Extending the Gyárfás-Sumner conjecture to digraphs

Pierre Aboulker - ENS Paris

March 2023

Graph and directed graph theory

A graph

An oriented graph

A digraph

A symmetric digraph

The chromatic number

The chromatic number

Colouring: adjacent vertices receive distinct colours.

Partition the vertices into independent sets.

$\chi=5$

$\chi=3$

$\chi=3$

Chromatic number of $G=\chi(G)$: minimise the number of colours.
Question: How could we define directed graph colouring?

The dichromatic number

- Coloring a digraph D : no monochromatic (induced) directed cycle.
- $\vec{\chi}(D)$: the dichromatic number of D.

In other words: partition D in acyclic induced subdigraphs instead of stable sets.

Dichromatic number generalises chromatic number

Property: For every graph $G, \chi(G)=\vec{\chi}(\stackrel{\rightharpoonup}{G})$

G

There is more and more results on the dichromatic number of digraphs for which, in the special case of symmetric digraphs, we recover an existing result on undirected graph.

Brooks' Theorem

$\Delta(G)$: maximum degree of G.
Property: $\chi(G) \leq \Delta(G)+1$

Brooks' Theorem

$\Delta(G)$: maximum degree of G.

Property: $\chi(G) \leq \Delta(G)+1$

Brooks' Theorem (1932):
$\chi(G)=\Delta(G)+1$ except if G is a complete graph or an odd cycle.

$$
\begin{aligned}
& \chi=2 \\
& \Delta=1
\end{aligned}
$$

$$
\begin{aligned}
& \chi=3 \\
& \Delta=2
\end{aligned}
$$

$\chi=3$
$\Delta=2$

$\chi=4$
$\Delta=3$

Directed Brook's Theorem

$$
d_{\max }(v)=\max \left(d^{+}(v), d^{-}(v)\right)
$$

$$
d_{\min }(v)=\min \left(d^{+}(v), d^{-}(v)\right)
$$

Directed Brook's Theorem

$d_{\max }(v)=\max \left(d^{+}(v), d^{-}(v)\right)$
$\Delta_{\max }(D)=\max \left(d_{\max }(v): v \in D\right)$

$$
d_{\min }(v)=\min \left(d^{+}(v), d^{-}(v)\right)
$$

$$
\Delta_{\min }(D)=\max \left(d_{\min }(v): v \in D\right)
$$

Directed Brook's Theorem

$d_{\max }(v)=\max \left(d^{+}(v), d^{-}(v)\right)$

$$
d_{\min }(v)=\min \left(d^{+}(v), d^{-}(v)\right)
$$

$\Delta_{\max }(D)=\max \left(d_{\max }(v): v \in D\right) \quad \Delta_{\min }(D)=\max \left(d_{\min }(v): v \in D\right)$
Property: $\vec{\chi}(D) \leq \Delta_{\min }(D)+1 \leq \Delta_{\max }(D)+1$

Directed Brook's Theorem

$d_{\max }(v)=\max \left(d^{+}(v), d^{-}(v)\right)$

$$
d_{\min }(v)=\min \left(d^{+}(v), d^{-}(v)\right)
$$

$\Delta_{\max }(D)=\max \left(d_{\max }(v): v \in D\right)$ $\Delta_{\text {min }}(D)=\max \left(d_{\text {min }}(v): v \in D\right)$

Property: $\vec{\chi}(D) \leq \Delta_{\min }(D)+1 \leq \Delta_{\max }(D)+1$
Directed Brooks' Theorem:
$\vec{\chi}(D)=\Delta_{\max }(D)+1$ except if D is a directed cycle, a symmetric odd cycle, or a symmetric complete graph.

$$
\vec{\chi}=3
$$

$\Delta_{\text {max }}=2$

$$
\vec{\chi}=4
$$

$$
\Delta_{\max }=3
$$

Line of research: take your favourite theorem on chromatic number, and generalise it to digraphs via the dichromatic number.

From now on, digraphs will be supposed to be digon-free.

Non-oriented world

- Let \mathcal{F} be a set of graphs. $G \in \operatorname{Forb}(\mathcal{F})$ if G does not contains any member of \mathcal{F} as an induced subgraph.

