||∗||IDis, we define Fi(IDip||∗||IDis) := Fi(IDip||0 . . . 0||IDis)
with the number of added bit 0 is the size of the wildcard ∗. The main remark is that if we have the
values uti,j for all j = ip + 1, ..., n − is and t

$←, we can compute the values of Fi(IDip||ID∗||IDis)
t

from Fi(IDip|| ∗ ||IDis)
t for any bit string ID∗ of length n− ip− is.

Making use of this property, the main idea is that, if we postpone the computation of elements of
wildcard to decryption time by including the separate elements uti,j corresponding to wildcards in the
ciphertext, each recipient can combine the factors corresponding to his own identity in the decryption.

We extend some notations from WIBE [ACD+06]. Let P = (P1, · · · , Pl) is a pattern where Pi is
a string of length n, define W (P ) be the set containing all generalized wildcard indices in P , i.e. the
indices 1 ≤ i ≤ l such that Pip|| ∗ ||Pis, 1 ≤ ip ≤ n. Let W (P ) be the complementary set containing
all non-generalized wildcard indices in P . Clearly W (P )∩W (P )) = φ and W (P )∪W (P ) = {1, ..., l}.

Let G,GT be multiplicative groups of prime order p with an admissible map ê : G×G← GT .

Setup: The trusted authority chooses randomly generators g1, g2, u1,0, · · · , uL,n
$← G∗, and a random

value α
$← Zp, where L is the maximum hierachy depth. Next, it computes h1 ← gα1 and h2 ← gα2 .

The master public key is mpk = (g1 , g2, h1, u1,0, · · · , uL,n), and the master secret key is msk =
h2. For each level i = 1, . . . , L, a function Fi : {0, 1}n → G∗ is defined as:

Fi(IDi) = ui ,0

∏
j∈IDi

ui ,j
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Keyder: An identity of a user is given by a vector ID = (ID1, · · · , IDl), where IDi is a bit string of

length n (applying a collision-resistant hash function if necessary). First, random values r1, · · · , rl
$←

Zp are chosen, then the private key dID is computed as

(a0, a1, · · · , al) =

(
h2

l∏
i=1

Fi(IDi)
ri , gr11 , · · · , g

rl
1

)

A secret key for identity ID = (ID1, ID2, · · · , IDl) can be computed by its parent with identity
ID = (ID1, ID2, · · · , IDl−1) as follows. Let (a0, a1, · · · , al−1) be the parent’s secret key. It chooses

rl
$← Zp and outputs

dID = (a0 × Fl(IDl)
rl , a1, · · · , al−1, grl1 )

Enc: To encrypt a message m → GT to all identities matching pattern P = (P1, · · · , Pl), the sender

chooses t
$← Zp and outputs the ciphertext C = (P,C1, C2, C3, C4), where

C1 ← gt1 C2 ← (C2,i = Fi(Pi)
t)i∈W (P ) C3 ← m · ê(h1, g2)t

C4 ← (C4,ip,is = Fi(Pip||0...0||Pis)t, (C4,i,j = uti,j)j=ip+1,...,n−is)i∈W (P )

Where Pip||0...0||Pis is a string of length n, or the number of bit 0 is n− ip− is. That means we
replace the elements of wildcard in identity Pi by bit 0.

Dec: If the receiver is the root authority holding the master key msk = h2, then it can recover
the message by computing C3/ê(C1, h2). Any other receiver with identity ID = (ID1, · · · , IDl)
matching the pattern P to which the ciphertext was created (i.e., ID ∈∗ P ) can decrypt the
ciphertext C = (P,C1, C2, C3, C4) by computing
C ′2 = (C ′2,i)i=1,...,l as

C ′2,i = Fi(IDi)
t ←

{
C2,i if i ∈W (ID)

C4,ip,is ×
∏j∈IDi
j=ip+1,...,n−isC4,i,j if i ∈W (ID)

then computes

C3 ·
∏l
i=1 ê(ai, C

′
2,i)

ê(C1, a0)
= m · ê(h1, g2)t ·

∏l
i=1 ê(g

ri
1 , Fi(IDi)

t)

ê(gt1, h2 ·
∏l
i=1 Fi(IDi)ri)

= m · ê(h1, g2)t ·
∏l
i=1 ê(g

ri
1 , Fi(IDi)

t)

ê(gt1, h2) · ê(gt1,
∏l
i=1 Fi(IDi)ri)

= m · ê(g
α
1 , g2)

t

ê(gt1, g2)
α
·
∏l
i=1 ê(g

ri
1 , Fi(IDi)

t)∏l
i=1 ê(g

t
1, Fi(IDi)ri)

= m

4.2 Security Analysis

The proof of the following theorem can be found in Appendix C.

Theorem 9. If the Wa-HIBE of depth L is (t, qK , ε) IND-ID-CPA-secure, then the Wa-GWIBE scheme
of depth L is (t

