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Introduction en français)

L’objet principal de cette thèse est l’étude de classes de graphes héréditaires. Une classe de graphes
est héréditaire si et seulement si, pour tout graphe G dans la classe, tout graphe H obtenu en
supprimant des sommets de G est dans la classe (par contre, si on enlève des arrêtes de G, il est
possible que l’on sorte de la classe). Autrement dit tout sous-graphe induit de G est dans la classe.
Il est facile de voir que toute classe héréditaire peut-être définie comme l’ensemble des graphes qui
ne contiennent pas une certaine liste de graphes en tant que sous-graphes induits.

La relation ”être un sous-graphe induit de” est trés naturelle en mathématique, elle correspond
à la notion de ”sous-structure” que l’on rencontre partout en mathématique. Dans les années
1960, Gabriel Dirac à ouvert ce domaines de la théorie des graphes avec son travail sur les graphes
triangulés qui sont les graphes ne contenant pas de trous en tant que sous-graphe induit (un trou
est un cycle sans cordes de longueur au moins quatre) . A la même période, Claude Berge proposait
deux conjectures sur les graphes parfaits qui ont été le point de départ de beaucoup de travaux trés
profonds, jusqu’à la résolution en 2002 de la conjecture forte des graphes parfaits par Chudnovsky,
Robertson, Seymour et Thomas.

Dans les années 1980 commença ce qu’on appelle le ”graph minor project”, développé par
Robertson et Seymour, qui décrit une théorie aussi profonde que générale sur les classes de graphes
définies par interdiction de mineurs (à la place de sous-graphes induits). Il est naturel de se
demander si il existe une théorie analogue qui décrirait le monde des classes définies par interdiction
de sous-graphes induits. Jusqu’à maintenant, les classes de graphes definies par interdiction de
sous-graphes induits parraissent trop compliquées et bordéliques pour les décrire dans une théorie
générale. Malgré tout, certaines conjectures comme la conjecture d’Erdős-Hajnal suggèrent qu’une
telle théorie pourraient exister.

Dans ce document, la majorité des résultats sont sur des classes de graphes particulières. La
plupart d’entre elles sont définies en interdisant certaines configurations de Truemper. Les con-
figurations de Truemper sont quatre familles de graphes qui, toutes ensembles, peuvent être vues
comme une subtile généralisation des trous. Elles jouent un rôle central dans le monde de la théorie
structurelle des graphes. Plus précisément, elles sont une structure clé pour comprendre les classes
de graphes définies par interdiction de trous de parité donnée, comme dans les graphes équilibrés
(”balanced graphs”), les graphes sans trou pairs ou impairs et les graphes parfaits. Avant de donner
le plan du document, nous allons définir une première famille de graphes qui apparaissent un peu
partout dans la thèse: les k-roues. Une k-roue est un graphe formé par un cycle sans corde et un
sommet, extérieur au cycle, qui a au moins k voisins dans le cycle.
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Plan du document

Chapitre 1: Définitions de bases
On rappelle dans ce chapitre les définitions de bases de la théorie des graphes. On y donne aussi
un apperçu bref et informel de la théorie de la complexité.

Chapter 2: Configurations de Truemper
Dans ce chapitre nous introduisons les configurations de Truemper, nous expliquons leurs relations
avec les trous de parités données et leurs rôles dans la théorie structurelle des graphes. On y
explique aussi le concept de théorème de décomposition et quelques techniques pour l’utiliser. Les
méthodes expliquées dans ce chapitre sont beaucoup utilisées tout au long du document, nous les
illustrons avec l’exemple simple des graphes triangulés.

Chapitre 3: La technique du moplex
On décrit, grâce à l’algorithm LexBFS, des propriétés structurelles de différentes classes de graphes,
pouvant toutes être définies en interdisant certaines configurations de Truemper en tant que sous-
graphes induits. Les résultats présentés dans ce chapitre sont le fruit d’un tavail en collaboration
avec Pierre Charbit, Nicolas Trotignon et Kristina Vušković (soumis à Discrete Mathematics [3]).

Chapitre 4: Classes définies par contrainte sur la connectivité
Ca chapitre traite majoritairement de la classe bien connue des graphes minimallement 2-connexes.
On commence par agrandir la classe pour la rendre héréditaire, puis, en appliquant les métodes
décrites dans le chapitre 2, nous donnons de nouvelles preuves de résultats connus sur les graphes
minimallement 2-connexe. Ensuite, nous expliquons pourquoi nous ne pouvons pas mener le même
genre de travaux sur les graphes critiquement 2-connexe et nous montrons le lien qu’entretiennent
les graphes critiquement 2-connexe avec les graphes qui ne contiennent pas de 2-roues en tant que
sous-graphes induits.

Chapitre 5: Interdire les 2-roues en tant que sous-graphes induits
On étudie la classe des graphes qui ne contiennent pas de 2-roues en tant que sous-graphes induits.
On donne un charactérisation structurelle complète de cette classe de laquelle nous obtenons un
algorithme polynomial pour détecter les 2-roues induites et une solution au problème de l’arrête-
coloration pour cette classe. Les Chapitres 4 et 5 sont le fruit d’un travail commun avec Marko
Radovanović, Nicolas Trotignon et Kristina Vušković qui est publié au SIAM Journal on Discrete
Mathematics [7] .

Chapitre 6: Les graphes équillibrables
Ce chapitre est consacré à la preuve d’une conjecture de Conforti et Rao sur les graphes équilibrés.
La preuve repose sur un théorème de décomposition des graphes équilibrés prouvé par Conforti,
Cornuéjols, Kapoor et Vušković en 2001 et sur une nouvelle utilisation des décompositions extrêmes.
Ces travaux ont étés réalisé en collaboration avec Marko Radovanović, Nicolas Trotignon, Théophile
Trunck et Kristina Vušković et sont acceptés dans Journal of Graph Theory [6]

Chapitre 7: Exclure les k-wheel en tant que sous-graphes
On étudie la classe des graphes qui ne contiennent pas de k-roues en tant que sous-graphes. Le
principal résultat est que les graphes sans 4-roues sont 4-colorables. On montre aussi quelques
propriétés les graphes sans 3-roues. Les résultats concernant les graphes sans 3-roues ont été
obtenus en collaboration avec Frédéric Havet et Nicolas Trotignon [4], le résultat sur les graphes
sans 4-roues est le travail de l’auteur seul et est accepté dans Journal of Graph Theory [1].
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Chapitre 8: Exclure les cycles avec un nombre fixé de cordes
On démontre que la classe de graphes qui ne contiennent pas de cycles avec exactement k-cordes
est χ-bornée pour k = 2 et k = 3. Ce travaille a été mené avec Nicolas Bousquet et est soumis dans
Discrete Mathematics [2].

On peut observer que, dans chaque chapitre, nous étudions des classes de graphes définies en
interdisant un cycle plus un sommet en dehors du cycle qui a des voisins dans le cycle, ou un
chemin le liant au cycle etc... Il est bien connu qu’un graphe sans cycles est une fôret, les résultats
présentés dans ce document peuvent donc être vus comme des généralisation de ce fait!
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Introduction

This thesis is concerned with classes of graphs defined by forbidding induced subgraphs. The
”induced subgraph” relation is mathematically very natural, it corresponds in graphs to the notion
of substructure that is everywhere in mathematics. We may first observe that any class of graphs
closed under taking induced subgraphs can be defined by forbidding a list of induced subgraphs.
In the 1960’s, Gabriel Dirac started the field with pioneer work on chordal graphs, that are graphs
that do not contain holes (a hole is a chordless cycle of length at least four) as induced subgraph.
At the same period, Claude Berge proposed his two conjectures on perfect graphs that has been
the starting point of a very rich theory, until the resolution of the strong perfect graph conjecture
by Chudnovsky, Robertson, Seymour and Thomas in 2002.

In the 1980’s started the Graph Minor Project, developed by Robertson and Seymour, that
describes a very deep and general theory about any class of graphs closed under taking minor
(instead of induced subgraphs). It is natural to wonder whether there exists such a general theory
for classes closed under taking induced subgraphs. Until now, classes closed under taking induced
subgraphs seem to be too messy to hold in a general theory, but some conjectures like the Erdős-
Hajnal’s Conjecture suggest that there might be some features shared by every class of graphs
defined by forbidding induced subgraphs.

In this document, most of the theorems are concerned with particular classes of graphs. Most
of them are defined by forbidding some Truemper configurations as induced subgraphs. Truemper
configurations are formed by four families of graphs that, all together, can be seen as a slight
generalization of holes. Truemper configurations, that first appeared for polyhedral reasons, play a
special role in the world of structural graph theory. More precisely, they appear as a key structure to
understand some classes of graphs defined by forbidding holes of prescribed parity such as balanced
graphs, even and odd-hole free graphs and perfect graphs. Before we give an outline of the thesis,
let us define a family of graphs that are very present in the document: the k-wheels. A k-wheel is
a graph formed by a chordless cycle and a vertex, outside the cycle, that has at least k neighbors
in the cycle.

Outline of the document

Chapter 1: Basic definitions
We recall some definitions and notation of graph theory that we use all along this document as well
as a brief and informal overview of complexity theory.

Chapter 2: Truemper Configurations
We introduce Truemper configurations and explain their links with holes of prescribed parity as well
as their role in structural graph theory. We also introduce the notion of decomposition theorem and
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several techniques to get algorithmic and structural properties from such a theorem. The methods
explained in this chapter are used in several proofs of this document, we illustrate them with the
very simple example of chordal graphs.

Chapter 3: The moplex technique
We use the algorithm LexBFS to get structural properties and fast algorithms for several classes
of graphs defined by forbidding induced subgraphs, all of them being Truemper configurations.
Results of this chapter is a joint work with Pierre Charbit, Nicolas Trotignon and Kristina Vušković
submitted to Discrete Mathematics [3].

Chapter 4: Constraint on connectivity
This chapter is mainly dedicated to the well known class of minimally 2-connected graphs. After
enlarging the class, we show how to get new easy proofs of several known theorems on minimally
2-connected graphs using methods described in Chapter 2. Then, we explain why the same kind of
work cannot be lead on the class of critically 2-connected graphs and we point out a link between
graphs that do not contain 2-wheels as induced subgraphs and critically 2-connected graphs.

Chapter 5: 2-wheel-free graphs
We study the class of graphs that do not contain 2-wheels as induced subgraphs. We give a complete
structural characterization for this class and, as an application, we describe a polynomial-time
algorithm to recognize them as well as a solution to the edge-color problem. Chapters 4 and 5 come
from a joint work with Marko Radovanović, Nicolas Trotignon and Kristina Vušković published in
SIAM Journal on Discrete Mathematics [7] .

Chapter 6: Balanceable graphs
We prove a conjecture of Conforti and Rao on linear balanceable graphs. The proof leans on a
very deep decomposition theorem for balanceable graphs proved by Conforti, Cornuéjols, Kapoor
and Vušković in 2001, and some new idea on extreme decompositions. It comes from a joint work
with Marko Radovanović, Nicolas Trotignon, Théophile Trunck and Kristina Vušković accepted in
Journal of Graph Theory [6]

Chapter 7: Excluding k-wheels as subgraphs
This chapter is concerned with classes of graphs defined by forbidding k-wheels as subgraphs. The
main result of this chapter is the proof that graphs with no 4-wheels as subgraphs are 4-colourable.
We also give some new properties of some subclasses of the class of graphs that do not contain
3-wheels as subgraphs. Results concerned with 3-wheels come from a joint unpublished work with
Frédéric Havet and Nicolas Trotignon [4], the result on 4-wheels is proved by the author of this
document alone and is accepted in Journal of Graph Theory.

Chapter 8: Excluding cycles with a fixed number of chords
We give some χ-boundedness results about classes of graph that do not contain cycles with exactly
k chords for k = 2 and k = 3. It is a joint work with Nicolas Bousquet submitted to Discrete
Mathematics [2].

Observe that, in each chapter, we exclude a cycle plus a vertex outside the cycle that has
neighbors in the cycle, or a path linking two vertices of the cycle etc etc... It is well-known that a
graph with no cycle is a forest, so every result of this document can be seen as a generalization of
this simple fact!
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Chapter 1

Definitions and preliminaries

In this chapter we give some definitions and notation that we use all along the document. Most of
them follow from classical text-book such as [14] and [42].

1.1 Graphs, paths, cycles and classical invariants

If V is a set and k a positive integer, we note
(
V
k

)
the set of subsets of exactly k elements of V .

A graph is a pair G = (V,E) of finite sets such that E is a subset of
(
V
2

)
. The elements of V are

the vertices of G, the element of E are its edges. For notational simplicity, we write uv for the
unordered pair {u, v}. The vertex set of a graph G is referred to as V (G), its edge set as E(G).
We refer to the number of vertices of a graph as the order of the graph. The graph of order 0 is
called the empty graph.

Let G be a graph, u and v two distinct vertices of G and A a subset of V (G). If uv is an edge
of G, then u and v are the extremities of the edge uv and we say that u is adjacent to v, or that
u sees v, or that u is a neighbor of v. If uv /∈ E(G), we say that u is non-adjacent to v, or that u
is a non-neighbor of v. We denote by N(v) the neighborhood of v, that is the set of neighbors of v
in G and N [v] = N(v) ∪ {v} the closed neighborhood of v. The degree of v in G, denoted by d(v)
is the number of neighbors of v in G. We denote by N(A) the set of vertices of V (G) \A that see
at least one vertex in A, and N [A] = N(A) ∪ A. If v /∈ A, we denote by NA(v) = N(v) ∩ A and
dA(v) = |N(v) ∩A|.

A path P is a sequence of distinct vertices x1x2 . . . xk, k ≥ 1, such that xixi+1 is an edge for
all 1 ≤ i < k. Edges xixi+1, for 1 ≤ i < k, are called the edges of P . Vertices x1 and xk are
the endvertices of P , and x2 . . . xk−1 is the interior of P . P is referred to as a p1pk-path. For
1 ≤ i ≤ j ≤ k, we write xiPxj := xi . . . xj , P̊ := x2 . . . xk−1, x̊jPx̊i := xj+1 . . . xi−1. Two paths P1

and P2 that share their endvertices are said to be internally disjoint if their interior is disjoint.
A cycle C is a sequence of vertices p1p2 . . . pkp1, k ≥ 3, such that p1 . . . pk is a path and p1pk is

an edge. Edges pipi+1, for 1 ≤ i < k, and edge p1pk are called the edges of C. Let Q be a path or
a cycle. The length of Q is the number of its edges. An edge e = uv is a chord of Q if u, v ∈ V (Q),
but uv is not an edge of Q. A path or a cycle Q in a graph G is chordless if no edge of G is a chord
of Q. A chordless cycle of length at least 4 is called a hole.

Let G be a graph. The graph G is called a clique if E(G) =
(
V
2

)
. The clique on 3 vertices is

called a triangle and we denote by Kn the clique on n vertices. If A is a subset of V (G) such that
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E(G[A]) = ∅, we say that A is a stable set. We denote by ω(G) the size of the largest clique of
G and by α(G) the size of the largest stable set in G. We call k-coloration of G any partition of
V (G) into k sets A1, . . . , Ak such that Ai is a stable set for 1 ≤ i ≤ k. We call chromatic number
of G the smallest integer k such that G admits a k-coloration. The chromatic number is denoted
by χ(G). The largest degree of G is denoted by ∆(G) and the smallest by δ(G).

A hereditary class of graphs is χ-bounded (see [53]) if for some function f , every graph G in the
class satisfies χ(G) ≤ f(ω(G)).

A graph G is said to be a complete k-partite graph if V (G) can be partitioned into k non-empty
subsets A1, . . . , Ak such that, for i = 1, . . . , k, Ai is a stable set and, for any {i, j} ⊆ {1, . . . , k},
there are all possible edges between Ai and Aj . G is denoted by Ka1,...,ak where ai = |Ai| for
i = 1, . . . , k. If k = 2 then G is said to be a complete bipartite graph and if k = 3, G is said to be a
complete tripartite graph. The graph K1,1,2 is called a diamond.

The complement of a graph G, denoted G is defined by V (G) = V (G) and E(G) = {uv : u, v ∈
V (G) and uv /∈ E(G)}.

1.2 Subgraphs and induced subgraphs

Let G and F be two graphs. We say that G and F are isomorphic if there exists a bijection
φ : V (G) → V (F ) such that uv ∈ E(G) ⇔ φ(x)φ(y) ∈ E(F ) for all u, v in V (G). We do
not distinguish between isomorphic graphs and write G = F is G and F are isomorphic. If
V (F ) ⊆ V (G) and E(F ) ⊆ E(G), then F is a subgraph of G.

If A is a subset of V (G), we denote by G[A] the graph that has A as vertex set and
(
A
2

)
∩E(G)

as edge set. We say that G[A] is the subgraph of G induced by A. If there exists A ⊆ V (G) such that
G[A] is isomorphic to a graph H, we say that H is an induced subgraph of G. If H is a subgraph
(resp. an induced subgraph) of G, we say that G contains (or admits) H as a subgraph (resp. as
an induced subgraph).

Saying that G is F-free can take two different meanings in this document. Either it means that
that G does not contain F as a subgraph, or that G does not contain F as an induced subgraph.
We clearly indicate at the beginning of each chapter which definition is used. If F is a class of
graphs, we say that G is F-free if for any graph F ∈ F , G is F-free.

A class of graph C is hereditary if for any graph G in C, every induced subgraph H of G belongs
to C. It is clear that a class of graphs defined by forbidding subgraphs or induced subgraphs is
hereditary.

1.3 Connectivity

A non-empty graph is connected if any two of its vertices is linked by a path in G. A maximal
connected subgraph of G is a component of G. A set S ⊆ V (G) is a cutset of G if G \ S is not
connected. It is a minimal cutset if no proper subset of S is a cutset. It is a k-cutset if |S| = k. A
1-cutset is called a cutvertex. A graph is said to be k-connected if it has at least k+ 1 vertices and,
for any set S ⊆ V (G) such that |S| ≤ k − 1, S is not a cutset of G. The greatest integer k such
that G is k-connected is the connectivity κ(G) of G. Note that κ(G) = 0 if and only if G is not
connected or is K1, and κ(Kn) = n− 1. We end this section with the most famous theorem about
connectivity that is used in several proofs of this document.
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Theorem 1.1 (Menger Theorem, see [14]) If a graph G is a k-connected graph, then for any
vertices x, y of G, there exist k internally vertex-disjoint xy-paths.

1.4 Algorithm and complexity

Definitions given here are informal, for a precise treatment see [50].

By complexity of an algorithm, we mean the number of basic computational steps required for
its execution. This number clearly depends on the size and the nature of the input. In case of
graphs, it depends on the number of vertices and the number of edges of the input graph. In this
document, in all complexity analysis of algorithms, n stands for the number of vertices of the input
graph and m for the number of its edges.

If the complexity of an algorithm is bounded above by a polynomial in n and m, we say it is a
polynomial-time algorithm. Such an algorithm is further said to be linear-time if the polynomial
is a linear function. The class of problems solvable in polynomial-time is denoted by P.

A decision problem is a question whose answer is ”yes” or ”no”. Such a problem belongs to
P if there exists a polynomial-time algorithm that solves any instance of this problem. It belongs
to the class NP if, given any instance of the problem whose answer is ”yes”, there is a certificate
validating this fact which can be checked in polynomial-time. Analogously, a decision problem
belongs to the class co-NP if, given any instance of the problem whose answer is ”no”, there is a
certificate validating this fact which can be check in polynomial-time.

It is clear that P is included in both NP and co-NP. The following conjectures are certainly
two of the deepest conjectures in computer science.

Conjecture 1.2 P 6= NP

Conjecture 1.3 P = NP ∩ co-NP

There exists a class of NP problems (whose definitions is ommited here) called the NP-
complete(NP-c for short) problems. A theorem of Cook states that, if there exists a polynomial-
time algorithm for a problem in NP-c then there exists a polynomial time algorithm for any
problem in NP. Here is an example of an NP-complete problem:

Problem 1.4 (Clique)

Input: A graph G and an integer k.

Output: Is there a clique of size k in G.

Complexity: NP-complete [39].
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Chapter 2

Truemper configurations and
decomposition method

In this chapter:

• If G and H are graphs, then we say that G is H-free if G does not contain
H as an induced subgraph.

• K4 is not a wheel.

2.1 Truemper configurations

Theta Pyramid Prism Wheel

Figure 2.1: The Truemper configurations
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Here are some definitions of special kinds of graphs.

• Theta

A theta is a graph made of three internally disjoint paths P1 = a . . . b, P2 = a . . . b, P3 = a . . . b
of length at least 2 and such that no edges exist between the paths except the three edges
incident to a and the three edges incident to b.

• Pyramid

A pyramid is a graph made of three paths P1 = a . . . b1, P2 = a . . . b2, P3 = a . . . b3 of length
at least 1, two of which have length at least 2, vertex-disjoint except at a, and such that
b1b2b3 is a triangle and no edges exist between the paths except these of the triangle and the
three edges incident to a.

• Prism

A prism is a graph made of three vertex-disjoint paths P1 = a1 . . . b1, P2 = a2 . . . b2, P3 =
a3 . . . b3 of length at least 1, such that a1a2a3 and b1b2b3 are triangles and no edges exist
between the paths except these of the two triangles.

• Wheel

A wheel is a graph formed by a hole C called the rim together with a vertex v, called the
center that has at least three neighbors in the hole. Such a wheel is denoted (v, C).

Note that sometimes K4 is also considered as a wheel. In this document, it is specified at the
beginning of each chapter whether K4 is considered as a wheel or not. In this chapter K4 is
not a wheel.

A Truemper configuration is a graph isomorphic to a prism, a pyramid, a theta or a wheel.
Theta, pyramid and prism are sometimes called 3-path configurations. It is important to observe
that all Truemper configurations contain a hole.

In 1983 Truemper [94] gave a characterization of graphs whose edges can be labeled 0 or 1 in
such a way that all chordless cycles have prescribed parity. The characterization states that this
can be done for a graph G if and only if it can be done for all induced subgraphs of G isomorphic to
a Truemper configuration or a K4 (it is formally stated below). Truemper was originally motivated
by the problem of obtaining a co-NP characterization of balanceable matrices (or balanceable
graphs), a class that have important polyhedral properties. See Chapter 6 for more details about
balanceable graphs.

We say that a graph F is signed if an assignment of weight is given to its edges. If G is a signed
graph, the weight of a subgraph H of G is the sum of the weights assigned to the edges of H and
is denoted by v(H).

We now state formally Truemper’s theorem:

Theorem 2.1 (Truemper [94]) Let β be a {0, 1} vector whose entries are in one-to-one corre-
spondence with the chordless cycles of a graph G. Then there exists an assignment of 0, 1 weights
to the edges of G such that for every chordless cycle C of G, v(C) is congruent to βC mod 2 if and
only if there exists such an assignment for every induced subgraph G′ of G isomorphic to K4 or to
a Truemper configuration.
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This theorem shows that Truemper configurations are closely related to chordless cycle with
given parity. Let us emphasize this relationship. An even-hole (resp. an odd-hole) is a hole of
even (resp. odd) length. The structure of even-hole-free graphs and odd-hole-free graphs have been
heavily studied and are of importance in the world of structural graph theory. Here, we just point
out an obvious link that they have with Truemper configurations. For this purpose, let us show
two very easy properties of Truemper configurations.

First, we need to define special kinds of wheels. A sector of a wheel is a subpath of length
at least 1 of the rim whose ends are adjacent to the center and whose internal vertices are not.
Observe that the sectors of a wheel edge-wise partition the edges of its rim. A wheel is even if it
has an even number of sectors, or equivalently if it has an even number of spokes. A wheel is a
t-odd wheel if it has an odd number of sectors of length 1 or, equivalently, if it contains an odd
number of triangles.

Property 2.2 Thetas, prisms and even-wheels contain even-holes.

proof — Thetas and prisms both contain three vertex disjoint paths, so at least two of them have
same parity, say P1 and P2. Then G[V (P1) ∪ V (P2)] is an even-hole.

Let (v, C) be an even wheel, and let P1, . . . , P2k be the sectors of this wheel. If Pi is of odd
length for i = 1, . . . , 2k, then C is an even-hole. So one of the Pi’s, say P1 is of even length and
then V (P1) ∪ {v} is an even-hole. 2

We now give an analogue for odd-hole, we omit the straightforward proof.

Property 2.3 Pyramids and t-odd-wheels contain odd-holes.

These properties lead to the following two classes, that respectively generalize even-hole-free
and odd-hole-free graphs, and capture some of their features. A graph is odd-signable if there exists
an assignment of 0, 1 weights to its edges that makes every chordless cycle of odd weight. A graph
is even-signable if there exists an assignment of 0, 1 weights to its edges that makes every triangle
of odd weight and every chordless cycle of even weight.

Theorem 2.1, when applied to odd-signable and even-signable graphs, gives the following char-
acterizations of these classes.

Theorem 2.4 [30] A graph is odd-signable if and only if it is (theta, prism, even-wheel)-free.

proof — Let G be an odd-signable graph. Let us first show that thetas, prisms and even-wheels
are not odd-signable. Assume that G contains a theta and let x and y be the two vertices of degree
three of this theta and P1, P2 and P3 the three disjoint xy-paths. Put C1 = P1∪P2, C2 = P2∪P3 and
C3 = P3 ∪P1. By definition of a theta, C1, C2 and C3 are holes. So v(C1) ≡ v(C2) ≡ v(C3) ≡ 1 [2].
However, v(C1) + v(C2) + v(C3) = 2(v(P1) + v(P2) + v(P3)) ≡ 0 [2], a contradiction.

Assume now that G admits a prism. Let x1x2x3 and y1y2y3 be the two triangles of the prism
and, for i = 1, 2, 3, let Pi be the xiyi-path of the prism. Put C1 = x1P1y1y2P2x2x1, C2 =
x2P2y2y3P3x3x2 and C3 = x3P3y3y1P1x1x3. By definition of a prism, C1, C2 and C3 are holes.
So v(C1) ≡ v(C2) ≡ v(C3) ≡ v(x1x2x3) ≡ v(y1y2y3) ≡ 1 [2]. However, v(C1) + v(C2) + v(C3) =
2(v(P1) + v(P2) + v(P3)) + v(x1x2x3) + v(y1y2y3) ≡ 0 [2], a contradiction.

Assume now that G contains an even-wheel (x,C). Let x1, . . . , x2k be the neighbors of x in
C, and name Pi for i = 1, . . . , 2k the sectors with extremities xi and xi+1 (subscripts are taken
mod 2). Put, for i = 1, . . . , 2k, Ci = xiPixi+1xxi. By definition of a wheel, C and Ci (for
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i = 1, . . . , 2k) are chordless cycles. So, v(C) = 1 [2] and
∑i=2k

i=1 v(Ci) = 0 [2]. But,
∑2k

i=1 v(Ci) =∑2k
i=1 v(Pi) + 2

∑2k
i=1 v(xxi) ≡ v(C), a contradiction.

Now, we need to prove that (theta, prism, even-wheel)-free are odd signable. By Theorem 2.1,
we only need to check that K4, pyramids and wheels that are not even-wheels are odd signable.
For K4, give the weight 1 to each edge of any triangle of K4. For the pyramids, give the weight
1 to each edge of the triangle and 0 to every other edge. A wheel that is not an even-wheel has
an odd number of sectors. So, for the wheels that are not even, give the weight 1 to exactly one
edge in each sector and 0 to every other edge. It is easy to check that these signing give to every
chordless cycle an odd weight. 2

Next Theorem is an analogous of the previous one for even-signable graphs, we omit the proof
that is very similar to the proof of the previous theorem.

Theorem 2.5 [30] A graph is even-signable if and only if it is (pyramid, t-odd-wheel)-free.

Let us now define another very important class of graphs related to Truemper configurations. A
graph G is said to be perfect if, for every induced subgraph H of G, ω(H) = χ(H). Odd-holes (and
thus every graph containing odd-holes as induced subgraphs) are examples of imperfect graphs. An
antihole is the complement of a hole. Odd-antiholes are also easily seen as being imperfect. Graphs
that contain neither odd-hole nor odd anti-hole as induced subgraphs are said to be Berge.

In a celebrated paper, Chudnovsky, Robertson, Seymour and Thomas proved the following
theorem, known as the Strong Perfect Graph Theorem (SPGT) and conjectured by Berge [8].

Theorem 2.6 (Chudnovsky, Robertson, Seymour and Thomas[23]) A graph is perfect if
and only if it is Berge.

In other words, perfect graphs and (odd-hole, odd-antihole)-free graphs are the same. Note
that, by Property 2.3, we know that perfect graphs do not contain pyramids nor t-odd-holes as
induced subgraphs. Actually, as we will see in the next subsection, Truemper configurations play
a special role in the proof of the SPGT.

2.2 Decomposition theorems

2.2.1 What is it?

We call a decomposition theorem for a class C a theorem with the following form.

Theorem 2.7 (Decomposition theorem) For every graph G in C, either G is ”basic”, or it
admits a cutset S for S ∈ S.

Depending on what we want to prove about C, ”basic” graphs and the set of cutsets S need to
have adequate properties.

Let us give a very simple example of a decomposition theorem. A graph is chordal (or triangu-
lated) if it is hole-free. Next theorem is a decomposition theorem for chordal graphs, the basic class
is the class containing all cliques (it is clearly a subclass of chordal graphs) and only one cutset is
needed, the clique cutset. A cutset S of a graph G is a clique cutset if G[S] induces a clique.
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Theorem 2.8 (Dirac [44]) If G is a chordal graph then either it is a clique or it admits a clique
cutset.

proof — Suppose that G is not a clique. Let S be a minimal vertex-cutset of G, and let C1 and
C2 be two connected components of G \ S. Suppose that G[S] is not a clique. So S contains two
non-adjacent vertices u and v. Since S is minimal, both u and v have a neighbor in both C1 and
C2. Hence, for i = 1, 2, there exists a chordless uv-path Pi whose interior vertices are in Ci. Then
P1 ∪ P2 induces a hole, a contradiction. So S is a clique-cutset of G. 2

Decomposition theorems for even-hole-free graphs [41] and odd-hole-free graphs [31] exist but
are too complicated to be stated here. In chapter 6 a decomposition theorem for balanceable graphs
[34], that is also an example of a deep decomposition theorem, is described in details and heavily
used to prove new theorems about balanceable graphs.

The SPGT has been proved through a decomposition theorem for Berge graphs. Again, this
decomposition theorem is too complicated to be stated here, but let us say a very quick word
on the proof itself that involves some Truemper configurations. We already observed that Berge
graphs do not admit pyramids as induced subgraphs. This little fact is used very often to provide
a contradiction when manipulating Berge graphs. Also, a long part of the proof is dedicated to the
study of Berge graphs that admits a prism as an induced subgraphs. Finally, a very long part is
devoted to Berge graphs that contain certain kinds of wheels as induced subgraphs. This last fact is
a hint that wheel-free perfect graphs might have a way more simple structure than perfect graphs.
We will come back to wheel-free graphs in Section 2.3 and, more generally, all along this document.
To have a nice insight of the proof of the SPGT and the used of Truemper configurations in it, the
survey of Nicolas Trotignon [90] is a good reading.

2.2.2 Decomposition trees and recognition problems

In this subsection, we explain the concept of decomposition trees that are based on decomposition
theorems. Decomposition trees are useful to find polynomial-time algorithms for optimization
problems such as coloring a graph, finding the biggest clique or the biggest stable set in a graph,
that are NP-hard in general, but become (sometime) polynomially solvable when some subgraphs
are excluded. Here, we emphasize on the recognition problem. The recognition problem for a class
of graphs C is: given a graph G, decide whether G belongs to C or not.

The removal of a cutset S from a graph G breaks G into at least two connected components.
From these connected components, one can construct blocks of decomposition by possibly adding
some vertices and edges. For a special type of cutset, we speak about his associated blocks of
decomposition. A cutset S is said to be C-preserving if it satisfies the following: G belongs to C if
and only if all the blocks of decomposition belong to C.

In an ideal situation, a recognition algorithm for a class C using a decomposition theorem
has the following form. It decomposes the input graph G along C-preserving decompositions into
undecomposable graphs (note that it does not happen very often that every cutset used in a
decomposition theorem is class-preserving). Since the decomposition is C-preserving, we only need
to check whether these undecomposable graphs belong to C which, according to Theorem 2.7,
reduces to check if they are “basic”.

The decomposition can be represented by a decomposition tree where the root is the graph G
and, for every non-leaf vertex H, the children of H are the blocks of decomposition of H. Leaves
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correspond to undecomposable graphs.

So, in order to get a polynomial-time recognition algorithm based on a decomposition tree, we
need to be able to construct the decomposition tree in polynomial-time (which implies that we
can find the cutsets in polynomial-time and that the size of the tree is polynomial) and to decide
whether a “basic” graph belongs to C or not in polynomial-time (i.e. the recognition problem for
the basic class is in P ).

Let us illustrate this method with the example of chordal graphs. We already got a decomposi-
tion theorem for this class (Theorem 2.8), we now need to define blocks of decomposition associated
with clique cutsets. Let S be a clique cutset of a graph G, and let C1, . . . , Ck be the connected
components of G \ S. The blocks of decomposition w.r.t. S are the graphs Gi = G[Ci ∪ S] for
i = 1, . . . , k.

Let us now prove that clique cutsets preserve being chordal.

Theorem 2.9 Let G be a graph and S a clique cutset. G is chordal if and only if all the blocks of
decomposition w.r.t. S are chordal.

proof — Let C1, . . . , Ck be the connected components of G \S and G1, . . . , Gk the corresponding
blocks of decomposition. Since all the blocks of decomposition are induced subgraphs of G, if G is
chordal, then all the blocks are.

Suppose now that all the blocks G1, . . . , Gk are chordal and G contains a hole H. Since H
cannot be contained in a block, it must contain some vertices of at least two connected components
of G \ S. Consequently H contains at least two vertices of S that are not consecutive in H, so H
has a chord, a contradiction. 2

Observe that Theorems 2.8 and 2.9 give us a complete structure theorem for chordal graphs, i.e.
they show that all chordal graphs can be built starting from cliques, gluing them together along
cliques (the reverse operation of clique cutset) and that all graphs built this way are chordal.

We now show how to turn these theorems into a recognition algorithm. We construct a decom-
position tree T as follows: the root of T is our input graph G; for every internal vertex G′ of T ,
the children of G′ are the blocks of decomposition of G′ w.r.t. some clique cutset; and the leaves
of T are graphs that have no clique cutset. An O(nm) algorithm is given in [100] to find a clique
cutset, and a simple counting argument shows that number of vertices of T is bounded by O(n2),
giving an O(n3m) algorithm for constructing T . Now, by Theorems 2.8 and 2.9, the input graph
is chordal if and only if all the leaves of the decomposition tree are cliques. So, recognizing chordal
graphs can be done in the same time as building the decomposition tree: build the decomposition
tree, check if every leaves are cliques, if they are then the input graph is chordal, otherwise it is
not. We will see in the next subsection that this is not the fastest algorithm to recognize chordal
graphs.

It is, most of the time, very hard to turn a decomposition theorem into a polynomial-time
recognition algorithm. Some examples where this is possible are balanceable graphs [35], even-hole-
free graphs [36] (or [19] for a faster one) and perfect graphs [22] (note that in [22] two recognition
algorithms are given, one based on the decomposition theorem that runs in O(n18)-time and another
one, based on a more direct method, that run in O(n9)-time). On the other hand, the question for
odd-hole-free graphs is still open.
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2.2.3 Extreme decompositions

Let G be a graph and gizmo be a special type of a cutset with an associated block of decomposition.
A gizmo cutset S of G is an extreme gizmo cutset if one of the block of decomposition w.r.t. S
does not admit any gizmo cutsets. Let us illustrate this by an example. Blocks of decomposition
associated with clique cutsets are the same as in the previous subsection.

Theorem 2.10 If a graph G admits a clique cutset, then it admits an extreme clique cutset.

proof — Let S be a clique cutset of H such that, among all clique cutsets of G, a connected
component C of G \ S is the smallest possible. Let G′ = G[C ∪ S] be the block of decomposition
that contains C. Assume that G′ has a clique cutset S′. Since S is a clique, there is a component
C ′ of G′\S′ that is disjoint from S. Moreover, it is clear that S′∩C 6= ∅ and thus |V (C ′)| < |V (C)|.
Hence S′ is a clique cutset of G that contradicts our choice of S and C. Thus G′ does not admit
clique cutsets and hence S is an extreme clique cutset. 2

As an application, let us show how one can speed up the recognition algorithm for chordal graph
using extreme clique cutset. Suppose that S is an extreme clique cutset and Gi an extreme block
associated with S (i.e. a block that does not admit clique cutsets). In order to build what we call an
extreme decomposition tree, we construct only two blocks of decomposition: GB = Gi = G[Ci ∪ S]
and GA = G\Ci. The extreme decomposition tree T is constructed as follows: the root is the input
graph G; for every internal vertex G′ of T , the children of G′ are the blocks of decomposition G′A
and G′B of G′ w.r.t. an extreme clique cutset; the leaves of T are the graphs with no clique cutset.
Note that every G′B is a leaf, so T is a binary tree such that every internal vertex has a child that
is a leaf.

In [86], it is shown that an extreme tree decomposition w.r.t. clique cutsets can be constructed
in time O(nm) and thus one can decide if a graph is chordal in time O(nm). Once again, it is
not the fastest known recognition algorithm for chordal graphs. In Section 3.2.1, an algorithm to
recognize them in linear time is described.

It is quite rare that special type of cutsets admit extreme decomposition in any graph like clique
cutsets. k-cutsets with adequate blocks of decomposition also admit extreme decomposition in any
graphs, see Chapter 7 for more details. More generally, extreme decompositions are used very often
in this document, most of the time to prove some local structural properties for several classes of
graphs. In Chapter 6 a new method is explained that makes the use of extreme decomposition for
the so-called star cutset (notoriously difficult to use) possible in certain cases.

