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The chromatic number

Colouring: adjacent vertices receive distinct colours.

⇔
Partition the vertices into independent sets.

χ = 3χ = 5 χ = 3

Chromatic number of G = χ(G): minimise the number of colours.

Question: How could we define directed graph colouring?
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The dichromatic number

• Coloring a digraph D: no monochromatic (induced) directed cycle.

• −→χ (D): the dichromatic number of D.

In other words: partition D in acyclic induced subdigraphs instead of stable sets.

• Being acyclic is the same as having a topological ordering.
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Dichromatic number generalises chromatic number

Property: For every graph G , χ(G) = −→χ (
←→
G ).

G
←→
G

There is more and more results on the dichromatic number of digraphs for which, in the
special case of symmetric digraphs, we recover an existing result on undirected graph.

Brooks’ Theorem, Galläı Theorem, Wilf Theorem (algebraic graph theory)...

Extremal graph theory,

List dichromatic number,

Substructure forced by large dichromatic number,

Dicolouring digraphs on surfaces.
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Brooks’ Theorem, Galläı Theorem, Wilf Theorem (algebraic graph theory)...

Extremal graph theory,

List dichromatic number,

Substructure forced by large dichromatic number,

Dicolouring digraphs on surfaces.

(ENS) 4 / 38



Clique number versus chromatic number

Question: why does a graph has large chromatic number?

(Partial) Answer: because it has a large clique
(but there is triangle-free graphs with arbitrarily large chromatic number).

A class of graphs C if χ-bounded if there exists a function f such that:

for every G ∈ C, χ(G) ≤ f (ω(G)).

Perfect graphs: χ-bounded by the function f (x) = x .

Gyárfás-Sumner Conjecture:
Let H be a graph. The class of H-free graphs is χ-bounded if and only if H is a forest.

Theorem [Folklor]: If C is χ-bounded, then so is Csubst

What is the clique number of a digraph?
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What is the clique number of a digraph?

Ideally, we would like that, for every graph G and every digraph D:

ω(G) = −→ω (
←→
G ) and −→ω (D) ≤ −→χ (D)

First attempt:
−→ω (D) = size of a maximum symmetric clique in D.
But for every oriented graph G , −→ω (G) = 1, not very satisfying.

Second attempt:
−→ω (D) = size for a maximum transitive tournament of D.
Interesting, but does not satisfy −→ω (D) ≤ −→χ (D).

Conjecture [PA, Charbit, Naserasr, 2020]: Let H be an oriented graph. H-free oriented
graphs are −→χ -bounded if and only if H is an oriented forest.
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Backedge graph

Given a digraph D, and a total ordering ≺ on V (D), let D≺ be the (undirected) graph
with vertex set V (D) and edge uv if u ≺ v and vu ∈ A(D).

D≺: backedge graph of D with respect to ≺

Observation: D is acyclic if and only there is ≺ such that D≺ has no edge.

For every ≺:
−→χ (D) ≤ χ(D≺)

Moreover, there exists ≺ such that χ(D≺) ≤ −→χ (D).

Hence:
−→χ (D) = min

{
χ(D≺) : ≺ is a total ordering of V (D)

}
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Clique number of digraphs

So we have a new definition of the dichromatic number:

−→χ (D) = min
{
χ(D≺) : ≺ is a total ordering of V (D)

}

This leads a natural definition of the clique number of a digraph:

−→ω (D) = min
{
ω(D≺) : ≺ is a total ordering of V (D)

}

We clearly have:

ω(G) = −→ω (
←→
G ) (because for every ≺,

←→
G ≺ = G), and

−→ω (D) ≤ −→χ (D) (because for every graph G , ω(G) ≤ χ(G)).

Goal of the talk: to investigate the clique number of tournaments
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Tournaments

• Tournament = orientation of a complete graph.

• ~C3 is the directed triangle.

• Transitive tournament (TTk) = acyclic tournament = tournaments with no ~C3

• Dicolour a tournament ⇔ no monochromatic ~C3 ⇔ partition into transitive
tournaments.

• Tournaments can have large dichromatic number:

Define the Sk recursively as follows:

Let S1 = TT1, Sk = ∆(TT1,Sk−1, Sk−1). We have −→χ (Sk) = k
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u

a

b

c

x

y

z

c x y u a b z

A triangle-free ordering of S3. So −→ω (S3) = 2.
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Tournaments with clique number 1 or 2

−→ω (T ) = min
{
ω(T≺) : ≺ is a total ordering of V (T )

}

Properties:
−→ω (TTn) = 1.
−→ω ( ~C3) = 2.