′
, q
′
K , ε

′
) IND-GWID-CPA-secure

t
′ ≤ t− L · n(1 + qK)× texp, q

′
K ≤ qK , ε

′ ≤ ε× n2×L

where texp is the time taken to perform an exponentiation in G.
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The Wa-GWIBE used in our Trace and Revoke system. We first remark that the above reduction of
a general construction of GWIBE is extremely costly. Fortunately, in our construction of a trace and
revoke system, we only need to a 2-level Wa-GWIBE and we can get a much more efficient reduction.
Let us briefly explain the presence of the factor n2×L in the reduction of the above theorem. In fact,
at each level the simulator has to guess the start position and the final position of wildcard (note that
if the start position is n+ 1 then it means there is no wildcard at this level). The probability of a good
guess at a level is 1/n2. Because there are L levels, therefore the probability that A guesses W (P ∗)
correctly is 1/n2×L. We now see how we can reduce this reduction cost for the purpose of a trace
and revoke system. Indeed, we only need to a 2-level Wa-GWIBE and moreover, the first layer (the
group identity) does not contain wildcard. The used pattern P used in encryption always has the form
P = (P1, P2p||∗). Therefore, in the proof of the above theorem, the simulator does not need to guess
the position of wildcard in the first layer, and at the second level, B needs only to guess the starting
position of the wildcard. Therefore, the factor 1/n2×L becomes 1/n in this case. This is acceptable
because n = log(N) where N is the number of users in the system. We conclude that the (t

′
, q
′
K , ε

′
)

IND-GWID-CPA security of 2-level Wa-GWIBE can thus be reduced to a (t, qK , ε) IND-ID-CPA-security
of a 2-level Wa-HIBE with:

t
′ ≤ t− log(N)(1 + qK)× texp, q

′
K ≤ qK , ε

′ ≤ ε× log(N). (1)

4.3 Generic Construction of IDTR From 2-Level GWIBE (2level-GWIBE-IDTR)

Setup(1k): Take a security parameter k and the maximum number of user in each group N . Run the
setup algorithm of GWIBE with the security parameter k and the hierarchical depth l = 2 which
returns (mpk,msk). The setup then outputs (mpk,msk).
Similar to the scheme based on WIBE 3.2, the setup also defines a method (EK , DK) to encrypt
the message itself.

Keyder(msk, ID, id): Run the key derivation of GWIBE for 2 level identity WID = (ID, id) and get
the decryption key dWID. Output dID,id = dWID.

Enc(mpk, ID,RID,M): A sender wants to send a message M to a group ID with the revocation
list RID. The revocation works as in the complete subtree scheme. Considering a group ID with
its revocation list RID, the users in NID\RID are partitioned into disjoint subsets Si1 , . . . , Siw

which are all the subtrees of the original tree (rooted at ID) that hang off the Steiner tree defined
by the set RID.
Each subset Sij , 1 ≤ j ≤ w, is associated to a 2 dimension vector identity IDSij

= (ID, idij ||∗)
where idij = idij ,1, . . . , idij ,k is the path from the root ID to the node Sij and the size of the
wildcards ∗ is n− k.
The encryption algorithm randomly chooses a session key K, encrypts M under the key K by
using an symetric encryption, and outputs as a header the encryption of 2-Level GWIBE for each
IDSi1

, . . . , IDSiw
:

C = 〈[i1, . . . , ik][GWIBE.Enc(mpk, IDSi1
,K), . . . ,GWIBE.Enc(mpk, IDSiw

,K)], EK(M)〉.

Dec(dID,id, C): A user receives the ciphertext C as above. First, find j such that id ∈ Sij (in case
id ∈ RID the result is null). Second, use private key dID,id to decrypt GWIBE.Enc(mpk, IDSij

,K)

to obtain K. Finally, compute DK(EK(M)) to recover the message M .
TraceD(msk, ID): Our tracing algorithm is similar to the one in [NNL01]. Take as input msk, ID,

an illegal decryption box D, return either a subset consisting the traitors or a new partition of
NID/RID that renders the illegal decryption box useless.

Theorem 10. If the GWIBE of depth 2 is (t
′
, q
′
K , ε

′
) IND-WID-CPA-secure, then the 2level-GWIBE-

IDTR is (t∗, q∗K , ε
∗) IND-CPA-secure with

t∗ ≤ t′/(r log(
N

r
)), q∗K ≤ q

′
K , ε∗ ≤ r log(

N

r
)× ε′

where N is the upper bound on the number of users in the system and r is the number of revoked users.

Proof. We deduce the proof of this theorem from the proof of Theorem 2.
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4.4 Construction of IDTR from 2-Level Wa-GWIBE (2level-Wa-GWIBE-IDTR)

Applying the above construction of 2-level-Wa-GWIBE to the generic construction of IDTR from 2-
level-GWIBE, we obtain a 2level-Wa-GWIBE-IDTR. We give the construction in Appendix G.

Concerning the security of the scheme, from Theorem 9 and the equation 1 which precisely states
the security of the 2-level Wa-GWIBE used in our construction of trace and revoke system, and from
Theorem 10, we directly obtain the following result:

Theorem 11. If Waters’ HIBE of depth 2 is (t, qK , ε) IND-WID-CPA-secure, then the 2level-Wa-
GWIBE-IDTR is (t∗, q∗K , ε

∗) IND-CPA-secure with

t∗ ≤ (t− log(N)(1 + qK)/(r log(
N

r
)), q∗K ≤ qK , ε∗ ≤ r log(

N

r
)× ε× log(N)

In addition, it is proved in [ACD+06] that: if there exists a (t, qK , ε) adversary against Waters’ HIBE
of depth L, then there exists an algorithm solving the BDDH problem with advantage εBDDH =
O(ε/(nqK)L). In our scheme, we only use 2-level Waters’ HIBE, and since n ≤ log(N), we have
εBDDH = O(ε/ log2(N)q2K).

In conclusion, the security of our scheme can be based on the hardness of the BDDH problem:

Theorem 12. If the BDDH is (εBDDH) secure, then the 2level-Wa-GWIBE-IDTR is (q∗K , ε
∗) IND-CPA-

secure with

ε∗ = O(r log(
N

r
)× εBDDH × (q∗K)2 × log3(N)).

