Colouring digraphs and arc-connectivity

Pierre Aboulker - ENS Paris Join work with Guillaume Aubian and Pierre Charbit

May 2023

Graph and directed graph theory

A digraph

A symmetric digraph

The chromatic number

The chromatic number

Colouring: adjacent vertices receive distinct colours.

Partition the vertices into independent sets.

$\chi=5$

$\chi=3$

$\chi=3$

Chromatic number of $G=\chi(G)$: minimise the number of colours.
Question: How could we define directed graph colouring?

The dichromatic number

- Coloring a digraph D : no monochromatic (induced) directed cycle.
- $\vec{\chi}(D)$: the dichromatic number of D.

In other words: partition D in acyclic induced subdigraphs instead of stable sets.

Dichromatic number generalises chromatic number

Property: For every graph $G, \chi(G)=\vec{\chi}(\overleftrightarrow{G})$

G

There is more and more results on the dichromatic number of digraphs for which, restricted to of symmetric digraphs, we recover an existing result on undirected graph.

Chromatic number vs dichromatic number

$\chi(G)$ is the maximum chromatic number of a connected component of G.
$\vec{\chi}(D)$ is the maximum dichromatic number of a strong component of D.

Chromatic number vs dichromatic number

$\chi(G)$ is the maximum chromatic number of a connected component of G.
$\vec{\chi}(D)$ is the maximum dichromatic number of a strong component of D.
$\chi(G)$ is the maximum chromatic number of a block of G.
$\vec{\chi}(D)$ is the maximum dichromatic number of a block of D.

Chromatic number vs dichromatic number

$\chi(G)$ is the maximum chromatic number of a connected component of G.
$\vec{\chi}(D)$ is the maximum dichromatic number of a strong component of D.
$\chi(G)$ is the maximum chromatic number of a block of G.
$\vec{\chi}(D)$ is the maximum dichromatic number of a block of D.
$\vec{\chi}(D)$ is the maximum dichromatic number of a strong component of a block of D.

Brooks' Theorem

$\Delta(G)$: maximum degree of G.
Property: $\chi(G) \leq \Delta(G)+1$

Brooks' Theorem

$\Delta(G)$: maximum degree of G.

Property: $\chi(G) \leq \Delta(G)+1$

Brooks' Theorem (1932):
$\chi(G)=\Delta(G)+1$ except if G is a complete graph or an odd cycle.

$$
\begin{aligned}
& \chi=2 \\
& \Delta=1
\end{aligned}
$$

$$
\begin{aligned}
& \chi=3 \\
& \Delta=2
\end{aligned}
$$

$\chi=3$
$\Delta=2$

$\chi=4$
$\Delta=3$

Directed Brook's Theorem

$$
d_{\max }(v)=\max \left(d^{+}(v), d^{-}(v)\right)
$$

$$
d_{\min }(v)=\min \left(d^{+}(v), d^{-}(v)\right)
$$

Directed Brook's Theorem

$d_{\max }(v)=\max \left(d^{+}(v), d^{-}(v)\right)$
$\Delta_{\max }(D)=\max \left(d_{\max }(v): v \in D\right)$

$$
d_{\min }(v)=\min \left(d^{+}(v), d^{-}(v)\right)
$$

$$
\Delta_{\min }(D)=\max \left(d_{\min }(v): v \in D\right)
$$

Directed Brook's Theorem

$d_{\max }(v)=\max \left(d^{+}(v), d^{-}(v)\right)$

$$
d_{\min }(v)=\min \left(d^{+}(v), d^{-}(v)\right)
$$

$\Delta_{\max }(D)=\max \left(d_{\max }(v): v \in D\right) \quad \Delta_{\min }(D)=\max \left(d_{\min }(v): v \in D\right)$
Property: $\vec{\chi}(D) \leq \Delta_{\min }(D)+1 \leq \Delta_{\max }(D)+1$

Directed Brook's Theorem

$d_{\max }(v)=\max \left(d^{+}(v), d^{-}(v)\right)$

$$
d_{\min }(v)=\min \left(d^{+}(v), d^{-}(v)\right)
$$

$\Delta_{\max }(D)=\max \left(d_{\max }(v): v \in D\right)$
$\Delta_{\text {min }}(D)=\max \left(d_{\text {min }}(v): v \in D\right)$
Property: $\vec{\chi}(D) \leq \Delta_{\min }(D)+1 \leq \Delta_{\max }(D)+1$
Directed Brooks' Theorem [Mohar, 2010]:
$\vec{\chi}(D)=\Delta_{\max }(D)+1$ except if D is a directed cycle, a symmetric odd cycle, or a symmetric complete graph.

$$
\vec{\chi}=3
$$

$\Delta_{\text {max }}=2$

$$
\vec{\chi}=4
$$

$$
\Delta_{\max }=3
$$

Line of research: take your favourite theorem on chromatic number, and generalise it to digraphs via the dichromatic number.

Local edge connectivity in undirected graphs

G is k-critical if $\chi(G)=k$ and every proper subgraph is $k-1$-colourable.