Let T be a tournament.
−→ω (T ) = 1 if and only if T is a transitive tournament.
−→ω (T ) ≥ 2 if and only if T contains a ~C3.

Question: what is the complexity of deciding if −→ω (T ) ≥ 3?

(ENS) 11 / 38



First properties of −→ω

Property: The clique number of a digraph is equal to the maximum clique number of its
strong components.

Fundamental inequality [Nguyen, Scott, Seymour, 2023]:
For every tournament T and every ordering ≺ of V (T ).

χ(T≺)

ω(T≺)
≤ −→χ (T ) ≤ χ(T≺)

Application: construction of interesting tournaments from undirected graphs.
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−→ω -ordering and −→χ -ordering

Let T a tournament and ≺ be an ordering of V (T ). It is a:

−→ω -ordering if ω(T≺) = −→ω (T ) −→χ -ordering if χ(T≺) = −→χ (T )

Property: For every tournament T and every −→ω -ordering ≺ we have: χ(T≺) ≤ −→χ (T )2.
So −→ω -orderings give a good approximation of −→χ .

Proof: For every −→ω -ordering: χ(T≺) ≤ −→χ (T ) · −→ω (T ) ≤ −→χ (T )2

Property: there is −→χ -orderings that does not give a good approximation of −→ω .

Question: Is there always an ordering ≺ that is both an −→ω -ordering and a −→χ -ordering?
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Tournaments with arbitrarily large clique number

Question: Can you find tournaments with arbitrarily large clique number?

Let B1 = TT1 and inductively, for n ≥ 1, let Bn = ∆(Bn−1,Bn−1,Bn−1).

Lemma: For any integer n, −→ω (Bn) ≥ n.

Proof: By induction on n. Let ≺ be an −→ω -ordering. Look at the in-neighbourhood of
the first vertex in ≺.

Question: What is −→ω (Bn)? In particular, is it polynomial in |V (Bn)| = 3n?

We know that n ≤ −→ω (Bn) ≤
(
3
2

)n
= −→χ (Bn).

Question: what is the smallest f (n) such that every n-vertex tournament T has
−→ω (T ) ≤ f (n)?
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Relation with the domination number

Domination number: size of the smallest X ⊆ V (T ) such that N+[X ] = V (T ).

Property: For every tournament T ,

dom(T ) ≤ −→ω (T ) ≤ −→χ (T )
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−→χ -bounded class of tournaments

A class of tournaments T is −→χ -bounded if there exists a function f such that, for every
T ∈ T ,

−→χ (T ) ≤ f (−→ω (T ))

Theorem [A, Aubian, Charbit, Lopes, 2023] if T is −→χ -bounded, then so is T subst .

Theorem [Chudnovsky, Penev, Scott, Trotignon, 2013] If C is polynomially χ-bounded,
then so is Csubst .

Question: Is it true that if T is polynomially −→χ -bounded, then so is T subst .

Conjecture: Let D be a class of digraphs. If D is −→χ -bounded, then so is Dsubst .
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Relation between −→χ -boundedness and χ-boundedness

Given a class of tournaments T , let us denote by T ≺ the class of all backedge graphs of
tournaments in T :

T ≺ = {T≺ | T ∈ T ,≺ an ordering of T}

For example, if T = {transitive tournaments}, then T ≺ = {permutation graphs}.

Theorem: Let T be a class of tournaments. T is −→χ -bounded if and only if T ≺ is
χ-bounded.
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T ≺ = {T≺ | T ∈ T ,≺ an ordering of T}

• T is −→χ -bounded ⇒ T ≺ is χ-bounded.

Proof: let f be a function such that for every T ∈ T , we have −→χ (T ) ≤ f (−→ω (T )).
Now, for every T≺ ∈ T ≺:

χ(T≺) ≤ ω(T≺) · −→χ (T ) by the fundamental inequality

≤ ω(T≺) · f (−→ω (T ))

≤ ω(T≺) · f (ω(T≺))

• T ≺ is χ-bounded ⇒ T is −→χ -bounded.

Proof: Let g be a function such that for every T≺ ∈ T ≺, χ(T≺) ≤ g(ω(T≺)).
Now, for any T ∈ T and every ordering ≺ of T .

−→χ (T ) ≤ χ(T≺) ≤ g(ω(T≺)) ≤ g(−→ω (T ))
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Classes of tournaments defined by forbidding a single tournament

Given a tournament H, Forb(H) is the class of tournaments T such that T does not
contain H as a subtournament.