Non-oriented world

- Let \mathcal{F} be a set of graphs. $G \in \operatorname{Forb}(\mathcal{F})$ if G does not contains any member of \mathcal{F} as an induced subgraph.

Question: for which finite set of graphs $\mathcal{F}, \operatorname{Forb}(\mathcal{F})$ has bounded chromatic number?

Non-oriented world

- Let \mathcal{F} be a set of graphs. $G \in \operatorname{Forb}(\mathcal{F})$ if G does not contains any member of \mathcal{F} as an induced subgraph.

Question: for which finite set of graphs $\mathcal{F}, \operatorname{Forb}(\mathcal{F})$ has bounded chromatic number?

- \mathcal{F} must contain a complete graph.

Non-oriented world

- Let \mathcal{F} be a set of graphs. $G \in \operatorname{Forb}(\mathcal{F})$ if G does not contains any member of \mathcal{F} as an induced subgraph.

Question: for which finite set of graphs $\mathcal{F}, \operatorname{Forb}(\mathcal{F})$ has bounded chromatic number?

- \mathcal{F} must contain a complete graph.
- \mathcal{F} must contain a forest.

Because there is graphs with arbitrarily large girth ${ }^{1}$ and chromatic number [Erdős, 60's]

Non-oriented world

- Let \mathcal{F} be a set of graphs. $G \in \operatorname{Forb}(\mathcal{F})$ if G does not contains any member of \mathcal{F} as an induced subgraph.

Question: for which finite set of graphs $\mathcal{F}, \operatorname{Forb}(\mathcal{F})$ has bounded chromatic number?

- \mathcal{F} must contain a complete graph.
- \mathcal{F} must contain a forest.

Because there is graphs with arbitrarily large girth ${ }^{1}$ and chromatic number [Erdős, 60's]

Gyárfás-Sumner conjecture (1987) For every integer k and every forest F, Forb $\left(K_{k}, F\right)$ has bounded chromatic number.
${ }^{1}$ Size of a smallest cycle

χ-boundedness

- $\omega(G)$: size of a maximum clique of G.

χ-boundedness

- $\omega(G)$: size of a maximum clique of G.

$$
\omega(G) \leq \chi(G) \quad \text { for every graph } G
$$

χ-boundedness

- $\omega(G)$: size of a maximum clique of G.

$$
\omega(G) \leq \chi(G) \quad \text { for every graph } G
$$

A hereditary class of graphs is χ-bounded if $\chi(G) \leq f(\omega(G))$ for every G in the class.

Gyárfás-Sumner conjecture (1987)
Forb (F) is χ-bounded if and only if F is a forest.

χ-boundedness

- $\omega(G)$: size of a maximum clique of G.

$$
\omega(G) \leq \chi(G) \quad \text { for every graph } G
$$

A hereditary class of graphs is χ-bounded if $\chi(G) \leq f(\omega(G))$ for every G in the class.

Gyárfás-Sumner conjecture (1987)
Forb (F) is χ-bounded if and only if F is a forest.
Result: It is enough to prove it for trees.

Directed world, dichromatic number

- Digraphs: no loop, no multiple arc.
- Oriented graphs: no digon.
- Symmetric digraphs: only digons.

Directed world, dichromatic number

- Digraphs: no loop, no multiple arc.
- Oriented graphs: no digon.
- Symmetric digraphs: only digons.
- Coloring a digraph D : no monochromatic directed cycle.
- $\vec{\chi}(D)$: the dichromatic number of D.

In other words: partition D in acyclic induced subdigraphs instead of stable sets.

Heroic sets

Let \mathcal{F} be a set of oriented graphs.
Forb (\mathcal{F}) is the class of oriented graphs containing no member of \mathcal{F} as an induced subdigraph.

Problem: What are the finite sets \mathcal{F} for which $\operatorname{Forb}(\mathcal{F})$ has bounded dichromatic number?

Such sets are heroic.

Heroic sets

Let \mathcal{F} be a set of oriented graphs.
Forb (\mathcal{F}) is the class of oriented graphs containing no member of \mathcal{F} as an induced subdigraph.