Local edge connectivity in undirected graphs

G is k-critical if $\chi(G)=k$ and every proper subgraph is $k-1$-colourable.
$\lambda(x, y)$: maximum number of pairwise edge disjoint path between x and y.

Local edge connectivity in undirected graphs

G is k-critical if $\chi(G)=k$ and every proper subgraph is $k-1$-colourable.
$\lambda(x, y)$: maximum number of pairwise edge disjoint path between x and y.
$\lambda(G)=\max (\lambda(x, y): x \neq y)$: maximum local edge connectivity

Local edge connectivity in undirected graphs

G is k-critical if $\chi(G)=k$ and every proper subgraph is $k-1$-colourable.
$\lambda(x, y)$: maximum number of pairwise edge disjoint path between x and y.
$\lambda(G)=\max (\lambda(x, y): x \neq y):$ maximum local edge connectivity

For every graph G :

$$
\chi(G) \leq \lambda(G)+1 \leq \Delta(G)+1
$$

Local edge connectivity in undirected graphs

G is k-critical if $\chi(G)=k$ and every proper subgraph is $k-1$-colourable.
$\lambda(x, y)$: maximum number of pairwise edge disjoint path between x and y.
$\lambda(G)=\max (\lambda(x, y): x \neq y):$ maximum local edge connectivity

For every graph G :

$$
\chi(G) \leq \lambda(G)+1 \leq \Delta(G)+1
$$

Question: for which graphs $G, \chi(G)=\lambda(G)+1$?

Local edge connectivity in undirected graphs

G is k-critical if $\chi(G)=k$ and every proper subgraph is $k-1$-colourable.
$\lambda(x, y)$: maximum number of pairwise edge disjoint path between x and y.
$\lambda(G)=\max (\lambda(x, y): x \neq y):$ maximum local edge connectivity

For every graph G :

$$
\chi(G) \leq \lambda(G)+1 \leq \Delta(G)+1
$$

Question: for which graphs $G, \chi(G)=\lambda(G)+1$?

- Brooks exceptions do.

Question: for which graphs $G, \chi(G)=\lambda(G)+1$?
Observation: G satisfies $\chi(G)=\lambda(G)+1$ if and only if one of its blocks do.

Question: for which graphs $G, \chi(G)=\lambda(G)+1$?
Observation: G satisfies $\chi(G)=\lambda(G)+1$ if and only if one of its blocks do.

We say that G is k-extremal if it is biconnected and $\chi(G)=\lambda(G)+1=k+1$.

Question: for which graphs $G, \chi(G)=\lambda(G)+1$?
Observation: G satisfies $\chi(G)=\lambda(G)+1$ if and only if one of its blocks do.

We say that G is k-extremal if it is biconnected and $\chi(G)=\lambda(G)+1=k+1$.

If G_{1} and G_{2} are k-extremal, then so does the Hajós join of G_{1} and G_{2}.

Question: for which graphs $G, \chi(G)=\lambda(G)+1$?
Observation: G satisfies $\chi(G)=\lambda(G)+1$ if and only if one of its blocks do.

We say that G is k-extremal if it is biconnected and $\chi(G)=\lambda(G)+1=k+1$.

If G_{1} and G_{2} are k-extremal, then so does the Hajós join of G_{1} and G_{2}.
Theorem: [A., Bretell, Havet, Trotignon (k=3) 2015, Stiebitz and Toft, 2016]
A graph G if k-extremal if and only if:

- It is an odd cycle $(k=2)$, or
- An odd wheel $(k=3)$, or
- K_{k}, or
- It is the Hajós join of two graphs.

Some 3-extremal graphs:

Back to digraphs

D is k-dicritical if $\vec{\chi}(G)=k$ and every proper subgraph is k - 1-dicolourable.

Back to digraphs

D is k-dicritical if $\vec{\chi}(G)=k$ and every proper subgraph is k - 1-dicolourable.
$\lambda(x, y)$: maximum number of pairwise arc disjoint paths from x to y.

Back to digraphs

D is k-dicritical if $\vec{\chi}(G)=k$ and every proper subgraph is k - 1-dicolourable.
$\lambda(x, y)$: maximum number of pairwise arc disjoint paths from x to y.
$\lambda(D)=\max (\lambda(x, y): x \neq y):$ maximum local edge connectivity

Back to digraphs

D is k-dicritical if $\vec{\chi}(G)=k$ and every proper subgraph is k - 1-dicolourable.
$\lambda(x, y)$: maximum number of pairwise arc disjoint paths from x to y.
$\lambda(D)=\max (\lambda(x, y): x \neq y):$ maximum local edge connectivity

For every digraph D :

$$
\vec{\chi}(D) \leq \lambda(D)+1 \leq \Delta_{\max }(D)+1
$$

Back to digraphs

D is k-dicritical if $\vec{\chi}(G)=k$ and every proper subgraph is k - 1-dicolourable.
$\lambda(x, y)$: maximum number of pairwise arc disjoint paths from x to y.
$\lambda(D)=\max (\lambda(x, y): x \neq y):$ maximum local edge connectivity

For every digraph D :

$$
\vec{\chi}(D) \leq \lambda(D)+1 \leq \Delta_{\max }(D)+1
$$

Question: which digraphs satisfy $\vec{\chi}(D)=\lambda(D)+1$

Back to digraphs

D is k-dicritical if $\vec{\chi}(G)=k$ and every proper subgraph is k - 1-dicolourable.
$\lambda(x, y)$: maximum number of pairwise arc disjoint paths from x to y.
$\lambda(D)=\max (\lambda(x, y): x \neq y):$ maximum local edge connectivity

For every digraph D :

$$
\vec{\chi}(D) \leq \lambda(D)+1 \leq \Delta_{\max }(D)+1
$$

Question: which digraphs satisfy $\vec{\chi}(D)=\lambda(D)+1$
Brooks exception do.