2.3 Wheel-free graphs

In this section, we survey known results around wheel-free graphs, several of them are proved in
this document.

As we already mentioned, a very long part of the proof of the SPGT is devoted to Berge graphs
that contain kinds of wheels, which suggest that wheel-free perfect graphs and more generally
wheel-free graphs should have interesting structural properties. Understanding their structure
might shed a new light on the work that have been done on even-hole-free graphs, odd-hole-free
graphs or perfect graphs.
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If, as we will soon see, several subclasses of wheel-free graphs are well-understood, very few
results are known on wheel-free graphs in general, let us state them all here.

The only structural known property of wheel-free graph is the following. The original proof,
due to Chudnovky is by induction, a different proof is given in Subsection 3.2.4.

Theorem 2.11 (Chudnovsky [20]) Every non-empty wheel-free graph contains a vertex whose
neighborhood is a disjoint union of cliques.

As a corollary, we also give the following result that can be seen as an extension of a famous
result: a chordal graph G has at most n maximal cliques.

Corollary 2.12 A wheel-free graph G has at most m maximal cliques.

proof — Induction on m. By Theorem 2.11, consider a vertex v of degree d whose neighborhood
is a disjoint union of cliques. By the induction hypothesis, G \ {v} has at most m − d maximal
cliques, and because of its neighborhhood, v is in at most d maximal cliques. 2

It is also proved in Subsection 3.2.4 that there exists an algorithm in time O(mn) to find a
largest clique in a wheel-free graph.

Subclasses of wheel-free graphs

Many proper subclasses of wheel-free graphs have been studied, we now list them. A k-wheel is a
wheel with at least k spokes. So wheels and 3-wheels are the same.

• The class of 2-wheel-free graphs is clearly a subclass of wheel-free graphs. Its structure is
precisely described in Chapter 5.

• Say that a graph is unichord-free if it does not contain a cycle with a unique chord as
an induced subgraph. The class of unichord-free graphs is a subclass of wheel-free graphs
because every wheel contains a cycle with a unique chord as an induced subgraph. The class
of unichord-free graphs have a complete structural description [92] that implies that it is
χ-bounded and that coloring problem, clique number problem and recognition problem are
polynomially solvable in this class. See Chapter 8 for more results about classes of graphs
defined by forbidding cycles with a fixed number of chords.

• The class of graphs that do not contain wheels as subgraphs has been studied in [87], [88] and
[4]. Several structural properties and extremal results for this class as well as some results
on graphs that do not contain a k-wheel (k ≥ 4) as a subgraph are described in details in
Chapter 7.

• The class of graphs that do not contain K4 nor induced subdivision of wheels is clearly a
subclass of wheel-free graphs. Here again, this subclass of wheel-free graphs has a complete
structural description with consequences that graphs in this class are 3-colorable and the
recognition problem is polynomially solvable [66]. Observe also that forbiding K4 and induced
subdivision of wheels is equivalent with forbidding wheels and induced subdivision of K4.
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Chromatic number

A nice question concerning the chromatic number of wheel-free graphs is the following:

Question 2.13 Is the class of wheel-free graphs χ-bounded?

In order to answer this question, the following has been proved. A square is a hole of size four.

Theorem 2.14 (Bousquet, Thomassé [15]) The class of (triangle, square, wheel)-free has
bounded chromatic number.

We also propose the following conjecture that would generalize the previous theorem.

Conjecture 2.15 Let H be a fixed complete bipartite graph. The class of (triangle, H, wheel)-free
graphs has bounded chromatic number.

23



24



Chapter 3

The moplex technique

In this chapter:

• If G and H are graphs, then we say that G is H-free if G does not contain
H as an induced subgraph.

• K4 is not a wheel.

Most of the results presented in this chapter come from a joint work with P. Charbit,
N. Trotignon and K. Vušković submitted to Discrete Mathematics [3].

LexBFS is an algorithm due to Rose, Tarjan and Lueker [79] that computes in linear time an
ordering of the vertices of an input graph (such an ordering is called a LexBFS order). Berry and
Bordat [11] proved that for every graph, the last vertex in a LexBFS order is part of what they call
a moplex, a set of vertices with strong structural properties. Maffray, Trotignon and Vušković [71]
defined a property of graphs (called property (?)) that implies the existence of vertex elimination
orderings with structural properties. The goal of this chapter is to show how these three works
lead to short proofs of some structural results, and fast algorithms for maximum weighted clique
problem for several classes defined by forbidding induced subgraphs. Surprisingly, all of these
forbidden subgraphs are Truemper configurations.

Here is the plan of this chapter. In the first section, we present the tools around LexBFS
algorithm and the notion of a moplex. In the second section, we apply the tools on every graph
on two and three vertices, then we explain every consequence it has. In the third section, we show
how our tools can be used to speed-up some algorithms for classes related to even-hole-free graphs
and Berge Graphs. In the fourth section, the class of universally-signable graphs (to be defined
later), that we meet in Section 3.2 is studied from a more structural point of view.

3.1 LexBFS, moplexes and property (?)

An order ≺ of the vertices of a graph G is a LexBFS order if and only if it satisfies the following
property: for all vertices a, b, c of G such that c ≺ b ≺ a , ca ∈ E(G) and cb /∈ E(G) there exists
a vertex d in G such that d ≺ c, db ∈ E and da 6∈ E (see Figure 3.1). This is not the original
definition, but it is proved to be equivalent to it by Brandstädt, Dragan and Nicolai [16].
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Figure 3.1: A solid line denote an edge and a dashed line a non-edge

Theorem 3.1 (Rose, Tarjan and Lueker [79]) There exists an O(n+m)-time algorithm that
outputs a LexBFS order of an input graph.

A module (sometimes called homogeneous set) in a graph G is a set A of vertices that share
the same external neighborhoods, i.e. ∀a, b ∈ A,N(a) \ A = N(b) \ A. A is a clique module if A
is a clique (i.e. all pairs of vertices of A are adjacent) and a module. Recall that a cutset S is a
minimal cutset if no proper subset of S is a cutset.

A moplex of a graph G is a set S ⊆ V (G) such that S is a clique, S is a module and N(S)
is a minimal cutset. Note that in [11] a slightly different definition is given: S is a moplex if S
is maximal with respect to the property of being a clique and a module, and N(S) is a minimal
cutset. It is easy to see that the two definitions are equivalent by the following observation.

Lemma 3.2 Let S be a moplex of a graph G and S ⊆ S′ ⊆ V (G). If S′ is a clique and a module
of G, then S′ = S.

proof — Let X = V (G) \ N [S]. Assume there exists x in S′ \ S. Since S′ is a clique, we have
S′ ⊆ N [S], so x ∈ N(S). Since N(S) is a minimal cutset, x has a neighbor in X. But this
contradicts the fact that S′ is a module since no vertex of S has a neighbor in X. 2

Theorem 3.3 (Berry and Bordat [11]) If G is a graph that is not a clique and (v1, . . . , vn) is
a LexBFS order of G, then vn is contained in a moplex of G.

A vertex v of a graph F is F -universal if v is adjacent to all vertices of F \ v. To prove the
existence of a vertex with a particular neighborhood, the following graph property was introduced
in [71]. We slightly rephrased it here for convenience.

Definition 3.4 A graph G satisfies property (?) w.r.t. a class of graphs F when for every x ∈ V (G)
and every connected component C of G \N [x], if F ∈ F is contained in G[N(x)], then there exists
a vertex of F that is not F -universal and that has no neighbor in C.

The next theorem makes the link between satisfying property (?) and being in a moplex.

Theorem 3.5 Let G be a graph that satisfies property (?) for a class of graphs F . Let x be a vertex
of G contained in a moplex. Then G[N(x)] is F-free.

proof — Assume G satisfies property (?) w.r.t. F , and let x be a vertex that is contained in
a moplex S of G. Suppose that some F ∈ F is contained in G[N(x)]. Since S is a moplex,
N [x] = N [S] and for some connected component C of G \ N [S], every vertex of N(S) has a
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neighbor in C. By property (?), there is a vertex y in F that is not universal for F that has no
neighbor in C. Since y is not universal for F , it follows that y ∈ N(S), a contradiction. 2

An ordering (v1, . . . , vn) of the vertices of a graph G is an F-elimination ordering if for every i =
1, . . . , n, NG[v1,...,vi](vi) is F-free. The following theorem sums up all the results of this subsection.

Theorem 3.6 Let F be a class of graphs that contains no cliques and let C be a hereditary class
of graphs such that every graph in C has property (?) w.r.t. F . Then there exists a linear time
algorithm whose input is any graph G and whose output is an ordering of the vertices of G such
that if G ∈ C, then the ordering is an F-elimination ordering.

proof — By Theorem 3.1, we compute a LexBFS order of G, say (v1, . . . , vn). Observe that
from the definition of LexBFS, for every 1 ≤ i ≤ n, the order (v1, . . . , vi) is a LexBFS order of
G[v1, . . . , vi]. If G[v1, . . . , vi] is a clique, then NG[v1,...,vi](vi) is clearly F-free, since F contains no
clique. Otherwise, by Theorem 3.3, vi is in a moplex of G[v1, . . . , vi]. By Theorem 3.5, NG[v1,...,vi](vi)
is F-free again. This proves that (v1, . . . , vn) is an F-elimination ordering of G. 2

Theorem 3.6 is extensively used in the next section to obtain structural properties with algo-
rithmic consequences for several classes of graphs.

In [71], the existence of a moplex in a graph was proved by an ordering different from LexBFS.
Finding a moplex as in Theorem 3.6 will allow us to speed up the algorithm from [84] for finding
a maximum weighted clique in an even-hole-free graph, as explained in Subsection 3.3.

3.2 Systematic applications

Here is how we use the tools presented in the previous section. Fix a graph F that is not a clique.
The goal is to find a class of graph H such that every H-free graph satisfies property (?) w.r.t.
F . Here is how we proceed. Observe that a graph G does not satisfy property (?) w.r.t. a graph
F if there exists a vertex v ∈ V (G) such that F is an induced subgraph of N(v) and, for some
component of G \N [v], every vertex of F that is not F -universal has a neighbor in C. So, we need
to describe every graph that can be built from a vertex (here v) adjacent to every vertex of F and
a component C such that each non F -universal vertex in F has a neighbor in C.

By this way we obtain a class of graphs defined by forbidding induced subgraphs for which, by
Theorem 3.6, we can obtain an F -elimination ordering in linear time.

In this section, we apply this method for every non-clique graphs on two and three vertices.
This gives a bunch of theorems, all of the same kind, and with very short proofs. Most of them are
new, but some have been known for a long time.

3.2.1 Graphs on two vertices and chordal graphs

There is a unique non-clique graph on two vertices that is the independent graph on two vertices,
denoted by S2. This leads to the class of chordal graphs that we already analysed in the previous
chapter.

Lemma 3.7 If G is a chordal graph, then G has property (?) w.r.t. S2.
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proof — Suppose not. Then for some x ∈ V (G) and some connected component C of G \N [x],
G[N(x)] contains an induced subgraph F isomorphic to S2, and every vertex of F has a neighbor
in C. This clearly implies that G contains a hole, a contradiction. 2

Now, by Theorem 3.6, every chordal graph has a vertex whose neighborhood is S2-free, and
being S2-free means being a clique. In particular, we prove that every chordal graph contains a
vertex whose neighborhood is a clique, which implies easily the decomposition theorem for chordal
graphs (Theorem 2.8). More precisely, Theorem 3.6 says that any LexBFS order on the vertices of a
chordal graph is an S2-elimination order. This is a celebrated result of Rose, Tarjan and Lueker [79]
that can be easily turned into a recognition algorithm for chordal graphs thanks to the following
theorem.

Theorem 3.8 (Rose, Tarjan and Lueker [79]) Let G be a graph and {v1, . . . , vn} a LexBFS
ordering of its vertices. Then G is chordal if and only if {v1, . . . , vn} is an S2-elimination ordering
of G.

proof — We have already seen that if G is chordal then any LexBFS order ofG is an S2-elimination
order.

Suppose that {v1, . . . , vn} is an S2-elimination ordering of G and that G is not chordal. Sot G
contains a hole H as an induced subgraph. Let i be the largest integer such that vi ∈ V (H) and
let vj and vk the two neighbors of vi in H. So NG[v1,...,vi](vi) is S2-free, i.e is a clique and thus vivk
is an edge, a contradiction. 2

Now, here is a way to decide if a graph is chordal in linear time :

• Apply a LexBFS on G (O(n+m)-time).

• Check if the obtained ordering is an S2-elimination ordering (it is proved in [55] that in can
be implemented in O(n+m)-time). If it is then G is chordal, otherwise it is not.

3.2.2 Graphs on three vertices

We now apply the method for each non-clique graphs on three vertices. Up to isomophism, there
are four graphs on three vertices, and three of them are not cliques: the independent graph on
three vertices denoted by S3, the path of length 2 denoted by P3 and the complement of the path of
length 2 denoted by P3 (note that P3 is not connected). Note that, once we have found the classes
H for which H-free graphs satisfy property (?) for respectively S3, P3 and P3, it is easy to find the
classes H′ such that H′-free graphs satisfy property (?) for any combination of S3, P3 and P3.

Let us first specify several kinds of wheels.
A wheel is a universal wheel if the center is adjacent to all vertices of the rim.
A wheel is an a-wheel if for some consecutive vertices x, y, z of the rim, the center is adjacent to y
and non-adjacent to x and z.
A wheel is a triangle-wheel (t-wheel for short) if for some consecutive vertices x, y, z of the rim,
the center is adjacent to x and y, and non-adjacent to z.
A wheel is a diamond-wheel (d-wheel for short) if for some consecutive vertices x, y, z of the rim,
the center is adjacent to x, y and z.
Observe that a wheel can be simultaneously an a-wheel, a t-wheel and a d-wheel. But every wheel
is an a-wheel, a t-wheel or a d-wheel. Also, any d-wheel is either a t-wheel or a universal wheel.
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The three next lemmas describe which induced subgraphs must contain a graph that does not
satisfy property (?) w.r.t. S3, P3 and P3 respectively. Observe that Truemper configurations appear
everywhere!

Lemma 3.9 Let G be a graph and v ∈ V (G) be such that G[N(v)] contains S3. If for some
component C of G \ N [v] every vertex of the S3 has a neighbor in C, then G contains a theta, a
pyramid or an a-wheel.

proof — Denote by x, y, z the three members of S3. Let P be a chordless path from x to y with
interior in C. Let Q be a chordless path from z to z′, such that V (Q) \ {z} ⊆ C, z′ has neighbors
in the interior of P , and is of minimum length among such paths (possibly, Q = z = z′).

Suppose that at least one of x or y has neighbors in Q (this implies that Q has length at
least 1). Call w the vertex of Q closest to z along Q, that has neighbors in {x, y}, and suppose up
to symmetry that w is adjacent to y. Call w′ the vertex of Q closest to z along Q that has neighbors
in P − y. Call x′ the neighbor of w′ in P , closest to x along P . Now, V (xPx′) ∪ V (zQw′) ∪ {v, y}
induces a theta or a a-wheel centered at y.

Therefore, we may assume that none of x, y has a neighbor in Q. If z′ has a unique neighbor in
P , then V (P )∪V (Q)∪{v} induces a theta. If z′ has exactly two neighbors in P that are adjacent,
then V (P ) ∪ V (Q) ∪ {v} induces a pyramid. Otherwise, V (P ) ∪ V (Q) ∪ {v} contains a theta. 2

Lemma 3.10 Let G be a graph and v ∈ V (G) be such that G[N(v)] contains a chordless path xyz.
If for some component C of G \N [v], x and z have neighbors in C, then G contains a d-wheel.

proof — Let P be a chordless path from x to z with interior in C. The graph induced by
V (P ) ∪ {v, y} is a d-wheel. 2

Lemma 3.11 Let G be a graph and v ∈ V (G) be such that G[N(v)] contains a P3. If for some
component C of G \N [v] every vertex of the P3 has a neighbor in C, then G contains a prism, a
pyramid, or a t-wheel.

proof — Denote by x, y, z the vertices of P3 in such a way that xy is the only edge of G[x, y, z].
Let P be a path from x to y with interior in C whose unique chord is xy. Let Q be a chordless
path from z to z′, such that V (Q) \ {z} ⊆ C, z′ has neighbors in the interior P , and is of minimum
length among such paths (possibly, Q = z = z′).

Suppose that at least one of x or y has neighbors in Q. Call w the vertex of Q closest to z
along Q, that has neighbors in {x, y}, and suppose up to symmetry that w is adjacent to y. Call
w′ the vertex of Q closest to z along Q that has neighbors in P − y. Call x′ the neighbor of w′ in
P , closest to x along P . Now, V (xPx′) ∪ V (zQw′) ∪ {v, y} induces a t-wheel centered at y.

Therefore, we may assume that none of x, y has a neighbor in Q. If z′ has a unique neighbor
in P , then V (P ) ∪ V (Q) ∪ {v} induces a pyramid or a t-wheel (when P has length 2). If z′ has
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i Class Ci Fi Neighborhood

1
no a-wheel, no theta,

no pyramid

{ }
no stable set of size 3

2 no d-wheel
{ }

disjoint union of cliques

3
no t-wheel, no prism,

no pyramid

{ }
complete multipartite

4
no a-wheel, no d-wheel,
no theta, no pyramid

{
,

} disjoint union of at
most two cliques

5
no a-wheel, no t-wheel,

no prism, no theta,
no pyramid

{
,

} stable sets of size at
most 2 with all possible

edges between them

6
no t-wheel, no d-wheel,
no prism, no pyramid

{
,

}
clique or stable set

7
no Truemper
configuration

{
, ,

}
clique or stable set of

size 2

8 no hole
{ }

clique

Table 3.1: Eight classes of graphs

exactly two neighbors in P that are adjacent, then V (P )∪V (Q)∪{v} induces a prism. Otherwise,
V (P ) ∪ V (Q) ∪ {v} contains a pyramid. 2

3.2.3 Sum-up

Table 3.1 describes every class that satisfies property (?) w.r.t. any fixed combination of graphs on
three vertices and the class that satisfy property (?) w.r.t. S2. So, it describes eight different classes
of graphs C1, . . . , C8, all defined by excluding the induced subgraphs listed in the second column of
the table. Every graph in Ci satisfies property (?) w.r.t. the class Fi described in the third column.
So, by Theorem 3.6, every graph in Ci contains a vertex v such that N(v) is Fi-free. The class of
Fi-free graphs is described in the last column.

The next theorem states formally what information gives the application of Theorem 3.6 on
each Ci. What we need to prove it that, indeed, graphs in Ci satisfy property (?) w.r.t. to Fi.
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These proofs being easy and similar for each i, we do not write them all.

Theorem 3.12 There exists a linear time algorithm whose input is any graph G and whose output
is an ordering of the vertices of G. Moreover, for i = 1, . . . , 8, if G is in Ci, the ordering is an Fi-
elimination ordering of G (where Ci and Fi are the classes defined as in Table 3.1). In particular,
every non-empty graph in Ci has a vertex whose neighborhood is Fi-free.

proof —

Class Ci is clearly hereditary. By Theorem 3.6, it suffices to prove that every graph in Ci satisfies
property (?) w.r.t. Fi. For i = 1, 2, 3, the result holds by Lemmas 3.9, 3.10 and 3.11 respectively.
We write the proof for i = 6, the proof is exactly the same for the other values. Suppose that
G ∈ C6 does not have property (?) w.r.t. F6. This means that for some v ∈ V (G), some F ∈ F6

and some component C of G \ N [x], every vertex of F that is not F -universal has a neighbor in
C. If F is a P3, then by Lemma 3.10, G contains a d-wheel, a contradition. If F is a P3, then by
Lemma 3.11, G contains a prism, a pyramid, or a t-wheel, a contradition. 2

Inclusions between our classes and several known classes are represented in Figure 3.2 (where a
cap is cycle of length at least 5 with a unique chord joining two vertices at distance 2 on the cycle,
a d-hole is a d-wheel such that the center has degree exactly 3, and the claw is K1,3). Observe that
a d-hole is also a t-wheel. Note also that the class C7 has already been studied in literature, see
Section 3.4 for more details.

C7

C1

C3C2

C5

C6

C4

C8

claw-free

diamond-free triangle-free {d-hole, cap}-free

Figure 3.2: Inclusion for several classes of graphs. An arrow from A to B means “A is contained
in B”. Arrows arising from transitivity are not represented.

Of course, we can push further our analysis. For instance, we can study the 10 (up to isomor-
phism) non-clique-graphs on four vertices, and for each of them (say H), describe the structure
that can be extracted from a vertex adjacent to all vertices of H, plus a component C such that
each non-H-universal vertex of H has a neighbor in C. This kind of study would lead to infinitely
many theorems and describing them would be rather uncomfortable and possibly purposeless. We

31



decided to carry out the study for graphs on at most three vertices because it is really remarkable
that it leads only to describe classes defined by excluding some Truemper configurations.

3.2.4 Consequences

i χ-bounded Max clique Coloring

1 f(x) = O(x2/ log x) NP-hard [78] NP-hard [54]

2 No [101] O(nm) [79] NP-hard [69]

3 No [101] O(nm) NP-hard [69]

4 f(x) = 2x− 1 O(n+m) ?

5 f(x) = 2x− 1 O(nm) ?

6 No [101] O(n+m) NP-hard [69]

7 f(x) = max(3, x) [29] O(n+m) O(n+m)

8 f(x) = x [44] O(n+m) [79] O(n+m) [79]

Table 3.2: Several properties of classes defined in Table 3.1

Table 3.2 describes several properties of the classes defined in Table 3.1. We indicate a reference
for the properties that are already known. Before we analyze and prove each result of Table 3.2,
observe that the class C2 contains the class of wheel-free graph, and thus Table 3.2 contains the
result announced in Section 2.3 stating that one can find a maximum clique in wheel-free graphs
in time O(mn).

χ-boundedness

Let us analyze the column “χ-bounded” of Table 3.2. The column indicates whether the class
Ci is χ-bounded, and if so, gives the smallest known function proving so. Classes C2, C3 and C6 are
not χ-bounded because they contain all triangle-free graphs, and these may have arbitrarily large
chromatic number as first shown by Zykov [101].

For classes C1, C4 and C5, we may rely on degeneracy. Say that a hereditary class of graphs is
ω-degenerate if there exists a function g such that every non-empty graph in the class has a vertex
of degree at most g(ω(G)). It is easy to check that by the greedy coloring algorithm, if a hereditary
class of graphs is ω-degenerate with a non-decreasing function g, then it is χ-bounded with function
g + 1.

The function given for classes C4 and C5 follows from the fact that these classes are clearly
ω-degenerate with function g(x) = 2x− 2.

For the class C1, we use Ramsey theory. Kim [60] proved that for some constant c, every
graph on ct2/ log t vertices admits a stable set of size 3 or a clique of size t. Therefore, the vertex
whose neighborhood is S3-free in any graph in C1 proves that C1 is ω-degenerate with function
g(x) = O(x2/ log x).

Observe that these results about χ-boundedness just improve bounds. Indeed, a theorem due
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to Kühn and Osthus [64] proves that theta-free graphs (and therefore graphs in C1, C4 and C5) are
ω-degenerate, but their function is quite big.

Clique number

Let us now analyse the column “Max clique” of Table 3.2, that gives the best complexity of
finding a maximum weighted clique in a graph of the corresponding class. By a result of Poljak [78],
it is NP-hard to compute a maximum stable set in a triangle-free graph. Rephrased in the com-
plement, it is NP-hard to compute a maximum clique in an S3-free graph, and therefore in graphs
from C1.

Finding a maximum weighted clique in C2 is easy as follows: for every vertex v, look for a max-
imum weighted clique in N(v), and choose the best clique among these. This can be implemented
by running n times the O(n + m) algorithm of Rose, Tarjan and Lueker, because N(v) is chordal
for every v. In fact, this algorithm works in the larger class of universal-wheel-free graphs.

For C4, we need to be careful about the complexity analysis. Here is an algorithm that finds a
maximum (weighted) clique in G ∈ C4. First by Theorem 3.12, we find in linear time an {S3, P3}-
elimination ordering of G, say (v1, . . . , vn). This means that in G[{v1, . . . , vi}], N(vi) is a disjoint
union of at most two cliques. We now show that, having this order, we can compute a maximum
clique in time O(m). We may assume that G is connected (otherwise we work on components
separately), so m ≥ n− 1. Suppose inductively that a maximum clique of G[v1, . . . , vn−1] is found
in time O(m − d(vn)). We now take the vertices of N(vn) one by one. We give name x and label
X to the first one, and check whether the next ones are adjacent to x. If so, we give them label
X. If some are not adjacent to x, we give name y and label Y to the first one that we meet. The
next vertices receive label X or Y according to their adacency to x or y. Note that exactly one
of these adjacencies must occur, since N(vn) is the union of at most two cliques. At the end of
this loops, the vertices with label X and Y form at most two cliques in N(vn). They are identified
in time O(d(vn)). So, we now know all the maximal cliques of G[N [vn]] and a maximum clique of
G[v1, . . . , vn−1]. A maximum clique among these is a maximum clique of G. All this takes time
O(m− d(vn)) +O(d(vn)) = O(m). Observe that this algorithm relies on a constant time checking
of the adjacency, so it needs the graph to be represented by an adjacency matrix. Therefore, the
time complexity is O(n+m), but the space complexity is O(n2). Observe also that this algorithm
is not robust. If the input graph is not in C4, the output is a set of vertices, and if it is a clique, we
cannot be sure that it has maximum weight.

For class C6, the algorithm is similar to the previous one. We have to find a maximum clique in
N(vn) in time O(d(vn)). It is easy to verify quickly whether the neighbohood of vn is a clique or a
stable set, and in both cases, it is immediate to find in time O(d(vn)) a maximum weighted clique
in it. We omit further details.

For C3 (that contains C5), the algorithm is similar to the previous one, except that we rely
on a {P3}-elimination ordering of G instead of an {S3, P3}-elimination ordering. As a result, the
neighborhood of the last vertex v induced a complete multipartite graph. We do not know how to
find a maximum clique in N(v) in time O(d(v)), so we do not know how to obtain a linear time
algorithm. Instead, we look for a maximum clique in N(v) in time O(m), and therefore the overall
complexity is O(nm).

Chromatic number

Let us now analyse the column “Coloring” of Table 3.2, that gives the best complexity for
coloring a graph of the corresponding class. Since the edge-coloring problem is NP-hard [54], it
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follows that coloring line graphs is NP-hard, and therefore, so is coloring claw-free graphs (that
are all in C1).

Classes C2, C3 and C6 contain all triangle-free graphs, that are NP-hard to color as proved by
Preissmann and Maffray [69].

For C7, we first try to find a 2-coloring of the graph by the classical BFS algorithm. If it does
not exist, we look for a max(3, ω(G))-coloring of the input graph G as follows. By Theorem 3.12
we obtain an {S3, P3, P3}-elimination ordering in linear time. As a result, the neighborhood of the
last vertex of the ordering is a clique or has size 2. We remove the last vertex v, color recursively
the remaining vertices, and give some available color to v. Note that the existence of the ordering
we use is proved in [29], but how to obtain it in linear time was not known so far.

3.3 Even and odd-signable graphs

In the previous section, checking property (?) relied on an almost automatic method. Here, we
describe two classes of graphs, Berge graphs and even-hole-free graphs, that are proved in existing
papers to have property (?) w.r.t. particular classes in a less obvious way.

A square in a graph is a hole of length 4.

Theorem 3.13 (da Silva and Vušković [84]) Square-free odd-signable graphs have property (?)
w.r.t. holes.

This theorem is used in [84] to obtain a robust O(n2m)-time algorithm for computing a max-
imum weighted clique in a square-free odd-signable graph (and hence in an even-hole-free graph).
We now show how to reduce this complexity to O(nm).

Theorem 3.14 There is an O(nm) time algorithm whose input is a weighted graph G and whose
output is a maximum weighted clique of G or a certificate proving that G is not square-free odd-
signable.

proof — Let H denote the class of all holes and consider the following algorithm. By Theorems
3.6 and 3.13 compute in linear time an ordering (v1, . . . , vn) of vertices of G that is an H-elimination
ordering if G is a square-free odd-signable graph. We already proved that testing whether a graph is
chordal can be done in linear time, and hence it can be checked in O(nm) time whether (v1, . . . , vn)
is an H-elimination ordering.

So, we may assume that (v1, . . . , vn) is an H-elimination ordering of G. We suppose inductively
that a maximum weighted clique of G[v1, . . . , vn−1] is found in time O((n − 1)m). A maximum
weighted clique of G[N [vn]] can be found in time O(m) by the algorithm of Rose, Tarjan and
Lueker (see [79]) applied to G[N(v)]. So, we now know a maximum weighted clique of G[N [vn]]
and a maximum weighted clique of G[v1, . . . , vn−1]. A maximum weighted clique among these is a
maximum weighted clique of G. All this takes time O((n− 1)m) +O(m) = O(nm). 2

We now turn our attention to Berge graphs (and their generalization to even-signable graphs).
A square-theta is a theta that contains a square. A long hole is a hole of length greater or equal
to 5.

Theorem 3.15 (Maffray, Trotignon and Vušković [71]) (Square, theta)-free even-signable
graphs have property (?) w.r.t. long holes.
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Based on Theorem 3.15 an O(n7) time algorithm is given in [71] for computing a maximum
weighted clique in a square-theta-free Berge graph. It relies on a long-hole-elimination ordering.
With the machinery presented here, we can obtain this ordering in linear time, but unfortunately,
this does not improve the overall complexity of the maximum clique algorithm.

3.4 Universally signable graphs

We said that the class C7 had already been studied in [29]. This study was concerned with structural
properties and our result permits to speed up some algorithms for problems already known to be
polynomially solvable. Let us investigate a little bit deeply this class of graphs.

A graph G is universally signable if, for any (0, 1) vector β whose entries are in one-to-one
correspondence with the holes of G, there exists an assignment of 0, 1 weights to the edges such
that every hole H have weight congruent to βH mod 2.

The following theorem follows easily from Theorem 2.1

Theorem 3.16 (Conforti, Cornuéjols, Kapoor, K. Vušković [29]) A graph is universally
signable if and only if it does not contain any Truemper configurations as induced subgraphs.

So universally signable graphs is our class C7.
The following theorem is a decomposition theorem for universally signable graph. The first

proof is in [29], a way more simple proof is given in [28], and the proof we give here is a slight
simplification due to Diot and Trotignon [43].

Theorem 3.17 (Conforti, Cornuéjols, Kapoor and Vušković [29]) Let G be a connected
graph. If G is universally signable then either it is a hole, or it is a clique, or it admits a clique
cutset.

proof — Let G be a universally signable graph. By Theorem 2.8, we may assume that G is not
chordal, so let H be a hole in G. We may assume that G \H is non-empty, so let C be a connected
component of G \H.

(1) If c /∈ V (H) then it has at most two neighbors in H. Moreover, if it has two neighbors then
they are adjacent.

Let c ∈ V (H) and suppose for contradiction that c has two non-adjacent h1 and h2 neighbors in
H. If NH(c) = {h1, h2} then V (H) ∪ {c} induces a theta, a contradiction. So c has at least three
neighbors in H and thus (c,H) is an induced wheel, a contradiction. This proves (1).

Now, suppose for a contradiction that G has no clique cuset. This implies that NH(C) contains
two non-adjacent vertices h1 and h2. Let c1 (resp. c2) be a neighbor of h1 (resp. h2) in C. Observe
that by (1), c1 6= c2. Let P = c1 . . . c2 be a path of G[C]. Suppose that h1, h2, c1, c2 and P , are
chosen subject to the minimality of P (so P is chordless, and has length at least 1 because c1 6= c2).

Case 1: At least one internal vertex of P has a neighbor in H.
Hole H is edge-wise partioned into two paths H1 = h1 . . . h2 and H2 = h1 . . . h2. Observe first
that vertices in P̊ cannot be adjacent to h1 or h2, otherwise some subpath of P contradicts the
minimality of P . Moreover, if NH(P̊ ) has a vertex in both H̊1 and H̊2, then some subpath of P
contradicts the minimality of P . So, up to symmetry, we assume that if NH(P̊ ) ∩H2 = ∅. Now,
at least one internal vertex of P , say c, is adjacent to an internal vertex of H1, say h. It follows by
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the minimality of P that H1 has length 2, i.e. H1 = h1hh2. Observe that c has no neighbor x in
H2, for otherwise a shortest path from x to h with interior in P contradicts the minimality of P .
Also, by (1), c has no neighbor in H2. So, (h,H2 ∪ P ) is an induced wheel, a contradiction.

Case 2: No internal vertex of P has a neighbor in H.
If both c1, c2 have a unique neighbor in H, then V (H) ∪ V (P ) induces a theta, a contradiction.
So, by (1), up to symmetry c1 has two adjacent neighbors in H. If c2 has a unique neighbor in H,
then V (H)∪V (P ) induces a pyramid, a contradiction. So, by (1), c2 has two adjacent neighbors in
H. Now, if c1 and c2 have a common neighbor in H, V (H)∪ V (P ) induces a wheel, and otherwise
V (H) ∪ V (P ) induces a prism, a contradiction. 2

We already noticed that, since every Truemper configuration contains a hole, any class defined
by forbidding some Truemper configurations is a superclass of chordal graph.

The above theorem show that universally signable graphs are a ”slight” generalization of chordal
graph: by adding the class of holes as a basic class in the decomposition theorem for chordal graphs
(Theorem 3.8), one get the decomposition theorem for universally signable graphs. So, it is easy
to turn Theorem 3.17 into a recognition algorithm that run in time O(nm) (proceed exactly as in
the recognition theorem for chordal graphs described in Subsection 2.2.3, with the slight difference
that you need to check that the leaves of the decomposition tree are either cliques or holes).

One could wonder if, as for chordal graphs, it is possible to use LexBFS to recognize univer-
sally signable graphs. An analogue of Theorem 3.8 for universally signable graphs would state
that, if G is a graph and {v1, . . . , vn} is a LexBFS ordering, then G is universally signable if and
only if {v1, . . . , vn} is a (S3, P3, P3)-elimination ordering (recall that {v1, . . . , vn} is a (S3, P3, P3)-
elimination ordering if, for i = 1, . . . , n, NG[v1,...,vi](vi) is either a clique or a stable set of size two).
Unfortunately, Figure 3.3 is a counter-example of this statement.
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Figure 3.3: Numbers on the vertices of this prism correspond both to a LexBFS ordering and to a
(S3, P3, P3)-elimination ordering.

Next theorem states four different characterization of universally signable graphs. These char-
acterizations, and more particularly (4), might be usable to force LexBFS to recognize universally
signable graphs in linear time.

Theorem 3.18 Let G be a connected graph. Following conditions are equivalent:

1. G is universally signable.

2. G does not contain any Truemper configurations as induced subgraphs.

3. For any induced subgraph H of G, either H is a hole, or is a clique, or admits a clique cutset.
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4. For any induced subgraph H of G, either H admits a vertex whose neighborhood is a clique,
or a vertex of degree 2 that is contained in a unique hole of H.

proof — (1) ⇔ (2) ⇔ (3) come from Theorems 3.16 and 3.17.
Let us prove that (3)⇒ (4). It suffices to prove that any graph G that satisfies (3) satisfies (4).

If G is a hole or a clique then it satisfies (4). So G admits a clique cutset. Let S be an extreme
clique cutset of G. So there exists a component C1 of G \ S such that G[C1 ∪ S] does not admit
clique cutsets. So either G[C1 ∪ S] is a clique and C1 contains a vertex whose neighborhood is a
clique in G, or G[C1 ∪ S] is a hole and then C1 contains a vertex of degree 2 that is contained in a
unique cycle of G, namely G[C1 ∪ S].

We now now prove that (4)⇒ (2). To prove it, it is enough to check that every vertex of degree
2 in a Truemper configuration is contained in at least two holes, and that Truemper configurations
contain no vertex whose neighborhood is a clique, which is straightforward to check. 2

3.5 Open questions

Corollary 2.12 suggests that a linear time algorithm for the maximum clique problem might exist
for C2.

We are not aware of a polynomial-time coloring algorithm for graphs in C4 or C5, but it would
be surprising to us that it exists.

Since class C1 generalizes claw-free graphs, it is natural to ask which of the properties of claw-
free graphs it has, such as a structural description (see [26]), a polynomial-time algorithm for the
maximum stable set (see [48]), approximation algorithms for the chromatic number (see [61]), a
polynomial-time algorithm for the induced linkage problem (see [49]), and a polynomial χ-bounding
function (see [53]).

We also wonder whether theta-free graphs are χ-bounded by a polynomial (quadratic?) function
(recall that in [64], they are proved to be χ-bounded). Note that since there exist some graphs
G satisfying α(G) = 2, ω(G) = k and |V (G)| = O(t2/log(t)) (where c is a constant, see [60]),
by the trivial following bound on the chromatic number: χ(G) ≤ |V (G)|/α(G), the best possible
χ-bounded function for theta-free graphs is a O(t2/log(t)).

In [29], an O(nm) time algorithm is described for the maximum weighted stable set problem in
C7. Since the class is a simple generalization of chordal graphs, we wonder whether a linear time
algorithm exists and, as we discussed in Section 3.4, whether a linear time recognition algorithm
exists for universally signable graphs.
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Chapter 4

Classes defined by constraints on
connectivity

In this chapter:

• If G and H are graphs, then we say that G is H-free if G does not contain
H as an induced subgraph.

• K4 is a wheel.

Most of the results presented in this chapter come from a joint work with M. Radovanović,
N. Trotignon and K. Vušković published in SIAM Journal on Discrete Mathematics [7].