4.5 Resistance to PEvoA and Pirates 2.0

Under similar arguments for the WIBE-IDTR scheme, our construction of 2level-GWIBE-IDTR resists
to PEvoA and pirates 2.0.

Again, the main reason comes from the same proof that the adversary cannot derive a new de-
cryption key at any intermediate node from a set of traitors’ secret keys, otherwise the security of the
underlying scheme (here is 2level-GWIBE) could be broken, as shown in lemma 6.
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A Identity Based Trace and Revoke Systems

A.1 Framework

We follow the framework of the identity-based traitor tracing in [ADML+07]: broadcast groups are
referred to by an identity string ID ∈ {0, 1}∗, individual users are referred to by an identity id ∈ {0, 1}l.
The maximum number in each group N = 2l is fixed like many previous schemes (we can choose, for
example, l = 32 and the potential number in each group can reach four billions, that is sufficient in
practice). To make user i member of the group ID, the trusted key distribution centre provides it
with a personal decryption key dID,id. In order to support revocation, let NID be the set of all users
in the group ID and RID be a group of users whose decryption privileges should be revoked. The goal
of our system is to allow anyone to encrypt a message to the general group ID such that any user
u ∈ NID\RID can decrypt the message correctly, while even a coalition consisting of all members of
RID cannot decrypt it.

Formally, a IDTR scheme consists of five polynomial-time algorithms (Setup, KeyDer, Enc, Dec,
Trace):

Setup(1k): the key generation algorithm taking as input security parameter 1k and number of users
for each group N (we assume that the maximum number of users in each group is bounded by
N). This algorithm generates a master public key mpk, a master secret key msk.

KeyDer(msk, ID, id): The key extraction algorithm which given the master secret key msk, a group
identity ID ∈ {0, 1}∗ and a user identity id generates a user secret key dID,id.

Enc(mpk, ID,RID,M): The encryption algorithm which on input of the master public key mpk, a
group identity ID, a revocation list RID of revoked users in the group ID, and a message M
outputs a ciphertext C.

Dec(dID,id, C): The decryption algorithm which on input of a user secret key dID,id and a ciphertext
C outputs a plaintext message M , or ⊥ to indicate a decryption error.

For correctness we require that Dec(dID,id,Enc(mpk, ID,M)) = M with probability one for all

k ∈ N, ID,M ∈ {0, 1}∗, id ∈ {0, 1}l, (mpk,msk)
$← Setup(1k) and dID,id

$← KeyDer(msk, ID, id).

TraceD(msk, ID): The traitor tracing algorithm which has oracle access to a “pirate” decryption box
D. The tracing algorithm takes as input the master secret key msk and a group identity ID, and
outputs either a set of user identifiers (called “traitors”) T ⊂ NID or a way to render the illegal
decryption box useless.

We note that this is not the strongest notion of traceability. In a black-box traitor tracing, one
can identify at least one traitor. Our tracing algorithm relies on the tracing algorithms in NNL
framework and target the same notion of traceability. Concerning the very weak notion of white-
box tracing, we remark that the previous tree-based schemes do not fully achieve this level since
the traitors could publish sub-keys at internal nodes. In our scheme, we will show that the only
way for users to decrypt ciphertexts is to use their keys at leaves (private keys) and this directly
reveal the identities of traitors, in the white-box tracing.

We shall assume that all“pirate”decryption boxes are resettable [KY02a], meaning that they retain
no state between decryptions. In particular, pirate boxes cannot self-destruct.

A.2 Adaptive Security Model for Identity-Based Trace and Revoke Systems.

The adaptive security of IDTR is defined as follows. First, the adversary can corrupt secret keys of
any user in any group. These users are revoked from the systems. Then the adversary can choose a
group identity ID to attack and it is given a challenge as in a standard IND game. After receiving
the challenge, the adversary can corrupt any user of any group but ID∗ (otherwise it can decrypt the
challenge ciphertext).

More formally, the IND-ID-CPA is defined as follows:

Setup: The challenger takes a parameter k, a maximum number of users in each group N and runs
Setup(1k, N) algorithm. The master public key mpk is passed to the adversary.
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Phase 1: The adversary access to a key extraction oracle which it can query on arbitrary pairs
(ID, id) of group identities ID and user identity id, in an adaptive way, and gets the decryption
keys dID,id. For each query on (ID, id), the challenger update the revocation list for group ID by
adding id to RID (initially empty).

Challenge: The adversary submits two equal length messages M0,M1 and an identity ID∗. The
challenger picks a random bit b ∈ {0, 1} and set C = Encrypt(msk, ID∗,RID∗ ,Mb). The ciphertext
C is passed to the adversary.

Phase 2: This is identical to phase 1 except that the adversary is not allowed to ask for any decryption
query (ID, id) in which ID = ID∗.

Guess: The adversary outputs a guess b′ of b.

Note that the above game can extend to handle CCA in the natural way by allowing for decryption
queries in phase 1 and phase 2. We call such a game to be the IND-ID-CCA game.

The advantage Advind-id-cpa
A,IDTR (k), respectively Advind-id-cca

A,IDTR (k), of an adversary A in breaking the
indistinguishability of scheme IDTR is defined as the probability of A winning the corresponding game
minus one-half. We say that the traitor tracing scheme is IND-ID-CPA, respectively IND-ID-CCA secure,
if this advantage is a negligible function in k for any adversary A with running time polynomial in k.