Observation: D satisfies $\vec{\chi}(D)=\lambda(D)+1$ if and only if a strong connected component of one of its block do.

Observation: D satisfies $\vec{\chi}(D)=\lambda(D)+1$ if and only if a strong connected component of one of its block do.

Definition: a digraph D is k-extremal if and only if it is:

- $\vec{\chi}(D)=\lambda(D)+1=k+1$,
- biconnected, and
- strong.

How can we generalise Hajós join?

Hajós tree join

D_{1} is 3-extremal: $\vec{\chi}\left(D_{1}\right)=\lambda\left(D_{1}\right)+1=4$.
But D_{2} is not: $\vec{\chi}\left(D_{2}\right)=4$, but $\lambda\left(D_{2}\right)=\lambda(g, e)=4$

Theorem: [A., Aubian, Charbit, 2023+] $k \geq 3$. A graph G if k-extremal if and only if G is:

- a symmetric odd wheel $(k=3)$, or
- a symmetric K_{k}, or
- a directed Hajós join of two digraphs, or
- a the Hajós tree join of some digraphs.

Theorem: [A., Aubian, Charbit, 2023+] $k \geq 3$. A graph G if k-extremal if and only if G is :

- a symmetric odd wheel $(k=3)$, or
- a symmetric K_{k}, or
- a directed Hajós join of two digraphs, or
- a the Hajós tree join of some digraphs.

Theorem [A., Aubian, Charbit, 2023+] there is a poly-time algorithm that decide if a given digraph is k-extremal.

Theorem: [A., Aubian, Charbit, 2023+] $k \geq 3$. A graph G if k-extremal if and only if G is :

- a symmetric odd wheel $(k=3)$, or
- a symmetric K_{k}, or
- a directed Hajós join of two digraphs, or
- a the Hajós tree join of some digraphs.

Theorem [A., Aubian, Charbit, 2023+] there is a poly-time algorithm that decide if a given digraph is k-extremal.

Open question: Characterize 2-digraphs.
k-extremal: $\chi(G)=\lambda(G)+1=k+1$, strong and biconnected.

Lemma: A k-extremal digraph is

- ($k+1$)-dicritical (all proper subgraph are k-dicolourable),
- for every $x, y, \lambda(x, y)=\lambda(y, x)=k$, and
- Eulerian $\left(d^{+}(x)=d^{-}(x)\right.$ for every vertex $\left.x\right)$

Extended Hajós join

Figure: A cartoonish drawing of an extended Hajós tree join D. Its peripheral cycle is in red. Removed digons are in dashed green. T is the corresponding tree.

Conjecture for 2-extremal digraphs

Given

- a tree T embedded in the plane with at least two edges,
- A partition (A, B) of the edges of T, with $A=\left\{u_{1} v_{1}, \ldots, u_{a} v_{a}\right\}$ and $B=\left\{x_{1} y_{1}, \ldots, x_{b} y_{b}\right\}$ such that every leaf to leaf path in T contains an even number of edges of B,
- a circular ordering $C=\left(x_{1}, \ldots, x_{\ell}\right)$ of the leaves of T, taken following the natural ordering given by the embedding of T, and
- for $i=1, \ldots$, a, a digraph D_{i} such that
- $V\left(D_{i}\right) \cap V(T)=\left\{u_{i}, v_{i}\right\}$,
- $\left[u_{i}, v_{i}\right] \subseteq A\left(D_{i}\right)$, and
- for $1 \leq i \neq j \leq a, V\left(D_{i}\right) \backslash\left\{u_{i}, v_{i}\right\} \cap V\left(D_{j}\right) \backslash\left\{u_{j}, v_{j}\right\}=\emptyset$,

Let \mathcal{H}_{2} be the smallest class of digraphs containing symmetric odd cycle and closed under taking directed Hajós join and 2-Hajós tree join.

Conjecture: A digraph is 2-extremal if and only if it is in \mathcal{H}_{2}.

Hypergraph case

Hypergraph case

Theorem: [Schweser, Stiebitz and Toft, 2018]
A hypergraph H if k-extremal if and only if:

- It is an odd cycle $(k=2)$, or
- An odd wheel $(k=3)$, or
- K_{k}, or
- It is the Hajós join of two hypergraphs.

A 3-extremal diraph: $\vec{\chi}(D)=4$ and $\lambda(D)=3$.
Directed cycles abc and acd intersect on 2 vertices.