A graph is minimally k-connected if it is k-connected and if the removal of any edge yields a
graph of connectivity k−1. A graph is critically k-connected if it is k-connected and if the removal
of any vertex yields a graph of connectivity k − 1. Minimally and critically k-connected graphs
were the object of much research, see [63] for a survey on this subject. Observe that the classes of
critically k-connected graphs and minimally k-connected graphs are not hereditary classes (since
graphs of connectivity at most k−1 are not in these classes) which, at first sight, discourage attempt
to attack these classes with the decomposition method.

In the first section of this chapter we show how to enlarge the class of minimally 2-connected
graphs in order to get a hereditary class of graphs. Moreover, this leads us to chordless graphs (a
graph is chordless if all its cycles are chordless) that are particularly interesting to us since one can
easily check that a line-graph is wheel-free if and only if it is the line graph of a chordless graph
that contains no K4 and that has maximum degree at most 3. We then apply the decomposition
method on it and revisit several known theorems on minimally 2-connected graphs.

In the second subsection, we investigate if an analogue of the results of the first section can
be find with critically 2-connected graphs instead of minimally 2-connected graphs and, despite a
negative answer, we explain how it leads us to 2-wheel-free graphs (that are studied in the next
chapter).

We close this introduction with a very famous Theorem of Dirac that will be usefull in this
chapter and the next one.

Theorem 4.1 If G is a 2-connected graph and u, v are two distinct vertices of G, then there exists
a cycle passing through u and v.
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Note that a more general version of this result is given in Theorem 7.17.

4.1 Minimally 2-connected graphs

This section is divided into three subsections. In the first one we explain how to enlarge the class
of minimally 2-connected graphs in order to get a hereditary class of graphs (namely chordless
graphs). In the second subsection we present a simple decomposition theorem for chordless graphs.
Finally, in the last subsection, we lean on the decomposition theorem to prove some results about
chordless and minimally 2-connected graphs.

4.1.1 Enlarging minimally-2-connected graphs

Let C′1 be the class of chordless graphs, that are graphs whose cycles are all chordless (or in other
words, the class of graphs that do not contain a cycle with a chord). Observe that a cycle with
a chord is not minimally 2-connected, and in a sense is the “smallest” 2-connected graph that is
not minimally 2-connected. Class C′1 was studied by Dirac [45] and Plummer [77] in the 1960’s. As
we said at the beginning of the section, it is the class we are going to study in place of minimally
2-connected graphs. Indeed, C′1 is a hereditary class that contains every minimally 2-connected
graph (see Theorem 4.2).

One might think it is a strange choice. Indeed, there is a natural way to embed a class C into
an hereditary class C′: taking the closure of C, that is the class C′ of all subgraphs (or induced
subgraphs according to the containment relation you are interested in) of graphs from C. This way,
one clearly obtains the smallest hereditary class containing C. But, a chordless graph may fail to be
a subgraph of some minimally 2-connected graph. For instance consider a triangle with a pending
edge (the paw). It is chordless and it is easy to check that a 2-connected graph that contains a paw
as a subgraph also contains a cycle with a chord and thus is not minimally 2-connected. Hence
C′1 is a proper superclass of the class of subgraphs of minimally 2-connected graphs. We choose
C′1 anyway, first because it is a very natural class of graphs and, as the next theorem suggests, it
captures every structural property that minimally 2-connected graphs might have.

Next theorem show the close relationship minimally 2-connected graphs and chordless graph
maintain.

Theorem 4.2 (Dirac [45], Plummer [77]) A 2-connected graph is chordless if and only if it is
minimally 2-connected.

proof — Suppose first that G is a 2-connected chordless graph that is not minimally 2-connected.
So it admits an edge e = xy such that G \ e is 2-connected. So, by Theorem 4.1 there exists a cycle
C passing through x and y. So e is a chord of C, a contradiction.

Conversely, suppose that G is a minimally 2-connected graph and let uv be an edge of G. So,
G \ uv has connectivity 1 and therefore contains a cutvertex x. Since G is 2-connected, it follows
that (G \ uv) \ x has two connected components, one containing u, the other containing v. This
implies that every cycle of G that contains u and v must go through uv, so uv cannot be a chord
of any cycle of G. This proof can be repeated for all edges of G. It follows that G is chordless. 2
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Figure 4.1: List of obstructions for C′0

4.1.2 Decomposition and structure of chordless graphs

Let C′0 be the class of graphs such that vertices of degree at least 3 induce an independent set.
Observe that class C′0 is closed under taking subgraph (the list of obstruction is given in Figure

4.1) and that C′0 ( C′1.
We are now going to show that C′1 admits a simple decomposition theorem with C′0 serving as

a basic class (Theorem 4.3). It is actually a known theorem, it is implicitly proved in [92] and
explicitly stated and proved in [66]. Anyway, the proof proposed here is much shorter and simpler
than the previous ones. It follows a classical way to prove a decomposition theorem that consists to
start with a graph that is not basic, thus it admits an obstruction to the basic class and, studying
how the rest of the graph attaches on this obstruction, we find one of the specified decomposition.

We say that a graph admits a 0-cutset if it is disconnected.
A 2-cutset {a, b} is a S2-cutset if ab /∈ E(G). It is a proper S2-cutset if G \ {a, b} can be

partitioned into two sets K ′ and K ′′ such that: there is no edge with one extremity in K ′ and the
other one in K ′′ and G[{a, b} ∪K ′] (resp. G[{a, b} ∪K ′′]) is not a chordless ab-path. We say that
({a, b},K ′,K ′′) is a split of a proper S2-cutset.

Theorem 4.3 (Decomposition Theorem for C′1) A graph in C′1 is either in C′0, or has a 0-
cutset, a 1-cutset, or a proper S2-cutset.

proof — Let G be in C′1 \ C′0 and suppose that G has no 0-cutset and no 1-cutset, i.e. G is 2-
connected. So, by Theorem 4.2, G is minimally 2-connected. Thus, there is an edge e = uv such
that u and v have both degree at least 3 and by Theorem 4.2, G \ e is not 2-connected so, it has a
0-cutset or a 1-cutset.

If G \ e is disconnected, then u (and v) would be a cutvertex of G. So G \ e has a cutvertex w.
Since w is not a cutvertex of G, the graph (G \ e) \ w has exactly two connected components Cu

and Cv, containing u and v respectively, and V (G) = Cu ∪Cv ∪{w}. Let u′ /∈ {v, w} be a neighbor
of u (u′ exists since u has degree at least 3). So, u′ ∈ Cu. In G, u is not a cutvertex, so there is a
path Pu from u′ to w whose interior is in Cu. Together with a path Pv from v to w with interior
in Cv, Pu, uu′ and e form a cycle, so uw /∈ E(G) for otherwise uw would be a chord of this cycle.
Because of the degrees of u and v, ({u,w}, Cu \ {u}, Cv) is a split of a proper S2-cutset of G. 2

Theorem below can easily be turned into a complete structural characterization of chordless
graphs. Theorems 4.4 and 4.5 state this characterization. We do not include the straightforward
proofs.

We first define blocks of decomposition for each cutset involved in Theorem 4.3.
If S is a 0-cutset or a 1-cutset of G and G\S admits k distinct connected components C1, . . . , Ck

(note that k ≥ 2), we define k blocks of decomposition G1, . . . , Gk as follows: for i = 1, . . . , k,
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Gi = G[Ci ∪ S]. We say that G1, . . . , Gk are the blocks of decomposition with respect to S.
Let ({a, b}, X, Y ) be a split of a proper S2-cutset. The block of decomposition with respect

to this split are graph GX and GY defined as follows. Block GX is the graph obtained from
G[X ∪ {a, b}] by adding a marker vertex m′ and the two marker edges am′ and bm′. Block GY is
the graph obtained from G[Y ∪ {a, b}] by adding a marker vertex m′′ and the two marker edges
am′′ and bm′′. Note that by definition of a proper S2-cutset, G[{a, b} ∪X] and G[{a, b} ∪ Y ] are
not chordless ab-path and thus GX and GY are not chordless cycles.

Theorem 4.4 Let S be a 0-cutset or a 1-cutset and let G1, . . . , Gk be the blocks of decomposition
with respect to S. Then G ∈ C′1 if and only if Gi ∈ C′1 for i = 1, . . . , k.

Theorem 4.5 Let G be a 2-connected graph, let (S,X, Y ) be a split of a proper 2-cutset and let
GX and GY the corresponding blocks of decomposition. Then G ∈ C′1 if and only if GX ∈ C′1 and
GY ∈ C′1.

4.1.3 Applications of the decomposition theorem

In this subsection, we show how the decomposition theorem for chrordless graphs (Theorem 4.3)
can be used to get different kind of properties on chordless graphs.

Dirac [45] and Plummer [77] independently showed that minimally 2-connected graphs have at
least two vertices of degree at most 2 and chromatic number at most 3. We now show how Theorem
4.3 can be used to give simple proofs of these results for chordless graphs in general.

Theorem 4.6 Every chordless graph on at least two vertices has at least two vertices of degree at
most 2.

proof — We prove the result by induction on the number of vertices. If G ∈ C′0 then clearly the
statement holds. Let G ∈ C′1\C′0, and assume the statement holds for graphs with fewer than |V (G)|
vertices. Suppose G has a 0-cutset or 1-cutset S, and let C1, . . . , Ck be the connected components
of G\S. For i = 1, . . . , k, by induction applied to Gi = G[V (Ci)∪S], Ci contains a vertex of degree
at most 2 in Gi. Note that such a vertex is of degree at most 2 in G as well, and hence G has at
least two vertices of degree at most 2.

So we may assume that G is 2-connected, and hence by Theorem 4.3 G has a proper S2-cutset
with split ({a, b}, X, Y ). We now show that both X and Y contain a vertex of degree at most 2.

Let ({a′, b′}, X ′, Y ′) be a split of a proper S2-cutset of G such that X ′ ⊆ X, and out of all such
splits assume that |X ′| is smallest possible. We now show that both a′ and b′ have at least two
neighbors in X ′, i.e. they are of degree at least 3 in G and G′X . Since G is 2-connected both a′ and b′

have a neighbor in every connected component of G\{a′, b′}. In particular G[Y ′∪{a′, b′}] contains an
a′b′-path Q and a′ has a neighbor a1 in X ′. Suppose N(a′)∩X ′ = {a1}. If a1b

′ is not an edge, then
(since G[X ′∪{a′, b′}] is not a chordless path), for some X ′′ ⊆ X ′, ({a1, b′}, X ′′, V (G)\(X ′′∪{a1, b′})
is a split of a proper S2-cutset of G, contradicting our choice of ({a′, b, }, X ′, Y ′). So a1b

′ is an edge.
Then since G[X ′ ∪ {a′, b′}] is not a chordless path, X ′ \ {a1} contains a vertex c. Since a1 cannot
be a cutvertex of G, there is a b′c-path in G \ a1 whose interior vertices are in X ′. Since b′ cannot
be a cutvertex of G, there is an a1c-path in G \ b′ whose interior vertices are in X ′. Therefore
G[(X ′ ∪ b′)] \ a1b′ contains an a1b

′-path P . But then V (P ) ∪ V (Q) induces a cycle with a chord
(namely a1b

′), a contradiction. Therefore, a′ has at least two neighbors in X ′ and by symmetry so
does b′.
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Let m′ be the marker vertex of GX′ . Note that |V (GX′)| < |V (G)|, and clearly since G is
chordless so is GX′ . So by induction, GX′ contain at least two vertices of degree 2. Therefore there
is a vertex t ∈ V (GX′) \ {m′} that is of degree at most 2 in GX′ . Since both a′ and b′ have at least
two neighbors in X ′, it follows that t ∈ X ′, and hence t is of degree at most 2 in G as well. So X
contains a vertex of degree at most 2, and by symmetry so does Y , and the result holds. 2

Note that for proving the theorem below, it is essential that the class we work on is closed
under taking subgraphs. Proofs of 3-colorability in [45] and [77] are more complicated because they
consider only minimally 2-connected graphs, that are not closed under taking subgraphs which
forbids using induction.

Corollary 4.7 If G is a chordless graph then χ(G) ≤ 3.

proof — Let G be a chordless graph and by Theorem 4.6 let x be a vertex of G of degree at most
2. Inductively color G \ {x} with at most 3 colors. This coloring can be extended to a 3-coloring
of G since x has at most two neighbors in G. 2

Next lemma shows that if a chordless graph G admits a proper S2-cutset, then it admits an
extreme proper S2-cutset (recall it is a proper S2-cutset such that one of the block of decomposition
does not contain proper S2-cutset). The proof can be find in [67] but we reproduce it here for
completeness.

Lemma 4.8 (Machado, de Figueiredo and Trotignon [67]) Let G be a 2-connected chord-
less graph not in C′0. Let ({a, b}, X, Y ) be a split of a S2-cutset of G such that |X| is minimum
among all possible such splits. Then GX is in C′0. Moreover, a and b both have degree at least 3 in
G and in GX .

proof — The proof that a and b are of degree at least 3 in G and in GX is the same as the proof,
in Theorem 4.6, that a′ and b′ are of degree at least 3 in G′ and G′X .

Let m be the marker vertex of GX . It is easy to check that GX is a 2-connected chordless graph.
Suppose GX /∈ C′0. So, by Theorem 4.3, it admits a split of a proper 2-cutset, say ({u, v}, X1, X2).
Choose it such that both u and v have degree at least 3 (this is possible as explained in the beginning
of the proof). Hence m /∈ {u, v}. If {u, v} = {a, b} then ({a, b}, X1, Y ∪X2) is a split of a proper
2-cutset of G that contradicts the minimality of X. So {u, v} 6= {a, b} and we may assume w.l.o.g.
that b /∈ {u, v}. Hence b and m are in the same connected component of GX \{u, v}, so may assume
w.l.o.g. that {b,m} ⊆ {X2}. Thus ({u, v}, X1, Y ∪ X2 \ {m}) is a split of a proper 2-cutset in G
that contradicts the minimality of X. 2

We now show how Theorem 4.3 may be used to prove the main result in [77], that is a nice
characterization of minimally 2-connected graphs.

Theorem 4.9 (Plummer [77]) Let G be a 2-connected graph. Then G is minimally 2-connected
(or equivalently chordless) if and only if either

1. G is a cycle; or

2. if S denotes the set of vertices of degree 2 in G, then there are at least two components in
G \ S, each component of G \ S is a tree and if C is any cycle in G and T is any component
of G \ S, then (V (C) ∩ V (T ), E(C) ∩ E(T )) is empty or connected.
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proof — Suppose first that G is minimally 2-connected. If G is in C ′0 then G \ S contains only
isolated vertices. Hence, either G \ S is empty, in which case all vertices of G are of degree 2,
meaning that G is a cycle; or G \ S is not empty, in which case G contains at least two vertices of
degree at least 3, and the second outcome holds.

So, by Theorem 4.3, we may assume that G admits a split of a proper S2-cutset ({a, b}, X, Y )
and, by Lemma 4.8, we may assume that GX is in C′0 and a, b have degree at least 3 in GX . Note
that from the definition of a proper S2-cutset, none of GX , GY is a cycle. Note also that, since
GX ∈ C′0, the set of vertices of degree at least 3 in GX induces a stable set.

Let us first prove that each component of G\S is a tree. Let SY be the set of vertices of degree
2 in GY and let T1, . . . , Tk be the components of GY \ SY . By induction, T1, . . . , Tk are trees. If a
or b is of degree 2 in GY and has a neighbor of degree at least 3 (it has at most one such neighbor)
in Ti say (i ∈ {1, . . . , k}), then define T ′i to be the tree obtained by adding the pending vertex a
(resp. b, resp. both a and b) to Ti. For all j = 1, . . . , k such that T ′j is not defined above, we put
T ′j = Tj . Now, if we remove the vertices of degree 2 of G, T ′1, . . . , T ′k are connected components
(here we use the fact that since GX is in C′0, all neighbors of a or b in X have degree 2). The other
components are the vertices of degree 3 from X. They are all trees because GX is in C′0. That
proves that each component of G \ S is a tree.

It remains to prove that if C is any cycle in G and T is any component of G \ S, then (V (C)∩
V (T ), E(C) ∩ E(T )) is empty or connected. Let C be a cycle of G. There are three cases. Either
V (C) ⊆ X ∪ {a, b}, or V (C) ⊆ Y ∪ {a, b}, or C is formed of a path PX from a to b with interior in
X and a path PY from a to b with interior in Y . In the first case, the trees intersected by C are all
formed of one vertex, so outcome 2 holds. In the second case, C is also a cycle of GY . Let T be a
tree of G \ S such that V (T ) ⊂ Y ∪ {a, b} (all the other trees of G \ S are on 1 vertex). Note that
a ∈ V (C) ∩ V (T ) implies that a has degree at least 3 in GY and so T is also a tree of GY \ SY .
Hence, (V (C) ∩ V (T ), E(C) ∩ E(T )) is connected by the induction hypothesys applied to GY . In
the third case, we consider the cycle CY formed by PY and the marker vertex of GY . We suppose
that T has more than one vertex (otherwise T is indeed connected), so V (T ) ⊆ Y ∪ {a, b}. Note
that if T contains a, then it must also contains some neighbor of a in Y (because marker vertices
are of degree 2). This means that if a has degree 2 in GY and a ∈ V (C)∩ V (T ), then the neighbor
a′ of a in GY has degree at least 3 and is therefore in a tree of GY \ SY , so a′ ∈ V (C) ∩ V (T ).
The same remark holds for b. Hence, (V (C) ∩ V (T ), E(C) ∩ E(T )) is connected by the induction
hypothesis applied to GY .

Suppose conversely that one of the outcomes 1, 2 is satisfied by some 2-connected graph G
(here we reproduce the proof given by Plummer). If G is a cycle, then it is obviously minimally
2-connected. Otherwise, let e = uv be an edge of G. It is enough to prove that G \ e is not
2-connected. If u or v has degree 2 in G this holds obviously. Otherwise, u and v are in the same
component T of G \ S. If G \ e is 2-connected, then some cycle C of G \ e goes through u and v,
and (V (C) ∩ V (T ), E(C) ∩E(T )) is not connected nor empty because it contains u and v but not
e = uv (and removing any edge from a tree disconnects it), a contradiction to 2. 2

Note that we do not use the existence of vertices of degree 2 to prove the theorem above.
Hence, a new proof of their existence can be given: if G is 2-connected, then by Theorem 4.9, the
vertices of degree 2 of G form a cutset of G. Thus, there must be at least two of them; otherwise,
the existence of two vertices of degree at most 2 follows easily by induction.

The last theorem of this section is concerned with edge and total coloring of chordless graphs.
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We do not reproduce the proof here because it is a bit long, but we write a short proof sketch that
gives the flavor of it. Note that to prove this theorem, the only approach we are aware of is to use
Theorem 4.3.

Theorem 4.10 (Machado, de Figueiredo and Trotignon [67]) Let G be a chordless graph of
maximum degree at least 3. Then G is ∆(G)-edge colourable and (∆(G) + 1)-total-colourable.

sketch of proof — The first step is to prove directly the result for graphs in C′0. Then, a
minimal counter-example G belongs to C′1 \ C′0. So, by Theorem 4.3 it admits a split (S,X, Y ) of a
0-cutset, a 1-cutset or a proper 2-cutset. Let GX and GY be the two blocks of decomposition w.r.t
this split. Note that by minimality of G, it is easy to check that results hold for GX and GY . If S
is a 0-cutset or a 1-cutset it is easy to recover directly an edge or a total coloring from a coloring
of the blocks of decomposition. So S is a proper 2-cutset and thus, by Lemma 4.8 we may assume
that GX ∈ C ′0. Taking advantage of the extreme simplicity of the graphs in C′0, it is possible to
extend an edge or a total coloring of G[Y ] to G. 2

We close this subsection by observing that there is another well studied hereditary class that
properly contains the class C′1, namely the class of graphs that do not contain a cycle with a unique
chord as an induced subgraph. In [92], a precise structural description of this class is given and used
to obtain efficient recognition and coloring algorithms. Interestingly, it was proved by McKee [72]
that these graphs can also be defined by constraints on connectivity: the graphs with no cycles
with a unique chord are exactly the graphs such that all minimal cutsets are independent sets.

4.2 Critically 2-connected graphs

In this subsection we consider the class of critically 2-connected graphs, that were studied by
Nebeský [75], and we investigate whether there exists an analogous sequence of theorems as in the
previous subsection, starting with critically 2-connected graphs instead of minimally 2-connected
graphs. To enlarge the class of minimally 2-connected graphs we chose the class that does not
contain cycles with chords, and it was equivalent to forbid them as subgraphs or induced subgraphs.
Thinking of it, it is clear that a similar way to enlarge the class of critically 2-connected graphs,
is to forbid 2-wheels (indeed, 2-wheels are, in a sense, the smallest critically 2-connected graphs).
Since forbidding 2-wheels as subgraphs or induced subgraphs is not equivalent, there are two way
to find an analogue of chordless graphs, and we consider both.

Let C1 be the class of graphs defined by forbidding 2-wheels as subgraphs, and let C2 be the class
of graphs defined by forbidding 2-wheels as induced subgraphs. The analogue of C′0 is naturally C0:
the class of graphs with no vertices adjacent with at least two vertices of degree at least three. It
is easy to check that C0 ( C1 ( C2.

Unfortunately, an exact analogue of Theorem 4.2 is hopeless. A critically 2-connected graph can
contain anything as a subgraph: the only hereditary class that contains every critically 2-connected
graphs is the class of all graphs. To see this, consider a graph G on vertices {v1, . . . , vn}. For all
i ∈ {1, . . . , n}, add a vertex ai adjacent to vi and a vertex bi adjacent to ai. Add a vertex c adjacent
to all bi’s. It is easy to see that the obtained graph is critically 2-connected, and contains G as a
subgraph. So there cannot be a version of Theorem 4.2 with “critically” instead of “minimally”, and
particularly, a critically 2-connected graph may contain a 2-wheel (since it may contain anything).
Also, any property of graphs closed under taking subgraphs, such as being k-colorable, is false
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for critically 2-connected graphs, unless it holds for all graphs. However, there is a sequence of
theorems, proven in the next section, that mimics the sequence of results obtained on C′0 and C′1.

As we just said, an exact analogue of Theorem 4.2 cannot be interesting, but the following can
be seen as a “semi”-analogue of it.

Lemma 4.11 A graph G belongs in C1 if and only if for every subgraph H of G, either H has
connectivity at most 1 or it is critically 2-connected.

proof — A 2-wheel has connectivity 2 and is not critically 2-connected since removing the center
yields a 2-connected graph. This proves the “if” part of the theorem. To prove the “only if” part,
consider a graph G that contains no 2-wheel, and suppose for a contradiction that some subgraph H
of G does not satisfy the requirement on connectivity that is to be proved. Hence H is 2-connected
and not critically 2-connected. So by deleting a vertex v (that has degree at least 2 because of
the connectivity of H), a 2-connected graph H ′ is obtained. Note that |V (H)| ≥ 4. Therefore, by
Theorem 1.1, H ′ contains a cycle, that together with v forms a 2-wheel of H, a contradiction. 2

Before studying the structure of C1 and C2, let us see that an analogue of Theorem 4.6 can
be proved directly (by a nice argument on the longest chordless path) for 2-wheel-free graphs.
Nebeský [75] proved that every critically 2-connected graph contains a vertex of degree 2, but
critically 2-connected graphs are not 3-colorable in general, since they may contain any 4-chromatic
graph as a subgraph.

Theorem 4.12 If G ∈ C2, then G has a vertex of degree at most 2 and G is 3-colorable.

proof — Suppose that for every v ∈ V (G), d(v) ≥ 3. Let P be a longest chordless path in G,
and x and y the endvertices of P . As d(x) ≥ 3, x has at least two neighbors u and v not in P and
u (resp. v) has a neighbor in P \ x, since otherwise V (P ) ∪ {u} (resp. V (P ) ∪ {v}) would induce a
longer path in G. We choose u1 and v1, neighbors of respectively u and v in P \ x that are closest
to x on P . W.l.o.g. let us assume that x, u1, v1 appear in this order on P . Then (u, xPv1vx) is
an induced 2-wheel of G, a contradiction. This proves that G has a vertex of degree at most 2. It
follows by an easy induction that every graph from C2 is 3-colorable. 2
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Chapter 5

2-Wheel-free graphs

In this chapter:

• If G and H are graphs, then we say that G is H-free if G does not contain
H as an induced subgraph.

• K4 is a wheel.

All results presented in this chapter come from a joint work with M. Radovanović, N. Trotignon
and K. Vušković published in SIAM Journal on Discrete Mathematics together with the results of
the previous chapter [7].

Recall that a 2-wheel is a graph formed by a chordless cycle and a vertex, outside the cycle,
that has at least two neighbors in the cycle. Recall also that, as in the previous chapter, C1 and
C2 are respectively the class of graphs that do not admit 2-wheels as subgraphs and the class of
graphs that do not admit 2-wheels as induced subgraphs.

We already observed that C1 ⊆ C2, and the main results of this section, even if they hold for C1,
are interesting when concerning C2. We also already motivated the study of 2-wheel-free graphs in
Section 2.3, emphasizing on the fact they were a subclass of wheel-free graphs. In this chapter, we
study 2-wheel-free graphs using all techniques explained in Chapter 2.1. A decomposition theorem
for this class is given in Section 5.1 and is turned into a complete structural characterization in
Section 5.2. In Section 5.3, we give a polynomial-time recognition algorithm using a decomposition
tree as explained in Section 2.2.2, as well as a NP-completeness result concerned with the recogni-
tion problem for 4-wheel-free graphs. And finally, in Section 5.4, we use extremal cutsets to prove
a local structural property of 2-wheel-free graphs that implies a polynomial-time algorithm for the
edge-coloring problem.

Names of the classes studied in this chapter being a bit confusing, we recall there definitions
here in order to facilitate the lecture.

• C0 is the class of graphs with no vertices adjacent with at least two vertices of degree at least
3.

• C1 is the class of graphs that do not contain 2-wheels as subgraphs.

• C2 is the class of graphs that do not contain 2-wheels as induced subgraphs.
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5.1 Decomposition theorems

In this section we present decomposition theorems for graphs that do not contain 2-wheels as
subgraphs (C1) and graphs that do not contain 2-wheels as induced subgraphs (C2).

We start to present the special cutsets we need to decompose these two classes.

Proper K2-cutset
A 2-cutset {a, b} is a K2-cutset if ab ∈ E(G). It is a proper K2-cutset if G\{a, b} can be partitioned
into two non-empty sets K ′ and K ′′ such that there is no edge with one extremity in K ′ and the
other one in K ′′ and no vertex of K ′ ∪K ′′ sees both a and b.

We say that ({a, b},K ′,K ′′) is a split of a proper K2-cutset.

Proper S2-cutset
A 2-cutset {a, b} is a S2-cutset if ab /∈ E(G). It is a proper S2-cutset if G\{a, b} can be partitioned
into two sets K ′ and K ′′ such that there is no edge with one extremity in K ′ and the other one in
K ′′ and G[{a, b} ∪K ′] (resp. G[{a, b} ∪K ′]) is not a chordless ab-path.

We say that ({a, b},K ′,K ′′) is a split of a proper S2-cutset.

Proper I-cutset
A set of vertices S = {u, v, w} of a graph G is an I-cutset if G[S] induced exactly one edge. It is a
proper I-cutset if no vertex of G \ {u, v, w} can be partitioned into two sets K ′ and K ′′ such that:

• There is no edge with one extremity in K ′ and the other one in K ′′

• For some component C ′ of G[K ′], u, v and w all have a neighbor in C ′.

• For some component C ′′ of G[K ′′], u, v and w all have a neighbor in C ′′.

• Every vertex in K ′ ∪K ′′ is adjacent to at most one vertex in {u, v, w}.

We say that ({u, v, w},K ′,K ′′ is a split of this I-cutset.

We now give some notation related with these cutsets that will be used all along this chapter.
If G is a 2-connected graph and ({a, b},K ′,K ′′) is a split of a proper S2-cutset of G, then it is

clear that G[K ′ ∪ {a, b}] (resp. G[K ′′ ∪ {a, b}]) contains a chordless ab-path. For such a S2-cutset,
we denote this path by P ′uv (resp. P ′′uv).

Similarly, if G is a 2-connected graph and ({u, v, w},K ′,K ′′) is the split of an I-cutset (where
uv say is an edge), then G[K ′ ∪ {u, v, w}] \ uv (resp. G[K ′′ ∪ {u, v, w}] \ uv) contains chordless
uv-path, uw-path and vw-path. For such an I-cutset, we denote these paths by P ′uv, P

′
uw and P ′vw

(resp. P ′′uv, P
′′
uw and P ′′vw).

We start with a technical lemma on the structure of 2-connected graphs in C1 and C2 that do
not admit K2-cutset (note that since C1 ( C2, it is enough to prove it for C2). Recall that Ck is the
chordless cycle on k vertices.

Lemma 5.1 Let G be a 2-connected graph that does not have a K2-cutset. If G ∈ C2 and it contains
a Ck, for some k ∈ {3, 4, 5}, as an induced subgraph, then G = Ck.

proof — Let G ∈ C2 and suppose that G contains a Ck = x1x2 . . . xkx1 as an induced subgraph,
for some k ∈ {3, 4, 5}. Assume G 6= Ck and that G has no 1-cutset nor K2-cutset. Let K be a
connected component of G \ Ck.
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If a vertex x ∈ K is adjacent to more than one vertex of Ck, then (x,Ck) is a 2-wheel of G.
So a vertex of K can have at most one neighbor in Ck. Since G has no 1-cutset nor K2-cutset,
|N(K) ∩ V (Ck)| ≥ 2, and if |N(K) ∩ V (Ck)| = 2, then the two vertices of N(K) ∩ V (Ck) are
nonadjacent.

Suppose k = 3, and let P be a minimal path of K such that its endvertices are adjacent to
different vertices of Ck. Then V (P ) ∪ V (Ck) induces a 2-wheel. Therefore k ∈ {4, 5}, and hence
N(K)∩V (Ck) contains nonadjacent vertices. Let P be a minimal path of K such that its endvertices
are adjacent to nonadjacent vertices of Ck. We may assume w.l.o.g. that the endvertices of P are
adjacent to x1 and x3. By the choice of P , we may assume w.l.o.g. that vertices of V (Ck)\{x1, x2, x3}
have no neighbors in P . But then V (Ck) ∪ V (P ) induces a 2-wheel. 2

Next Lemma is a direct application of the above one.

Lemma 5.2 Let G be a 2-connected graph. If G has a K2-cutset that is not proper, then G /∈ C2.

proof — If G has a K2-cutset that is not proper then it contains a triangle and the result holds
by Lemma 5.1 as G = C3 and thereby has no K2-cutset: contradiction. 2

Theorem 5.3 (Decomposition Theorem for C1) A graph in C1 is either in C0 or it has a 0-
cutset, a 1-cutset, a proper K2-cutset or a proper S2-cutset.

proof — Let G be a 2-connected graph in C1\C0. So G contains a vertex w that has two neighbors
u and v that are both of degree at least 3. By Lemma 5.1, uv /∈ E(G). If no vertex of G \ w is a
cutvertex separating u from v, then by Theorem 4.1, there is a cycle of G \w going through u and
v, so that in G, w is the center of a 2-wheel, a contradiction. Hence there is such a cutvertex w′.
So, in G \ {w,w′}, there are distinct components Cu and Cv containing u and v respectively, and
possibly other components whose union is denoted by C. But then ({w,w′}, C ∪ Cu, Cv) is a split
of either a S2-cutset of G (when ww′ /∈ E(G)), which is proper because of the degrees of u and v,
or a split of a K2-cutset (when ww′ ∈ E(G)), which is proper by Lemma 5.2. 2

To prove the decomposition theorem for C2 we need the following lemma.

Lemma 5.4 Let G be a 2-connected graph that has no K2-cutset. If an I-cutset of G is not proper,
then G 6∈ C2.

proof — Let ({u, v, w},K ′,K ′′) be a split of an I-cutset such that uv is an edge. Suppose that
x ∈ G\{u, v, w} has at least two neighbors in {u, v, w}. W.l.o.g. x ∈ K ′ and by Lemma 5.1 w.l.o.g.
N(x) ∩ {u, v, w} = {u,w}. If x 6∈ V (P ′uw) then (x, uP ′uwwP

′′
uwu) is a 2-wheel, and hence G 6∈ C2.

So we may assume that x ∈ V (P ′uw) and that P ′uw = uxw. Let C ′ be the connected component
of G[K ′] that contains x, and let P be the shortest xv-path in G[C ∪ {v}]. If w does not have
a neighbor in P \ {x, v}, then (u, vxwP ′′wvv) is a 2-wheel with center u, and hence G 6∈ C2. So
we may assume that w has a neighbor in P \ {x, v}. If u does not have a neighbor in P \ {x, v},
then (w, xuvPx) is a 2-wheel, and hence G 6∈ C2. So we may assume that u also has a neighbor in
P \{x, v}. Let w1 (resp. u1) the neighbor of w (resp. of u) on P that is the nearest of x. If x,w1, u1
appear in this order along P or if u1 = w1, then (w, uxPu1u) is a 2-wheel. So (x, u1, w1) appear in
this order long P and (u,wxPw1w) is a 2-wheel, a contradiction. 2

Next theorem is the decomposition for C2.
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Theorem 5.5 (Decomposition Theorem for C2) A graph in C2 is either in C1 or it has a
proper I-cutset.

proof — Let G be a graph in C2 \ C1. So G contains a 2-wheel as a subgraph. Let (x,C) be
a 2-wheel of G whose rim has the fewest number of chords. Note that C must have at least one
chord.

(1) Let y′y′′ be a chord of C, and P1 and P2 the two y′y′′-subpaths of C. If a vertex u ∈ V (G)\V (C)
has more than one neighbor on C, then it has exactly two neighbors on C, one in the interior of
P1, and the other in the interior of P2.

Let u ∈ V (G) \ V (C) and suppose that u has at least two neighbors on C. If u has at least two
neighbors on Pi, for some i ∈ {1, 2}, then (u, yy′Piy) is a 2-wheel that contradicts our choice of
(x,C)). This proves (1).

By (1), x has exactly two neighbors x′ and x′′ on C.

(2) If u ∈ V (G) \ (V (C) ∪ {x}) then u has at most one neighbor on C.

Assume not. Then (1), u has exactly two neighbors u′ and u′′ on C. Let P1 and P2 be the two
u′u′′-subpaths of C. Note that since C has a chord, by (1) that chord has one endvertex in the
interior of P1 and the other in the interior of P2. In particular, neither P1 nor P2 is an edge. If
{x′, x′′} ⊂ V (Pi), for some i ∈ {1, 2}, then the graph induced by V (Pi) ∪ {u, x} contains a 2-wheel
with center x that contradicts our choice of (x,C). So w.l.o.g. x′ is contained in the interior of P1

and x′′ in the interior of P2. Let y′y′′ be a chord of C. Then by (1) we may assume that vertices u′,
x′, y′, u′′, x′′, y′′ are all distinct and appear in this order when traversing C clockwise. If u′y′′ is an
edge then the graph induced by V (P1)∪ {u, y′′} contains a 2-wheel with center y′′ that contradicts
our choice of (x,C). So u′y′′ is not an edge, and by symmetry neither is u′′y′. Let P ′1 (respectively
P ′2) be the u′y′-subpath (respectively u′′y′′-subpath) of C that contains x′ (respectively x′′). Then
the graph induced by V (P ′1)∪V (P ′2)∪{u, x} contains a 2-wheel with center x that contradicts our
choice of (x,C). This proves (2).

Let y′y′′ be a chord of C. By (1), vertices x′, y′, x′′, y′′ are all distinct and w.l.o.g. appear in
this order when traversing C clockwise. Let P ′ (respectively P ′′) be the y′y′′-subpath of C that
contains x′ (respectively x′′).

(3) C cannot have a chord z′z′′ such that z′ ∈ V (P ′) \ {y′, y′′} and z′′ ∈ V (P ′′) \ {y′, y′′}.
Assume it does. W.l.o.g. z′ is on the x′y′-subpath of P ′. Then, by (1), z′′ is on the x′′y′′-subpath
of P ′′. Let C ′ be the cycle obtained by following P ′ from z′ to y′′, going along edge y′′y′, following
P ′′ from y′ to z′′, and going along edge z′′z′. Since C ′ cannot have fewer chords than C (by the
choice of (x,C)), it follows that both z′y′ and z′′y′′ are edges. But then G[V (P ′) ∪ {z′′}] contains
a 2-wheel with center y′, that contradicts our choice of (x,C). This proves (3).

We now prove that S = {y′, y′′, x} is an I-cutset. By (3), S is a cutset of G[V (C) ∪ {x}].
Assume it is not a cutset of G that separates the vertices of C, and let P = p1p2 . . . pk be a shortest
path in G \ S whose one endvertex has a neighbor in P ′ \ {y′, y′′} and the other has a neighbor
in P ′′ \ {y′, y′′}. W.l.o.g. p1 has a neighbor in P ′ \ {y′, y′′}, and pk in P ′′ \ {y′, y′′}. By (2) and
definition of P : P is a chordless path, for some u ∈ V (P ′) \ {y′, y′′} and v ∈ V (P ′′) \ {y′, y′′},
N(p1) ∩ V (C) = {u} and N(pk) ∩ V (C) = {v}, and the only vertices of (x,C) that may have a
neighbor in the interior of P are x, y′ and y′′.

Let Puy′′ (respectively Py′′v) be the uy′′-subpath (respectively y′′v-subpath) of C that does not
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contain y′. Let Puy′ (respectively Py′v) be the uy′-subpath (respectively y′v-subpath) of C that
does not contain y′′.

(4) No vertex of {y′, y′′} has a neighbor in P .