A.3 Subset Cover Framework [NNL01]

Let N be the set of all users, |N | = N, and R ∈ N be a group of |R| = r users whose decryption
privileges should be revoked. The goal of a revocation algorithm is to allow a user to transmit a
message M to all users such that any user u ∈ N/R can decrypt the message correctly, while even a
coalition consisting of all members of R cannot decrypt it.
A system consists of three parts: (1) An initiation scheme, which is a method for assigning the receivers
secret information that will allow them to decrypt. (2) The broadcast algorithm - given a message
M and the set R of users that should be revoked outputs a ciphertext message M

′
that is broadcast

to all receivers. (3) A decryption algorithm - a (non-revoked) user that receives ciphertext M
′

using
its secret information should produce the original message M . Since the receivers are stateless, the
output of the decryption should be based on the current message and the secret information only.

In this framework an algorithm defines a collection of subsets (S1, S2, · · · , Sw) ⊂ N . Each subset
Si, 1 ≤ i ≤ w, has an identity. Each member u of Si should be able to decrypt the ciphertext which
is encrypted by identity of Si. Given a revoked set R, the remaining users N/R are partitioned into
disjoint subsets (Si1 , Si2 , · · · , Siw), and Si1 ∪ Si2∪, · · · ,∪Siw = N/R
And a session key K is encrypted w times with identities of w subsets (Si1 , Si2 , · · · , Siw).
Specifically, an algorithm in the framework uses two encryption schemes:

– A method EK : {0, 1}∗ → {0, 1}∗ to encrypt the message itself. The key K used will be chosen
fresh for each message M - a session key - as a random bit string. EK should be a fast method
and should not expand the plaintext. The simplest implementation is to Xor the message M with
a stream cipher generated by K.

– A method Enc(Sij ) to encrypt the session key K for the receivers in the subset Sij .

A.4 Generalized WIBE

Very similar to a WIBE, a GWIBE scheme is a tuple of algorithms GWIBE = (Setup, KeyDer, Enc,
Dec) providing the following functionality. The Setup and KeyDer algorithms behave exactly as
those of an HIBE scheme. To create a ciphertext of message m ∈ {0, 1}∗ intended for all identities

matching pattern P , the sender computes C
$← Enc(mpk, P,m). Any of the intended recipients ID ∈∗

P can decrypt the ciphertext using its own decryption key as m ← Dec(dID, C). The correctness
requires that for all key pairs (mpk,msk) output by Setup, all messages m ∈ {0, 1}∗, all 0 ≤ l ≤ L,
all patterns P as above, and all identities ID ∈∗ P , Dec(Keyder(msk, ID),Enc(mpk, P,m)) = m
with probability one.
Security Model for GWIBE. In the first phase the adversary is run on input the master public key
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of a freshly generated key pair (mpk,msk)
$←Setup. In a chosen-plaintext attack (IND-GWID-CPA),

the adversary is given access to a key derivation oracle that on input ID = (ID1, · · · , IDk) returns

dID
$← Keyder(msk, ID).

At the end of the first phase, the adversary outputs two equal length challenge messages m0,m1 and
a challenge pattern P ∗ = (P ∗1 , · · · , P ∗k∗) where 0 ≤ k∗ ≤ L, L is the depth of the root tree. The

adversary is given a challenge ciphertext C∗
$← Enc(mpk, P ∗,mb) for a randomly chosen bit b, and is

given access to the same oracles as during the first phase of the attack. The second phase ends when
the adversary outputs a bit b′ . The adversary is said to win the IND-GWID-CPA game if b = b′ and if
it never queried the key derivation oracle for the keys of any identity that matches the target pattern
(i.e., any ID such that ID ∈∗ P ∗).

Definition 13. A GWIBE scheme is (t, qK , ε) IND-GWID-CPA-secure if all t-time adversaries making
at most qK queries to the key derivation oracle have at most advantage ε in winning the IND-GWID-CPA
game described above.

B Proof of Theorem 2

We organize our proof as a sequence of games. The first game Game 0 defined will be the real identity-
based trace and revoke game and the last one will be one in which the adversary has no advantage
unconditionally. We will show that each game is indistinguishable from the next, under the assumption
of the security of WIBE.

Game 0: This is the real attack game of an adversary B against the proposed identity based trace
and revoke system. After receiving the public key mpk, B issues adaptively key derivation queries
(ID, id). The challenger responds by running IDTR.Keyder(msk, ID, id) algorithm to generate
the private key dID,id and passes dID,id to B.

B finally outputs two equal length plantexts M0,M1 ∈M and a targeted set ID∗.

The revoked set RID∗ consists the users’ identity id such that (ID∗, id) has been asked by the
adversary B.

The challenger picks then a random bit b ∈ {0, 1} and set C = IDTR.Enc(msk,NID∗\RID∗ ,Mb).
It sends C as the challenge to B.

Upon receiving the challenge C, B outputs a guess b′ ∈ {0, 1}. B wins the game if b′ = b. More
precisely, B wins if its advantages, defined as below, of guessing the bit b is non-negligeble

Advidtr−wibeind (t) = |2× Pr[B(IDTR.Enc(msk,NID∗/RID∗ ,Mb)) = b]− 1|

which can be equivalently written as:

Advidtr−wibeind (B)

= |Pr[B(IDTR.Enc(msk,NID∗/RID∗ ,M1)) = 1]− Pr[B(IDTR.Enc(msk,NID∗/RID∗ ,M0)) = 1]|

In our construction, the encryption of trace and revoke system is performed as:

IDTR.Enc(msk,NID∗/RID∗ ,M)

= (WIBE.Enc(mpk, IDSi1
,M), · · · ,WIBE.Enc(mpk, IDSiw

,M)),

where NID∗/RID∗ is partitioned to be w subsets corresponding to nodes IDSi1
, · · · , IDSiw

In the following games, we will modify step by step the challenge given to the adversary. We define
a modified encryption IDTR.Enck as follow:

IDTR.Enck(msk,NID∗/RID∗ ,M)

= (WIBE.Enc(mpk, IDSi1
,M0), · · · ,WIBE.Enc(mpk, IDSik

,M0),

WIBE.Enc(mpk, IDSik+1
,M) · · · ,WIBE.Enc(mpk, IDSiw

,M))
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Note that

IDTR.Enc0(.) = IDTR.Enc(.)