Question: for which tournament H is Forb(H) −→χ -bounded?

i.e. there is a function f such that, for every T ∈ Forb(H), −→χ (T ) ≤ f (−→ω (T ))

We say that such an H is −→χ -binding.
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Heroes

Question: for which tournament H is Forb(H) −→χ -bounded?

The most simple case of χ-bounding function is a constant function.

Question: for which tournament H there is a number cH such that, for every
T ∈ Forb(H), −→χ (T ) ≤ cH?

Answer: such tournaments are called heroes and have been characterised by Berger,
Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé in 2013.
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Tournaments and Heroes

� A tournament H is a hero if there exists a number cH such that every H-free
tournaments T has −→χ (T ) ≤ cH .

For example, ~C3 and TTk are heroes .

Theorem: [Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and
Thomassé, 2013]

A digraph H is a hero if and only if:

H = K1.

H = (H1 ⇒ H2)

H = ∆(1, k,H) or H = ∆(1,H, k), where k ≥ 1 and H is a hero.
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Gentlemen

� A tournament H is a gentlemen if there exists a number cH such that every H-free
tournaments T has −→ω (T ) ≤ cH .

Question: Who are the gentlemen?

Of course, all heroes are gentlemen.
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Gentlement and heroes are the same

Theorem [PA, Aubian, Charbit, Lopes, 2023]: Heroes and gentlemen are the same.

Proof:

We want to prove that all gentlemen are heroes.

Take a minimal counter-example H (in particular H is a gentlemen but not a hero).

All subtournaments of H are gentlemen, and thus heroes by induction.

Consider the sequence of tournaments S1, S2,S3, . . . .

We proved that they have arbitrarily large −→ω .

So H is of the form ∆(1,A,B).

Nguyen, Scott and Seymour proved that S3 = ∆(1, ~C3, ~C3) is not a gentlemen.

So one of A or B is a transitive tournament, so H is a hero.
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Question: for which tournament H is Forb(H) −→χ -bounded?

Theorem: Forb(H) is −→χ -bounded ⇒ H has an ordering ≺ such that H≺ is a forest.

Let H be a tournament such that no backedge graph of H is a forest.

Let C be the class of (undirected) graph with girth at least |V (H)|+ 1.

Let T [C] be the class of tournaments admitting a graph of C as a backedge graph.

We claim that T [C] is H-free

Let T ∈ T [C]. So there is ≺ such that T≺ ∈ C, i.e. T≺ has girth |V (H)|+ 1.
Hence, for every X ⊆ T such that |X | = |V (H)|, T≺[X ] is a forest, and thus distinct
from H.
So T is H-free.

Observe that every T ∈ T [C] has −→ω (T ) ≤ 2.

Moreover, by a celebrated theorem of Erdős, graph in C can have arbitrarily large
chromatic number.

Hence, by the fundamental inequality, tournaments in T [C] can have arbitrarily large
dichromatic number.

So T [C] is not −→χ -bounded, and thus the class of H-free tournaments is not
−→χ -bounded.

(ENS) 24 / 38



Question: for which tournament H is Forb(H) −→χ -bounded?

Theorem: Forb(H) is −→χ -bounded ⇒ H has an ordering ≺ such that H≺ is a forest.

Let H be a tournament such that no backedge graph of H is a forest.

Let C be the class of (undirected) graph with girth at least |V (H)|+ 1.

Let T [C] be the class of tournaments admitting a graph of C as a backedge graph.

We claim that T [C] is H-free

Let T ∈ T [C]. So there is ≺ such that T≺ ∈ C, i.e. T≺ has girth |V (H)|+ 1.
Hence, for every X ⊆ T such that |X | = |V (H)|, T≺[X ] is a forest, and thus distinct
from H.
So T is H-free.

Observe that every T ∈ T [C] has −→ω (T ) ≤ 2.

Moreover, by a celebrated theorem of Erdős, graph in C can have arbitrarily large
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Gyárfás-Sumner Conjecture for tournaments

Recall that:

Gyárfás-Sumner Conjecture, 1981:
Let H be a graph. Forb(H) is χ-bounded if and only if H is a forest.

It is thus very tempting to conjecture that:

Conjecture: Let H be a tournament. Forb(H) is −→χ -bounded if and only if H has an
ordering ≺ for which H≺ is a forest. HEAVILY FALSE
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How to find counter-example

Conjecture: Let H be a tournament. Forb(H) is −→χ -bounded if and only if H has an
ordering ≺ for which H≺ is a forest. HEAVILY FALSE

A counter-example on 5 vertices was found by Guillaume Aubian. More counter-examples
were found by Samuel Coulomb.