First suppose that both y′ and y′′ have a neighbor in P . Let pi (respectively pj) be the vertex of
P with smallest index adjacent to y′ (respectively y′′). W.l.o.g. i ≤ j. Let Q be a chordless path
from u to y′′ in G[V (Puy′′)]. Then V (Q)∪{p1, p2, . . . , pj , y′} induces in G a 2-wheel with center y′,
a contradiction.

So we may assume w.l.o.g that y′′ does not have a neighbor in P . Suppose y′ does. Let Q be the
uv-subpath of C that contains y′′. Let Q′ be a chordless uv-path in G[V (Q)]. By (3), Q′ contains
y′′. But then G[V (Q′)∪V (P )∪{y′}] is a 2-wheel with center y′, a contradiction. This proves (4).

By symmetry it suffices to consider the following two cases.

Case 1: x′ ∈ V (Puy′′) and x′′ ∈ V (Py′′v).
Let C ′ be the cycle that consists of Puy′′ , Py′′v and P . Then by (4), (x,C ′) is a 2-wheel that
contradicts our choice of (x,C).

Case 2: x′ ∈ V (Puy′) and x′′ ∈ V (Py′′v).
Suppose y′v is an edge. Let C ′ be the cycle that consists of Puy′′ , Py′′v and P . Then by (4), (C ′, y′)
is a 2-wheel that contradicts our choice of (x,C). So y′v is not an edge, and by symmetry neither
is uy′′. Now let C ′ be the cycle that consists of Puy′ , y

′y′′, Py′′v and P . Then by (4), (x,C ′) is a
2-wheel that contradicts our choice of (x,C). 2

Note that in the above Theorem C1 is used as a basic class for C2. Here is another version of
the decomposition theorem where C0 is used as a basic class and some cutsets are added.

Theorem 5.6 A graph in C2 is either in C0 or it has a 0-cutset, a 1-cutset, a proper K2-cutset, a
proper S2-cutset or a proper I-cutset.

proof — The result holds by Theorem 5.5 and Theorem 5.3. 2

5.2 Structural characterization

In [7], a complete structural characterization of graphs in C1 and C2 is given. Here, we only prove
what is needed to build a decomposition based recognition algorithm for C2 (Section 5.3) and for
the result about edge-coloring presented in Section 5.4.

We first define blocks of decomposition w.r.t. different cutsets.
If G has a 0-cutset, i.e. it is disconnected, then its blocks of decomposition are the connected

components of G. If G has a 1-cutset {u} and C1, . . . , Ck are the connected components of G \ u,
then the blocks of decomposition w.r.t. this cutset are graphs Gi = G[Ci ∪ {u}], for i = 1, . . . , k.

Let (S,K ′,K ′′) be a split of a proper K2-cutset of G. The blocks of decomposition of G with
respect to this split are graphs G′ = G[S ∪K ′] and G′′ = G[S ∪K ′′].

Let ({u, v, w},K ′,K ′′) be a split of a proper I-cutset of a graph G, and assume uv is an edge.
The blocks of decomposition of G w.r.t. this split are graphs G′ and G′′ defined as follows. Block
G′ is the graph obtained from G[V (K ′) ∪ {u, v, w}] by adding marker vertices u′1, u

′
2, v

′
1 and
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v′2 and marker edges uu′1, u
′
1u
′
2, u

′
2w, vv′1, v

′
1v
′
2 and v′2w. Block G′′ is the graph obtained from

G [V (K ′′) ∪ {u, v, w}] by adding marker vertices u′′1, u′′2, v′′1 and v′′2 and marker edges uu′′1, u′′1u
′′
2,

u′′2w, vv′′1 , v′′1v
′′
2 and v′′2w.

Theorem 5.7 For 0-cutset, 1-cutsets and proper K2-cutsets the following holds: G is in C2 if and
only if all the blocks of decomposition are in C2.

proof — Since a 2-wheel is 2-connected, the theorem obviously holds for 0-cutsets and 1-cutsets.
Suppose that ({u, v},K ′,K ′′) is a split of a proper K2-cutset of G, and let G′ and G′′ be the blocks
of decomposition w.r.t. this split. Since G′ and G′′ are induced subgraphs of G, it follows that if
G ∈ C2, then G′, G′′ ∈ C2.

Suppose now that G′ and G′′ are in C2. If G admits a 2-wheel (x,C) as an induced subgraph,
then C being a chordless cycle, it must by included in G′ or G′′. Assume w.l.o.g. that C is included
in G′. Now, since (x,C) is not a subgraph of G′, x ∈ V (K ′′) and thus the only way for x to be
adjacent with at least two vertices of C is to be adjacent with both a and b, a contradiction with
the fact that {a, b} is a proper K2-cutset. 2

Theorem 5.8 Let G be a 2-connected graph. Let ({u, v, w},K ′,K ′′) be a split of a proper I-cutset
of G, and G′ and G′′ the corresponding blocks of decomposition. Then G ∈ C2 if and only if G′ ∈ C2
and G′′ ∈ C2. Moreover, G′ and G′′ are 2-connected.

proof — First note that, since G is 2-connected, by construction of G′ and G′′, G′ and G′′ are
2-connected.

Let G ∈ C2 and assume w.l.o.g. that G′ contains a 2-wheel (x,C) as an induced subgraph. Since
x has at least two neighbors of degree at least 3, x is not a marker vertex. Since (x,C) cannot be
contained in G, V (C ′) ∩ {u′1, u′2, v′1, v′2} 6= ∅. W.l.o.g. we may assume that uu′1u

′
2w is a subpath of

C. If V (C)∩ {v′1, v′2} 6= ∅, then C = uu′1u
′
2wv

′
1v
′
2u, and it follows that x is adjacent to at least two

vertices of {u, v, w}, contradicting the assumption that {u, v, w} is a proper I-cutset. Therefore
V (C) ∩ {v′1, v′2} = ∅. Let P ′ be the uw-subpath of C that does not contain u′1. If v /∈ V (P ′) then
(x, uP ′wP ′wuu) is 2-wheel in G, a contradiction. Hence v ∈ V (P ′). If x has at least two neighbors
in P ′ \{u}, then (x, vP ′wP ′′wvv) is a 2-wheel in G, a contradiction. So N(x)∩V (P ′) = {u, a}, where
a is a vertex of P ′ \ {u, v, w}. If v does not have a neighbor in P ′′uw \ {u}, then (x, uvP ′wP ′′wuu) is
a 2-wheel in G, a contradiction. Hence v has a neighbor in P ′′uw \ {u}. But then (v, uxaP ′wP ′wuu)
is a 2-wheel in G, a contradiction.

To prove the converse assume that G′ ∈ C2 and G′′ ∈ C2, but that G contains as an induced
subgraph a 2-wheel (x,C). Let us first assume that C is contained in G′ or G′′, w.l.o.g V (C) ⊂
V (G′). If x ∈ K ′ ∪ {u, v, w} then (x,C) is an induced subgraph of G′, a contradiction. Otherwise
x ∈ K ′′, and hence the two neighbors of x in C must be in {u, v, w} which contradicts the assumption
that {u, v, w} is a proper I-cutset. So C must contain vertices from both K ′ and K ′′, and therefore
it contains w and at least one vertex from the set {u, v}. W.l.o.g. we may assume that it contains u
and that x ∈ V (G′). Let P be the uw-subpath of C contained in G′. If x 6= v, then (x, uPwu′2u

′
1u)

is a 2-wheel in G′, a contradiction. So x = v, and therefore v is adjacent to a vertex y of C different
from u. We may assume w.l.o.g. that y ∈ G′. Then the vertex set (v, uPwu′2u

′
1u) is a 2-wheel in

G′, a contradiction. 2
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5.3 Recognition algorithms

Deciding whether a graph contains a 2-wheel as a subgraph can be done directly as follows: for
every 3-vertex path xyz, check whether there are two internally disjoint xz-paths in G\y. Checking
whether there are two internally disjoint xz-paths can be done in O(n) time ([74], see also [82])
this leads to an O(n4) recognition algorithm for class C1.

Recognizing whether a graph contains a 2-wheel as an induced subgraph is a more difficult
problem, and we are not aware of any direct method for doing that. Observe that the above
method would not work since checking whether there is a chordless cycle through two specified
vertices of an input graph is NP-complete [12].

In this section, we give an NP-completeness result showing that the detection of “wheel-like”
induced subgraph may be hard, then we describe a decomposition based recognition algorithm for
C2.

5.3.1 Detecting 4-wheels

Recall that a k-wheel (k ≥ 2) is a wheel with at least k spokes.

Theorem 5.9 The problem whose instance is a graph G and whose question is “does G contain a
4-wheel as an induced subgraph?” is NP-complete.

proof — Let H be a graph of maximum degree 3, with 2 non-adjacent vertices x and y of degree
2. Detecting an induced cycle through x and y in H is an NP-complete problem (see Theorem 2.7
in [65]). We now show how to reduce this problem to the detection of a 4-wheel. Let x′ and x′′

(resp. y′ and y′′) be the neighbors of x (resp. of y). Subdivide the edges xx′, xx′′, yy′ and yy′′. Call
a, b,c, d the four vertices created by these subdivisions. Add a vertex v adjacent to a, b, c and d.
Call G this new graph. Note that since H has maximum degree 3, v is the only vertex of degree at
least 4 in G, so every 4-wheel of G must be centered at v. Hence, G contains a 4-wheel if and only
if H contains an induced cycle through x and y. 2

5.3.2 Recognition algorithm for C2
As we noticed at the begining of the section, it is easy to decide if a graph is in C1 in polynomial-
time. So, to recognize C2, we can lean on the decomposition theorem of C2 that uses C1 as a basic
class (Theorem 5.5).

The next lemma is essential to show that the decomposition tree obtained by decomposing along
I-cutsets has polynomial size.

Lemma 5.10 Let G be a 2-connected graph. Let ({u, v, w},K ′,K ′′) be a split of a proper I-cutset
of G, and G′ and G′′ the corresponding blocks of decomposition. If |K ′| ≤ 4 or |K ′′| ≤ 4 then
G 6∈ C2.

proof — Assume w.l.o.g. that uv is an edge (the only one in G[{u, v, w}]). Assume by way of
contradiction that |K ′| ≤ 4. Then P ′uw is of length at most 5. Suppose that v has a neighbor
x ∈ P ′uw \ {u}. By definition of a proper I-cutset, vertices in K ′ see at most one vertex in {u, v, w}
and thus x is not a neighbor of w. So uP ′uwxvu is a cycle of length at most 5 in G and thus, by
Lemma 5.1, G 6∈ C2. So we may assume that v does not have a neighbor on P ′uw \ {u}. Since
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{u, v, w} is a proper I-cutset, P ′uw and P ′vw are both of length at least 3. Suppose that the interior
vertices of P ′uw and P ′vw are disjoint. Then P ′uw = ux1x2w and P ′vw = vy1y2w, and hence since
x1, x2, y1, y2 all belong to the same connected component of G \ {u, v, w}, there must be an edge
between a vertex of {x1, x2} and a vertex of {y1, y2}. But then G admits a cycle of length at
most 5 and by Lemma 5.1, G 6∈ C2. Finally we may assume w.l.o.g. that P ′uw = ux1x2x3w and
P ′vw = uy1x3w (else by Lemma 5.1, G 6∈ C2). But then either (y1, ux1x2x3wP

′′
wvvu) is a 2-wheel (if

u does not have a neighbor on P ′′vw \{v}) or (u, vy1x3wPwvv) is a 2-wheel (if u does have a neighbor
on P ′′vw \ {v}). 2

Theorem 5.11 There exists a polynomial time algorithm that decides whether an input graph is
in C2.

proof — Observe that finding a proper I-cutset in any input graph can be done in polynomial-time
by checking for every triple {u, v, w} that induces exactly one edge if it is a cutset or not.

We may assume that G has at least 12 vertices for otherwise, we proceed by brute force. Also
we assume that G is 2-connected, for otherwise by the algorithm from [55] we compute its blocks
(in the classical sense of 2-connectivity, see [14] for example) in linear time and run our algorithm
for each block.

The algorithm has two steps.

Step 1 If G has no proper I-cutset, then by Theorem 5.5, G is in C2 if and only if G is in C1. So,
we may rely on the recognition algorithm for C1 described at the beginning of the section.

Step 2 So, we may assume that G has a proper I-cutset, for which we compute the two blocks
of decomposition G′ and G′′. By Theorem 5.5, G is in C2 if and only if G′ and G′′ are. By
Theorem 5.8 and Lemma 5.10, we may assume that both G′ and G′′ are 2-connected and
both have at least 12 vertices (otherwise G does not belong to C2). Now, test whether G′ and
G′′ are in C2 by recursively calling our algorithm.

The only problem with the algorithm above is that there might be more than a polynomial
number of recursive calls, so let us bound their number. (Note that the number of recursive calls
corresponds to the number of vertices of the decomposition tree of G along I-cutset).

For any graph H, set ϕ(H) = 2|V (H)| − 23 and let k(H) be the total number of recursive calls
when running the algorithm for H. Observe that in Step 2 the algorithm is called only for graphs
such that ϕ is at least 1. We claim that k(G) ≤ ϕ(G). If G is handled in Step 1, then k(G) = 1,
so our claim is clear (because |V (G)| ≥ 12). Otherwise, by the induction hypothesis and since
|V (G)| = |V (G1)|+ |V (G2)| − 11, we have

k(G) = 1 + k(G1) + k(G2)
≤ 1 + ϕ(G1) + ϕ(G2)
= 2(|V (G1)|+ |V (G2)| − 11)− 23
= ϕ(G).

2

54



5.3.3 Conclusions and open questions

Based on Theorem 5.3, it is shown in [7] that one can decide if a graph is in C1 in O(nm)-time and
then, based on Theorem 5.6 (the theorem of decomposition for C2 using C0 as a basic class), one
can decide if a graph belongs to C2 in O(n2m2)-time. We decided not to enter in these complexity
details because our main interest is not to get the fastest algorithm but to know which problem are
in P and which are not.

The proof of Theorem 5.9 also implies that it is NP-complete to decide if a graph admits a
k-wheel as an induced subgraph for any k ≥ 4. So the question for 3-wheel-free graph becomes of
particular interest.

A 2-wheel that has exactly two spokes is called a clock. Detecting if a graph admits a clock as
an induced subgraph is mentioned in [65] as an open problem (Section 3.3, the first of the 7 open
problems).

Nicolas Trotignon also proposed the following conjecture:

Conjecture 5.12 (Trotignon [91]) If G is a clock-free graph then, either it admits a clique-
cutset, or a vertex of degree 2 or it is the cube.

In order to prove this conjecture, the following result has been proven:

Theorem 5.13 (Aboulker, Li, Thomassé [5]) If G is a clock-free graph with girth at least 9,
then G admits either a clique-cutset or a vertex of degree 2. Moreover the class of clock-free graphs
is χ-bounded.

5.4 Flat edges and edge-coloring

A flat edge of a graph G is an edge both of whose endvertices are of degree 2. In this section we
show that every 2-connected 2-wheel-free graph has a flat edge and use this property to edge-color
it. The key of the proof is to show the existence of an extreme decomposition for proper S2-cutset
and proper I-cutset in graphs that do not admit K2-cutsets (see Theorem 5.16). (recall that an
extreme decomposition is a decomposition in which one of the blocks is basic.)

Lemma 5.14 Let G be a 2-connected graph that does not have a K2-cutset. Let ({u, v, w},K ′,K ′′)
be a split of a proper I-cutset of G, and G′ and G′′ the corresponding blocks of decomposition. Then
G′ and G′′ have no K2-cutset.

proof — W.l.o.g. uv is an edge and, by definition of an I-cutset, it is the only edge with both
extremities in {u, v, w}. Assume by way of contradiction and w.l.o.g. that G′ admits a K2-cutset
S = {a, b}. By Theorem 5.8, G′ is 2-connected. Since G is 2-connected and has no K2-cutset, every
connected component of G \ {u, v, w} must contain a neighbor of w and a neighbor of u or v. So, S
does not contain any marker vertices and S 6= {u, v}. Moreover, since uv is the only edge with both
extremities in {u, v, w}, S ∩ {u, v, w} ≤ 1. Then w.l.o.g. we may assume that v 6∈ S. Let C and D
be two distinct connected components of G′ \ S such that v ∈ C. Then all the marker vertices and
vertices of {u,w} \S are in C. Therefore D ⊆ K ′, and hence S is a cutset of G (separating D from
G \ (D ∪ S)), a contradiction. 2

We now need to define blocks of decomposition w.r.t. to proper S2-cutset. Note that they are
defined in a different way that in the previous chapter. Let ({u, v},K ′,K ′′) be a split of a proper
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S2-cutset of a graph G. The blocks of decomposition of G w.r.t. this split are graphs G′ and G′′

defined as follows. Block G′ is the graph obtained from G[V (K ′)∪{u, v}] by adding marker vertices
u′, v′ and marker edges uu′, u′v′ and v′v. Block G′′ is the graph obtained from G [V (K ′′) ∪ {u, v}]
by adding marker vertices u′′ and v′′ and marker edges uu′′, u′′v′′ and v′′v.

Lemma 5.15 Let G be a 2-connected graph that does not have a K2-cutset. Let ({u, v},K ′,K ′′) be
a split of a proper S2-cutset of G, and G′ and G′′ the corresponding blocks of decomposition. Then
G′ and G′′ are 2-connected, have no K2-cutset and belong to C2.

proof — Since G is 2-connected, by construction of G′ and G′′ it is clear that G′ and G′′ are also
2-connected.

Let us now prove that G′ and G′′ have no K2-cutset. Suppose by way of contradiction and
w.l.o.g. that G′ admits a K2-cutset {a, b}. Since G is 2-connected, any connected component of K ′

must contain a neighbor of u and v. Thus {a, b} ∩ {u, v, u′, v′} = ∅ and it follows that {u, v, u′, v′}
are in the same connected component of G \ {a, b}. Let D be a connected component of G \ {a, b}
that does not contain {u, v, u′, v′}. Then {a, b} is a K2-cutset of G (separating D from the rest of
the graph), a contradiction. So G′ (and by symmetry G′′) does not admit K2-cutset.

It now remains to show that G′ and G′′ belong to C2. Assume by way of contradiction and
w.l.o.g. that G′ admits a 2-wheel (x,C) as an induced subgraph. Since x has at least two neighbors
of degree at least 3, x is not a marker vertex of G′. Since G ∈ C2, (x,C) is not contained in K ′ and
thus we may assume that uu′v′v is in C. Since G is 2-connected, G[S ∪K ′′] contains an uv-path
P . So, by replacing uu′v′v by P , we obtain a 2-wheel in G, a contradiction. Therefore, G′ ∈ C2. 2

Theorem 5.16 Let G ∈ C2 \ C0 be a 2-connected graph that does not have a K2-cutset. Then
G has an I-cutset or a proper S2-cutset S with split (S,K ′,K ′′) such that one of the blocks of
decomposition, say G′, belongs to C0. Furthermore, all vertices of S are of degree at least 3 in G′.

proof — By Theorem 5.6, G has an I-cutset or a proper S2-cutset. Let (S,K ′,K ′′) be a split of
an I-cutset or a proper S2-cutset of G such that among all such splits, |K ′| is minimized. Let G′

be the block of decomposition that contains K ′. If S is a proper S2-cutset we let S = {u, v}, and
if S is an I-cutset we let S = {u, v, w} and assume that uv is an edge.

(1) G′ is 2-connected, has no K2-cutset and belongs to C2.

If S is an I-cutset, then by Theorem 5.8 G′ is 2-connected and belongs to C2 and by Lemma 5.14 G′

has no K2-cutset. If S is a proper S2-cutset, then the claim holds by Lemma 5.15. This proves (1).

(2) If S is a proper S2-cutset, then both u and v have at least two neighbors in K ′. In particular,
all vertices of S have degree at least 3 in G′.

Suppose not and let u1 be the unique neighbor of u in K ′. If u1v is an edge then uu1vv
′u′u is

a cycle of G′ and thus, by Lemma 5.1, G′ = uu1vv
′u′u, contradicting the assumption that S is a

proper S2-cutset of G. Then ({u1, v},K ′ \ {u1},K ′′ ∪{u}) is a split of a proper S2-cutset of G that
contradicts our choice of (S,K ′,K ′′). This proves (2).

Since it is clear that if S is an I-cutset, then every vertex of S is of degree at least 3 in G′, it
only remains to show that G′ ∈ C0. Assume not. By (1) and Theorem 5.6, G′ has an I-cutset or
a proper S2-cutset with split (C,C1, C2) (say). W.l.o.g. we may assume that (C,C1, C2) is chosen
such that |Ci|, for some i ∈ {1, 2}, is minimized. Let M be the set of marker vertices of G′ (if
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S is a proper S2-cutset M = {u′, v′} and if S is a proper I-cutset, M = {u′1, u′2, v′1, v′2}). If C is
an I-cutset, then it is clear that every vertex in C is of degree at least 3 in G′. If C is a proper
S2-cutset, then by (2) (applied on C and G′), all vertices of C have degree at least 3 in G′. Hence,
in both case, C ∩M = ∅. We now consider the following two cases.

Case 1: S is a proper S2-cutset of G.
Since C ∩M = ∅, we may assume w.l.o.g. M ⊆ C2. Thereby C1 is a proper subset of K ′. Then
(C,C1, (C2 \M)∪K ′′) is a split of an I-cutset or a proper S2-cutset of G, contradicting our choice
of (S,K ′,K ′′).

Case 2: S is an I-cutset of G.
First observe that, |C ∩ S| ≤ 2 (it is obvious in the case where C is a proper S2-cutset and it is
due to the fact that, by the choice of (S,K ′,K ′′), G[K ′] is connected in the case where C is an
I-cutset). If |C ∩ S| ≤ 1, then w.l.o.g. (S ∪M) \ C ⊆ C2, and hence (C,C1, (C2 \M) ∪K ′′) is a
split of an I-cutset or a proper S2-cutset of G, contradicting our choice of (S,K ′,K ′′).

So we may assume from now on that |C ∩ S| = 2. Suppose first that C is a proper S2-cutset.
So, w.l.o.g. C = {v, w}. Then, since each vertex of S has a neighbor in K ′, in particular u has
a neighbor in K ′ and thus K ′ ∪ {u, u′1, u′2} are in the same connected component of G′ \ {v, w},
say K ′ ∪ {u, u′1, u′2} ⊆ C1. So C2 = {v′1, v′2} contradicting the fact that C is a proper S2-cutset.
So we may assume that C is an I-cutset. If marker vertices u′1, u

′
2 are in C1 and v′1, v

′
2 are in

C2 (which might be the case if C ∩ S = {w, u} or {w, v}), then (C,C1 \ {u′1, u′2}, C2 ∪ {u′1, u′2}) is
also a split of an I-cutset of G′. So we may assume that w.l.o.g. (S ∪M) \ C ⊆ C2, and hence
(C,C1, (C2 \M)∪K ′′) is a split of an I-cutset or a proper S2-cutset of G, contradicting our choice
of (S,K ′,K ′′). 2

Theorem 5.17 If G ∈ C2 is 2-connected, then either G is an induced cycle or it has at least two
flat edges that induce a matching.

proof — We prove the result by induction on |V (G)|. It is true when |V (G)| ≤ 3.

Case 1: G ∈ C0. Since G is 2-connected, all vertices have degree at least two. Let S be the vertices
of G of degree 2, and T = V (G) \ S. If G is not an induced cycle, then T 6= ∅. It follows that the
connected components of G[S] are all paths of length at least 1, whose vertices are all of degree 2
in G. Let u ∈ T . By definition of C0, u can have at most one neighbor in T , and hence it has at
least two neighbors in S, say u1 and u2. Since G is 2-connected, u1 and u2 cannot be in the same
connected component of G[S] (otherwise u is a cutvertex of G). Therefore, G[S] has at least two
connected components, and hence it has two flat edges that induce a matching. This completes the
proof in Case 1.

Case 2: G has a K2-cutset. Suppose ({a, b}, C1, C2) is a split of a K2-cutset of G, and let
G1 = G[C1 ∪ {a, b}] and G2 = G[C2 ∪ {a, b}] be the corresponding blocks of decomposition. Note
that by Lemma 5.2, {a, b} is a proper K2-cutset. For i = 1, 2, Gi is clearly 2-connected, and since
Gi is a subgraph of G, Gi ∈ C2. Hence, by the induction hypothesis, Gi is either an induced cycle
or it has at least two flat edges that induce a matching. Since {a, b} is proper, Gi cannot be a
triangle. Therefore, one of the flat edges of Gi must be completely contained in Ci, and hence it is
flat in G as well. Hence, G has at least two flat edges (one in C1, the other one in C2) that induce
a matching. This completes the proof in Case 2.
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So, we may no assume that G has no K2-cutset. Thus, by Theorem 5.16, G has an I-cutset or a
proper S2-cutset S with split (S,K ′,K ′′) such that the block of decomposition G′ that contains K ′

belongs to C0, and all vertices of S have degree at least three in G′. This leads us to the following
two cases.

Case 3: S is an I-cutset. Let C ′ be a connected component of G[K ′] such that all vertices of S
have a neighbor in C ′ and note that, since G ∈ C′0, all these neighbors must be of degree 2. Then
C ′ must contain a vertex x that is of degree at least 3. Now by the same argument as in Case 1,
there are at least two flat edges in C ′ that induce a matching. These edges are flat in G as well.
This completes the proof in Case 3.

Case 4: S is an S2-cutset. Let S = {u, v} and let u1, u2 be two neighbors of u in K ′ Since G′ ∈ C0,
for i = 1, 2, ui is of degree 2 and have a neighbor of degree 2, say u′i. By Lemma 5.1, u1u

′
1 and

u2u
′
2 are two flat edges that induce a matching in G that induce a mat This completes the proof

in Case 4. 2

An edge of a graph is pending if it contains at least one node of degree 1.

Corollary 5.18 Every graph G in C2 with at least one edge contains an edge that is pending or
flat.

proof — We consider the classical decomposition of G into blocks, in the sense of 2-connectivity
(see [14]). So, G has a block B that is either a pending edge of G, or a 2-connected graph containing
at most one vertex x that has neighbors in V (G) \ V (B). In the latter case, by Theorem 5.17, B
is either a chordless cycle or it has two flat edges that induce a matching in B, and so at least one
flat edge of B is non-incident to x, and is therefore a flat edge of G. 2

An edge-coloring of G is a function π : E → C such that no two adjacent edges receive the
same color c ∈ C. If C = {1, 2, . . . , k}, we say that π is a k-edge coloring. The chromatic index of
G, denoted by χ′(G), is the least k for which G has a k-edge-coloring.

Vizing’s theorem states that χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1, where ∆(G) is maximum
degree of nodes in G. The edge-coloring problem or chromatic index problem is the problem of
determining the chromatic index of a graph. The problem is NP-hard for several classes of graphs,
and its complexity is unknown for several others. Here, we solve the edge-coloring problem for the
class C2.

Theorem 5.19 If G is a graph in C2 such that ∆(G) ≥ 3, then χ′(G) = ∆(G).

proof — Induction on |E(G)|. If |E(G)| = 0, the result clearly holds. By Corollary 5.18, G has
an edge ab that is pending or flat. Note that C2 is not closed under removing edges in general, but
it is closed under removing flat or pending edges. Set G′ = (V (G), E(G) \ {ab}). If ∆(G′) ≥ 3,
then by the induction hypothesis, we can edge-color G′ with ∆(G′) colors. Otherwise, ∆(G′) ≤ 2,
so G′ is 3-edge colorable. In either cases, G′ is ∆(G)-colorable. We can extend the edge-coloring
of G′ to an edge-coloring of G as follows. When ab is pending, by assigning a color to ab not used
among the edges incident to ab, and when ab is flat by assigning to ab a color not used for the two
edges adjacent to ab. 2
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Note that when ∆(G) ≤ 2, G is a disjoint union of cycles and paths, so χ′ is easy to compute.
The proof above is easy to transform into a polynomial time algorithm that outputs the coloring
whose existence is proved.
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Chapter 6

Balanced and balanceable graphs

In this chapter:

• If G and H are graphs, then we say that G is H-free if G does not contain
H as an induced subgraph.

• K4 is not a wheel.

The work presented in this chapter comes from a joint work with Marko Radovanović, Nicolas
Trotignon, Théophile Trunck and Kristina Vušković to appear in Journal of Graph Theory [6].

6.1 Introduction

Classes of balanced and balanceable graphs do not come from the world of graphs but from the
world of combinatorial optimization. Let us say a word about their matrices’ origin.

A 0, 1 matrix is balanced if for every square submatrix with two ones per row and per column,
the number of ones is a multiple of four. This notion was introduced by Berge [9]. There is a
natural way to associate 0, 1 matrices with bipartite graphs.

Given a 0, 1 matrix A, the bipartite graph representation of A is the bipartite graph having a
vertex for every row in A, a vertex for every column in A, and an edge ij joining row i to column
j if and only if the entry aij equals 1. We say that a bipartite graph G is balanced if it is the
bipartite representation of a balanced matrix. The following property is an easy consequence of the
definition of balanced graphs and give a characterization of balanced graphs by forbidding induced
subgraphs.

Property 6.1 A graph G is balanced if and only if the length of every chordless cycles of G is a
multiple of four.

In [94], Truemper extended the definition of 0, 1 balanced matrix to 0,±1 matrices. A 0,±1
matrix is balanced if for every square submatrix with two nonzero entries per row and column, the
sum of the entries is a multiple of four. Balanceable graphs arose from this extension, let us explain
how they are defined. A signed graph is a graph, together with an assignment of weights ±1 to its
edges. A signed graph G is balanced if the length of every chordless cycle of G is a multiple of four.
A graph is balanceable if there exists a signing of its edges i.e. an assignment of weights ±1 to its
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edges, such that the resulting signed graph is balanced. Since assigning weight +1 to each edge
of a balanced graph give a balanced signed graph, the class of balanceable graphs is a superclass
of balanced graphs. Note also that balanced and balanceable graphs are subclasses of bipartite
graphs.

Another (more adequat in the context of structural graph theory) definition of balanceable come
from the following theorem. Let G be a bipartite graph. An odd theta of G is a theta that connects
two vertices that are on opposite sides of the bipartition of G. An odd wheel is a wheel that has an
odd number of spokes.

Theorem 6.2 (Truemper [94]) A bipartite graph is balanceable if and only if it does not contain
odd wheels nor odd thetas as induced subgraphs.

The following conjecture is the last unresolved conjecture about balanced graphs in Cornuéjols’
book [40] (it is Conjecture 6.11).

Conjecture 6.3 (Conforti and Rao [38]) Every balanced graph contains an edge that is not the
unique chord of a cycle.

It is interresting to observe that, as proved by the following property, this conjecture is equivalent
to say that every balanced graph contains an edge whose removal leaves the graph balanced.

Property 6.4 If G is a balanced graph and e is an edge of G, then G \ e is balanced if and only if
e is not the unique chord of a cycle.

proof — Let G be a balanced graph and let e = xy an edge of G. We first prove that if e the
unique chord of a cycle C in G, then G is not balanced. Edges of C are edge-wise partitioned into
two xy-path P1 and P2. So P1 ∪ e and P2 ∪ e are chordless cycle of G. So, since G is balanced, P1

and P2 are both of length 3 mod 4. Therefore P1∪P2, that is a chordless cycle in G\ e, is of length
2 mod 4 and thus G \ e is not balanced.

Suppose now that G \ e is not balanced. Then G \ e contain a chordless cycle C such that the
length of C is not a multiple 4. Since G is balanced, C is not a chordless cycle of G and thus e is
the unique chord of C in G. 2

Observe that in Conjecture 6.3, we cannot replace “balanced” by “balanceable”. Indeed, in the
graph R10, that is the graph defined by the cycle x1x2 . . . x10x1 (of length 10) with chords xixi+5,
1 ≤ i ≤ 5 (see Figure 6.1), every edge is the unique chord of a cycle and it is balanceable: assign
weight +1 to the edges of the cycle x1x2 . . . x10x1 and −1 to the chords. (Note that R10 is not
balanced: x1x2x3x4x5x6 is a hole of length 6).

Anyway, Conjecture 6.3 generalises to balanceable graphs in the following way.

Conjecture 6.5 (Conforti, Cornuéjols and Vušković [32]) In a balanceable graph either ev-
ery edge belongs to some R10 or there is an edge that is not the unique chord of a cycle.

Outline of the chapter

A graph is linear balanceable if it is balanceable and does not contain a square (i.e. a hole of length
4). A graph G is cubic if every vertex is of degree 3, and is subcubic if ∆(G) ≤ 3. In this chapter, we
prove that conjecture 7.13 holds when restricted to linear balanceable graphs (see Corollary 6.14)
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Figure 6.1: Two ways to draw the graph R10.

and to subcubic balanceable graphs (see Corollary 6.18).
For the subcubic case, our proof relies on a result conjectured by Morris, Spiga and Webb [73],
stating that every cubic balanced graph contains a pair of twins (see Corollary 6.17).

Our proofs are based on known decomposition theorems for the classes we consider, which we
describe in Section 6.2. The decomposition theorems say that either the graph is ”basic”, or it
has a 2-join, a 6-join or a star cutset. It is not straightforward to use this decomposition theorem
to prove the desired result. In fact, the decomposition theorem for balanced graphs [33] has been
known since the early 1990’s, and still no one knows how to use it to prove the Conforti and Rao
Conjecture. The key idea that makes things work for us, is the use of extreme decompositions,
(recall it is a decompositions in which one of the blocks is basic). In Section 6.3 we prove that if
star cutsets are excluded, then the graphs in our classes admit extreme decompositions. This is
sufficient for the proof of the main result in the subcubic case in Section 6.5, since the induction
hypothesis in this case goes through the star cutset nicely.

For the linear balanceable graphs, this is not the case. Here we cannot inductively get rid of
star cutsets in a straightforward manner. Furthermore, it is not true that if a linear balanceable
graph has a star cutset, then it has a star cutset one of whose blocks of decomposition does not have
a star cutset (i.e. star cutsets do not admit extreme decomposition in linear balanceable graphs).
To prove the main result for linear balanceable graphs (Section 6.4), we develop a new technique
for finding an “extreme decomposition” with respect to star cutsets: we look for a minimally-sided
double star cutset, and show that the corresponding block of decomposition does not have a star
cutset.

6.2 Decomposition theorems

In this section we present the decomposition theorems for linear balanceable graphs and subcubic
balanceable graphs. We first precisely describe the basic class and the different cutsets that we
need for the decomposition theorems, then we state the decomposition theorem our proof leans on.

We now introduce the different cutsets that are needed to decompose balanceable graphs.

Star cutset
A connected graph G has a star cutset (x,R) if R ⊆ N(x) and {x} ∪R is a cutset of G. Note that
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if R = ∅, then (x,R) is a cutvertex.

2-join
A graph G has a 2-join (X1, X2) if V (G) can be partitioned into sets X1 and X2 so that the
following hold:

• For i = 1, 2, Xi contains disjoint nonempty sets Ai and Bi, such that every vertex of A1 is
adjacent to every vertex of A2, every vertex of B1 is adjacent to every vertex of B2, and there
are no other adjacencies between X1 and X2.

• For i = 1, 2, Xi contains at least one path from Ai to Bi, and if |Ai| = |Bi| = 1, then G[Xi]
is not a chordless path.

We say that (X1, X2, A1, A2, B1, B2) is a split of this 2-join, and the sets A1, A2, B1, B2 are
called the special sets of this 2-join (see Figure 6.2).

6-join
A graph G has a 6-join (X1, X2) if V (G) can be partitioned into sets X1 and X2 so that the
following hold:

• X1 (resp. X2) contains disjoint nonempty sets A1, A3, A5 (resp. A2, A4, A6) such that, for
every i ∈ {1, . . . , 6}, every vertex in Ai is adjacent to every vertex in Ai−1 ∪ Ai+1 (where
subscripts are taken modulo 6), and these are the only adjacencies between X1 and X2.

• |X1| ≥ 4 and |X2| ≥ 4.

We say that (X1, X2, A1, A2, A3, A4, A5, A6) is a split of this 6-join (see Figure 6.3).

We now define the unique basic class we need, called sparse graphs.

Sparse graphs
A bipartite graph is sparse if it admits a bipartition such that all the vertices in one side of the
bipartition have degree at most 2. The class of sparse graphs will be the only basic class we use in
our decomposition theorems.

We are now armed to state the decomposition theorems that are going to be used all along
the chapter. This decomposition theorem can be recovered from the work in [33], [34] and [98] as
explained in [6].

Theorem 6.6 ([6]) Let G be a connected balanceable graph.

• If G is square-free, then G is sparse, or has a 2-join, a 6-join or a star cutset.

• If ∆(G) ≤ 3, then G is sparse or is R10, or has a 2-join, a 6-join or a star cutset.

6.3 Graphs with no star cutset

In this section, we investigate what are the properties that have 2-joins and 6-joins in balanceable
graphs with no star cutset (see subsections 6.3.1 and 6.3.2). The main result of this section is the
proof of the existence of extreme {2, 6}-join in linear balanceable graphs with no star cutset (see
Subsection 6.3.3).
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6.3.1 2-joins in graphs with no star cutset

We first define blocks of decomposition w.r.t. 2-join.

Let (X1, X2, A1, A2, B1, B2) be a split of a 2-join of a graph G. The blocks of decomposition of G
w.r.t. this 2-join are graphs G1 and G2 defined as follows. To obtain Gi, for i = 1, 2, we start from
G[Xi], and first add a vertex a3−i, adjacent to all the vertices in Ai and no other vertex of Xi, and
a vertex b3−i adjacent to all the vertices in Bi and no other vertex of Xi. For i = 1, 2, let Q3−i be
a path in G[X3−i] with smallest number of edges connecting a vertex in A3−i to a vertex in B3−i.
For i = 1, 2, add to Gi a marker path M3−i connecting a3−i and b3−i with length |E(M3−i)| ∈ {4, 5}
having the same parity as Q3−i.