IDTR.Enck(msk,NID∗/RID∗ ,M0) = IDTR.Enc(msk,NID∗/RID∗ ,M0) for any k

IDTR.Encw(msk,NID∗/RID∗ ,M) = IDTR.Enc(msk,NID∗/RID∗ ,M0) for any M

Gamek for k = 1, 2, . . . , w: This is the same as in the game k − 1 with an exception that the chal-
lenger use IDTR.Enck(.) instead of IDTR.Enck−1(.). We call Advidtr−wibeind,k (B) the advantage of the
adversary B in Game k. We remark that, in the game w, the adversary B has zero advantage
beacause B receives two ciphertext of the same message M0. Therefore, the proof directly holds
under the following lemma:

Lemma 14.

Advidtr−wibeind,k (B)−Advidtr−wibeind,k−1 (B) ≤ ε∗,

where ε∗ is the bound on the advantages of the adversaries against WIBE.

Proof. We will construct an anversary B′ that breaks the IND-WID-CPA securrity of the underlying
WIBE with an advantage of Advidtr−wibeind,k (B)−Advidtr−wibeind,k−1 (B).

Setup: The challenger of B′ runs setup algorithm of WIBE to generate key pair (mpk,msk). It
sends mpk to B′ and keeps msk private. B′ passes this mpk to B.

Phase 1: When B asks key query for an user id = id1 . . . idl in a group ID, B′ sends the query
WID = (ID, id1, . . . , idl) (a (l+ 1)−vector) to its challenger and gets a key dWID. B′ passes this
key dWID to B. It assures the correctness because in the construction dID,id is defined to be dWID

in the same way.
For each query on (ID, id), B′ updates the revocation list for group ID by adding id to RID
(initially empty).

Challenge: The adversary B′ submits two equal length messages M0,M1 and an identity ID∗.
The challenger picks a random bit b ∈ {0, 1} and set C = Encrypt(msk, ID∗,RID∗ ,Mb). The
ciphertext C is passed on to the adversary.
B′ partitions NID∗\RID∗ to (Si1 , S2 , · · · , Siw) as in the original Game0.
B′ submits M0,M1 and the identity IDSik

to its challenger and receives a challenge ciphertext
Cb = WIBE.Enc(msk, IDSik

,Mb).
B′ encrypts M0 for identities IDSi1

, . . . IDSik−1
and encrypts M1 for identities IDSik+1

, . . . IDSiw
.

B′ finally gives B the following challenge ciphertext:

(WIBE.Enc(mpk, IDSi1
,M0), · · · ,WIBE.Enc(mpk, IDSik

,M0),

Cb,WIBE.Enc(mpk, IDSik+1
,M) · · · ,WIBE.Enc(mpk, IDSiw

,M))

Phase 2: B′ responses B’s key queries in a similar way to the Phase 1. As B is not allowed to ask
queries on ID∗, B′ will not make queries on the targeted identity.

Guess: When B gives its guess, B′ outputs the same guess. We realizes that, when b = 0, the
adversary B exactly plays the Gamek−1 and when b = 1, the adversary B exactly plays the
Gamek. Therefore, the advantage of B′ is |Advidtr−wibeind,k (B)−Advidtr−wibeind,k−1 (B)|.

C Proof of Theorem 9

We first assume that there exists an adversary A that breaks the IND-GWID-CPA-security of the Wa-
GWIBE scheme, then we show how to efficiently build another adversary B to break the security of
the Wa-HIBE scheme. B runs as follow.

– Let mpkB = (g1, g2, h1, u
′
1,0, ..., u

′
L,n) be the master public key of the Wa-HIBE scheme.

– B guess a parttern P = (P1, ..., Pl). The most important thing here is to guess the position of
wildcards in each level. B hope that the ultimate tagetted parttern P∗ outputted by A will have
the same wildcard with P (B will abort if this event does not occur).
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– B computes the master key mpkA = (g1, g2, h1, u1,0, ..., uL,n) as follow:

ui,j = u
′
i,j if i ∈W (P )

ui,j = u
′
i,j where j = 0, ..., ip, and j = n− is+ 1, ..., n if i ∈W (P )

ui,j = g
αi,j

1 if i ∈W (P ) and j = ip+ 1, ..., n− is where αi,j
$← Zp

– B runs A on mpkA. If A makes a key derivation oracle on input ID = (ID1, ..., IDl) then B
constructs an identity ID

′
= (ID

′
1, ..., ID

′
l) by setting ID

′
i = IDi for each i ∈ W (P ), and ID

′
i =

IDi,ip0...0IDi,is for each i ∈W (P ).
B queries its key derivation oracle on ID

′
and receives (a

′
0, ..., a

′
l) as follow.