Way to prove that a given tournament H is not −→χ -binding:

Start with Blanche-Descarte construction G1, . . . ,Gk , . . . (or any other triangle-free
constructions with large χ).

Order (smartly) the vertices of each Gi and transform each Gi into a tournament Ti .

These tournaments have clique number 2 and arbitrarily large dichromatic number
by the fundamental inequality.

Prove that the Ti are H-free.
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−→χ -binding tournaments

Question: For which tournament H is Forb(H) −→χ -binding?

What is known:

if H1 and H2 are −→χ -binding, then so is H1 ⇒ H2,

if H is −→χ -binding, then so is ∆(1, 1,H) (corollary of a result of Klingelhoefer and
Newman).

If there exists ≺ such that H≺ is a matching, then H is −→χ -binding (corollary of a
result announced by Briański, Davies and Walczak).

If H is −→χ -binding, then so is the tournament obtained from H by reversing every arc
of T ,
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Theorem [Le, Harutyunyan, Thomassé and Wu, 2017]
There exists a function λ such that, if for every vertex v , −→χ (v+) ≤ t, then −→χ (T ) ≤ λ(t).

Theorem: If H1 and H2 are −→χ -binding, then so it H1 ⇒ H2.

Proof by induction on −→ω . Assume −→ω (T ) = k. Two steps:

Step 1: If N(xy) = N(y+) ∩ N(x−) has large −→χ , then xy is a backedge in every
−→ω -ordering.

Step 2: for every vertex x , −→χ (x+) or −→χ (x−) is small.
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Theorem: if Forb(H) is −→χ -bounded, then so is Forb(rev(H)), where rev(H) is obtained
by reversing every arc if H.

Proof:

Recall that: Forb(H) is −→χ -bounded ⇔ Forb(H)≺ is χ-bounded.

Observe that T≺ = rev(T )rev(≺).

So Forb(H)≺ = Forb(rev(H))≺.
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Relations with χ-boundedness of classes of ordered graphs

From a tournament H, we can define the following set of ordered undirected graphs:

{H}≺o = {(H≺,≺) :≺ is an ordering of H}

Theorem:
Forb(H) is −→χ -bounded if and only if Forbo({H}≺o )

Theorem [Briański, Davies and Walczak, 2024+]
Let (M,≺) be an ordered graph with maximum degree 1. Then Forbo(M,≺) is
χ-bounded.

Adventurous Conjecture: A tournament H is −→χ -binding if and only if there is an
ordering ≺ of H such that (H≺,≺) is χ-binding.
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Adventurous Conjecture: A tournament H is −→χ -binding if and only if there is an
ordering ≺ of H such that (H≺,≺) is χ-binding.
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Relation with the Erdős-Hajnal Conjecture

Erdős-Hajnal Conjecture (1981): Let H be a graph. there exists a number cH such that
every H-free graph G has a clique or a stable set of size |V (G)|cH .

Alon, Pach, Solymosi (2001) proved that it is equivalent with:

Tournament version of Erdős-Hajnal Conjecture: Let H be a tournament. There exists
a number cH such that every H-free tournament T has a transitive tournament of size
|V (T )|cH .

Theorem: Let H be a tournament. If Forb(H) is polynomially −→χ -bounded, then H has
the Erdős-Hajnal property.
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The BIG ⇒ BIG Conjecture

Erdős-El Zahar Conjecture, 1985: If G has chromatic number sufficiently larger then its
clique number, then G contains two independent subgraphs with large chromatic number.

A class of tournament T has the BIG ⇒ BIG property if for every T ∈ T , if
−→χ (T ) ≥ f (t), then T contains A and B such that −→χ (A),−→χ (B) ≥ t and A⇒ B.

BIG ⇒ BIG Conjecture [Nguyen, Scott, Seymour, 2023]: The class of all tournaments
has the BIG ⇒ BIG property.

Theorem [Nguyen, Scott, Seymour, 2023; Klingelhoefer and Newman, 2023]: Erdős-El
Zahar Conjecture and the BIG ⇔ BIG property are equivalent.

Theorem: If a class of tournaments T is −→χ -bounded, then T has the BIG ⇒ BIG
property.
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Clusters

Given a tournament parameter γ, a γ-cluster of a tournament T is a subtournament X
of T of bounded size with large γ.