X1

A1

B1

X2

A2

B2

X1

A1

B1

•
a2

•
b2

M2

X2

A2

B2•
b1

•
a1

M1

G G1 G2

Figure 6.2: A graph G with a split of a 2-join (X1, X2, A1, B1, A2, B2) and the associated blocks of
decomposition G1 and G2.

The following lemma is proved in [93] (Lemma 3.2). It gives some easy property of 2-join that
are practical when manipulating 2-joins.

Lemma 6.7 (Trotignon and Vušković [93]) Let G be a graph that has no star cutset, and let
(X1, X2, A1, A2, B1, B2) be a split of a 2-join of G. Then for i = 1, 2, the following hold:

(i) Every component of G[Xi] meets both Ai and Bi.

(ii) Every u ∈ Xi has a neighbor in Xi.

(iii) Every vertex of Ai has a non-neighbor in Bi.

(iv) Every vertex of Bi has a non-neighbor in Ai.

(v) |Xi| ≥ 4.

Theorem 6.8 (Conforti, Cornuéjols, Kapoor, Vušković [35]) Let G be a bipartite graph
with no star cutset. Let (X1, X2) be a 2-join of G, and let G1 and G2 be the corresponding blocks
of decomposition. Then the following hold:

(i) If G is balanceable, then G1 and G2 are balanceable.

(ii) G1 and G2 have no star cutset.
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(iii) If G has no 6-join, then G1 and G2 have no 6-join.

A 2-join (X1, X2) of G is a minimally-sided 2-join if for some i ∈ {1, 2} the following holds: for
every 2-join (X ′1, X

′
2) of G, neither X ′1 ( Xi nor X ′2 ( Xi. In this case Xi is a minimal side of this

minimally-sided 2-join. Next lemma says that graphs with no star cutset admit extreme 2-join.

Lemma 6.9 (Trotignon and Vušković [93]) Let G be a bipartite graph with no star cutset. Let
(X1, X2, A1, A2, B1, B2) be a split of a minimally-sided 2-join of G with X1 being a minimal side,
and let G1 and G2 be the corresponding blocks of decomposition. Then the following hold:

1. |A1| ≥ 2, |B1| ≥ 2, and in particular all the vertices of A2 ∪B2 are of degree at least 3.

2. G1 has no 2-join.

6.3.2 6-joins in graphs with no star cutset

We first define blocks of decomposition w.r.t. 6-join.
Let (X1, X2, A1, . . . , A6) be a split of a 6-join of a graph G. The blocks of decomposition of G

by this 6-join are graphs G1 and G2 defined as follows. For i = 1, . . . , 6 let ai be any vertex of Ai.
Then G1 = G[X1 ∪ {a2, a4, a6}] and G2 = G[X2 ∪ {a1, a3, a5}]. vertices a2, a4, a6 (resp. a1, a3, a5)
are called the marker vertices of G1 (resp. G2).

X1

A1

A3

A5

X2

A2

A4

A6

G

X1

A1

A3

A5

•
a2

•
a4

•
a6

G1

•
a1

•
a3

•
a5

X2

A2

A4

A6

G2

Figure 6.3: A graph G with a split of a 6-join (X1, X2, A1, A2, A3, A4, A5, A6) and the associated
blocks of decomposition G1 and G2.

Lemma 6.10 Let G be a bipartite graph with no star cutset. Let (X1, X2, A1, . . . , A6) be a split of
a 6-join of G, and G1 and G2 the corresponding blocks of decomposition. Then the following hold:

(i) X1 \ (A1 ∪A3 ∪A5) 6= ∅ and X2 \ (A2 ∪A4 ∪A6) 6= ∅.

(ii) If C is a connected component of G[X1 \ (A1 ∪A3 ∪A5)] (resp. G[X2 \ (A2 ∪A4 ∪A6)]), then
a vertex of Ai, for every i = 1, 3, 5 (resp. i = 2, 4, 6) has a neighbor in C.

(iii) If G is square-free or ∆(G) ≤ 3, then |Ai| = 1 for every i ∈ {1, . . . , 6}, and in particular every
vertex of ∪6i=1Ai is of degree at least 3 in G.
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(iv) If G is balanceable, then so are G1 and G2.

(v) If G is square-free, then G1 and G2 do not have star cutsets.

proof — Note that G is bipartite so there are no edges in A1 ∪A3 ∪A5 nor in A2 ∪A4 ∪A6.

Suppose that X1 \ (A1 ∪ A3 ∪ A5) = ∅. By definition of a 6-join, |X1| ≥ 4. So, we may
assume w.l.o.g. that |A1| ≥ 2. Hence for a vertex a1 ∈ A1, {a1} ∪ A2 ∪ A6 is a star cutset of G, a
contradiction. Therefore by symmetry (i) holds.

Let C be a connected component of G[X1 \ (A1 ∪ A3 ∪ A5)] and suppose that no vertex of A1

has a neighbor in C. Then for a vertex a4 ∈ A4, {a4} ∪A3 ∪A5 is a star cutset of G separating C
from the rest of the graph, a contradiction. Therefore by symmetry, (ii) holds.

If G is square-free then clearly |Ai| = 1 for every i ∈ {1, . . . , 6}. Suppose ∆(G) ≤ 3 and |A1| ≥ 2.
Then, any vertex in A2 have at least 3 neighbors in A1 ∪A3 and thus have no neighbors in X2, but
by (i), X2 \ (A2 ∪A4 ∪A6) 6= ∅ and thus by (ii), some vertex of A2 must have a neighbor in X2, a
contradiction. Therefore, (iii) holds.

Since G1 and G2 are induced subgraphs of G, (iv) holds.

To prove (v) assume G is square-free and w.l.o.g. G1 has a star cutset (x,R). Let a2, a4, a6 be
the marker vertices of G1. By (ii), x 6∈ {a2, a4, a6}. If x ∈ A1, then (x,R∪A2 ∪A6) is a star cutset
of G, a contradiction. Therefore by symmetry, x ∈ X1 \ (A1 ∪ A3 ∪ A5). Since G is square-free R
may contain vertices from at most one of the sets A1, A3, A5, and hence a2, a4, a6 are all contained
in the same connected component of G1 \ ({x} ∪ R). It follows that (x,R) is also a star cutset of
G, a contradiction. Therefore (v) holds. 2

We observe that property (v) above is not true in general for balanceable graphs. On the other
hand, it is true for subcubic balanceable graphs. Since we use a different technique to prove the
main result for subcubic balanceable graphs than the one we use for linear balanceable graphs, we
do not need this result.

6.3.3 Extreme {2,6}-join

A partition (X1, X2) of V (G) is a {2, 6}-join if it is a 2-join or a 6-join of G. It is a minimally-sided
{2, 6}-join if for some i ∈ {1, 2} the following holds: for every {2, 6}-join (X ′1, X

′
2) of G, neither

X ′1 ( Xi nor X ′2 ( Xi. In this case Xi is a minimal side of this minimally-sided {2, 6}-join. An
extreme {2, 6}-join is a {2, 6}-join such that one of the block of decomposition does not admit
{2, 6}-joins.

Note that the next result holds for square-free bipartite graphs in general (no need to ask for
them to be balanceable).

Lemma 6.11 Let G be a square-free bipartite graph. Let (X1, X2) be a minimally-sided {2, 6}-join
of G, with X1 being a minimal side. If G has no star cutset, then the block of decomposition G1

has no {2, 6}-join i.e. (X1, X2) is an extreme {2, 6}-join.

proof — Assume the contrary, and let (X ′1, X
′
2) be a {2, 6}-join of G1. We now consider the

following cases.

Case 1: (X1, X2) is a 2-join of G.
Let M2 be the marker path of G1. By Theorem 6.8 (ii) and Lemma 6.9 (ii), G1 has no 2-join,
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and thus (X ′1, X
′
2) is a 6-join of G1, say with split (X ′1, X

′
2, A

′
1, . . . , A

′
6). By Lemma 6.10 (iii),

every vertex in ∪6i=1A
′
i is of degree at least 3 in G1. Therefore, we may assume w.l.o.g. that

V (M2) ⊆ X ′2. If V (M2) ⊆ X ′2 \ (A′2 ∪A′4 ∪A′6), then clearly (X ′1, (X
′
2 \ V (M2)) ∪X2) is a 6-join of

G that contradicts the choice of (X1, X2). So V (M2) ∩ (A′2 ∪ A′4 ∪ A′6) 6= ∅, and since vertices in
A′2 ∪ A′4 ∪ A′6 are of degree at least 3, V (M2) ∩ (A′2 ∪ A′4 ∪ A′6) ⊆ {a2, b2}. Moreover, since a2 and
b2 do not have common neighbors, V (M2)∩ (A′2 ∪A′4 ∪A′6) 6= {a2, b2}. So, we may assume w.l.o.g.
that V (M2) ∩ (A′4 ∪A′6) = ∅. But then (X ′1, (X

′
2 \ V (M2)) ∪X2, A

′
1, A2, A

′
3, A

′
4, A

′
5, A

′
6) is a split of

a 6-join of G that contradicts the choice of (X1, X2).

Case 2: (X1, X2) is a 6-join of G.
Let (X1, X2, A1, . . . , A6) be the split of this 6-join, and let a2, a4, a6 be the marker vertices of G1.
We now consider the following two cases.

Case 2.1: (X ′1, X
′
2) is a 6-join of G1.

Let (X ′1, X
′
2, A

′
1, . . . , A

′
6) be the split of this 6-join. By Lemma 6.10 (iii) every vertex in ∪6i=1A

′
i is

of degree at least 3 in G1 and thus we may assume w.l.o.g. that {a2, a4, a6} ⊆ X ′2 \ (A′2 ∪A′4 ∪A′6).
But then (X ′1, X

′
2 ∪X2) is a 6-join of G that contradicts the choice of (X1, X2).

Case 2.2: (X ′1, X
′
2) is a 2-join of G1.

Let (X ′1, X
′
2, A

′
1, A

′
2, B

′
1, B

′
2) be the split of this 2-join. By Lemma 6.10 (iii), let A1 = {a1},

A3 = {a3} and A5 = {a5}, and let H be the 6-hole induced by {a1, . . . , a6}. First suppose that
both X ′1 \ (A′1 ∪B′1) and X ′2 \ (A′2 ∪B′2) contain a vertex of H. Then w.l.o.g. we may assume that
a2 ∈ X ′2 \ (A′2 ∪ B′2), a4 ∈ B′1 and a6 ∈ A′1. Since vertices a2, a4 and a6 are all of degree 2 in G1,
it follows that A′2 = {a1} and B′2 = {a3}, and hence by Lemma 6.10 (iii) (a2, {a1, a3}) is a star
cutset of G, a contradiction.

So we may assume w.l.o.g. that (X ′2 \ (A′2 ∪ B′2)) ∩ V (H) = ∅. By Lemma 6.7 (ii) and since
a2, a4, a6 are all of degree 2 inG1, it follows that in fact w.l.o.g. we may assume that V (H)∩X ′2 ⊆ A′2.
By Lemma 6.7 (ii), every vertex of A′2 has a neighbor in X ′2, and hence (since a2, a4, a6 are all of
degree 2 in G1) {a2, a4, a6} ⊆ X ′1. But then (X ′1 ∪ X2, X

′
2) is a 2-join of G that contradicts the

choice of (X1, X2). 2

6.4 Linear balanceable graphs

In this section, we first show how looking at a minimally sided double star cutset leads to a block
of decomposition with no star cutset. Then we prove the main result of this chapter on linear
balanceable graphs (Theorem 6.13).

A double star cutset S of a graph G is a cutset of G such that S contains two adjacent vertices
u and v such that every vertex of S is adjacent to at least one of u or v. Note that a star cutset is
either a double star cutset or a cut vertex. If U = (N(u)∩S) \ {v} and V = (N(v)∩S) \ {u}, then
this double star cutset is denoted by (u, v, U, V ). Note that if G is a square-free bipartite graph,
U ∪ V induces a stable set and U ∩ V = ∅.

Let S be a double star cutset and let Ci, for i = 1, 2, be a partition of the vertex set V (G) \ S,
such that there are no edges between vertices of C1 and C2. Then Gi = G[S ∪ V (Ci)], i = 1, 2, are
blocks of decomposition with respect to this double star cutset.
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A double star cutset of a 2-connected graph G with blocks of decompositions G1 and G2 is a
minimally-sided double star cutset if for some i ∈ {1, 2} the following holds: for every double star
cutset of G with blocks of decompositions G′1 and G′2 neither V (G′1) ( V (Gi) nor V (G′2) ( V (Gi).
In this case Gi is a minimal side of this minimally-sided double star cutset.

Lemma 6.12 Let G be a 2-connected square-free bipartite graph that has a star cutset. Let Gi, for
some i ∈ {1, 2} be a minimal side of a minimally-sided double star cutset of G. Then Gi does not
have a star cutset.

proof — Let (u, v, U, V ) be a minimally-sided double star cutset, let G1 be its minimal side, and
let S = {u, v}∪U ∪V . Observe that every vertex of U ∪V has a neighbor in G1 \S. In particular,
G1 is 2-connected. Let us assume by way of contradiction that (x,R) is a star cutset of G1. Since
G1 is 2-connected, R 6= ∅.

Case 1: x 6∈ S.

Since G is square-free and bipartite, x has at most one neighbor in S. If R∩{u, v} = ∅, then vertices
of S \R are in the same connected component of G1 \({x}∪R), and therefore (x, y,R\{y}, ∅), for a
vertex y ∈ R, is a double star cutset of G that contradicts the minimality of G1. So w.l.o.g. u ∈ R.
Let C be a connected component of G1 \ ({x} ∪ R) that does not contain a vertex of {v} ∪ V . If
V (C) \ U 6= ∅, then (x, u,R \ {u}, U) is a double star cutset of G that contradicts the minimality
of G1. So V (C) \ U = ∅. But then some vertex u′ ∈ U is of degree 1 in G1 (since G1 is square-free
and bipartite), contradicting the fact that G1 is 2-connected.

Case 2: x ∈ S.

First, let us assume that x ∈ {u, v}, say x = u. Since G is square-free and bipartite and every
vertex of U ∪ V is of degree at least 2 in G1, every connected component of G1 \ ({x} ∪ R)
that contains a vertex from U or a vertex from V contains a vertex from G1 \ S. Therefore,
(x, v, (U ∪ R) \ {v}, V ) is a double star cutset of G that contradicts the minimality of G1. So,
x ∈ U ∪ V , and w.l.o.g. we may assume that x ∈ U . Then the vertices of {v} ∪ V are all contained
in the same connected component of G1 \ ({x} ∪ R). Again, since G is square-free and bipartite,
every connected component of G1 \ ({x}∪R) that contains a vertex from U contains a vertex from
G1\S. Therefore, (x, u,R\{u}, U \{x}) is a double star cutset of G that contradicts the minimality
of G1. 2

Our main result about linear balanceable graphs is the following.

Theorem 6.13 If G is a linear balanceable graph on at least two vertices, then G contains at least
two vertices of degree at most 2.

proof — We prove the theorem by induction on |V (G)|. If |V (G)| = 2, then the theorem trivially
holds. So, let G be a linear balanceable graph such that |V (G)| > 2. We may assume that G is
connected, else we are done by induction.

Let u be a cut vertex of G, and let {C1, C2} be a partition of V (G)\{u}, such that there are no
edges between vertices of C1 and C2. Then, by induction applied to graphs G[Ci∪{u}] for i = 1, 2,
there is a vertex ci ∈ Ci \ {u}, for i = 1, 2, that is of degree at most 2 in G[Ci ∪ {u}]. But then c1
and c2 are also of degree at most 2 in G. So, we may assume that G is 2-connected.

Now suppose that G admits a star cutset. By Lemma 6.12, there is a double star cutset
(u, v, U, V ) of G, such that a block of decomposition w.r.t. this cutset, say G′, has no star cutset.
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Let S = {u, v} ∪ U ∪ V and note that all vertices from U and V have a neighbor in G′ \ S. By
Theorem 6.6 G′ is sparse or has a {2, 6}-join.

Case 1: G′ is sparse.

Let (X,Y ) be a bipartition of G′ such that all vertices of Y are of degree 2. Vertices u and v are
adjacent, so we may assume w.l.o.g. that {v} ∪ U ⊆ Y and {u} ∪ V ⊆ X. In particular, |V | ≤ 1.

Suppose first |V | = 1 and put V = {v′}. All the neighbors of v′ in G′ \ S are of degree 2 in
G′ and in G, so we may assume that v′ has a unique neighbor w in G′ \ S. Let w′ be the unique
neighbor of w in G′ \ v′. Since G′ is square-free and bipartite, w′ ∈ V (G′) \ S. If w′ is of degree 2
in G′ (and hence in G), then w′ and w are the desired two vertices. So we may assume that w′

has at least three neighbors in G′. But then, since G′ is square-free and bipartite, w′ must have a
neighbor w′′ ∈ V (G′) \ (S ∪ {w}), and hence w and w′′ are the desired two vertices.

Now suppose that V = ∅ and let v′ be the neighbor of v in V (G′) \ S. Since G is square-free
and bipartite, v′ has no neighbors in U ∪ {u}. So, either degG′(v′) ≥ 3, in which case v′ has at
least two neighbors in V (G′) \ S of degree 2 in G′, and hence in G, or degG′(v′) = 2, in which case
v′ and the neighbor of v′ in V (G′) \ S are both of degree 2 in G′, and hence in G. Therefore G has
at least two vertices of degree 2.

Case 2: G′ has a {2, 6}-join.

Let (X ′1, X
′
2) be a {2, 6}-join of G′. W.l.o.g. we may assume that |X ′1 ∩ {u, v}| ≤ 1. Let (X1, X2)

be a minimally-sided {2, 6}-join of G′ such that X1 ⊆ X ′1, and let G1 be the corresponding block of
decomposition. Clearly G1 is square-free and |X1 ∩ {u, v}| ≤ 1. By Theorem 6.8 (in case (X ′1, X

′
2)

is a 2-join) or Lemma 6.10 (in case (X ′1, X
′
2) is a 6-join), G1 is linear balanceable and has no star

cutset. By Lemma 6.11, G1 has no {2, 6}-join, and hence by Theorem 6.6, G1 is sparse. We now
consider the following two cases.

Case 2.1: (X1, X2) is a 6-join of G′.

Let (X1, X2, A1, . . . , A6) be the split of this 6-join. By Lemma 6.10, A1 = {a1}, A3 = {a3},
A5 = {a5}, and all these vertices are of degree at least 3 in G1. Since G1 is square-free, vertices
a1, a3, a5 do not have common neighbors in X1. Since |X1 ∩ {u, v}| ≤ 1, we may assume w.l.o.g.
that (X1 \ {a1}) ∩ {u, v} = ∅. Let a′3 (resp. a′5) be a neighbor of a3 (resp. a5) in X1. Then a′3 6= a′5
and {a′3, a′5} ∩ S = ∅. Since G1 is sparse, a′3 and a′5 are of degree 2 in G1, and hence in G′. Since
{a′3, a′5} ∩ S = ∅, they are also of degree 2 in G.

Case 2.2: (X1, X2) is a 2-join of G′.

Let (X1, X2, A1, A2, B1, B2) be the split of this 2-join, and let M2 be the marker path of G1. By
Lemma 6.9, |A1| ≥ 2, |B1| ≥ 2 and the ends of M2 are of degree at least 3 in G1. Since G1 is
sparse, it follows that the vertices of A1 ∪ B1 are all of degree 2 in G1, and on the same side of
bipartition of G1, and hence of G′ as well. In particular, it is not possible that both u and v are
in A2 ∪ B2. Since G′ is square-free and bipartite, it follows that |A2| = |B2| = 1, and hence the
vertices of A1 ∪ B1 are of degree 2 in G′. Since |X1 ∩ {u, v}| ≤ 1, w.l.o.g. B1 ∩ S = ∅, and hence
the vertices of B1 are also of degree 2 in G.

So, we may assume that G does not admit a star cutset. Thus, by Theorem 6.6 G is sparse or
has a {2, 6}-join. So the theorem holds by the same proof as in Cases 1 and 2 above. 2

Corollary 6.14 Let G be a linear balanceable graph that has at least one edge. Then there is an
edge of G that is not the unique chord of a cycle.
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proof — Follows immediately from Theorem 6.13 since an edge incident to a degree 2 vertex
cannot be the unique chord of a cycle. 2

6.5 Subcubic balanceable graphs

A branch vertex is a vertex of degree at least 3. A branch is a path connecting two branch vertices
and containing no other branch vertices. Two branches are non incident if the sets of ends of the
corresponding paths are disjoint. Note that a 2-connected graph that is not a cycle is edgewise
partitioned into its branches. A pair of non-adjacent vertices (u, v) of G is a pair of twins if
N(u) = N(v) and |N(u)| ≥ 3. Note that a cubic bipartite graph has a pair of twins if and only if
it contains a K2,3 as a subgraph. Note that R10 does not have a pair of twins.

Figure 6.4: A cubic balanceable graph with 4 pairs of twins.

Our main result on subcubic balanceable graphs is the following theorem.

Theorem 6.15 Let G be a 2-connected balanceable bipartite graph with ∆(G) ≤ 3. If G is not
equal to R10 and has at least three branch vertices, then one of the following holds:

(i) G has two vertices of degree 2 that are in non incident branches.

(ii) G has a pair of twins and a vertex of degree 2.

(iii) G has two disjoint pairs of twins.

In the previous theorem, if G has at least three branch vertices, then it has in fact at least four
branch vertices (because 2-connected graphs have no vertex of degree 1).

The following lemma settles the case in which G does not admit a star cutset nor a 6-join. We
treat this case separately because it does not need induction.

Lemma 6.16 Let G be a 2-connected balanceable bipartite graph with ∆(G) ≤ 3, that is not equal
to R10 and has at least three branch vertices. If G does not have a star cutset nor a 6-join, then G
has two vertices of degree 2 that are in non incident branches.
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proof — By Theorem 6.6, G is either sparse or has a 2-join, so we consider the following two
cases. Note that every vertex of G is of degree at least 2.

Case 1: G is sparse.
Since G is sparse, no two branch vertices are adjacent, and hence every branch of G contains a
vertex of degree 2. Let a, b, c be distinct vertices of degree 3, such that there is a branch from a to
b. There are three branches in G with end c. If one of the other ends of these branches is not a or
b, the proof is complete. So we may assume w.l.o.g. that we have two branches between a and c
and one branch between b and c. But then there is a branch from b with an end not in {a, c}, and
hence the result follows.

Case 2: G has a 2-join.
Let (X1, X2, A1, A2, B1, B2) be a split of a minimally-sided 2-join of G with X1 being a minimal
side. Let G1 be the corresponding block of decomposition. By Theorem 6.8, G1 is balanceable
and it does not have a star cutset nor a 6-join. By Lemma 6.9 G1 has no 2-join, |A1| = |B1| = 2
(because ∆(G) ≤ 3), and all vertices of A2 ∪B2 are of degree 3. So by Theorem 6.6 G1 is sparse.

Claim: X1 \ (A1 ∪B1) contains a vertex of degree 2.
Proof of Claim: Assume not. Let (X,Y ) be a bipartition of G1 such that all vertices of X are of
degree 2. Let a2 . . . b2 be the marker path of G1, with a2 complete to A1 and b2 complete to B1.
Then a2 and b2 are in Y and hence A1 ∪B1 ⊆ X. In particular, there are no edges in G[A1 ∪B1].
So by Lemma 6.7 (ii), X1 \ (A1 ∪B1) is not empty. Since we assumed that X1 \ (A1 ∪B1) contains
no vertex of degree 2, and G1 has no vertex of degree 1 (because G is 2-connected), every vertex in
X1 \ (A1 ∪B1) is of degree 3. Moreover it implies that X1 \ (A1 ∪B1) ⊆ Y and thus X1 \ (A1 ∪B1)
is a stable set. So for every u ∈ X1 \ (A1 ∪ B1), N(u) ⊆ A1 ∪ B1. But then since |A1 ∪ B1| = 4,
|N(u)| = 3 and the fact that each vertex of A1 ∪B1 is of degree 2 in G1, we have a contradiction.
This completes the proof of the claim.

By the claim let c1 ∈ X1 \ (A1 ∪ B1) be of degree 2 (in G1, and hence in G as well). Let
(X ′1, X

′
2, A

′
1, A

′
2, B

′
1, B

′
2) be a split of a minimally-sided 2-join of G with X ′2 being a minimal side

and X ′2 ⊆ X2. Then, as before, |A′2| = |B′2| = 2, and hence all the vertices of A′1 ∪ B′1 are of
degree 3. By the claim, there is a vertex c2 ∈ X ′2 \ (A′2 ∪B′2) that is of degree 2 in G.

Since |A1| = |B1| = |A′2| = |B′2| = 2, we see that no branch of G may overlap the three following
sets: A1 ∪B1, X1 \ (A1 ∪B1) and A′2 ∪B′2 (resp. A′2 ∪B′2, X ′2 \ (A′2 ∪B′2) and A1 ∪B1). It follows
that c1 and c2 are in non incident branches. 2

Proof of Theorem 6.15: We proceed by induction on |V (G)|. If |V (G)| = 1, then the theorem
is vacuously true. By Theorem 6.6 and Lemma 6.16, we may assume that G has a star cutset or a
6-join.

Proof when G has a star cutset.
Let (x,R) be a star cutset of G such that |R| is minimum. Since G is 2-connected, |R| ≥ 1,
and by the choice of (x,R) and since G is subcubic, every vertex of R has neighbors in every
connected component of G \ ({x} ∪ R), every vertex of R is of degree 3. Moreover, G \ ({x} ∪ R)
has exactly two connected components (because of the degree of the vetices in R), say C1 and C2.
Let Gi be the block of decomposition w.r.t. this cutset that contains Ci, for i = 1, 2 (recall that
Gi = G[Ci ∪ R ∪ {x}). Note that every vertex of R is of degree 2 in Gi. Note also that both G1,
G2 are 2-connected.
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Claim: If x is of degree 2 in Gi, for some i ∈ {1, 2}, then Ci contains a vertex u of degree 2, or a
pair of twins. Furthermore, if Gi has at least two branch vertices, then u can be chosen so that x
and u are not in the same branch of Gi.
Proof of Claim: If Gi has no branch vertices, then Ci contains a vertex of degree 2. If Gi has
exactly two branch vertices, both are in Ci. Since these vertices can have at most one branch of
length 1 connecting them, there must be a branch between them that is fully contained in Ci and is
of length at least 2, and therefore there is a vertex of degree 2 in Ci that is not in the same branch
as x. If Gi has at least 3 branch vertices, then, by the induction hypothesis, Ci contains a vertex
of degree 2 that is not in the same branch as x, or Ci contains a pair of twins. This completes the
proof of Claim.

We now consider the following cases.

Case 1: |R| = 1.
Note that since G is 2-connected, x has a neighbor in both C1 and C2, and in particular, x is of
degree 2 in both G1 and G2. Since G has at least three branch vertices, at least one of G1 or G2

has at least two branch vertices, so, by Claim applied for i = 1 and i = 2, G satisfies the theorem.

Case 2: |R| = 2.
Let R = {y1, y2}. Suppose first that deg(x) = 2. Then at least one of G1 or G2 has at least two
branch vertices (since neither can have exactly one), w.l.o.g. say G1 does. By Claim applied to G1,
either G1 admits a pair of twins or there is a vertex u of degree 2 in C1 that is not in the same
branch of G1 as x. If G1 admits a pair of twins then, since we assumed that x was of degree 2 in
G, outcome (ii) of the theorem holds. So we may assume there is a vertex u of degree 2 in C1 that
is not in the same branch of G1 as x. Since y1 and y2 have degree 3 in G, x and u are degree 2
vertices of G that are contained in non incident branches of G, a contradiction.

So we may assume that deg(x) = 3, and w.l.o.g. x has a neighbor in C1 and does not in C2. If
G1 has exactly two branch vertices and they are adjacent, then for a shortest path P from y1 to y2
in G2 \ {x}, the set V (G1)∪V (P ) induces an odd wheel with centre x, contradicting Theorem 6.2.
So, if G1 has exactly two branch vertices, then there is a vertex of degree 2 in G1 in a branch that
does not contain y1 nor y2, and therefore, by Claim applied to G2 (x is of degree 2 in G2 so we can
apply the claim), G satisfies the theorem, a contradiction. So G1 must have at least three branch
vertices, and hence by induction hypothesis, G1 has a pair of twins or a vertex of degree 2 in a
branch that has both of its ends in C1. But then by Claim applied to G2, G satisfies the theorem.

Case 3: |R| = 3.
Let R = {y1, y2, y3}. First, let us suppose that both G1 and G2 have exactly two branch vertices,
and that vi is a branch vertex of Gi different from x, for i = 1, 2. If Gi, for i = 1, 2, does not have
a vertex of degree 2 other than yj , for j = 1, 2, 3, then G is a K3,3, and hence it satisfies (iii) of the
theorem. So, we may assume that there is a vertex of degree 2 (in G) in a branch of G1 containing
y1. If y2v2 or y3v2 is not an edge, then G satisfies (i) of the theorem, so we may assume that y2v2
and y3v2 are edges. If y1v2 is also an edge, then x and v2 form a pair of twins, and therefore G
satisfies (ii) of the theorem. When y1v2 is not an edge, then by symmetry v1y2 and v1y3 are edges.
But then y2 and y3 form a pair of twins, and therefore G satisfies (ii) of the theorem.

Observe that if Gi has at least three branch vertices, then, by induction hypothesis, there is a
vertex ui of degree 2 in a branch of Gi not having x as its end, or Gi has a pair of twins that does
not contain x (since Gi has at least three branch vertices). So if both G1 and G2 have at least
three branch vertices, then the theorem holds. Therefore we may assume that G1 has at least three
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and G2 exactly two branch vertices. If G2 has a vertex2 u2 of degree 2 not in {y1, y2, y3}, then
G satisfies (i) or (ii) of the theorem. So we may assume that the only vertices of G2 of degree 2
are y1, y2 and y3, and therefore x and the other branch vertex of G2 form a pair of twins, hence G
satisfies (ii) or (iii). This completes the proof when G has a star cutset.

Proof when G has a 6-join.
We may assume that G has no star cutset. In particular, G does not contain a pair of twins (for

if u, v is a pair of twins of G, since G has at least three branch vertices, V (G)\ (N(u)∪{u, v}) 6= ∅,
and hence N(u)∪ {u} is a star cutset). Let (X1, X2, A1, A2, A3, A4, A5, A6) be a split of a 6-join of
G and let A = ∪6i=1Ai. By Lemma 6.10 (iii), |Ai| = 1 for every i ∈ {1, . . . , 6} and all vertices of A
are of degree 3 in G. It follows that both blocks of decomposition G1 and G2 have at least three
branch vertices. By the choice of G, each of them has a vertex of degree 2 not in A, and hence G
satisfies (i) of the theorem. This completes the proof. 2

As a consequence of Theorem 7.9 we have the following corollary, a special case of which was
conjectured in [73].

Corollary 6.17 If G is a cubic balanceable graph that is not R10, then G has a pair of twins none
of whose neighbors is a cut vertex of G.

proof — Inductively we may assume that G is connected. If G has no cutvertex then the result
holds by Theorem 6.15. So we may assume that G has a cutvertex. Let G′ be an end block of G
(so G′ is 2-connected). Then G′ has exactly one vertex of degree 2 say x (that is a cutvertex of G),
and all the other vertices of degree 3. Let G′′ be the graph obtained from G′ by subdividing twice
an edge incident to x. Clearly G′′ is 2-connected, balanceable and not equal to R10. Note that G′′

has exactly one branch of length greater than 1. By Theorem 6.15 G′′ has a pair of twins {u1, u2}.
Since x has only one neighbor of degree 3, x /∈ N(u1) = N(u2) and thus {u1, u2} is the desired pair
of twins of G. 2

As was noticed in [73] (for the special case of cubic balanced graphs), Corollary 6.17 implies
the following.

Corollary 6.18 Let G be a cubic balanceable graph. Then the following hold:

(i) G has girth four.

(ii) If G 6= R10 then G contains an edge that is not the unique chord of a cycle.

(iii) G is not planar.

proof — It is easy to see that if G = R10 then (i) and (iii) hold. So we may assume that G 6= R10.
By Corollary 6.17, let {u1, u2} be a pair of twins of G, and {v1, v2, v3} the set of neighbors of u1
and u2. Then u1v1u2v2 is a cycle of length 4, and hence (i) holds. Suppose that u1v1 is a unique
chord of a cycle C in G. Then all neighbors of u1 and v1 belong to C, and in particular, u2 belongs
to C and has three neighbors in C, a contradiction. Hence (ii) holds.

By Corollary 6.17 we may assume that none of v1, v2, v3 is a cut vertex of G. So there is a
connected component C of G \ {u1, u2, v1, v2, v3} such that all of v1, v2, v3 have a neighbor in C.
Let C ′ be a minimal induced subgraph of C that is connected and all of v1, v2, v3 have a neighbor
in C ′. Since G is cubic, it is easy to see that V (C ′) ∪ {u1, u2, v1, v2, v3} induces a subdivision of
K3,3. Therefore, by Kuratowski’s Theorem (see for example [14]), G is not planar. 2
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Chapter 7

Excluding wheels as subgraphs

In this chapter:

• If G and H are graphs, then we say that G is H-free if G does not contain
H as a subgraph (not necessarily induced).

• K4 is a wheel.

The work described in this chapter comes from two different papers. Results presented in
Section 7.3 (concerned with 3-wheel-free graphs) come from a joint work with Frédéric Havet and
Nicolas Trotignon [4] (unpublished), results presented in Section 7.4 is accepted in Journal of Graph
Theory [1].

Recall that a k-wheel is a graph formed by a chordless cycle and a vertex, outside the cycle,
that has at least k neighbors in the cycle. In this chapter, we study classes of graphs that do not
contain k-wheels as subgraphs for several values of k. It appears that arguments from connectivity
are more adapted to study these classes than the decomposition method.

Here is the plan of the chapter. In the first section, we state every known result about classes of
graphs defined by forbidding k-wheels as subgraphs. In the second chapter we present some tools
around connectivity. The third section is devoted to 3-wheel-free graphs and the last section, that
contains the main contribution of the author to the area, is concerned with 4-wheel-free graphs.

7.1 State of art

In this section, we give a brief survey of the known results on k-wheel-free graphs. These results are
split in two parts. We first present some extremal results that give the maximal number of edges
that a k-wheel-free graph with n vertices can contain. Then some results about local structural
properties with coloring applications. In the rest of the chapter we are only interested by these last
ones.

Recall that a twin is a pair of non adjacent vertices that have the same neighborhood.

The class of 2-wheel-free graphs is very simple, we already precisely described their structure
in Chapter 5 and we do not deal with them here.
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Extremal results

The following theorem give the maximal number of edges that a 3-wheel-free graph can contain.

Theorem 7.1 (Thomassen [87]) If G is a 3-wheel-free graphs on n vertices, then it has at most
2n− 3 edges.

In the same paper, Thomassen proves that this bound is tight and he precisely describes graphs
that reach it. These graphs are called (K3, K3,3)-cockades and are defined recursively as follows:

1. K3 and K3,3 are (K3, K3,3)-cockades.

2. If G1 and G2 are (K3, K3,3)-cockades and ei ∈ E(Gi) for i = 1, 2, then the graph obtained
by identifying e1 and e2 (and their respective extremity) is a (K3, K3,3)-cockade.

The next theorem is an extension of the theorem above to 4-wheel-free graphs.

Theorem 7.2 (Horev [57]) If G is a 4-wheel-free graph on n vertices, then it has at most 3n− 8
edges. Moreover, the bound is reached by a unique graph, the graph obtained from K3,n−3 by adding
an edge to the color class of size 3.

The following theorem is concerned with k-wheel-free graphs in general but the given bound is
not tight.

Theorem 7.3 (Horev and Lomonosov [58]) If G is a k-wheel-free graph (k ≥ 5) on n vertices,
then it has at most (2k − 3)(n− k + 1) edges.

The good bound is conjectured to be:

Conjecture 7.4 (Horev and Lomonosov [58]) If G is a k-wheel-free graph (k ≥ 5) on n ver-
tices, then it has at most (r − 1)(n − r + 1) + d r−12 e edges. Moreover, it is conjectured that the
only graph reaching this bound is the unique graph obtained from Kk−1,n−k+1 by adding a maximum
matching to the color class of cardinality k − 1.

It is interesting to note that extremal k-wheel-free graphs form a quite rich class when k = 3,
whereas it is formed by a unique one when k ≥ 4 (or at least when k = 4, for k ≥ 5 it is only
conjectured but there are many reasons to think the conjecture is true). We will also see that,
similarly, the class of k-connected k-wheel-free graphs is quite rich when k = 3 whereas it is formed
by a unique graph (namely Kk,k) when k ≥ 4 (see Theorem 7.11).

These differences are certainly explained by the fact that, when k ≥ 3, the structure around a
set of k vertices that do not lie on a common cycle in a (k+1)-connected graph is very constraining,
whereas it is less restrictive in the case where k = 2. See Section 7.2 for more details about that.

Structural and coloring results

Theorem 7.5 (Turner [95]) For any integer k ≥ 2, if G is a k-wheel-free graph, then G contains
a vertex of degree at most k.
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The proof of the above theorem relies on some elegant arguments on a longest chordless path
in a graph that has minimum degree k + 1. Note that the result stated in [95] is slightly weaker
than Theorem 7.5, but the proof given by Turner in [95] proves exactly the version given here.

Theorem 7.5 easily implies the following result.

Corollary 7.6 For any integer k ≥ 5, if G is a k-wheel-free graph, then G is (k+1)-colorable.