(a
′
0, a

′
1, · · · , a

′
l) =

(
h2

l∏
i=1

Fi(ID
′
i)
ri , gr11 , · · · , g

rl
1

)
B reconstructs the decryption key for identity ID as follow.

a0 = a
′
0 ×

j=ip+1,...,n−is;j∈IDi∏
i∈W (P )

a
′αi,j

i , ai = a
′
i for i = 1, ..., l

We see that (a0, ..., al) is key corresponding to identity ID in Wa-GWIBE because

a0 = a
′
0 ×

j=ip+1,...,n−is;j∈IDi∏
i∈W (P )

a
′αi,j

i = h2 ×
l∏

i=1

Fi(ID
′
i)
ri ×

j=ip+1,...,n−is;j∈IDi∏
i∈W (P )

a
′αi,j

i

= h2 ×
∏

i∈W (P )

Fi(IDi)
ri ×

∏
i∈W (P )

Fi(IDi,ip0...0IDi,is)
ri ×

j=ip+1,...,n−is;j∈IDi∏
i∈W (P )

a
′αi,j

i

= h2 ×
∏

i∈W (P )

Fi(IDi)
ri ×

∏
i∈W (P )

Fi(IDi)
ri = h2 ×

l∏
i=1

Fi(IDi)
ri

B returns the key (a0, ..., al) to A.
– A outputs the challenge pattern P ∗ = (P ∗1 , ..., P

∗
l ) and challenge messages m0,m1.

– Denotes cond(P ∗, P ) the predicate to represent the event that P ∗ and P have wildcards at exactly
same positions. It means that at each level, either P ∗i and Pi do not contain a wildcard, or
they contain wildcards with the same start and final positions. If not cond(P ∗, P ) then B aborts.
Otherwise, B is able to construct the corresponding HIBE identity ID∗ from P ∗ as above. B
outputs the challenge identity ID∗ and two messages m0,m1.
Let C

′∗ = (C
′∗
1 , C

′∗
2 , C

′∗
3 ) be the challenge ciphertext that B receives in return from its challenger,

meaning that C
′∗ is an encryption of mb with respect to the identity ID∗, where b is the secret

bit chosen at random by the challenger.
B sets

C∗1 = C
′∗
1 C∗3 = C

′∗
3 C∗2 ← (C∗2,i = C

′∗
2,i)i∈W (P )

C∗4 ← (C∗4,ip,is = C
′∗
2,i, (C

∗
4,i,j = C

′∗αi,j

1 )j=ip+1,...,n−is)i∈W (P )

– B runs A on the input C∗ = (C∗1 , C
∗
2 , C

∗
3 , C

∗
4 ). If A makes a key derivation oracle query, then B

answer its queries as before. A outputs a guess β
′

– B outputs β
′

Moreover, we easily see that the challenge ciphertext C∗ = (C∗1 , C
∗
2 , C

∗
3 , C

∗
4 ) sent to A can be seen

to be correctly formed when cond(P ∗, P ).
To conclude the proof, we notice that the success probability of B is at least as same as A when

its guess for W (P ∗) is correct, ı.g., cond(P ∗, P ). We now compute this probability. At each level B has
to guess the start position and the final position of wildcard (note that if the start position is n + 1
then it means there is no wildcard at this level). The probability of a good guess at a level is 1/n2.
Moreover, there are l levels, therefore the probability that A guesses W (P ∗) correctly is 1/n2×l.
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D The Method of Jin and Lotspiech

Recently , [JL09] proposes a new method to defend against pirate evolution attacks in subset difference
method but their method decreases the efficiency of the original scheme. In subset difference method
of [NNL01] each user u possesses a set of decryption keys (long live keys) associated to Si,j (i, j ∈
[1, · · · , logN ]) where u is a descendant of vi but not vj .
Given the private keys of t traitors, the master pirate box decoder B spawns successively a sequence
of pirate boxes decoders B1, B2, · · · by associating each long live key of a set Si,j to each pirate box
decoder. If given the set of decryption keys of a traitor u ∈ Si,j (u is not a descendant of vj) then
master pirate box decoder B can spawn a series of pirate boxes decoder by using the long live keys of
a series sets Sc,j , where vc is a node on the path from vi to vj .

In [JL09] the method they proposed is very simple, they only level down the key encryption KSi,j

to the desire level by, first, splitting KSi,j = KSi,j1
,KSj1,j2

, · · · ,KSjh
,j where j1, · · · , jh are nodes on

the path from i to j, then continuing to level down each subset KSi,j1
,KSj1,j2

, · · · ,KSjh
,j to the desire

level as long as the combination of these subsets covers all users in the set Si,j . They proved that if the
tracing algorithm wants to detect and disable a traitor in only b generations of pirate decoder, each
subset needs to be expanded into multi-subsets; the overall subsets are expanded is linear in N1/b.
Therefore, the ciphertext size will magnify to a factor of O(N1/b).

By this way they can restrain master pirate box B from spawning Bi. In exchange, however, the
size of ciphertext will be trade off. If their scheme resists completely to pirate evolution, the size of
ciphertext in their scheme must be linear in the number of the user. They stress the case that when
generations of clone decoder is 2, the efficiency of the system is acceptable in the practical. In this
case, however, the length of the ciphertext and private key of their scheme are still less efficient than
ours (

√
N, log2(N) compare to O(r log(Nr )log(N)), O(1)).