Question: for which parameters γ1 and γ2 we have that, for all tournaments T with
sufficiently large γ1, T has a γ2-cluster.

The following states that: Large domination number implies a −→χ -cluster.

Theorem [Thomassé, Le, Harutyunyan and Wu, 2019]
There is two functions f and ` such that, for every integer k, every tournament T with
dom(T ) ≥ f (k) has a subtournament X with |X | ≤ `(k) and −→χ (X ) ≥ k

Corollary [Local to global for −→χ ]
Let T be a tournament. If −→χ (x+) ≤ t for every vertex x , then −→χ (T ) ≤ f (t).

Proof: If T has small domination number, vertices are covered by a small number of
out-neighbours. Otherwise apply the Theorem with k := t + 1 and find a vertex with a
large out-neighbourhood.
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Clusters

Recall that for every tournament T , dom(T ) ≤ −→ω (T ) ≤ −→χ (T ).

Theorem [Thomassé, Le, Harutyunyan and Wu, 2019]
Large domination number implies a −→χ -cluster

Theorem: Large dichromatic number does not imply a −→χ -cluster.

Conjecture [Thomassé, Le, Harutyunyan and Wu, 2019]:
Large domination number implies a dom-cluster.

Here is a weaker version of the above conjecture:

Conjecture [A, Aubian, Charbit, Wayne, 2024]
Large domination number implies a −→ω -cluster.

Conjecture [Local to global for −→ω ]
Let T be a tournament. If −→ω (x+) ≤ k for every vertex x , then −→ω (T ) ≤ f (k).
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Rebel

A tournament H is a rebel if there is a number cH such that every H-free tournament has
domination number at most cH .

A poset tournament if a tournament that has backedge graph that is a comparability
graph.

Conjecture [Chudnovsky, Kim, Liu, Seymour and Thomassé, 18]
A tournament is a rebel if and only if it is a poset tournament.

The above conjecture implies that large domination number implies an −→ω -cluster.

Indeed, the Sk are poset tournament. Moreover, they have arbitrarily large −→ω . Hence, if
the Sk are rebel, then tournaments with sufficiently large domination number contains an
Sk as a subtournament, which forms a −→ω -cluster.
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Complexity

Observation: −→ω (T ) = 1 if and only T is a transitive tournament.

Theorem [Aubian, 2024]: For every k ≥ 3, deciding if −→ω (T ) ≤ k is NP-complete.

Open Question: what is the complexity of deciding if a tournament T has −→ω (T ) ≤ 2?

Theorem [PA, Aubian, Charbit, Thomassé]: We can decide in poly-time if, given a
tournament T , −→ω (T ) > 2 or −→ω (T ) ≤ 1010

Question: Is there a function f such that for every integer k, there is a poly-time
algorithm that, given a tournament T decide if −→ω (T ) ≥ k, or −→ω (T ) ≤ f (k)
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Complexity

A Feedback Arc Set (FAS) is a set of arc F such that T \ F is acyclic.

Observation: F is a minimal FAS of T if and only if there exists ≺ such that T≺ = F .

Given a class of (undirected) graph C, we say that a FAS is a C-FAS if F ∈ C.

C-FAS Problem the associated decision problem, that is deciding if a tournament has a
C-FAS.

It is NP-hard when:

Ck = {k-colourable graphs}, when k ≥ 2 (Bokal, Fijavz, Juvan, Kayll and Mohar,
2004)

k ≥ 4, C = {Kk -free graphs} (Aubian, 2024)

C = {forests} (PA, Aubian, Lopes, 2024)

Dk = {graphs with max degree k} when k ≥ 2 (Davot, Isenmann, Roy, and
Thiebaut, 2023) (and polynomial when k ≤ 1)

Question: what is the complexity when:
I C is the set of all paths?
I C is the set of triangle-free graphs?
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Open questions

Conjecture: The class of tournaments with twinwidth at most k is −→χ -bounded.

Conjecture: For every integer k ≥ 3, give an explicit construction of (k,−→ω )-critical
tournaments. (known for k = 3, 4, open when k ≥ 5).

Conjecture Large dom implies a −→ω -cluster

Conjecture: There exists a function g such that, if −→ω (v+) ≤ t for every vertex v , then
−→ω (T ) ≤ g(t).

Question: What is the smallest f (n) such that for every n-vertex tournament T ,
−→ω (T ) ≤ f (n).

The best bound we know on f (n) is logarithmic!! We think that −→ω (Bk) should be
polynomial in |V (Bk)|.

Thank You For Your Attention
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