Thomassen and Toft showed the following result about 3-wheel-free graphs (an alternative proof
of it can be found in [4], we say more about it in Section 7.3):

Theorem 7.7 (Thomassen and Toft [88]) If G is a 3-wheel-free graph, then either it contains
a pair of twins or it contains a vertex of degree at most 2.

From Theorem 7.7 they easily get the following corollary that settles a conjecture proposed by
Toft in [89].

Corollary 7.8 If G is a 3-wheel-free graph, then G is 3-colorable.

proof — We proceed by induction on the number of vertices of a 3-wheel-free graph G. If
|V (G)| = 1, then G is 3-colorable. Otherwise, by Theorem 7.7, either G contains a vertex w of
degree at most 2, or a pair {u, v} of twins. In the first case, we color G \ {w} by the induction
hypothesis, and give to w one of the four colors not used in its neighborhood. In the second case,
we color G \ {u} by the induction hypothesis, and give to u the same color as v. 2

This last corollary is easily seen as being tight since odd cycle are 3-wheel-free. Some more
results about 3-wheel-free graphs (more precisely about 3-connected 3-wheel-free graphs and about
3-wheel-free planar graphs) are proved in Section 7.3.

The next theorem is an extension of Theorem 7.7 to 4-wheel-free graphs, it is the main contri-
bution of the author to this subject, the proof is given in Section 7.4.

Theorem 7.9 (Aboulker [1]) If G is a 4-wheel-free graph, then either it contains a pair of twins
or it contains a vertex of degree at most 3.

It implies the following corollary.

Corollary 7.10 If G is a 4-wheel-free graph, then G is 4-colorable.

proof — The proof is similar to the proof of corollary 7.8 2

The following result is concerned with k-connected k-wheel-free graphs for any k ≥ 4. A result
actually slightly more general is proved in Section 7.4 (see Theorem 7.32).

Theorem 7.11 (Aboulker [1]) For k ≥ 4, the only k-connected k-wheel-free graph is Kk,k.

Theorems 7.7, 7.9 and 7.11 suggest the following conjecture.

Conjecture 7.12 If G is a k-wheel-free graph (k ≥ 5), then either it contains a pair of twins or
it contains a vertex of degree at most k − 1.

We propose a second conjecture that is easily seen as being weaker than the above one.
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Conjecture 7.13 If G is a k-wheel-free graph (k ≥ 5), then it is k-colorable.

Note that concerning the coloring, Corollary 7.10 and Conjecture 7.13 are tight since for any
k ≥ 4, Kk is a k-wheel-free graph.
Let us finish this section by giving a way to construct an infinite number of k-wheel-free graphs of
chromatic number k. Let G1 and G2 be disjoint graphs, and let e1 = u1v1 and e2 = u2v2 be edges
of G1 and G2, respectively. The graph obtained from G1 and G2 by identifying u1 and u2, deleting
e1 and e2, and adding a new edge v1v2 is called a Hajós join of G1 and G2.

Property 7.14 If G1 and G2 are k-wheel-free graphs and G is a Hajós join of G1 and G2, then
G is k-wheel-free.

proof — Let e1 = u1v1 and e2 = u2v2 be edges of G1 and G2, respectively and assume that G
has been obtained from G1 and G2 by deleting e1 and e2, identifying u1 and u2, and adding a new
edge v1v2. We name u the vertex of G obtained from the identification of u1 and u2. Suppose by
way of contradiction that G contains a k-wheel (x,C) with spokes xx1, . . . , xxk. Note that deleting
v1v2 and u in G yield to a disconnected graph with two connected component, H ′1 and H ′2 say.
Put Hi = G[H ′i ∪ {u}] and assume w.l.o.g. that H ′i is a subgraph of Gi for i = 1, 2. So H1 and
H2 are both k-wheel-free. We may assume w.l.o.g. that x ∈ V (H1). Since {u, v2} is a cutset of G,
x1, . . . , xk need to be in H1. Therefore, by replacing the part of C that goes through H2 by the
edge u1v1, we get a k-wheel in G1, a contradiction. 2

A graph G is k-critical if χ(G) = k and, for any proper subgraph H of G, χ(H) < k. It is
a well-known (and easy) fact that the Hajós join of two k-critical graphs is k-critical (see [14] for
example). Now, since Kk is k-wheel-free and k-critical, by Property 7.14, one can build an infinite
number of k-critical k-wheel-free graphs using Hajós join.

7.2 Preliminaries

In this section, we present every tool we need in this chapter.

Around Menger Theorem

Let G be a graph, k ≥ 1 an integer, Y ⊆ V (G) a set of at least k vertices, and x ∈ V (G) \ Y . A
family F of k paths from x to Y whose only common vertex is x and whose internal vertices are
not in Y , is called a k-fan from x to Y. The set formed by vertices from Y that are endvertices of a
path of F is denoted by ext(F). We take the following convention for the notation of the paths of
a k-fan F : if we denote Px−u1 , . . . , Px−uk

the k paths of F , it means that for i = 1, . . . , k, x and ui
are the endvertices of Px−ui . The next result is an easy consequence of Menger Theorem (see [14]).

Lemma 7.15 (Fan Lemma) If G is a k-connected graph, x ∈ V (G) and Y is a subset of V (G) \
{x} of cardinality at least k, then there is a k-fan from x to Y .

We will also need the following improvement of the fan Lemma.

Lemma 7.16 (Perfect, [76]) Let G be a k-connected graph, k ≥ 2, k1 ≤ k, x ∈ V (G), S ⊆ V (G)
with |S| ≥ k and F1

x a k1-fan from x to S. There exists a k-fan Fx from x to S such that
ext(F1

x) ⊆ ext(Fx).
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Cycles containing prescribed elements

In graph theory, conditions for a set of elements (vertices, edges or paths) to belong to a cycle has
been heavily studied (see [52] for a nice survey on this subject). Since a vertex v of a graph G is
the center of a k-wheel if and only if there exists a cycle going through at least k vertices of N(v)
in G \ v, these kinds of result are very helpfull for the study of k-wheel-free graphs. The first result
in this area is the following.

Theorem 7.17 (Dirac [46]) In a k-connected graph G,

1. given any k vertices, there is a cycle passing through the k vertices;

2. given any edge and any k − 1 vertices there is a cycle passing through all of them.

In [99], Watkins and Mesner state a sufficient and necessary condition for a set of k vertices in a
(k− 1)-connected graph (k ≥ 3) to not be contained in a common cycle. As we already mentioned
in Section 7.1, there is a deep difference between cases where k = 3 and k ≥ 4.

The statement in the case where k = 3 is quite long and complicate to state and, since we do
not need it in any proofs presented here, we do not state it formally. A formal statement can be
find in [99] or in [4] where an alternative prove of F. Havet, N. Trotignon and the author is given.
But, roughly, it says that three vertices x, y, z of a 2-connected graph do not lie on a cycle if they
lie on three interiorly distinct paths P1, P2, P3 such that the removal of the endvertices of these
three paths pairwise separates x, y and z.

•

•

•y•x •z

• •

•

•

•y•x •z

• •

•

•

•

•

•x •y •z

Figure 7.1: In these three graphs, x, y and z do not lie on a common cycle

Note that, interestingly, the three smallest 2-connected graphs that contain three vertices x,
y, z not lying in a common cycle of the graph, are the theta, the pyramid and the prism (Figure
7.2). To our knowledge, [99] is the oldest paper mentioning the 3-paths configurations! Note also
that Lemma 7.22 gives a sufficient (but not necessary) condition for three vertices in a 2-connected
graph to not be contained in a common cycle.

The analogue result in the case k ≥ 4 says that a set of k vertices is not contained in a cycle of
a (k − 1)-connected graph if and only if there exists a (k − 1)-cutset that pairwise separates the k
vertices (the “if” part is easy to check). This fact is the key tool to prove that the only k-connected
k-wheel-free graph is Kk,k so we formally state it just before the proof (see Theore 7.29).
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Fragments and end blocks

Let G be a graph, F ⊆ V (G) and x ∈ V (G). We recall that N(F ) is the set of vertices from
V (G) \ F adjacent to at least one vertex of F and NF (x) = N(x) ∩ F is the neighborhood of x in
F . We denote by F the set V (G)\ (F ∪N(F )). We say that F is a fragment of G if |N(F )| = κ(G)
and F 6= ∅. Note that if F is a fragment of G, then F is a fragment too. Note also that complete
graphs are the only graphs that do not contain any fragment. So, if G is a graph of connectivity k,
each k-cutset of G defines two fragments.

An end of G is a fragment not containing any other fragments as a proper subset (it is a
fragment associated with a minimally sided κ(G)-cutset). It is clear that any fragment F contains
an end, and that consequently any graphs that is not a complete graph contain at least two disjoint
ends: one in F , another one in F .

Let F be an end of G. If |F | = 1 we say that F is trivial. The graph H obtained from
G[F ∪N(F )] by adding all (not already existing) edges between vertices of N(F ) is called an end
block of G. Edges with both ends in N(F ) are called marker edges of H.

Let us finish this section with two easy and essentials properties of the end blocks of a graph.

Property 7.18 Let G be a graph that is not a clique and let K be a clique in G. Then there exists
an end of G disjoint from K.

proof — Let F be a fragment of G. Either V (K) ⊂ F ∪N(F ), or V (K) ⊂ F ∪N(F ). The result
follows easily from the fact that F and F both contain an end. 2

The next classical property says that any graph with connectivity k that contains a non trivial
end admits a extreme k-cutset i.e. the end block containing the non-trivial end does not admit
k-cutset.

Property 7.19 If G is a graph of connectivity k and F is a non-trivial end of G, then the end
block H containing F is (k+1)-connected.

proof — Let G be a graph of connectivity k, F a non-trivial end of G and H the end block of
G containing F . Suppose by way of contradiction that κ(H) ≤ k. Since |V (H)| ≥ k + 2, if H is a
clique we are done. So we may assume that H is not a clique and thus H admits a fragment F ′

such that |NH(F ′)| ≤ k. Since NH(F ) induces a clique, by Property 7.18 we may choose F ′ disjoint
from NH(F ). Thus F ′ is a fragment of G that is a proper subset of F , a contradiction. 2

Note that Property 7.19 can be reformulated as follows: every graph of connectivity k that
is not a clique admits an extremal k-cutset (where the block of decomposition associated with k
cutsets is the end block).

7.3 3-wheel-free graphs

When I started my PHD, the first problem Nicolas Trotignon proposed to me is the study of graphs
that do not contain wheels as subgraphs (recall that wheels and 3-wheels are the same). He was
interested in graphs that do not contain wheels as induced subgraphs but, this class of graphs being
very complicated and hard to tackle (especially at the very beginning of a phd), we decided to start
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by forbidding them only as subgraphs. This leads to a class easier to handle and, we hoped, might
give us some insight on the structure of graphs that do not contain wheels as induced subgraphs.

At the end of the day, we cannot really say that it gave us any useful informations on graphs
with no induced wheels, but anyway, it leads us to some very nice results, methods and related
open problems.

The main result we obtained is Theorem 7.7. We didn’t know at this time it was already
proved by Thomassen and Toft. Anyway, our proof (jointly with Havet) is completely different
from theirs. We do not include it here because it is very long and technical and the global approach
is similar to the approach we use to prove Theorem 7.9 in Section 7.4. On the other hand we include
two unknown results about 3-wheel-free graphs: 3-connected 3-wheel-free graphs are minimally 3-
connected (see Subsection 7.3.1) and 3-wheel-free planar graphs are 2-colorable (see section 7.3.2).
Moreover, the (simple) proofs of these results illustrate some techniques we use in the (way more
complicated) proof of Theorem 7.9 (see Section 7.4).

7.3.1 Minimaly 3-connected 3-wheel-free graphs

Recall that a graph G is minimally 3-connected if, for any edge e of G, G\e is not 3-connected. An
edge e of a 3-connected graph G is said to be essantial is G \ {e} is not 3-connected. So, a graph
is minimally 3-connected if and only if it is 3-connected and all its edges are essential.

In this subsection, we give the proof that 3-connected 3-wheel-free graphs are minimally 3-
connected. We actually prove a more general statement which is that any end vertex of a non-
essential edge is the center of a 3-wheel (see Theorem 7.24).

The fact that 3-connected 3-wheel-free graphs are minimally 3-connected is a step of our proof
of Theorem 7.7. It indeed gives some strong information because of the following theorems of
Mader.

Theorem 7.20 (Mader [68], see also [13]) If G is a minimally 3-connected graph, then every
cycle of G contains a vertex of degree 3.

Theorem 7.21 (Mader [68], see also [13]) If G is a minimally 3-connected graph, then G has

at least 2|V (G)|+2
5 vertices of degree 3.

The following is the basic tool to characterize the situation when no cycle goes through three
given vertices of a 2-connected graph. Note that contrary to Theorem 7.29, it is not an “if and
only statement”.

Lemma 7.22 Let G be a 2-connected graph and x, y, z be three vertices of G. Then either

• a cycle of G goes through x, y, z; or

• x, y, z are distinct and there exist two distinct vertices tA, tB /∈ {x, y, z} and six internally
vertex-disjoint paths PA = tA . . . x, PB = tB . . . x, QA = tA . . . y, QB = tB . . . y, RA = tA . . . z
and RB = tB . . . z.

proof — Since G is 2-connected, we know that x, y and z are distinct (or a cycle goes through
them) and there exists a cycle C that goes through x, z. Cycle C is edge-wise partitioned into two
paths SA and SB from x to z. Since G is 2-connected, if y /∈ V (C), then there exists a 2-fan from
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y to C, formed by QA = y . . . tA and QB = y . . . tB say. If tA, tB ∈ V (SA) then up to symmetry,
x, tA, tB, y appear in this order along SA and xSAtAQAyQBtBSAzSBx is a cycle through x, y, z.
Similarly tA, tB ∈ V (SB) one finds such a cycle. Hence, we may assume tA ∈ V (SA) \ {x, z} and
tB ∈ V (SB) \ {x, z}. We let PA = xSAtA, RA = zSAtA, PB = xSBtB and RB = zSBtB. 2

We name W3(G) the set of vertices that are center of a 3-wheel in G.

Lemma 7.23 If G is 4-connected, then W3(G) = V (G).

proof — If a graph G is 4-connected, then any vertex v has at least four neighbors. Since G \ {v}
is 3-connected, by Theorem 7.17, it contains a cycle going through three neighbors of v. Together
with v, this cycle forms a wheel. 2

Lemma 7.24 If a 3-connected graph G contains an edge e = ab that is not essential, then {a, b} ⊆
W3(G).

proof — Since G \ ab is 3-connected, there exist three vertex-disjoint paths T1 = aa1 . . . b, T2 =
aa2 . . . b and T3 = aa3 . . . b in G \ ab.

InG\a, which is 2-connected, we may assume that no cycle goes through a1, a2 and a3 (otherwise
a ∈ W3(G)). So, by Lemma 7.22 applied to G \ a, there exist two vertices u, v and six internally
vertex-disjoint paths P1 = a1 . . . u, P2 = a2 . . . u, P3 = a3 . . . u, Q1 = a1 . . . v, Q2 = a2 . . . v and
Q3 = a3 . . . v. We set X = P1 ∪ P2 ∪ P3 ∪Q1 ∪Q2 ∪Q3.

Because of T1, T2, T3, either b ∈ X, in which case we suppose b ∈ P1, or there exists a 3-fan from
b to X in G \ a. When b /∈ X, from the pigeon-hole principle, at least two paths from this 3-fan
end in P1 ∪ P2 ∪ P3 or in Q1 ∪Q2 ∪Q3. So, up to symmetry, if b /∈ X, then we may assume that
there exists a 2-fan from b to P1 ∪ P2. It follows that (wherever b is) there is a cycle in G \ a that
goes through a1, a2 and b. Together with a, this cycle forms a wheel centered at a. This proves
a ∈W3(G), and b ∈W3(G) can be proved similarly. 2

Corollary 7.25 If G is a 3-connected 3-wheel-free graph, then G is minimally 3-connected.

proof — Since G is 3-connected, by Lemma 7.23, G has connectivity 3. Let e = uv be an
edge of G. Suppose for a contradiction that e is not essential. Then deg(u), deg(v) ≥ 4, and by
Lemma 7.24 u, v ∈ W (G). This contradicts the fact that G is almost wheel-free. Hence, all edges
of G are essential and thus G is minimally 3-connected. 2

7.3.2 Wheel-free planar graphs

We prove in this section that any wheel-free planar graph on at least two vertices contains at least
two vertices of degree at most 2. In fact, the key property that we use is that a planar graph does
not contain a subdivision of K3,3.

The proof is based on the use of end blocks. Their use is not straightforward because, if GF is
an end block of a 3-wheel-free graph, then it might be that GF is not 3-wheel-free. Anyway, next
lemma shows that, if GF is not 3-wheel-free, the centers of its wheels are precisely located.

Lemma 7.26 Let G be a 3-wheel-free graph such that κ(G) = 2. Let F be an end of G such that
|F | ≥ 2 and GF the end block containing F . Then W3(GF ) ⊆ {a, b}.
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proof — Suppose that GF contains a wheel (w,C) with w /∈ {a, b}. Since G is 3-wheel-free, the
edge ab must be an edge of that 3-wheel, and ab /∈ E(G). If ab is an edge of C, then a wheel of G
is obtained by replacing ab with a path from a to b with internal vertices in F , a contradiction. 2

Lemma 7.27 If G is a 3-connected graph that contains no subdivision of K3,3, then W3(G) =
V (G).

proof — Let v be a vertex of G. It has at least three neighbors x, y, z. If no cycle goes through
them, then let PA, QA, RA, PB, QB, RB be the six paths of G \ v (which is 2-connected) whose
existence is proved in Lemma 7.22. Together with v, they form a subdivision ofK3,3, a contradiction.
Hence a cycle C goes through x, y, z, so (v, C) is a 3-wheel centered at v. 2

Theorem 7.28 (Aboulker, Havet, Trotignon [4]) If G is a 3-wheel-free graph on at least two
vertices that contains no subdivision of K3,3, then G has at least two vertices of degree at most 2.

proof — Our proof is by induction on |V (G)|, the result holding trivially when |V (G)| ≤ 4.
If G is not connected, then by the induction hypothesis, each of its components has at least one

vertex of degree at most 2, so G contains at least two vertices of degree at most 2.
If G has a cutvertex a, then let C1 and C2 be components of G\a. By the induction hypothesis,

G[C1 ∪ {a}] and G[C2 ∪ {a}] have each two vertices of degree at most 2. Thus at least one of them
is distinct from a and thus is also a vertex of degree at most 2 in G. Hence, C1 and C2 have each
at least one vertex of degree at most 2 in G.

By Lemma 7.27, G is not 3-connected. So we can assume that G is of connectivity 2.
We consider two disjoint ends F and F ′ of G. It is enough to prove that both of them have

cardinality 1. So, suppose for a contradiction that F has cardinality at least 2. Let {u, v} = N(F ),
and GF the end block containing F . So GF is 3-connected. In addition, it contains no subdivision
of K3,3. Indeed if a subgraph H of GF is a subdivision of K3,3, then H contains the edge uv. So
replacing uv by some path from u to v with internal vertices in F yields a subdivision of K3,3 in G,
a contradiction. Hence, by Lemma 7.27, any vertex of GF is the center of a 3-wheel. In particular,
GF contains a 3-wheel whose center is not among u, v, a contradiction to Lemma 7.26. 2

7.4 4-wheel-free graphs

This section is mostly devoted to the proof of Theorem 7.9. Recall that Theorem 7.9 states that
every 4-wheel-free graph G contains either a pair of twins or a vertex of degree at most 3.

In the first subsection we show (Theorem 7.32) that the class of k-connected k-wheel-free graph
( k ≥ 4) is reduced to a single graph that is Kk,k (we actually show the result on a more general
class for technical reasons explain above). In order to prove Theorem 7.9, we only need the result
for k = 4 but we give here this more general result because it could be a nice start to tackle
Conjectures 7.4 and 7.12.

In Subsections 7.4.2, 7.4.3 and 7.4.4 we prove Theorem 7.9 for 4-wheel-free graphs of connectivity
3, 2 and 1 respectively (which together imply Theorem 7.9). In each of these subsections the same
method is used: we take an end block of the graph to raise the connectivity and be able to apply
results from previous subsections on it.
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Note that building end blocks is not class-preserving for the class of 4-wheel-free graphs, the
added marker edges may create 4-wheels. This is the reason why the results in subsections 7.4.1-
7.4.3 are not dealing directly with 4-wheel-free graphs but with a slightly enlarged classes, namely
almost 4-wheel-free graphs.

Here is how we define almost k-wheel-free graphs (k ≥ 4) (we define it for any k ≥ 4 because
Theorem 7.32 deals with k-wheel-free graph and not only with 4-wheel-free). We denote by Wk(G)
the set of vertices that are centers of at least one k-wheel in G. We say that a graph G is almost
k-wheel-free if |Wk(G)| ≤ k + 1 and α(G[Wk(G)]) ≤ k − 2.

7.4.1 k-connected k-wheel-free graphs

As we said in Section 7.2, the key tool to prove that the only k-connected k-wheel-free graph when
k ≥ 4 is the following:

Theorem 7.29 (Watkins and Mesner, [99]) Let G be a graph with κ(G) = k − 1 ≥ 3. If
X = {x1, . . . , xk} ⊆ V (G) has the property that no cycle of G goes through all the vertices of
X, then G admits a cutset S = {s1, . . . , sk−1} such that S ∩ X = ∅ and G \ S has k connected
components C1, . . . , Ck such that xi ∈ Ci for i = 1, . . . , k.

In other words, it says that, in a (k − 1)-connected graph, a set of k vertices is not contained
in a cycle if and only if there exists a (k− 1)-cutset that pairwise separates the k vertices (the “if”
part is easy to check). Note that in [99] Watkins and Mesner do not present their result in the
same fashion as we do here, but they prove exactly the version given here.

Let us now explain how Theorem 7.29 is to be applied to k-connected graphs with no k-wheels.
Let G be a k-connected graph, let x ∈ V (G) \Wk(G) and let X = {x1, . . . , xk} ⊆ N(x). Since
x /∈ Wk(G) there is no cycle going through all vertices of X in G \ {x}. So, by Theorem 7.29
applied to G \ {x} there exists a set {s1, . . . , sk−1} such that the x′is for i = 1, . . . , k are in distinct
connected components of G \ {x, s1, . . . , sk−1}. We call the set S = {x, s1, . . . , sk−1} a Watkins-
Mesner-certificate (WM-certificate for short) for (x, {x1, . . . , xk}) and we call, for i = 1, . . . , k,
CS(xi) the connected component containing xi (see Figure 7.2).

We now prove two easy lemmas before we prove the principle result.

Lemma 7.30 If G is a (k+1)-connected graph, then Wk(G) = V (G).

proof — Let x be a vertex of G and let x1, . . . , xk be k neighbors of x. By Theorem 7.17, there
is a cycle C in G \ {x} going through {x1, . . . , xk} and thus (x,C) is a k-wheel of G. 2

Lemma 7.31 If G is a k-connected graph, then every vertex contained in a triangle of G is in
Wk(G).

proof — Let abc be a triangle of G and let a1, . . . , ak−2 be neighbors of a different from b and
c. By Theorem 7.17, there is a cycle C in G \ {a} passing through a1, . . . , ak−2 and bc and thus
a ∈Wk(G). Similarly, b and c are in Wk(G). 2
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Figure 7.2: S = {x, s1, s2, s3} is a WM-certificate for (x, {x1, x2, x3, x4}).

Theorem 7.32 If G is a k-connected almost k-wheel-free graph, then G is isomorphic to either
Kk,k or Kk+1.

proof — Let us argue by way of contradiction and suppose that G is a k-connected k-wheel-free
graph that is neither Kk,k nor Kk+1. Note first that, since Kk+1 is the unique k-connected graph
on at most k + 1 vertices, V (G) \Wk(G) 6= ∅. By Lemma 7.30, κ(G) = k.

(1) G does not contain Kk,k as a subgraph.

Suppose by way of contradiction that G contains a subgraph H = Kk,k with partition {x1, . . . , xk}
and {y1, . . . , yk}. If H is not induced, say x1x2 ∈ E(G), then, by Lemma 7.31, {x1, x2, y1, . . . , yk} ⊆
Wk(G), a contradiction to the fact that |Wk(G)| ≤ k + 1. So H induces Kk,k and, since
α(G[Wk(G)]) ≤ k − 2, at most k − 2 vertices among xi’s (resp. yi’s) are in Wk(G).

If S is a set of vertices of G, we say that a path P is an S-path if the endvertices of P are in S
and the internal vertices of P are in G \S. If there exists an H-path P with both endvertices in X,
say with endvertices x1 and x2, then (y1, x1Px2y2x3y3 . . . xkykx1) is a k-wheel and, symmetrically,
every vertex in Y are also centers of k-wheels, a contradiction. So there exists no H-path with both
endvertices in X and, by symmetry, there exists no H-path with both endvertices in Y .

Since G 6= H, we may assume that x1 say has a neighbor u /∈ V (H). There is a 2-fan Fu from
u to H \ {x1} in G \ {x1}. If ext(Fu) intersects X \ {x1}, then there exists an H-path with both
endvertices in X, a contradiction. So ext(Fu) ⊆ Y and thus there exists an H-path with both
endvertices in Y , a contradiction. This proves (1).

(2) Let x ∈ V (G)\Wk(G) and let {x1, . . . , xk} ⊆ N(x). If S = {x, s1, . . . , sk−1} is a WM-certificate
for (x, {x1, . . . , xk}) and CS(xi) = {xi} for some i ∈ {1, . . . , k}, then xi ∈Wk(G).

Suppose w.l.o.g. that CS(x1) = {x1} and that x1 /∈ Wk(G). So N(x1) = {x, s1, . . . , sk−1} and
there is a WM-certificate {x1, t1, . . . , tk−1} for (x1, {x, s1, . . . , sk−1}). Now, for i = 2, . . . , k,
there is a k-fan from xi to {x, s1, . . . , sk−1} included in CS(xi) ∪ {x, s1, . . . , sk−1} which im-
plies that {x2, . . . , xk} = {t1, . . . , tk−1}. If {x2, . . . , xk} ⊆ N(si) for i = 1, . . . , k − 1, then
G[{x, s1, . . . , sk−1, x1, . . . , xk}] contains a Kk,k, a contradiction to (1). So we may assume that
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s1 say has a neighbor u 6= x2 in CS(x2). There is a 2-fan from u to {x, s2, . . . , sk−1} in G \ {s1, x2}
that is included in CS(x2) ∪ {x, s2, . . . , sk−1} \ {x2}. So, the two paths of this fan link s1 with a
vertex in {x, s2, . . . , sk−1} and avoid {x1, . . . , xk}, a contradiction to the fact that {x1, . . . , xk} is a
WM-certificate for (x1, {x, s1, . . . , sk−1}). This proves (2).

Observe that, by Lemma 7.31, for any vertex x in V (G) \Wk(G), N(x) is a stable set and thus,
by definition of an almost 3-wheel-free graphs, x has at least two neighbors in V (G) \Wk(G).

Let x ∈ V (G)\Wk(G), let X = {x1, . . . , xk} ⊆ N(x) and S = {x, s1, . . . , sk−1} a WM-certificate
for (x, {x1, . . . , xk}) such that x, X and S are chosen subject to the maximality of |CS(xi)| where
xi /∈Wk(G). Assume w.l.o.g. that CS(x1) is the one that realizes the maximality.

Since x has at least two neighbors that are not center of a k-wheel, we may assume w.l.o.g. that
x2 /∈Wk(G). By (2), CS(x2) 6= {x2}. Let {y1, . . . , yk−1} ⊆ N(x2)\{x} and let T = {x2, t1, . . . , tk−1}
be a WM-certificate for (x2, {x, y1, . . . , yk−1}).

Suppose that for some j ∈ {1, . . . , k − 1}, CT (yj) is not included in CS(x2) and therefore
contains an si (i ∈ {1, . . . , k − 1}). W.l.o.g. s1 ∈ CT (y1). Since there are k − 1 internally disjoint
paths linking s1 to x whose interior vertices are included respectively in CS(x1), CS(x3), . . . , CS(xk),
{t1, . . . , tk−1} ⊆ (CS(x1) ∪ CS(x3) ∪ · · · ∪ CS(xk)). Now, if for some i ∈ {2, . . . , k − 1} CT (yi) does
not contain any vertex in {s2, . . . , sk−1}, then x2 is a cutvertex of G separating CT (yi) from the rest
of the graph. So we may assume w.l.o.g. that si ∈ CT (yi) for i = 2, . . . , k − 1. Since |CS(x2)| ≥ 2,
either CT (x) or one of the CT (yi)’s have at least one vertex in CS(x2) and thus, either {x, x2} or
{si, x2} is a cutset of G, a contradiction. So, CT (yi) ⊆ CS(x2) for i = 1, . . . , k − 1 and therefore
CS(x1) ∪ CS(x3) ∪ · · · ∪ CS(xk) ⊆ CT (x). This contradicts the maximality of CS(x1). 2

Note that the above theorem trivially implies Theorem 7.11.

7.4.2 4-wheel-free graphs of connectivity 3

We first give a technical lemma that will be used in the proof of the next theorem.

Lemma 7.33 Let G be a graph of connectivity 3 and let F be a fragment of G with N(F ) =
{a1, a2, a3}. If ai, for some i ∈ {1, 2, 3} has at least two neighbors in F ∪N(F ), then there exists
a 2-fan from ai to N(F ) \ {ai} in G[F ∪N(F )].

proof — Assume w.l.o.g. that a1 has two neighbors in F ∪ N(F ), say x and y. Since G \ {a1}
is 2-connected, there exist two disjoint paths from {x, y} to {a2, a3} in G \ {a1}. Since these two
paths are clearly included in F ∪N(F ) \ {a1}, there is a 2-fan from a1 to {a2, a3} in G[F ∪N(F )].
2

F

•

•

•

•

•

a1

a2

a3

•

•

•

•

•

Figure 7.3: A 3-connected 4-wheel-free graph that satisfies the second outcome of Theorem 7.34.
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Theorem 7.34 If G is a graph with κ(G) = 3 and F is an end of G such that W (G) ∩ F = ∅,
then either F is trivial, or |F | = 2 and every vertex of N(F ) is of degree 3.

proof — Let G be a graph of connectivity 3, let F be an end of G such that W (G)∩F = ∅ and let
H be the end block containing F . Set N(F ) = {a1, a2, a3}. If F is trivial, then the first outcome of
the theorem holds. So we may assume that |F | ≥ 2 and thus, by Property 7.19, H is 4-connected.
Recall that edges a1a2, a2a3 and a1a3 are called the marker edges of H.

(1) We may assume that H is not almost 4-wheel-free.

Assume that H is an almost 4-wheel-free graph. By Lemma 7.32, H = K5 (it cannot be K4,4 since
it contains a triangle). Let x, y be the two vertices of F . Assume that dG(a1) ≥ 4. So a1 has at least
two neighbors in F ∪{a2, a3}. Therefore, by Lemma 7.33, there exists a 2-fan {Pa1−a2 , Pa1−a3} from
a1 to {a2, a3} in F ∪ N(F ). Then (x, a1Pa1−a2a2ya3Pa1−a3a1) is a 4-wheel of G, a contradiction.
Thus dG(a1) = 3 and similarly dG(a2) = dG(a3) = 3. So, every vertex of N(F ) is of degree 3 in G
and thus the second outcome of the theorem holds. This proves (1).

Observe that (1) implies that there is at least one vertex in F that is the center of some 4-wheel
of H. In the rest of the proof, we aim to show that such a vertex is also the center of a 4-wheel in
G which is a contradiction.

Let us now give a new definition. Let (x,C) be a 4-wheel of H. We say that (x,C) is an
(i,j,k)-wheel if {i, j, k} = {1, 2, 3}, x ∈ F , aiaj and ajak are in E(C) and xaj is a spoke of (x,C).

(2) If (x,C) is a 4-wheel of H with x ∈ F , then (x,C) is an (i, j, k)-wheel.

Let (x,C) be a 4-wheel of H with x ∈ F . If C contains no marker edges, then (x,C) is a 4-wheel
of G, a contradiction. Assume now that C contains exactly one marker edge, say a1a2. Let u
be a neighbor of a1 in F . Since G \ {a1, a3} is connected, there exists a path P from u to a2 in
G \ {a1, a3}. It is clear that P is included in F ∪ {a2}. So, by replacing the marker edge a1a2 by
a1uPa2 in C, we get a 4-wheel of G centered on x, a contradiction. Therefore, we may assume
that C contains two marker edges, say a1a2 and a2a3. If xa2 is not a spoke of (x,C), then we
may replace the path a1a2a3 by a1a3 in C and we get a 4-wheel of H that contains exactly one
marker edge, a contradiction. So xa2 is a spoke of (x,C) and thus (x,C) is an (1, 2, 3)-wheel. This
proves (2).

In the rest of the proof, (2) is often used to get a contradiction when a 4-wheel (x,C) of H with
x ∈ F contains only one marker edge. We shall use this without mentioning (2) explicitly.

(3) Let (x,C) be an (i, j, k)-wheel such that xai /∈ E(G). Set P = C \ {aj}. Let x1, x2, x3 be three
neighbors of x in P such that ai, x1, x2, x3, ak appear in this order along P . If there exists a 1-fan
{Qaj−v} from {aj} to åiP åk in H \ {x, ai, ak}, then x3 = ak and v ∈ x̊2P åk.

Assume w.l.o.g. that i = 1, j = 2 and k = 3 and let {Qa2−v} be a 1-fan from a2 to å1P å3 in
H \ {x, a1, a3}. If v ∈ å1Px̊1, then (x, a2Qa2−vvPa3a2) is a 4-wheel of H that contains exactly
one marker edge, a contradiction. So v /∈ å1Px1 and by symmetry v /∈ x3P å3. In the case where
x3 = a3, we may assume that v ∈ x̊1Px2 otherwise the outcome of the theorem holds. Observe now
that, in the case where x3 6= a3, the situation where v ∈ x̊1Px2 is symmetric with the situation
where v ∈ x2Px̊3. So we may assume by way of contradiction and w.l.o.g. that v ∈ x̊1Px2. Note
that, in what follows, x3Pa3 may be reduced to a vertex.

Observe that {x1Pa1, x1Pv} is a 2-fan from x1 to Qa2−v∪vPa3∪{a1} in H \{x}. So, by Lemma
7.16, there is a 3-fan Fx1 = {Qx1−a1 , Qx1−v, Qx1−w} in H \ {x} from x1 to Qa2−v ∪ vPa3 ∪ {a1}
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with {a1, v} ⊆ ext(Fx1). We alter P as follows: x1Pa1 := Qx1−a1 and x1Pv := Qx1−v. Note that,
after this alteration, P is still a path and P ∪ {a2} is still the rim of a 4-wheel centered on x in H
with spokes xa2, xx1, xx2 and xx3.

Let us now prove that w ∈ x̊2Px̊3.

• w /∈ Qa2−v for otherwise (x, a2Qa2−vwQx1−wx1Pa3a2) is a 4-wheel of H that contains exactly
one marker edge, a contradiction.

• w /∈ v̊Px2 for otherwise (x, a2Qa2−vvPx1Qx1−wwPa3a2) is a 4-wheel of H that contains
exactly one marker edge, a contradiction.

• w /∈ x3Pa3 for otherwise (x, a2Qa2−vvPwQx1−wx1Pa1a2) is a 4-wheel of H that contains
exactly one marker edge, a contradiction.

So w ∈ x̊2Px3. Observe now that if v = x2, then x is the center of a 4-wheel in H such that
the rim contains exactly one marker edge, so v 6= x2.

Now, {x2Pv, x2Pw} is a 2-fan from x2 to Qa2−v∪Qx1−w∪a1Pv∪wPa3 in H\{x}. So, by Lemma
7.16, there is a 3-fan Fx2 = {Qx2−v, Qx2−w, Qx2−u} from x2 to Qa2−v ∪ Qx2−w ∪ a1Pv ∪ wPa3 in
H\{x}. We alter P as follows: x2Pv := Qx2−v and x2Pw := Qx2−w. Note that, after this alteration,
P is still a path and P ∪{a2} is still the rim of a 4-wheel centered on x in H with spokes xa2, xx1,
xx2 and xx3. Let us show by considering the possible position of u in Qa2−v∪Qx2−w∪a1Pv∪wPa3
that x is the center of a 4-wheel of H such that the rim contains at most one marker edge.

• If u ∈ Qa2−v, then (x, a2Qa2−vuQx2,ux2Px1Qx1,wwPa2 is a 4-wheel of H that contains exactly
one marker edge, a contradiction.

• if u ∈ Qx2−w, then (x, a2Qa2−vvPx1Qx1−wuQx2,ux2Pa3a2) is a 4-wheel of H that contains
exactly one marker edge, a contradiction.

• If u ∈ a1Px1, then (x, a2Qa2−vvPuQx2−ux2Pa3a2) is a 4-wheel of H that contains exactly
one marker edge, a contradiction.

• If u ∈ x1P v̊, then (x, a2Qa2−vvPx2Qx2−uuPx1Qx1−wwPa3a2) is a 4-wheel of H that contains
exactly one marker edge, a contradiction.

• If u ∈ ẘPx3, then (x, a2Qa2−vvPx1Qx1−wwPx2Qx2−uuPa3a2) is a 4-wheel of H that contains
exactly one marker edge, a contradiction.

• If u ∈ x3Pa3, then (x, a2Qa2−vvPx2Qx2−uuPwQx1−wx1Pa1 is a 4-wheel of H that contains
exactly one marker edge, a contradiction.

This proves (3).