E The Methods in [DdP11] and [ZZ11]

The method in [DdP11]: The main idea in [DdP11] is, for each subset Si in CS scheme (or Si,j in
SD scheme) they choose uniform at random a secret t-degree polynomial Pi where t is the maximum
number of users collude. Each user u belongs to subset Si in CS scheme (or Si,j in SD scheme) receives
the pair (i, Pi(Iu)).
To broadcast, for each subset Si in CS scheme (or Si,j in SD scheme) they use the secret key Ki

(or Ki,j) that based on Pi(0) (Pi(0) can be recovered by using t + 1 different values of polynomial
Pi) to encrypt the session key K, broadcast this ciphertext and t different values which based on
Pi(I1), . . . , Pi(It) where I1, . . . , It are different all Iu. To decrypt, each user belongs to a subset Si can
combine these t different values with its value to recover Ki (or Ki,j) and decrypt.
By this way they can restrain the user from publishing his private key to public domain, because if
do that, user immediately reveal his sensitive information.
The drawback of their scheme is if more than t user collude in subset Si, then they can compute Pi(0)
and publish this value to the public domain, so all other users can decrypt. To against this drawback,
they have to increase the value of t, however in exchange, their schemes’ parameters size become
inefficient (their schemes’ ciphertext size are bigger than NNL schemes’ ciphertext size a multiplied
factor of t). Compare with our best scheme, the private key size of our scheme is better (the private
key size of their scheme are the same as NNL schemes while the private key size of our scheme is
constant). Our ciphertext size is also better than theirs in the case their schemes resist full collusion
of users (to resist full collusion of users, their schemes’ ciphertext size must be linear in the number
of the users in the system).

The method of [ZZ11]: [ZZ11] also proposed a new method to defend against pirates 2.0 in codebase
schemes. However, their method is similar to the method in [ADML+07] except they split the second
level in [ADML+07] into L levels (L is the length of code). Note that like [ADML+07], their scheme
does not support revocability.
Therefore, the comparison between their scheme’s parameters size with our schemes’ parameters size
is the same as the comparison between [ADML+07]’s parameters size with our schemes’ parameters
size.
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F Concrete Construction of IDTR From Waters’ WIBE-2

F.1 Construction

Let G,GT be multiplicative groups of prime order p with an admissible map ê : G×G← GT .

Setup(1k): The trusted authority chooses randomly generators
g1, g2, u1,0, · · · , u1,n, u2,0, u2,1, · · · , un+1,0, un+1,1 ←$ G∗ and a random value α←$ Zp, where n +1
is the maximum hierachy depth. For a system of maximum N users, we define n = log(N). Next,
it computes h1 ← gα1 and h2 ← gα2 .
The master public key is mpk = (g1 , g2, h1, u1,0, · · · , u1,n, u2,0, u2,1, · · · , un+1,0, un+1,1, F ) and the
master secret key is msk = h2.
For each level i = 1, 2, . . . , n+ 1, a function Fi : {0, 1}n → G∗ is defined as:

Fi(IDi) = ui ,0

∏
j∈IDi

ui ,j

The Setup also defines a symmetric encryption scheme (EK , DK) to encrypt the message, as
described in Section 3.2.

KeyDer(msk, ID, id) A user id = id2 · · · idn+1 where idi ∈ {0, 1} and i = 2, · · · , n+ 1, in a group ID
is given the private key dID,id which is computed as

dID,id = (a0, a1, a2, · · · , an+1) =

(
h2 × F1(ID)r1 ×

n+1∏
i=2

Fi(idi)
ri , gr11 , · · · , g

rn+1

1

)
Enc(mpk, ID,RID,M) The encryption algorithm takes as input a master public key mpk, a group

identity ID, a revocation list RID of revoked users in the group ID, and a message M .
The revocation works as in the complete subtree scheme and similar to the generic case where the
users in NID\RID are partitioned into disjoint subsets Si1 , ..., Siw .
Each subset Sij , 1 ≤ j ≤ w, is associated to an n+1 vector identity IDSij

= (ID, idij ,2, · · · , idij ,k, ∗, ∗.., ∗)
where idij ,2, · · · , idij ,k is the path from the root ID to the node Sij and the number of wildcards
∗ is n− k + 1.
For each identity IDSij

= (ID, idij ,2, · · · , idij ,k, ∗, ∗.., ∗), the encryptor chooses t ←$ Zp and

computes C j = (IDSij
,C j

1 ,C
j
2 ,C

j
3 ,C

j
4 ) as follow:

Cj1 ← gt1 Cj2 ← (Cj2,1 = F1(ID)t, (Cj2,z = Fz(idij ,z)
t)2≤z≤k)

Cj3 ← K · ê(h1, g2)t Cj4 ← (Cj4,z,y = utz,y)z=k+1,...,n+1; y=0,1

And outputs the ciphertext

C = 〈[i1, · · · , iw][C1, · · · , Cw, ], EK(M)〉

Dec(dID,id, C): When a user receives the ciphertext C as above. Firstly, it finds j such that id ∈ Sij
(in case id ∈ RID the result is null). Secondly, uses private key dID,id to decrypt Cj to obtain K.
Finally, the user computes DK(EK(M)) to recover the message M .

We now explain how the user can decrypt Cj . It first computes C
′j
2 = (C

′j
2,i)i=1,...,n+1as:

C
′j
2,1 = Cj2,1, C

′j
2,z = Fz(idz)

t ←

{
Cj2,z if 2 ≤ z ≤ k
Cj4,z,0 ·

∏
y∈idz C

j
4,z,y if k + 1 ≤ z ≤ n+ 1

then computes

Cj3 ·
∏n+1
i=1 ê(ai, C

′j
2,i)

ê(C1, a0)
= K

After obtaining K, user id computes DK(EK(M)) to obtain and output M .

TraceD(msk, ID): Our tracing algorithm is similar to the one in [NNL01]. Takes as input msk, ID,
an illegal decryption box D, returns either a subset consisting the traitors or a new partition of
NID\RID that renders the illegal decryption box useless.
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F.2 Security Analysis

We recall theorem 5.1 from [ACD+06] on the security of Wa-WIBE.