(4) If (x,C) is an (i, j, k)-wheel, then x is adjacent to at least two vertices in {a1, a2, a3}.
Let (x,C) be an (i, j, k)-wheel. Assume w.l.o.g. that i = 1, j = 2 and k = 3. Set P = C \ {a2}.
Let x1, x2, x3 be three neighbors of x in P . Assume a1, x1, x2, x3, a3 appear in this order along
P . There exists a 1-fan {Qa2−v} from {a2} to å1P å3 in H \ {a1, a3, x}. So, by (3), a3 = x3. This
proves (4).

(5) If (x,C) is an (i, j, k)-wheel, then x is adjacent to exactly two vertices in {a1, a2, a3}.
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Let (x,C) be an (i, j, k)-wheel. Assume w.l.o.g. that i = 1, j = 2 and k = 3. By (4), we may
assume that x is adjacent to a1, a2 and a3. Let u ∈ N(x) \ {a1, a2, a3}. Since H is not almost
4-wheel-free, there exists a vertex y ∈W (H) \ {a1, a2, a3, x}.

Assume first that y is adjacent to a1, a2 and a3. If xy ∈ E(G), then by (1), there exists
z ∈ W (H) \ {a1, a2, a3, x, y}. By (4), z is adjacent to at least two vertices in {a1, a2, a3}. Assume
w.l.o.g. that z is adjacent to a1 and a2. Then (x, a1za2ya3a1) is a 4-wheel of H that contains exactly
one marker edge, a contradiction. So xy /∈ E(G) and in particular u 6= y. There exists a 2-fan
(P1, P2) from u to {a1, a2, a3} in H \ {x, y}. Assume w.l.o.g. that P1 ends in a1 and P2 in a2. Then
(x, a1P1uP2a2ya3a1) is a 4-wheel of H that contains exactly one marker edge, a contradiction.

So we may assume w.l.o.g. that y is adjacent to a1 and a2 and not to a3. Let v ∈ N(a3) \
{a1, a2, x}. Assume first that xy ∈ E(G). There exists a 1-fan {Q} from v to {a1, a2} in H \
{x, y, a3}. Assume w.l.o.g. that Q ends in a2. Then (x, a1ya2Qva3a1) is a 4-wheel of H that
contains exactly one marker edge, a contradiction. Thus xy /∈ E(G) and in particular u 6= y.
Therefore, there exists a 3-fan {R1, R2, R3} from u to {a1, a2, a3, y} in H \ {x}. At least two of
these paths end in {a1, a2, a3}. Assume first that one of the paths of the 3-fan, say R3, ends on
a3. We may assume w.l.o.g. that R1 ends in a1. Thus (x, a1R1uR3a3a2ya1) is a 4-wheel of H that
contains a unique marker edge, a contradiction. So no path of the fan ends in a3 and thus, we may
assume w.l.o.g. that R1, R2, R3 respectively ends in a1, a2, y. There exists a 1-fan {T} from v to
R1∪R2∪R3 in H \{a3, x, y}. It is easy to see that T creates a 4-wheel centered on x that contains
exactly one marker edge, a contradiction. This proves (5).

(6) Either there exist two vertices in W (H) \ {a1, a2, a3} that have at least two common neighbors
in {a1, a2, a3}, or |W (H) \ {a1, a2, a3}| ≥ 3.

By (1), there exists a vertex x ∈ W (H) ∩ F . Let (x,C) be a 4-wheel of H. By (2), (x,C) is
an (i, j, k)-wheel. Assume w.l.o.g. that i = 1, j = 2 and k = 3. By (5), we may assume w.l.o.g.
that N(x) ∩ {a1, a2, a3} = {a2, a3}. Since H is not almost 4-wheel-free, there exists a vertex y in
W (H) \ {a1, a2, a3, x} such that y is the center of an (i, j, k)-wheel. Since y is adjacent to exactly
two vertices in {a1, a2, a3}, if y does not see both a2 and a3, then α(G[{a1, a2, a3, x, y}]) = 2, and
therefore there exists a vertex in W (H) \ {a1, a2, a3, x, y}. This proves (6).

So, by (6), we may assume w.l.o.g. that we are in one of the two following cases:

Case 1: There exist two vertices x, y in W (H) \ {a1, a2, a3} such that x and y are both adjacent
to a2 and a3.

By (2), there exists i ∈ {2, 3} and a 4-wheel (x,Ci) that is an (1, i, 5 − i)-wheel. Assume w.l.o.g.
that i = 2. Set P2 = C \ {a2}. Let x1 and x2 be two neighbors of x in P2 ∩F and such that a1, x1,
x2 appear in this order along P2.

If y /∈ V (P2), then (x, a1a2ya3P2a1) is a 4-wheel of H containing exactly one marker edge, a
contradiction. So y /∈ V (P2). Moreover, since y is adjacent to a2, by (3), y ∈ x̊2P å3 and we
may assume that yP2a3 = ya3. Now, define C3 as the cycle obtained from C2 by deleting edges
a1a2 and a3y and adding edges a1a3 and a2y. Observe that (x,C3) is an (1, 3, 2)-wheel and set
P3 = C3 \ {a3}.

Since H is 4-connected, {a1, x, y} does not separate {a2, a3} from the rest of the graph. There-
fore there exists j ∈ {2, 3} such that aj has a neighbor z ∈ F distinct from x and y.

Suppose that z ∈ V (Pj). By (3), z /∈ a1Pjx2. Thus z ∈ x̊2Pj ẙ and thus (x, ajzPja1a5−jyaj) is
a 4-wheel containing exactly one marker edge, a contradiction. So z /∈ V (Pj). There exists a 2-fan
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{Qz−u, Qz−v} from z to Pj in H \ {x, aj}. By (3), {u, v} ∩ V (a1Pjx2) = ∅. If u ∈ x̊jPj ẙ, then
(x, ajzQz−uuPja1a5−jyaj) is a 4-wheel of H that contains a unique marker edge, a contradiction.
So u /∈ x̊2Pj ẙ and by symmetry, v /∈ x̊2Pj ẙ. Therefore {u, v} = {a5−j , y}, say u = y and v =
a5−j . Then (x, ajzQz−va5−ja1Pjyaj) is a 4-wheel of H that contains a unique marker edge, a
contradiction. This completes the proof in Case 1.

Case 2: There exist three vertices x, y and z such that x is adjacent to a2 and a3, y is adjacent
to a1 and a3, and z is adjacent to a1 and a2.

By (2), there exists an i ∈ {2, 3} and a 4-wheel (x,Ci) that is an (1, i, 5− i)-wheel. Assume w.l.o.g.
that i = 2. Set P2 = C2 \ {a2}. Let x1 and x2 be two neighbors of x in P2 ∩F and assume that a1,
x1, x2 appear in this order along P2.

If z /∈ V (P2), then (x, a2za1P2a3a2) is a 4-wheel of H that contains a unique marker edge, a
contradiction. Moreover, since z is adjacent to a2, by (3), z /∈ a1P2x2. So z ∈ x̊2P2̊a3.

Now set C ′ = a1a3a2zP2a1 and observe that (x,C ′) is a (1, 3, 2)-wheel of H. Let us now discuss
the position of y in the graph. If y /∈ V (P2), then (x, a1ya3a2zP2a1) is a 4-wheel of H that contains
a unique marker edge, a contradiction. If y ∈ x2P2z, then (x, a1za2a3yP2a1) is a 4-wheel of H that
contains a unique marker edge, a contradiction. If y ∈ zP2a3, then (x, a1ya3a2zP2a1) is a 4-wheel
of H that contains a unique marker edge, a contradiction. So y ∈ a1P2x2 which contradicts (3)
applied to (x,C ′). 2

As a trivial corollary of Theorem 7.34 we have the following result on 4-wheel-free graphs of
connectivity 3.

Corollary 7.35 If G is a 4-wheel-free graph of connectivity 3, then G contains at least one vertex
of degree 3.

7.4.3 4-wheel-free graphs of connectivity 2

Theorem 7.36 If G is a 4-wheel-free graph of connectivity 2 and F is an end of G, then either
there is a vertex v ∈ F of degree at most 3 or the end block containing F is K4,4.

proof — Let G be a 4-wheel-free graph of connectivity 2, let F be an end of G with N(F ) = {a, b}
and let H be the end block of G containing F . If F is trivial then the first outcome of the theorem
holds. So we may assume that |F | ≥ 2 and therefore H is 3-connected.

(1) If (x,C) is a 4-wheel of H, then x ∈ {a, b}.
Let (x,C) be a 4-wheel of H and assume x /∈ {a, b}. C has to contain the edge ab because it is
not a 4-wheel in G, but since we may replace ab by a path linking a to b in F ∪ {a, b}, we have a
contradiction This proves (1).

Assume first that H is 4-connected. By (1) H is an almost 4-wheel-free graph. By Theorem 7.32
it is either K5, or K4,4. If it is K5, then vertices of F are center of a 4-wheel in H, a contradiction
to (1), so it is K4,4 and the second outcome of the theorem holds.

So we may assume that κ(H) = 3. By Lemma 7.18, there exists an end F1 of H such that
{a, b} ∩ F1 = ∅. By Theorem 7.34, either F1 is trivial and we are done, or every vertex of N(F1) is
of degree 3 in H. Since N(F1) contains at least one vertex c distinct from a and b, c is of degree 3
in G. 2
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Corollary 7.37 If G is a 4-wheel-free graph of connectivity 2, then either it contains a vertex of
degree at most 3, or it contains a pair of twins.

7.4.4 4-wheel-free graphs of connectivity 1

Theorem 7.38 If G is a 4-wheel-free graph of connectivity 1, then either G contains a vertex of
degree at most 3, or it contains a pair of twins.

proof — Let G be a 4-wheel-free graph of connectivity 1. Let F1 be an end of G and H1 the end
block containing F1. Observe that H1 is actually an induced subgraph of G and is thus 4-wheel-free.
If F1 is trivial, then we are done, so H1 is 2-connected. If H1 is a clique, then |V (H1)| ≤ 4 and
we are done. So, by Lemma 7.18, H1 admits an end F2 disjoint from N(F1). Now, depending on
whether H1 is of connectivity 2, 3 or at least 4, we find the demanded structure in F2 by Theorem
7.36, 7.34, or 7.32 respectively. 2
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Chapter 8

Excluding cycles with a fixed number
of chords

In this chapter:

• If G and H are graphs, then we say that G is H-free if G does not contain
H as a subgraph.

• K4 is not a wheel.

Most of this section come from a joint work with Nicolas Bousquet [2] and is concerned with
χ-boundedness results.

8.1 Introduction and motivations

We already mentioned χ-bounded classes several times in this document. For example, perfect
graphs can be defined as the largest class of graphs that is χ-bounded by the function f(x) = x.
We also saw that some classes of graphs defined by forbidding induced subgraph, such as triangle-
free graphs, are not χ-bounded. So, a natural (and challenging) question is the following:

Question 8.1 What kind of induced structure is needed to be forbidden in order to get a χ-bounded
class?

Let us now survey some results on χ-boundedness by emphasizing on what different meanings
”structure” can take.

If H is a graph, we denote by Forb(H) the class of H-free graphs. A first way to tackle the
problem is to determine for which graphs H, Forb(H) is χ-bounded. For example, it is proved in
[53] that Forb(Pk) is χ-bounded (where Pk denotes the chordless path of length k). In [47], Erdős
proved that there exists graphs with arbitrarily large chromatic number and arbitrarily large girth.
So, if H contains a cycle, Forb(H) is not χ-bounded. It is actually conjectured in [53] that Forb(H)
is χ-bounded if and only if H is a forest. The deeper result concerning this conjecture is certainly
a result of Kierstead and Penrice [59] proving that the conjecture holds of every tree of radius at
most 2. To get out from this conjecture, we need to forbid a class of graph H such that H contains
graphs with arbitrarily large girth.
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A second way to forbid induced structure is the following: fix a graph H, and forbid every
induced subdivision of H. We denote by Forb*(H) the class of graphs that does not contain
induced subdivisions of H. The class Forb*(H) has been proved to be χ-bounded for a number
of examples. The most beautiful one is certainly the proof by Scott [83] that for any forest F ,
Forb*(F ) is χ-bounded. In the same paper he conjectured that, for any graph H, Forb*(H) is
χ-bounded. Unfortunately, this conjecture has recently been disproved by Kozik et al. in [62].
Based on this work, Chalopin et al. [18] gave a precise description of a number of graphs H for
which Forb*(H) is not χ-bounded. Since then, no conjecture about which H is needed to ensure
Forb*(H) to be χ-bounded has been formulated.

A third way is to forbid a graph H for which some edges can be subdivided but some cannot.
More generally, to forbid a class of graphs H such that, for each H ∈ H, some edges can be
subdivided and some cannot. For example, when we forbid wheels as induced subgraph, this is
exactly what we do, the rim can be subdivided but the spokes cannot.

Another class defined like that has already been mentioned in Section 2.3 because it was a
proper subclass of wheel-free graphs: graphs that do not contain a cycle with a unique chord as
an induced subgraph. In [92], Trotignon and Vušković proved that this class is χ-bounded by the
function max(3, ω(G)). Forbidding cycles with a unique chord is equivalent to forbid a diamond
(recall that a diamond is a cycle of length 4 with a diagonal) such that every edge but the diagonal
can be subdivided.

A k-cycle is a chordless cycle with exactly k chords. We call Ck the class of k-cycle-free graphs
i.e. the class of graphs that do not contain cycles with exactly k chords. So, the cited result on the
class of graphs that do not contain a cycle with a unique chord may be rephrased as follows : C1 is
χ-bounded.

The two main results of this chapter are that both C2 (see Theorem 8.5) and C3 (see Theorem
8.10) are χ-bounded. Note that the statement of Theorem 8.5 concerned a super-class of C2, see
section 8.3 for more details. Class C3 is particularly interesting to us because, contrary to C2 that
does not admit graphs with cliques larger than the triangle (because K4 is a 2-cycle), graphs in C3
might contain any size of cliques. These results suggest the following conjecture :

Conjecture 8.2 For any integer k ≥ 4, Ck is χ-bounded.

Here is the plan of this chapter: in Section 8.2, we explain the principle tool we use in different
proofs of this chapter. Section 8.3 is concerned with the class C2 and Section 8.4 is concerned with
the class C3.

8.2 Preliminaries

We mentioned that C1 was already proved to be χ-bounded, we use this result for graphs in C1 that
contain no K4, which formally give:

Theorem 8.3 (Trotignon and Vušković [92]) If G ∈ C1 and ω(G) ≤ 3, then χ(G) ≤ 3.

Let us now explain a classical tool to prove χ-boundedness results for classes of graphs defined
by forbidding induced structure and that is extensively use in this chapter.

Let G be a graph. Recall that the distance between two vertices x, y of G is the length of a
shortest xy-path. Let z be a vertex of G and let i be an integer. The i-th level of z is the set of
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vertices, denoted by Si(z,G), that are at distance exactly i from z in G. If no confusion is possible,
we denote it by Si(z) in order to avoid too heavy notations. A father of a vertex x ∈ Si(z) is a
vertex in Si−1(z) adjacent to x. For every pair of vertices x, y in Si, it is easy to see that there
exists a chordless xy-path with internal vertices included in z∪S1(z)∪· · ·∪Si−1(z). Such paths are
called unimodal paths. Note that interior vertices of unimodal paths are not adjacent to any vertex
of Si(z). This make unimodal paths a key tool to find particular induced structure in a graph. In
the rest of the paper, the letter Q will be reserved to denote unimodal paths. If x and y are two
vertices in Si(z), Qxy denotes a unimodal path with endvertices x and y.

The following general remark explains the reason why decomposing a graph into levels (as
described above) is a very powerful tool to bound its chromatic number.

Remark 8.4 (Folklore) Let G be a graph and let z be a vertex of G. There exists an integer k
such that G[Sk(z)] has chromatic number at least dχ(G)/2e.

proof — For any i 6= j, there is no edges between a vertex of S2i (resp. of S2i+1) and of S2j (resp.
of S2j+1). Indeed adjacent vertices are at distance one, so their level differ by at most one. So,

χ(G) ≤ maxi evenχ(G[Si]) +maxj oddχ(G[Sj ])

. The result follows.

2

8.3 Graphs that do not contain a cycle with exactly two chords
as induced subgraph

Let C be a cycle with exactly two chords e1 = a1a2 and e2 = b1b2. If e1 and e2 share an extremity
then e1 and e2 are V-chords. If a1, a2, b1, b2 are pairwise distinct and appear in the following order
along C : ai, bj , ak, bl with {i, k} = {j, l} = {1, 2}, then e1 and e2 are crossing chords. A 2-cycle
with V-chords (resp. crossing chords) is called a V-cycle (resp. an X-cycle) (see Figure 8.1). A
2-cycle that is not a V-cycle nor an X-cycle is a parallel cycle.

Figure 8.1: A V -cycle and an X-cycle.

The main result of this section is concerned with the class of (X-cycle, V-cycle)-free graphs that
of course strictly contains the class of graphs with no 2-cycles.

Theorem 8.5 Every (X-cycle, V-cycle)-free graph G satisfies χ(G) ≤ 6.
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Note that we can bound the chromatic number by a constant here because K4 is an X-cycle.
The proof is built on two steps: Lemmas 8.6 and 8.7.

The first step consists in showing that we can decompose an (X-cycle, V-cycle)-free graph around
a complete multipartite graph. More precisely we prove that if a graph is (X-cycle, V-cycle)-free
then either it has a clique cutset, or it is a complete tripartite graph, or it is diamond-free. In the
second step, we prove that (diamond, V-cycle, X-cycle)-free graphs have chromatic number at most
6 using remark 8.4. This second step is somehow an induction on the number of chords, based on
the result of Trotignon and Vušković about C1 (Lemma 8.3). We finally combine these two lemmas
to prove Theorem 8.5.

Note that the first step actually gives us a decomposition theorem for (X-cycle, V-cycle)-free
graphs, where the basic classes are complete multipartite graphs and (diamond, X-cycle, V-cycle)-
free graphs. Anyway, to get a usable decomposition theorem, one should decompose (diamond,
X-cycle, V-cycle)-free graphs that is a too complex class to serve as a basic class.

Lemma 8.6 If G is an (X-cycle, V-cycle)-free graph, then either G has a clique cutset, or G is
isomorphic to a complete tripartite graph, or G is diamond-free.

proof — Assume by way of contradiction that G does not admit a clique cutset, G is not isomor-
phic to a complete tripartite graph and G contains a diamond. Since G has no clique cutsets, G is
2-connected. Let H = Ki,j,k be a maximum (subject to its number of vertices) complete tripartite
subgraph of G. Note A = {a1, . . . , ai} (resp. B = {b1, . . . , bj}, resp. C = {c1, . . . , ck}) the set of
the partition of H of cardinality i (resp. j, resp. k). Note that since G contains a diamond, one
of the integers i, j, k is strictly greater than 1. Moreover, since G is K4-free, H is an induced
subgraph of G i.e. A, B and C are stable sets.

(1) A vertex u /∈ V (H) has at most one neighbor in H.

Assume by way of contradiction that some vertex u /∈ V (H) satisfies dH(u) ≥ 2. If u has a neighbor
in A, B and C, say a1, b1 and c1, then ua1b1c1 is a K4, a contradiction. So we may assume w.l.o.g.
that u does not have any neighbor in C. Assume that u has a neighbor in A and a neighbor
in B, say a1 and b1. By maximality of H, u has at least one non-neighbor in A ∪ B. Assume
w.l.o.g. that a2 is a non-neighbor of u. Then ua1c1a2b1u is a V-cycle with chords b1a1 and b1c1, a
contradiction. So we may assume w.l.o.g. that u does not have any neighbor in B and thus have
at least two neighbors in A, say a1 and a2. Then ua1b1c1a2u is an X-cycle with chords a1c1 and
a2b2, a contradiction. This proves (1).

Note that G 6= H since otherwise G is a complete tripartite graph. Let K be a connected
component of G \ H. By (1), vertices of K that have a neighbor in H, have a unique neighbor
in H. Since G does not contain clique cutsets, NH(K) must contain two non-adjacent vertices.
Therefore, K contains a chordless path P = p1 . . . pk such that the neighbors of p1 and pk in H are
two non-adjacent vertices. Among all such paths, let P be minimal. Assume w.l.o.g. that a1 and
a2 are the neighbors of respectively p1 and pk in H. By minimality of P , no interior vertex of P
has a neighbor in A.

If no interior vertex of P is adjacent to a vertex in B or C, then a1Pa2b1c1a1 is an X-cycle with
chords a1b1 and a2c1, a contradiction. Let i be the smallest integer such that pi has a neighbor in
B or C, say pi is adjacent to b1. Then no interior vertices of p1 . . . pi is adjacent to any vertices of
H and thus a1p1Ppib1a2c1a1 is a V-cycle with chords b1a1 and b1c1, a contradiction. 2
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Lemma 8.7 If G is a (diamond, X-cycle, V-cycle)-free graph, then for any z ∈ V (G) and for
every integer k, Sk(z) ∈ C1.

proof — Let G be a (diamond, X-cycle, V-cycle)-free graph and let z ∈ V (G). Assume by way
of contradiction that there exists an integer k such that Sk(z) contains a 1-cycle C as an induced
subgraph. Name a, b the extremities of the unique chord of C. The cycle C is edge-wise partitioned
in two ab-path: P l and P r (for left and right path, see Figure 8.2).

a

b•

•

P l P r

Sk(z,G)

Figure 8.2: In S(z,G), the cycle C with a unique chord ab and the paths P r and P l

Observe that, since G is V-cycle-free, no vertex of G has four neighbors on an induced path.
Moreover, no vertex x of G has four neighbors on an induced cycle. Indeed, either two consecutive
neighbors are non adjacent, and then x has four neighbors on an induced path, or the cycle is a C4

and then, G contains a diamond.

(1) For any x /∈ V (C), dC(x) ≤ 3 and, if x is adjacent to a or b, then dC(x) ≤ 2.

Let x /∈ V (C).
Suppose first that x is adjacent to a and that dC(x) ≥ 3. First assume that xb is an edge. Since

dC(x) ≥ 3, x has another neighbor x1 in C. We can assume w.l.o.g. that x1 is on P l. If x has
no other neighbors on P l, then axbP la is an X-cycle with chords xx1 and ab. So x has another
neighbor x2 on P l and then it has four neighbors in the chordless cycle aP lba, a contradiction.

So xb is not an edge. Since C\{b} is an induced path, dC(x) = 3. Denote by x1 and x2
the two other neighbors of x on C distinct from a. If x1, x2 are on P l, then aP lx1xx2P

lbP ra
(resp. aP lx1xx2P

lba) is a V-cycle (resp. an X-cycle) if x1x2 is not an edge (resp. is an edge)
on a (resp. with chords ax and x1x2), a contradiction. Hence, by symmetry, we may assume that
x1 ∈ P l and x2 ∈ P r. Since G is diamond-free, a is not adjacent to both x1 and x2. Assume w.l.o.g.
x1a is not an edge. Thus x1xaP

rbP lx1 is an X-cycle with chords xx2 and ab, a contradiction.
So the second outcome of the claim holds. Now, if x has at least 4 neighbors in C, then x is

adjacent neither to a nor to b, and thus it has four neighbors on an chordless path, a contradiction.
This proves (1).

(2) Vertices a and b do not have a common father.

Recall that, given two vertices x, y in Sk−1(z), Qxy denotes a unimodal path from x to y. And
interior vertices of Qxy are not adjacent to any vertex of C.

Assume by way of contradiction that there exists a vertex x ∈ Sk−1(z) that is a common father
to a and b. Let c be the neighbor of a on P r and d be a father of c. By (1), d 6= x and, since G is
diamond-free, P l and P r have length at least 3 i.e. bc is not an edge.

If d is adjacent to a then cdQdxxbac is a V-cycle on a. If d is adjacent to b then cdQdxbac is an
X-cycle with chords ax and bd. So d is adjacent neither to a nor to b.
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Vertex d has at least one neighbor d1 on P̊ l, otherwise cdQdxbP
lac is a V-cycle on a. Moreover,

d has a neighbor d2 6= c on P̊ r otherwise cdQdxabP
rc is an X-cycle with chords ac and xb. By

Claim 1, dC(x) ≤ 3, so NC(d) = {c, d1, d2}.
If d1b is not an edge, then d1dcP

rbaP ld1 is an X-cycle with chords ac and dd2. Otherwise
abxQxdd1P

la is an X-cycle with chords bd1 and ax, a contradiction. This proves (2).

a

b

y1

x1

•

•

•

•

x

y

•

•

Sk(z,G) Sk−1(z,G)

Figure 8.3: The particular graph of Claim 3, note that P r = ay1x1b.

(3) Both a and b have a father of degree 1.

Let x and y be respectively a father of a and a father of b. By (2), x 6= y. Assume by way of
contradiction that say x has a neighbor x1 6= x in P̊ r. By (1), NC(x) = {a, x1}. If y has no
neighbor in P̊ r, then axQxyybP

ra is an X-cycle with chords ab and xx1, a contradiction. So y has
a neighbor, say y1, in P̊ r and, by (1), NC(y) = {b, y1}.

Suppose first that x1 = y1. Since G is diamond-free, bx1 and ax1 cannot both be edges. So we
may assume w.l.o.g. that bx1 is not an edge. Then, aP rx1xQxyyba is an X-cycle with chords ax
and x1y, a contradiction. So x1 6= y1.

Now, if a, x1, y1 appear in this order along P r, then axQxyy1P
rbP la is a V-cycle on b, a

contradiction. So a, y1, x1 appear in this order along P r. If ay1 is not an edge, then axQxyyy1P
rba

is an X-cycle with chords xx1 and by, a contradiction. So ay1 is an edge and, symmetrically, bx1
is an edge. If y1x1 is not an edge, then ay1yQyxx1ba is an X-cycle with chords ax and by, a
contradiction. So x1y1 is an edge (i.e. ax1y1x1b is a square). If xy is not an edge, then abyy1x1xa
is an X-cycle. So xy is an edge (see Figure 8.3).

Let c be the neighbor of a on Pl and let d a father of c. First assume that cb is an edge. Since
G is diamond-free, d is adjacent neither to a nor to b. If x1d is not an edge then cdQdxxx1bac is a
X-cycle with chords cb and xa, a contradiction. Hence, by symmetry, d is adjacent to both x1 and
y1 and then axQxddx1y1a is an X-cycle with chords dy1 and xx1.

Hence cb is not an edge. If d is adjacent to both x1 and y1, then axQxddx1y1a is an X-cycle
with chords dy1 and xx1. If d is adjacent neither to x1 nor to y1, cdQdyybx1y1ac is a X-cycle with
chords ab and yy1. If d is adjacent to x1 and not to y1 then cdQdxxx1bac is a X-cycle with chords
ax and dx1. If d is adjacent to y1 and not to x1 then cdQdxxx1y1ac is a X-cycle with chords yy1
and xa This proves (3).

By (3), there exist two vertices x and y such that x is a father of a, y is a father of b and
dC(x) = dC(y) = 1. Since G is diamond-free, P r and P l cannot be both of length two, so we may
assume w.l.o.g. that P l has length at least 3. Let c be the neighbor of a on P l and d be a father of
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c. Note that d 6= x and d 6= y. If dC(d) = 1, then axQxddcP
lbP ra is a V-cycle on a, a contradiction.

Hence dC(d) ≥ 2.
Assume first d has a neighbor d1 in P r. If d1 is the unique neighbor of d in P r, then cdQdyybP

rac
is an X-cycle with chords ab and dd1 if a 6= d1, or is a V-cycle on a if d = a or d = b. So d has a
second neighbor d2 in P r and thus, by (1), NC(d) = {c, d1, d2} and {d1, d2} ⊆ P̊ r. Assume w.l.o.g.
that a, d1 and d2 appear in this order along P r. Now, axQxddd2P

rbP la is an X-cycle with chords
cd and ab, a contradiction. So d has no neighbors in P r and thus has some neighbors in P̊ l.

If d has exactly one neighbor d1 in P̊ l, then axQxddcP
lba is an X-cycle with chords dd1 and

ac, a contradiction. So d has at least two neighbors in P̊ l and, by (1), it has exactly two. Put
NC(d) = {c, d1, d2}. Now, cdQdyybP

lc is a V-cycle with chords dd1 and dd2, a contradiction. 2

We are now ready to prove Theorem 8.5, recall that this theorem states that every (X-cycle,
V-cycle)-free graph is 6-colorable.

proof — Assume by way of contradiction that there is some (X-cycle, V-cycle)-free graphs that
are not 6-colorable. Let G be minimal with this property. Suppose first that G contains a diamond.
Since a complete tripartite graph is 3-colourable, by Lemma 8.6, G admits a clique cutset K. Let
C1 be a connected component of G \K, and C2 the union of all other components of G \K. Put
G1 = G[C1∪K)] and G2 = G[C2∪K)]. If G1 and G2 are both 6-colourable, then G is 6-colourable,
a contradiction. Therefore G1 or G2 is not 6-colourable, a contradiction to the minimality of G.
So we may assume that G is diamond-free i.e., G is (diamond, X-cycle, V-cycle)-free.

Let z be a vertex of G. Since χ(G) = 7, by Remark 8.4, there is an integer k such that
χ(Sk(z)) ≥ 4. So, by Theorem 8.3, Sk(z) contains a 1-cycle as an induced subgraph, a contradiction
to Lemma 8.7. 2

8.4 Graphs that do not contain a cycle with exactly three chords
as induced subgraph

The aim of this section is to prove that C3 is χ-bounded (see Theorem 8.10).
The proof is divided into three parts, according to the clique number. First of all, we prove

that every (triangle, 3-cycle)-free graph has chromatic number at most 24. Below, the constant 24
is denoted by c.

For graphs with clique number exactly 3, we prove that the chromatic number is at most 4c.
When the clique number is at least 4, then the chromatic number is close to the clique number.
We prove that asymptotically the difference between them is at most one.

Let us state now the exacts statements of these 3 theorems. They are prove in Subsections
8.4.1, 8.4.2 and 8.4.3 respectively.

Theorem 8.8 A (triangle, 3-cycle)-free graph has chromatic number at most c.

Theorem 8.9 A (K4, 3-cycle)-free graph has chromatic number at most 4c.

Theorem 8.10 A (3-cycle)-free graph has chromatic number at most max(4c, ω(G) + 1).

Note that Theorem 8.10 says that, if a 3-cycle-free graph has a large enough clique (of size at
least 96), then χ(G) ≤ ω(G) + 1. Moreover the Hajós join of two cliques shows this bound is tight.
Let us recall what the Hajós join of two cliques is and prove it is 3-cycle-free.
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Here is how to build the Hajós join of two Kk. Take two disjoint copies H1 and H2 of Kk−1,
add a vertex x complete to H1 and H2 and two adjacent vertices a and b, such that a is complete
to H1 and b is complete to H2. The obtained graph is the Hajós join of Kk and Kk and it is easy to
check that it has clique number k and chromatic number k+ 1. Now, let us show it is 3-cycle-free.
An ax-path with interior vertices in H1 is either chordless or has at least two chords. Similarly,
a bx-path with interior vertices in H2 is either chordless or has at least two chords. So a cycle
going through both H1 and H2 is either chordless, or has exactly two chords, or has more than four
chords. Hence the graph is 3-cycle-free.

8.4.1 Clique number 2: proof of Theorem 8.8

Recall that Theorem 8.8 states that a (triangle, 3-cycle)-free graph has chromatic number at most
c = 24.

To prove this result, we need the two following lemmas.

Lemma 8.11 Let G be a (triangle, 3-cycle)-free graph. For every z ∈ V (G) and every integer k,
Sk(z) is (V-cycle, triangle, 3-cycle)-free.

Lemma 8.12 Let G be a (V-cycle, triangle, 3-cycle)-free graph. For every z ∈ V (G) and every
integer k, Sk(z) is (X-cycle, V-cycle, triangle, 3-cycle)-free.

Before we prove these two lemmas, let us explain how they imply Theorem 8.8. Suppose there
exists a (triangle, 3-cycle)-free graph G with χ(G) ≥ 25. Let z be a vertex of G. By Remark 8.4,
there exists an integer k such that χ(G[Sk(z,G)]) ≥ 13. Put H = G[Sk(z,G)]. By Lemma 8.11, H
is (V-cycle, triangle, 3-cycle)-free.

Let x be a vertex of H. By Remark 8.4, there exists an integer ` such χ(G[S`(x,H)]) ≥ 7.
So, by Theorem 8.5, G[S`(x,H)] contains an X-cycle as an induced subgraph (it cannot contain a
V-cycle since it is an induced subgraph of H that is V-cycle-free) which contradicts 8.12.

Proof of Lemma 8.11

Recall that Lemma 8.11 states that, if G is a (triangle, 3-cycle)-free graph and z is a vertex of G,
then for every integer k, Sk(z,G) is (V-cycle, triangle, 3-cycle)-free.

proof — Let G be a (triangle, 3-cycle)-free graph and z a vertex of G. Assume by way of
contradiction that there exists an integer k such that Sk(z,G) contains an induced V-cycle C.

a

b c

•

• •

Pab

Pbc

Pca

Sk(z,G)

Figure 8.4: The V-cycle C in Sk(z,G).
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Let a be the unique vertex of C of degree 4 and let b, c be the two vertices of C of degree 3.
Vertices a, b and c are called the important vertices of C. We denote by Pab the path from a to b
contained in C\{ab, ac} that avoids c. Paths Pbc and Pca are defined similarly (see Figure 8.4). Pab,
Pbc and Pca are called the intervals of C. By abuse of notation, Pab will sometimes denote V (Pab).
Also, Pab can be referred to as Pba (and analogously for Pbc and Pca). Moreover, if a vertex x is
in V (Pab), then the path xPabb (resp. xPaba) can be referred to as Pxb or Pbx (resp. Pxa or Pax).
Given two vertices x and y in the same interval, the external path from x to y consists in the path
from x to y in C \ {ab, ac} passing through a, b and c. If x1 and x2 are two vertices of a path P
that have a common father u, we say that x1 and x2 are consecutive neighbors of u along P if u
has no neighbors in x̊1Px̊2.

Note that adjacent vertices of C cannot have a common father otherwise G would contain a
triangle. Also note that if a vertex has 5 neighbors on an induced path, there is a 3-cycle.

The proof consists in studying how a vertex not in C can attach on C and then using unimodal
paths to get contradictions.

(1) If a vertex u /∈ V (C) satisfies dC(u) ≥ 3 and all but at most one neighbors of u are contained
in an interval of C, then G contains a 3-cycle.

Let u be a vertex not in V (C) such that: dC(u) ≥ 3 and all but at most one neighbor of u is
contained in an interval of C. So, there exists two vertices u1 and u2 in NC(u) such that u1 and
u2 are in the same interval of C and u has exactly one neighbor u3 on the external path P from u1
to u2. Then u2uu1Pu2 is a 3-cycle with chords ab, ac and uu3 (note that, since G is triangle-free,
u1u2 is not an edge). This proves (1).

(2) If u /∈ V (C) and dC(u) = 3, then u has exactly one neighbor in each interval i.e. it has one
neighbor in each of P̊ab, P̊bc and P̊ac.

This is immediate by (1). This proves (2).

(3) If u /∈ V (C), then u has at most 3 neighbors on aPabbPbcc.

Since G is triangle-free, either a or b is not a neighbor of u. If u has at least 5 neighbors in
aPabbPbcc, then u has 5 neighbors on one of the chordless paths åPabbPbcc or aPabbPbc̊c which
provides a 3-cycle, a contradiction.

So we may assume that u has exactly 4 neighbors in aPabbPbcc and w.l.o.g. that u has at least
two neighbors in Pab. Let u1 and u2 be two consecutive neighbors of u along Pab such that a, u1,
u2 appear in this order along Pab. Then u1uu2Pu2bbPbccaPau1u1 is a 3-cycle (recall that u1u2 is not
an edge since G is triangle-free). This proves (3).

Note that by symmetry (3) also holds for bPbccPcaa.

The next claim states the only way a vertex can have at least four neighbors in C.

(4) If u /∈ V (C) and dC(u) ≥ 4, then dC(u) = 4 and NC(u) = {b, c, y1, y2} where y1 is the neighbor
of a in Pab and y2 is the neighbor of a in Pca.

Let u /∈ V (C) and suppose dC(u) ≥ 4.
If u has at least three neighbors in Pbc, then it has at least four neighbors either in PabPbc or in

PbcPac, which contradicts (4). So u has at most two neighbor in Pbc.

Case 1 : u has exactly two neighbors, u1, u2 say, on Pbc.
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Assume w.l.o.g. that b, u1, u2, c appear in this order along Pbc. By (3), u has at most one neighbor
on aPab̊b and at most one neighbor on c̊Pcaa. Since dC(u) ≥ 4, both neighbors exists. Moreover
both are distinct from a otherwise there would be 4 neighbors on PabPbc or PbcPca, contradicting
(3). Denote by y1 (resp. y2) the neighbor of u in Pab̊b (resp. in c̊Pca).

If u1 6= b then y1uu1Pu1ccPcaPay1y1 has 3 chords, namely uy2, uu2 and ac. So u1 = b and, by
symmetry, u2 = c. If y2a is not an edge then y2uu1Pu1aacPcy2y2 is a 3-cycle with chords ab, uy1
and uc. So ay2, and by symmetry ay1, are edges, so the outcome holds.

Case 2 : u has exactly one neighbor, u3 say on Pbc.
Since dC(u) ≥ 4, u has at least 3 neighbors on b̊PbaPac̊c. W.l.o.g. u has at least two neighbors in
Pab̊b. By (3), u has exactly two neighbors, u1, u2 say, in Pab̊b. Assume that a, u1, u2 appear in
this order along Pab̊b. Let u4 be the neighbor of u that is closest from a in P̊ca (u4 exists since
dC(u) ≥ 4). If u3 6= c then u4uu3Pu3bbPbaPacu4 is a 3-cycle with chords ab, uu1 and uu2. So u3 = c.