Theorem 15. [ACD+06] If the Wa-HIBE scheme of depth l is (t, qK , ε) IND-ID-CPA-secure, then the
Wa-WIBE scheme of depth l is (t

′
, q
′
K , ε

′
) IND-WID-CPA-secure with

t
′ ≤ t− l · n(1 + qK)× texp, q

′
K ≤ qK , ε

′ ≤ ε · 2l

where n is the length of identities at each level, texp is the time taken by a group exponentiation.

Waters’ WIBE used in our trace and revoke system. In our construction of a trace and revoke system,
we only need a simplified l+1-level WIBE, that we call WIBE-2. In WIBE-2, each identity has the form
(ID, id1, . . . , idl) where ID is the group identity of size n and each idi, 1 ≤ i ≤ l, is a bit 0 or 1. This
means that in the last l levels, the size of identities are 1. The bound about t′ in Theorem 15 becomes
t
′ ≤ t− ((n(1 + qK) + l(1 + qK))× texp.

Moreover, the pattern P used in our trace and revoke system also has a particular form of IDSij
=

(ID, idij ,1, . . . , idij ,k, ∗, ∗, . . . , ∗). This means that all the wildcards are grouped at the end. In the

proof of Theorem 15, the factor 2l comes from the guess of the positions of wildcards. In our case,
we only need to guess the position of the first wildcard, all the other wildcards automatically follow.
Therefore, in our case: ε

′ ≤ ε · l
We can finally deduce, from Theorem 2, the security of our scheme when instantiated with the

Waters-HIBE:

Theorem 16. If the Wa-HIBE of depth l is (t, qK , ε) IND-ID-CPA-secure, then the IDTR scheme based
on WIBE-2 is (t∗, q∗, ε∗) IND-CPA-secure with

t∗ ≤ (t− ((n(1 + qK) + l(1 + qK))× texp)/(r log(
N

r
)), q∗K ≤ qK , ε∗ ≤ r log(

N

r
)× ε · l.

G Construction of IDTR from 2-Level Wa-GWIBE (2level-Wa-GWIBE-IDTR)

Let G,GT be multiplicative groups of prime order p with an admissible map ê : G×G← GT .

Setup(1k): The trusted authority chooses randomly generators

g1, g2, u1,0, · · · , u1,n, u2,0, · · · , u2,n
$← G∗ and a random value α

$← Zp. n is the size of identities at
each level. For a system of maximum N users, we define n = log(N).

Next, it computes h1 ← gα1 and h2 ← gα2 . The master secret key is msk = h2 and the master
public key is mpk = (g1 , g2, h1, u1,0, · · · , u1,n, u2,0, · · · , u2,n). For each level i = 1, 2, a function
Fi : {0, 1}n → G∗ is defined as:

Fi(IDi) = ui ,0

∏
j∈IDi

ui ,j

The Setup also defines a symmetric encryption scheme (EK , DK) to encrypt the message, as
described in Section 3.2.

KeyDer(msk, ID, id) A user id in a group ID is given the private key dID,id which is computed as

dID,id = (a0, a1, a2) =

(
h2 × F1(ID)r1 × F2(id)r2 , gr11 , g

r2
1

)

where r1, r2
$← Zp.

Enc(mpk, ID,RID,M) The encryption algorithm takes as input a master public key mpk, a group
identity ID, a revocation list RID of revoked users in the group ID, and a message M .

The revocation works as in the complete subtree scheme and similar to the generic case where the
users in NID\RID are partitioned into disjoint subsets Si1 , ..., Siw . Each subset Sij , 1 ≤ j ≤ w,
is associated to a 2 dimension vector identity IDSij

= (ID, idij ||∗).
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The encryptor randomly chooses a session key K, then encrypts w times K by using 2-Level
Wa-GWIBE on the identities of subgroups Sij (j = 1, ..., w).

For each identity IDSij
= (ID, idij ||∗) where the size of idij is ip, the encryptor chooses t

$← Zp
and computes C j = (IDSij

,C j
1 ,C

j
2 ,C

j
3 ,C

j
4 ), where

Cj1 ← gt1 Cj2 ← (Cj2,1 = F1(ID)t) Cj3 ← K · ê(h1, g2)t

Cj4 = (Cj4,ip,n = F2(idij ||00 . . . 0)t , (Cj4,2,z = ut2,z)z=ip+1,...,n)

Finally, the encryptor outputs the ciphertext

C = 〈[i1, · · · , iw][C1, · · · , Cw], EK(M)〉

Dec(dID,id, C): When a user receives the ciphertext C as above. Firstly, it finds j such that id ∈ Sij
(in case id ∈ RID the result is null). Secondly, uses private key dID,id to decrypt Cj to obtain K.
Finally, the user computes DK(EK(M)) to recover the message M .
The user id decrypts the ciphertext C j = (IDSij

,C j
1 ,C

j
2 ,C

j
3 ,C

j
4 ) by computing

C
′j
2 = (C

′j
2,i)i=1,2 as

C
′j
2,1 = Cj2,1, C

′j
2,2 = Cj4,ip,n ×

z∈id∏
z=ip+1,...,n

Cj4,2,z = F2(id)t

then computes

Cj3 ·
∏2
i=1 ê(ai, C

′j
2,i)

ê(Cj1 , a0)
= K · ê(h1, g2)t ·

ê(gr11 , F1(ID)t) · ê(gr21 , F2(id)t)

ê(gt1, h2 · F1(ID)r1 · F2(id)r2)
= K

TraceD(msk, ID): Our tracing algorithm is similar to the one in [NNL01]. Takes as input msk, ID,
an illegal decryption box D, returns either a subset consisting the traitors or a new partition of
NID\RID that renders the illegal decryption box useless.
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