Note that a is not a neighbor of u otherwise a, c, u would be a triangle. So NC(u) =
{u1, u2, c, u4}, otherwise u would have 5 neighbors on the chordless path V (C) \ {a}, i.e. there
would be 3-cycle. Hence u2ucPcaPau2u2 is a 3-cycle with chords uu1, ac and uu4, a contradiction.

Case 3 : u no neighbor on Pbc.
Since dC(u) ≥ 4, we may assume w.l.o.g. that u has at least two neighbors, u1, u2 say, on Pab̊b.
By (1), u has at least two other neighbors u3, u4 on c̊Pca. Moreover u has no other neighbors in
C since otherwise u would have 5 neighbors on the chordless path V (C)\Pbc. By (1), u1, u2, u3, u4
are distinct from a. Assume w.l.o.g. that u2, u1, a, u3, u4 appear in this order along b̊PbaPac̊c.

If au3 is an edge then u3uu2Pu2aacPca is a 3-cycle with chords au3, uu4 and uu1. So we may
assume au3 is not an edge. If u2b is an edge then u2uu4Pu4ccPcbbaPauu2 is a 3-ycle with chords
uu1, ac and u2b. So u2b is not an edge and hence, u2uu3Pu3ccPcbbaPau2u2 is a 3-cycle with chords
uu1, uu4 and ac, a contradiction.

This proves (4).

(5) Let y be a father of a vertex of C. Then dC(y) ≤ 3.

Let y1 be the neighbor of a in Pab and y2 be the neighbor of a in Pca. Let y be the father of a
vertex in C. Suppose for contradiction that dC(y) ≥ 4 By (4), NC(y) = {b, c, y1, y2}.

Let e be the neighbor of b on Pab. Note that e 6= y1 since otherwise aby1 is a triangle. Let f be
a father of e. By (4), dC(f) ≤ 3. If f has no neighbor in Pac ∪Pab \ {e, b}, then efQfyycPcaPabe is
a 3-cycle with chords yy1, yy2 and ac. So f has at least one neighbor in Pac ∪ Pab \ {e, b}.

Assume that f has at least one neighbor f1 in Pab \ {e, b}. Then it is the only one, otherwise
dC(f) = 3 and all neighbors of f are in the same interval contradicting (2). Then efQfybaPaee is
a 3-cycle with chords eb, yy1 and ff1. So f has no neighbors in Pab \ {e, b}.

Hence f has at least one neighbor f1 in Pca \ {a} and it is the only one by (2). If f has no
neighbor on P̊bc then efQfyyy2PacPcee has chords yb, yc and ff1. So, f has at least one neighbor

f2 in P̊bc, and it is the only one by (2).

If fy is an edge then f2fePey1y1yy2Py2cPcf2 is a 3-cycle with chords fy, ff1 and yc. Otherwise
eff2Pf2bbyy2aPae is a 3-cycle with chords, eb, ab and yy1. This proves (5).

(6) If x is a father of an important vertex of C, then dC(x) ≤ 2.

Let x be a father of an important vertex of C. By (5), dC(x) ≤ 3. By (2), the father of an important
vertex cannot have exactly three neighbors in C. So dC(x) ≤ 2. This proves (6).
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(7) Let e be the neighbor of a on Pab and let f be a father of e. Then dC(f) ≤ 2.

Assume for contradiction that dC(f) = 3. By (5), f has a exactly one neighbor, f1 say, in P̊bc

and exactly one, f2 say, in P̊ca. All of them are distinct from important vertices since fathers of
important vertices have at most two neighbors on C.

Let x be a father of a. If x has no neighbor on åPabPbc, then efQfxacPcbPbee is a 3-cycle with
chords ab, ae and ff1. So x has a neighbor, x1 say in åPabPbc and, by (6), NC(x) = {a, x1}. If
x1 ∈ P̊abPbf1 , then axQxff1Pf1bPbaa is a 3-cycle with chords ab, ef and xx1. So x1 ∈ f1Pf1cc and
then axQxfff1Pf1cPcaa is a 3-cycle with chords ac, ff2 and xx1 a contradiction. This proves (7).

(8) Let x be a father of a. Then dC(x) = 2.

By (6), dC(x) ≤ 2. So we may assume by way of contradiction that dC(x) = 1. Let e be the
neighbor of a on Pab and let f be a father of e. Finally let y be a father of b.

If dC(f) = 1, then axPxfePebPbcPcaa is a 3-cycle with chords ae, ab, ac. So dC(f) ≥ 2 and thus,
by (7), dC(f) = 2. If the second neighbor f1 of f is on PabPbc, then axQxfePebPbcca is a 3-cycle

with chords ae, ab and ff1. So f1 ∈ P̊ca.

Note that eb is not an edge since otherwise aeb is a triangle. If y has a neighbor in b̊PbcPcae,
then byQyffeaPacPcbb is a 3-cycle with chords ab, ac and ff1. So y has a neighbor, say y1, in

b̊PbcPcae and by (6), NC(y) = {b, y1}. If y1 6= e, then axQxybPbcPca is a 3-cycle with chords ab, ac
and yy1. Hence y1 = e which contradicts (7). This proves (8).

We now have proved enough claims to finish the proof. Let x be a father of a. By (8), dC(x) = 2.
Let x1 be the neighbor of x distinct from a on C. Let e be the neighbor of a on Pab and let f be a
father of e. Finally let y be a father of b. By symmetry we may assume that x1 ∈ PbcPcåa.

If dC(y) = 1, then axQxybPbcPca would be 3-cycle with chords ab, ac and xx1. So dC(y) ≥ 2
and by (6), dC(y) = 2. Let y1 be the neighbor of y distinct from b on C.

Assume that both x1, y1 are on Pca. If a, y1, x1 appears in this order along Pac then
x1Px1aPabyQyxx1 is a 3-cycle with chords ax, ab and yy1 (x1 6= c since otherwise acx is a tri-
angle). So a, x1, y1 appear in this order along Pac and x1 6= y1. In particular y1a is not an edge
and so axQxyyy1Py1cPcbPbaa is a 3-cycle with chords ab, ac and yb. Moreover, if both x1, y1 are on
Pbc then axQxybPbca is a 3-cycle with chords ab, xx1 and yy1. So, either x1 ∈ P̊bc and y1 ∈ P̊ca or
x1 ∈ P̊ca and y1 ∈ P̊bc.

If x1 ∈ P̊bc and y1 ∈ P̊ca and then x1xQxyy1Py1aPabPbx1 is a 3-cycle with chords ax, by and ab.
Thus x1 ∈ P̊ca and y1 ∈ P̊bc and then x1xQxyy1Py1bPbaPbx1 is a 3-cycle with chords ax, by and ab,
a contradiction that put an end to the proof. 2

Proof of Lemma 8.12

Recall that Lemma 8.12 states that, if G is a (triangle, 3-cycle, V-cycle)-free graph and z is a vertex
of G, then for every integer k, Sk(z,G) is X-cycle-free.

proof — Let G be a (triangle, 3-cycle, V-cycle)-free graph, z a vertex of G and suppose for
contradiction that there exists an integer k such that Sk(z,G) contain an X-cycle C as an induced
subgraph.

Let ac and bd be the two chords of C and assume that a, b, c, d, appear in this order along C.
Vertices a, b, c, and d are called important vertices of C. Two important vertices that do not form
a chord of C are said to be consecutive. An interval is an induced path on C \{ac, bd} between two
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Pda

Sk(z,G)

Figure 8.5: The X-cycle C in Sk(z,G).

consecutive important vertices. They are denoted by Pab, Pbc, Pcd and Pda (see Fig. 8.4.1). Note
that two intervals share at most one vertex. By abuse of notation, Pab will sometimes denotes
V (Pab). Also, Pab can ve referred to as Pba (and analogously for Pcb, Pdc and Pda). Given two
vertices x and y in the same interval, the external path from x to y consists in the path from x to
y in C \ {ac, bd} passing through a, b, c and d.

The proof is divided in two parts. First we prove that no neighbor of the graph has degree
larger than 3 on C. We then study more specifically fathers of important vertices and prove that
they are neither of degree 3, nor 2 nor 1.

(1) If a vertex u /∈ V (C) satisfies dC(u) ≥ 3 and all but at most one neighbors of u are contained
in an interval of C, then G contains a 3-cycle.

Let u be a vertex not in V (C) such that: dC(u) ≥ 3 and all but at most one neighbors of u are
contained in an interval of C. So, there exists two vertices u1 and u2 in NC(u) such that u1 and
u2 are in the same interval of C and u has exactly one neighbor u3 on the external path P from u1
to u2. Then u2uu1Pu2 is a 3-cycle with chords ab, ac and uu3 (note that, since G is triangle-free,
u1u2 is not an edge). This proves (1).

(2) Every vertex of u /∈ V (C), satisfies dC(u) ≤ 3. Moreover, if dC(u) = 3, then no interval
contains at least two neighbors of u.

Let us first prove a fact. If a vertex v has (at least) 4 neighbors on a path P that has at most one
chord, then G contains a V-cycle or a 3-cycle. Indeed let v1, v2, v3, v4 be consecutive neighbors of
v on P . Then C ′ = vv1Pv4v has chords vv2 and vv3. If v1Pv4 is chordless then C ′ is a V-cycle
otherwise C ′ is a 3-cycle.

Assume that a vertex u /∈ C satisfies dC(u) ≥ 4. Since G is triangle free, u is not adjacent to
both a and c. By symmetry we can assume that u is not adjacent to a, then u has 4 neighbors on
the path åPabPbcPcdPdåa with at most one chord, contradicting the fact proved above.

If dC(u) = 3, then (1) ensures that the neighbors of u are in distinct intervals. This proves (2).

So any vertex x /∈ V (C) satisfying dC(x) = 3 is adjacent to at most one important vertex.
Indeed two important vertices either are opposite (which would create a triangle), or are in a same
interval (which would contradict (2)).

(3) Two adjacent vertices of C do not both have a father of degree one on C.
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Let u and v be two adjacent vertices of C. Suppose for contradiction that u ( resp. v) admits a
father u′ (resp. v′) such that dC(u′) = 1 (resp. dC(v′) = 1). We denote by P the external path from
v to u. Then uu′Qu′v′vuP is a 3-cycle with chords, uv, ac and bd. This proves (3).

(4) Let x be a father of an important vertex. Then dC(x) ≤ 2.

Assume by contradiction that a father x of a satisfies dC(x) = 3. By (2), x has exactly one neighbor,
x1 say, on P̊bc, and exactly one neighbor, x2 say, on P̊cd. Indeed a is in both Pab and Pda and (2)
ensures that there is no two neighbors of x in the same interval. Note that it implies that neither
bc nor cd are edges.

First assume that ab is an edge. Let y be a father of c. If dC(y) = 1, then axQxycPcbdPda is a
3-cycle with chords ab, ac and xx1. So dC(y) ≥ 2. If dC(y) ≥ 3, then by (2), dC(y) = 3 and y must
have a vertex in P̊ab which is impossible since we assumed that ab is an edge. So dC(y) = 2. If y1
is on PabPbc, then axQxycPcbPbaa is a 3-cycle with chords ac, xx1 and yy1, and if y1 is on PadPdc,
then axQxycPcdPdaa is a 3-cycle with chords ac, xx2 and yy1, a contradiction. So in the following
we assume that ab, and by symmetry ad, are not edges.

If bx1 is an edge then axx1Px1cPcdbPbaa is a 3-cycle with chords bx1, xx2 and ac. So bx1, and
by symmetry dx2, are not edges.

Let e be the neighbor of a on Pab and f be a father of e. The cycle C ′ = efQfxx2Px2caPadbPbee
has chords xa and xe so it must admit other chords otherwise it is a V-cycle. We already showed
that dx2 nor bc are edges and that the only neighbors of x in C are a, x1 and x2. So others chords
are due to neighbors of f . Moreover, f must have at least two neighbors that create chords in C ′,
otherwise C ′ would be a 3-cycle. So, by (2), f has one neighbor on Pcdd̊ and one neighbor on d̊Pda.
Let f1 be the neighbor of f in Pcdd̊. Then axQxfePebdPdca is a 3-cycle with chords ae, xx2 and ff1
(note that ad is not an edge since f has a neighbor on P̊a). This proves (4).

(5) If ab is an edge, fathers of a have degree exactly two.

Assume by contradiction that a father x of a satisfies dC(x) 6= 2. So, by (4), dC(x) = 1 . Let z be
a father of c. The cycle C ′ = axQxzcPcbdPda has chords ac, ab which, with no additional chords,
provides a V-cycle. By (4), dC(z) ≤ 2, so C ′ has at most one other chord due to neighbors of z.
Moreover, if cd is an edge, it is a chord of C ′. Since C ′ cannot be a V-cycle nor a 3-cycle, cd is an
edge and z has another neighbor z1 on C ′. Since both ab and cd are edges, z1 ∈ Pbc or in z1 ∈ Pda.

Assume first that z1 ∈ Pbc. If z1 6= b, then axQxzz1Pz1cdPda is a V-cycle with chords zc and
ac. So z1 = b. Let e be the neighbor of a in Pad (note that e 6= d otherwise abd is a triangle) and
let f be a father of e. Since dC(x) = 1, dC(f) ≥ 2 by (3). Such a neighbor, called f1, is unique,
otherwise, since ab and cd are edges, at least two neighbors of f would be in the same interval,
contradicting (2). Note that f1 6= a otherwise aef1 is a triangle. Then efQfzbPbcdPde is a 3-cycle
with chords ff1, zc and bd. So z1 /∈ Pbc.

Thus, z1 ∈ Pad. Note that z1 6= a since otherwise acz is a triangle. If az1 is not an edge then
axQxzz1Pz1dcPcba is a 3-cycle with chords ac, bd and cz. So az1 is an edge. Let y be a father of b.
We have dC(y) ≤ 2 by (4). Then dC(y) = 2 by (3) since dC(x) = 1 and ab is an edge. Moreover,
ay is not an edge otherwise aby is a triangle. So y has a neighbor y1 in b̊PbcdPdz1 . Therefore
byQyzz1Pz1dcPcb is a 3-cycle with chords zc, bd and yy1. This proves (5).

(6) If an important vertex has a father of degree one on C, then every father of every important
vertex has degree one on C.
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Assume w.l.o.g. that a father x of a satisfies dC(x) = 1. We show that it implies that every father
of b are of degree one in C which, by symmetry, prove the claim.

Let y be father of b and assume for contradiction that dC(y) 6= 1. Note that by (5), neither
ab nor ad are edges. By (4), dC(y) = 2. Let y1 be the neighbor of y on C distinct from b. Let
b1 be the element of {y1, b} that is nearest from a in Pab and which is distinct from a and let b2
the other one. Such a vertex exists since b satisfies the conditions. If ab1 is not an edge, then
axQxyb1Pb1bPbcPcdPda has 3 chords ac, bd and yb2. So we may assume that ab1 is an edge, since ab
is not an edge, b1 = y1.

Let z be a father of d. The cycle C ′ = dzQzyy1Py1bPbcPcd is, with no additionnal chord, a
V-cycle with chords yb, bd. Since dC(z) ≤ 2 by (4), there is at most one chord with extremity z,
which provides a 3-cycle. This proves (6).

(7) Fathers of important vertices have degree exactly two on C.

Let us prove it by contradiction. By (6), we can assume that all fathers of all important vertices
have degree one on C. And by (5), none of ab, bc, cd and da are edges. Let u be a neighbor of a in
Pab. Let x be a father of a and y be a father of u. By (3), dC(y) 6= 1 since dC(x) = 1.

By (2), dC(y) ≤ 3. If dC(y) = 3 then, by (2) and (6), the neighbors of y are in the interior of
distinct intervals. Assume that y has a neighbor in P̊cd and in P̊da. Let y1 be the neighbor of y on
P̊cd. By (6), a father y′ of b satisfies dC(y′) = 1. Hence by′Qy′yy1Py1dPdaPab has 3 chords: bd and
two chords with extremity y. It is easy to see that, since fathers of every important vertex are of
degree one in C, we get a contradiction when dC(y) = 3. So dC(y) = 2.

Let u′ be the other neighbor of a and let z be a father of u′. Assume first that u′ has a father
z distinct from y. By symmetry with y, dC(z) = 2. So u′zQzyuPubPbcPcdPdu′u′ has 3 chords: two
chords are given by the other neighbors of y and z and the third one is bd. So y is adjacent to u′.

Let w be the neighbor of c in Pdc and w′ the neighbor of c on Pcb. For symmetric reason why y
is a father of both u and u′, there exists a vertex f that is the father of both w and w′. and that is
of degree 2 in C. Then wfQfyu

′aPabPbcw is a 3-cycle with chords fw′, yu and ac (recall that both
v and w are distinct from d since none of ad, cd are edges). This proves (7).

We are now armed to finish the proof! By (7), we may assume that fathers of every important
vertex have exactly degree 2 on C. Let x and y be some fathers of a and c respectively. Since G is
triangle-free, x 6= y. Let us denote by x1 and y1 the other neighbors of respectively x and y. If x1
and y1 are on PabPbc, then axQxycPcbPba is a 3-cycle with chords ac, xx1 and yy1, a contradiction.
So x1 and y1 cannot both be on PabPbc and, symmetrically, they cannot be on PcdPda.

So, we may assume w.l.o.g. that x1 is on PabPbc and that y1 is on PcdPda. If x1 ∈ P̊ab then
x1xQxycPcdPdaPax1 is a 3-cycle with chords ac, ax and yy1. Thus x1 is on Pbc and by symmetry
y1 is on Pda. More generally, we showed that no father of an important vertex has its second
neighbor on the interior of and interval adjacent containing it. If ab and cd are both not edges,
then axPxycPcbdPda is a 3-cycle with chords ac, xx1, yy1. So either ab is an edge, or cd is an edge,
or both are edges.

Assume w.l.o.g. that ab is an edge. A father w of d has it second neighbor w1 neither in Pcd nor
in Pda since no father of an important vertex has its second neighbor on the interior of intervals
adjacent to it. Since ab is an edge, w1 ∈ Pbc. Now, a father z of b has a unique second neighbor z1
on P̊ad (by applying the first part of the proof on b, d instead of a, c). If a, y1, z1 appears in this
order along Pad then bzQzyy1Py1dPdcPcb is a 3-cycle with chords bd, zz1 and yc. So a, z1, y1 appear
in this order along Pad and, in particular, z1d is not an edge. Symmetrically, b, x1, w1 appear in
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this order along Pcb and cx1 is not an edge. Finnaly x1xQxzz1Pz1acPcdbPbx1 is a 3-cycle with chords
ab, xa and zc, a contradiction. 2

8.4.2 Clique number 3 : proof of Theorem 8.9

The proof of Theorem 8.9 is organized as follows. First of all, we prove (see Lemma 8.13) that
any (K4, 3-cycle)-free graph with chromatic number at least 2c contains either an butterfly as an
induced subgraph or a dragonfly as an induced subgraph (see Figure 8.6). Note that the proof is
based on Theorem 8.8.

We then prove that if a graph G is (K4, 3-cycle)-free and x is a vertex of G, then for any integer
k, Sk(z,G) is (dragonfly,butterfly)-free (see Lemmas 8.14 and 8.15).

At the very end, we combine these two result to get the proof of Lemma 8.9.

X1 X2 X3 X4

X5 X6 X7

Dragonfly

Y1 Y2 Y3

Y4 Y5

Butterfly

Figure 8.6: The dragonfly and the butterfly

Lemma 8.13 Let G be a (K4, 3-cycle)-free graph with χ(G) > 2c. Then G contains a dragonfly
or a butterfly as an induced subgraph.

proof — All along the proof, the notations of the vertices of dragonfly and butterfly will fit with
notations of Figure 8.6. We first prove that G admits a dragonfly or a butterfly as a subgraph. We
then prove that it is induced.

(1) G admits a dragonfly as a subgraph.

Let T ⊆ V (G) be a minimal (by inclusion) subset of vertices such that G \ T is triangle-free.
By Theorem 8.8, G \ T is c-colorable. If G[T ] is triangle-free, then G[T ] is c-colorable and thus
G is 2c-colorable, a contradiction. Thus, we may assume that G[T ] admits a triangle x2x3x6. By
minimality of T , (G\T )∪{x2} admits a triangle containing x2, say x1x2x5. Similarly, (G\T )∪{x3}
contains a triangle containing b, say x3x4x7.

If {x1, x5} = {x4, x7}, then x1x2x3x5 = K4, a contradiction. So {x1, x5} 6= {x4, x7}.
Assume now that |{x1, x5}∩{x4, x7}| = 1 and, w.l.o.g., assume that x1 = x7 (see Figure 8.4.2).

The cycle C = x1x5x2x6x3x4x1 is, if no additional chords exist, a 3-cycle with chords x1x2, x1x3
and x2x3. So C must have at least one more chord. Since G is K4-free, x1x6, x2x4 and x3x5 are
not edges. There remains only 3 possible chords, namely x4x5, x5x6 and x4x6. If say x4x5 ∈ E(G),
then x1x2x5x4x3x1 is a 3-cycle, a contradiction. So x4x5 is not an edge and, by symmetry, x5x6
and x4x6 are not edges.

So, {x1, x5} ∩ {x4, x7} = ∅ and thus G[{x1, x2, x3, x4, x5, x6, x7}] contains a dragonfly as a
subgraph. This proves (1).
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X1

X2 X3

X4X5

X6

Figure 8.7: Figure in the proof of Claim (1).

(2) G contains either a dragonfly or a butterfly as an induced subgraph.

Observe first that, if G contains a butterfly (see Figure 8.6 for the name of its vertices), then it is
induced. Indeed, since G is K4-free, if it is not induced then y1y3 ∈ E(G) and then y1y4y5y3y2y1 is
a 3-cycle, a contradiction.

By (1), G admits a dragonfly as a subgraph, name it H and refer to Figure 8.6 for the name of
its vertices. We may assume that H is not induced, otherwise we are done. If there exists an edge
with one extremity in {x1, x5} and the other one in {x3, x6}, then G[{x1, x2, x3, x5, x6}] contains a
butterfly as a subgraph and thus as an induced subgraph. So there is no edges with one extremity
in {x1, x5} and the other one in {x3, x6} and, by symmetry, there is no edges with extremities in
{x4, x7} and the other one in {x2, x6}.

So there exists some edges with one extremity in {x1, x5} and one extremity in {x4, x7}. By
symmetry, we may assume w.l.o.g. that x5x7 ∈ E(G). If it is the only one then, x1x2x6x3x4x7x5x1
is a 3-cycle, a contradiction. So it is not the only one and thus, some of x1x4, x1x7 or x4x5 are
edges of G. If there is exactly one more, then in the three cases x1x2x3x4x7x5x1 is a 3-cycle, a
contradiction. So, there is at least two more and there is actually exactly two more, otherwise
x1x4x5x7 = K4. By symmetry between x1x7 and x4x5, we may assume w.l.o.g. that x4x5 ∈ E(G).
So one of the edges x1x4 or x1x7 exists, but in both cases the cycle x2x6x3x4x7x5x2 is a 3-cycle, a
contradiction. This proves (2). 2

Lemma 8.14 Let G be a (K4, 3-cycle)-free graph and let z be a vertex of H. Then, for every
integer i, G[Si(z)] is dragonfly-free.

proof — Assume by way of contradiction that there exists an integer i such that G[Si(z)] contains
a dragonfly as an induced subgraph. Name it H and refer to Figure 8.6 for the name of its vertices.
Let u be a father of x5 and v be a father of x7.

The two next claims examine what are the possible neighborhoods of u and v in H.

(1) NH(u) ∈ {{x5}, {x5, x1}, {x5, x2}, {x5, x3}, {x5, x6}, {x1, x3, x5, x6}}.
First note that u cannot have exactly two neighbors in {x1, x2, x3, x6}. Indeed, u cannot see both
x1 and x2 since otherwise there is a K4. Thus w.l.o.g. x6 is a neighbor of u and then ux5x1x2x3x6u
is a 3-cycle.

Assume now that ux2 is an edge. Since G is K4-free, ux1 is not an edge. Both ux3, ux6 are
not edges since G is K4-free. So none of ux3, ux6 is an edge since otherwise u has exactly two
neighbors in {x1, x2, x3, x6}. If ux7 is an edge then ux5x1x2x6x3x7u is a 3-cycle. So ux7 and by
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symmetry ux4 are not edges. So if ux2 is an edge, then NH(u) = {x5, x2} and one of the outcome
holds. So, we may assume from now on that ux2 is not an edge.

Assume that ux7 is an edge. By symmetry between x5, x2 and x7, x3, we can assume that ux3
is not an edge. Let S = {x1, x4, x6}. If u has no neighbor on S then ux5x1x2x6x3x4x7u is a 3-cycle.
If u has exactly one neighbor in S, then by symmetry between x1 and x6 we may assume that ux6
is not an edge and thus ux5x1x2x6x3x7u is a 3-cycle. So u has at least two neighbors in S. If u has
three neighbors in S, then u has exactly two neighbors on {x1, x2, x3, x6}, a contradiction. So u
has exactly two neighbors in S. If ux1 and ux4 are edges, then ux5x1x2x6x3x7u is a 3-cycle. So, by
symmetry between x1 and x4, we may assume that the two neighbors of u in S are x4 and x6. So
then ux5x1x2x6x3x7u is a 3-cycle, a contradiction. So we may assume that ux7, and by symmetry
ux4 are not an edge..

So, NH(u) ⊆ {x5, x1, x3, x6} and, since we already proved that u does not have exactly two
neighbors in {x1, x2, x3, x6}, one of the outcome holds. This proves (1).

(2) NH(v) ∈ {{x7}, {x4, x7}, {x3, x7}, {x2, x7}, {x6, x7}, {x2, x4, x6, x7}}.
By obvious symmetries in H, the proof is the same as the proof of (1). This proves (2).

Note that by claims (1) and (2), u 6= v. In the rest of the proof we show that, whatever the
neighborhoods of u and v are, one can find a 3-cycle in H ∪Quv (recall that Quv denote a unimodal
path linking u and v).

Suppose first that dH(u) ≤ 2 and dH(v) ≤ 2.
If dH(u) = dH(v) = 1, then ux5x1x2x6x3x4x7vQvuu is a 3-cycle. So we may assume that dH(u) = 2
and thus, by (1), u has exactly one neighbors in {x1, x3, x6}. Note that by (2), vx1 is not en edge.
If dH(v) = 1, then ux5x1x2x6x3x7vQuvu is a 3-cycle. Moreover, it is still a 3-cycle if vx4 is an
edge. So dH(v) = 2 and vx4 is not an edge. Similarly, if ux1 is an edge, then vx7x4x3x6x2x5uQuvv
is a 3-cycle. So ux1 is not an edge. Now, by (1) and (2), both u and v has exactly one neighbor in
{x2, x3, x6} and thus ux5x2x6x3x7vQuvu is a 3-cycle, a contradiction.

So, from now on, we assume that dH(u) and dH(v) are not both inferior to 2. Hence we may
assume w.l.o.g. that dH(u) > 2, and thus, by (1), NH(u) = {x1, x3, x5, x6}.

Recall that by (2), vx1 is not an edge. If v has no neighbor in {x2, x3}, then x5x1x2x3x7vQvuu is
a 3-cycle. So v has at least one neighbor in {x1, x2, x3} and by (2). If NH(v) ⊆ {{x2, x7}, {x3, x7}},
then ux5x2x3x4x7vQuvu is a 3-cycle. So by (2), NH(v) = {x2, x4, x6, x7}

If uv is not an edge, then ux5x2vx7x4x3u is a 3-cycle with chords x2x3, x3x7 and vx4, a
contradiction. So we may assume that uv is an edge. Let u′ and v′ be fathers of respectively
u and v and note that, since u′ and v′ are in Si−2(z), they have no neighbors in H. Therefore
u′ux5x2x3x7vv

′Qv′u′u′ is a 3-cycle, with chords uv, ux3 and vx2, a contradiction. 2

Lemma 8.15 Let G be a (K4, 3-cycle)-free graph and let z be a vertex of H. Then, for every
integer i, G[Si(z)] is butterfly-free.

proof — Assume by way of contradiction that there exists an integer i such that G[Si(z)] contains
a butterfly as an induced subgraph. Name it H and refer to Figure 8.6 for the name of its vertices.
Let u be a father of y4 and v be a father of y5.

The two next claims examine what are the possible neighborhoods of u and v in H.

(1) NH(u) ∈ {{y4}, {y2, y4}, {y1, y3, y4}}
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Assume first that |NH(u)| = 2. If NH(u) = {y1, y4}, then uy1y2y3y5y4u is a 3-cycle, a contradiction.
If NH(u) = {y3, y4}, then uy4y1y2y5y3u is a 3-cycle, a contradiction. If NH(u) = {y4, y5}, then
uy4y1y2y3y5u is a 3-cycle, a contradiction. So, if |NH(u)| = 2, then NH(u) = {y2, y4} and one of
the outcome of the theorem holds.

Assume now that |NH(u)| = 3. If NH(u) = {y2, y3, y4}, then uy4y2y5y3u is a 3-cycle, a con-
tradiction. If NH(u) = {y1, y3, y4}, then one of the outcome of the theorem holds. So, since G is
K4-free, u has to see y5. The third neighbor of u is thus y1 or y3 and, by symmetry, we may assume
that it is y1. Therefore uy4y1y2y5u is a 3-cycle, a contradiction.

So we may assume that |NH(u)| ≥ 4. Since G is K4-free, |NH(u)| = 4 and NH(u) =
{y1, y3, y4, y5}. Thus uy1y4y2y5u is a 3-cycle, a contradiction. This proves (1).

(2) NH(v) ∈ {{y5}, {y2, y5}, {y1, y3, y5}}

By obvious symmetries in H, the proof is the same as the proof of (1). This proves (2).

Note that by claims (1) and (2), u 6= v. In the rest of the proof we show that, whatever the
neighborhoods of u and v are, one can find a 3-cycle in H ∪Quv (recall that Quv denote a unimodal
path linking u and v).

Case 1 : NH(v) = {y5}.
If NH(u) = {y4} then uy4y1y2y3y5vQvuu is a 3-cycle, a contradiction. So NH(u) ∈
{{y2, y4}, {y1, y3, y4}} and thus uy4y2y3y5vQvuu is a 3-cycle, a contradiction. This completes the
proof in case 1.

So from now on, we may assume that NH(v) 6= {y5} and, by symmetry, that NH(u) 6= {y4}.

Case 2 : NH(v) = {y2, y5}.
If NH(u) = {y2, y4} then uy4y2y5vQvuu is a 3-cycle. Otherwise, we may assume that NH(u) =
{y1, y3, y4} and then uy1y2y3y5vQvu is a 3-cycle, a contradiction.

So from now on, we may assume that NH(v) 6= {y2, y5} and by symmetry, NH(u) 6= {y2, y4}.
This leads to the following last case.

Case 3 : NH(v) = {y1, y3, y5} and NH(u) = {y1, y3, y4}.
If uv is not an edge then uy1y4y5vy3u is a 3-cycle, with chords uy4, vy1 and y3y5, a contradiction.
So uv is an edge. Let u′ and v′ be fathers of respectively u and v. If u′ (or v′) is adjacent to both
u and v we assume that u′ = v′. Note that since u′ and v′ are in Sk−2 they have no neighbors in
H. Therefore u′uy1y2y3vv

′Qu′v′u
′ is a 3-cycle, with chords uv, uy3 and vy1, a contradiction. This

completes the proof in Case 3.

2

We can now give the proof of Theorem 8.9 recall that it states that every (K4,3-cycle)-free
graph has chromatic number at most 4c.

proof — Assume by contradiction that there exists a (K4, 3-cycle)-free graph G that satisfies
χ(G) ≥ 4c + 1 and let z be a vertex of G. By Remark 8.4, there exists an integer k such that
Sk(z,G) has chromatic number at least 2c+ 1. So, by Lemma 8.13, it must contain a dragonfly or
a butterfly, which is a contradiction with Lemma 8.14 or Lemma 8.15. 2
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8.4.3 Clique number at least 4 : proof of Theorem 8.10

Recall that Theorem 8.9 states that every (3-cycle)-free graph has chromatic number at most
max(4c, ω(G) + 1).

proof — Consider by contradiction the smallest (in number of vertices) graph G ∈ C3 such that
χ(G) > max(ω(G) + 1, 4c). By Theorem 8.8 and 8.9, we have ω(G) ≥ 4. Put ω(G) = ω. Let K be
a largest clique of G and denote by x1, . . . , xω the vertices of K.

(1) Every vertex of G is of degree at least ω + 1.

If a vertex v of G is of degree at most ω, then by minimality of G we can color G \ {v} with
max(ω(G) + 1, 4c) colors and extend the coloring to G, a contradiction. This proves (1).

(2) G does not admit clique cutsets.

Assume by contradiction that G has a clique cutset A. Let C1 be a connected component of G \A,
and C2 the union of all others components. By minimality of G, we may color G[Ci ∪ K] with
max(ω(G) + 1, 4c) colors for i = 1, 2. By using the same colors for the vertices of A in the coloring
of G[C1 ∪K] and G[C2 ∪K], we can extend the coloring to G, a contradiction. This proves (2).

(3) If u ∈ N(K), then dK(u) = 1 or ω − 1.

Assume by way of contradiction that u has at least two neighbors in K, say x1 and x2, and at least
two non-neighbors, say x3 and x4. Then ux1x3x4x2u is a 3-cycle, with chords x1x2, x1x4 and x2x3,
a contradiction. This proves (3).

Define Si = {u ∈ N(K)|NK(u) = {xi}}, Ti = {u ∈ N(K)|NK(u) = V (K) \ {xi}} and, for all
i = 1, . . . , ω, Ui = Si ∪ Ti.

An uv-path P is an N(K)-connection if no vertex of P is in K and N(K) ∩ P = {u, v}. Note
that vertices of P̊ have no neighbors on K and that an N(K)-connection can be an edge.

(4) Let P be an N(K)-connection with endvertices u and v. Then there exists an integer i such
that {u, v} ⊆ Ui and {u, v} 6⊆ Ti.

Let i, j, k and l be 4 distinct integers in {1, . . . , ω}. Such integers exist since ω ≥ 4.
If u ∈ Ti and v ∈ Tj , then uxjxkxivPu is a 3-cycle, with chords uxk, vxk and xixj .
If u ∈ Si and v ∈ Tj , then uxixkxlvPu is a 3-cycle, with chords vxi, vxk and xixl.
If u ∈ Si and v ∈ Sj , then uxixkxlxjvPu is a 3-cycle, with chords xixj , xixl and xjxk.
If u ∈ Ti and v ∈ Ti, then uxjxixkvPu is a 3-cycle, with chords uxj , vxk and xjxk. This proves (4).

(5) There is a unique i ∈ {1, . . . , ω} for which Ui 6= ∅.

Let us argue by way of contradiction. By (2), G \ K is connected, so there exists a path P in
G \K from Ui to Uj such that i 6= j. Choose P subject to its minimality. It is clear that P is an
N(K)-connection and thus it contradicts (4). This proves (5).

By (5), we may assume w.l.o.g. that U1 6= ∅ and, for any i 6= 1, Ui = ∅. Moreover, S1 and T1
both contain at least two vertices, otherwise x1 or x2 have degree at most ω, a contradiction to (1).

We say that a vertex x is complete to a set of vertex S is x is adjacent to every vertex in S.

(6) If there exists an N(K)-connection from a vertex of T1 to a vertex s1 ∈ S1, then s1 is complete
to T1.
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Let P be a minimal N(K)-connection from s1 to T1. Denote by t1 ∈ T1 the second endvertex of P .
Assume by way of contradiction that there exists a vertex t2 ∈ T1 \ {t1} that is not adjacent to s1.
Then there is no edge linking t2 with a vertex of P , otherwise there would be an N(K)-connection
from t1 to t2, contradicting (4). So, s1Pt1x2t2x3x1s1 is a 3-cycle with chords x1x2, t1x3 and x2x3,
a contradiction.

So s1 is complete to T1 \ {t1} and, by minimality of P , s1 is adjacent to t1. This proves (6).

(7) N(T1) ⊆ S1 ∪K.

Assume by contradiction that there exists t1 ∈ T1 such that N(t1) * S1 ∪ K. Since t1 is not a
cutvertex by (2), consider a minimal path P ′ from N(t1) \ (S1 ∪K) to N(K) in G \ {t1}. Call t′1
and x the extremities of P with t′1 ∈ N(t1) \ (S1∪K) and put P = t1Px. Observe that if t1x is not
an edge, then t1Px is an N(K)-connection and that in both cases there exists an N(K)-connection
linking t1 and x. So, by (4), x /∈ T1. Hence, by (6), x is complete to T1 and in particular xt1 is an
edge. Finally t1Ps1x1x2x3t1 is a 3-cycle with chords s1t1, x1x3 and t1x2, a contradiction. This
proves (7).

(8) For any vertex t ∈ T1, N(t) = S1 ∪K \ {x1}.
Let t ∈ T1. By (4), T1 is a stable set. So if t is not adjacent to any vertex of S1, N(t) = K \ {x1},
a contradiction to (1). So t is adjacent to at least one vertex in S1 and thus, by (6), t is complete
to S1. This proves (8).

Let t1 and t2 be two distinct vertices in T1 (remind that they exist because if |T1| = 1, then
d(x2) = ω, contradicting (1)). By (8), N(t1) = N(t2) = S1∪K \{x1}. By minimality of G, G\{t2}
admits a proper coloring γ with max(4c, ω + 1) colors. Since t1t2 /∈ E(G) and N(t1) = N(t2), γ
can be extended to G by giving to t2 the same color as t1. 2
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[8] C. Berge. Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind, Tech-
nical report, Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg,
Mathematisch-Naturwissenschaftliche Reihe 10, 51–229, 1961.
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graphs. Journal of Graph Theory, 30:289-308, 1999.
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nition algorithm. Journal of Combinatorial Theory B, 81 (2):275-306, 2001.
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