Problem: What are the finite sets \mathcal{F} for which $\operatorname{Forb}(\mathcal{F})$ has bounded dichromatic number?

Such sets are heroic.

- Tournament $=$ orientation of a complete graph.
- \vec{C}_{3} is the directed triangle.
- Transitive tournament: tournaments with no \vec{C}_{3}

Oriented graphs that must be contained in all heroic sets

Problem: What are the finite sets \mathcal{F} for which $\operatorname{Forb}(\mathcal{F})$ has bounded dichromatic number?
$-\mathcal{F}$ must contain a tournament T.

Oriented graphs that must be contained in all heroic sets

Problem: What are the finite sets \mathcal{F} for which $\operatorname{Forb}(\mathcal{F})$ has bounded dichromatic number?
$-\mathcal{F}$ must contain a tournament T.
$-\mathcal{F}$ must contain an oriented forest F.

Oriented graphs that must be contained in all heroic sets

Problem: What are the finite sets \mathcal{F} for which $\operatorname{Forb}(\mathcal{F})$ has bounded dichromatic number?
$-\mathcal{F}$ must contain a tournament T.

- \mathcal{F} must contain an oriented forest F.

Harutyunyan and Mohar (2012): there is oriented graph with large dichromatic number and such that its underlying graph has large girth.

Tournaments and Heroes

- A tournament H is a hero if and only if the class of H-free tournaments have bounded dichromatic number.
For example, \vec{C}_{3} and $T T_{k}$ are heroes.

Tournaments and Heroes

- A tournament H is a hero if and only if the class of H-free tournaments have bounded dichromatic number.
For example, \vec{C}_{3} and $T T_{k}$ are heroes.

Theorem: [Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé, 2015]
All heros can be constructed as follows:

- T_{1} is a hero.
- If H_{1} and H_{2} are heroes, then $H_{1} \Rightarrow H_{2}$ is a hero.
- If H is a hero, then $\Delta\left(H, T T_{k}, T T_{1}\right)$ and $\Delta\left(H, T T_{1}, T T_{k}\right)$ are heros.

The Conjecture

Problem: for which hero H and oriented forest F, $\operatorname{Forb}(H, F)$ has bounded dichromatic number?

The Conjecture

Problem: for which hero H and oriented forest F, $\operatorname{Forb}(H, F)$ has bounded dichromatic number?

Theorem: Forb $\left(\vec{C}_{3}, P_{4}\right)$ has arbitrarily large dichromatic number.

The Conjecture

Problem: for which hero H and oriented forest F, $\operatorname{Forb}(H, F)$ has bounded dichromatic number?

Theorem: Forb $\left(\vec{C}_{3}, P_{4}\right)$ has arbitrarily large dichromatic number.

Conjecture [Aboulker, Charbit, Naserasr, 2020]: The set Forb (H,F) has bounded dichromatic number if and only if:

- H is a hero and F is the disjoint union of stars or

The Conjecture

Problem: for which hero H and oriented forest F, $\operatorname{Forb}(H, F)$ has bounded dichromatic number?

Theorem: Forb $\left(\vec{C}_{3}, P_{4}\right)$ has arbitrarily large dichromatic number.

Conjecture [Aboulker, Charbit, Naserasr, 2020]: The set Forb (H,F) has bounded dichromatic number if and only if:

- H is a hero and F is the disjoint union of stars or
- H is a transitive tournament and F is any oriented forest.

The Conjecture

Problem: for which hero H and oriented forest F, $\operatorname{Forb}(H, F)$ has bounded dichromatic number?

Theorem: Forb $\left(\vec{C}_{3}, P_{4}\right)$ has arbitrarily large dichromatic number.

Conjecture [Aboulker, Charbit, Naserasr, 2020]: The set Forb (H,F) has bounded dichromatic number if and only if:

- H is a hero and F is the disjoint union of stars FALSE or
- H is a transitive tournament and F is any oriented forest.

The Conjecture

Problem: for which hero H and oriented forest F, $\operatorname{Forb}(H, F)$ has bounded dichromatic number?

Theorem: Forb $\left(\vec{C}_{3}, P_{4}\right)$ has arbitrarily large dichromatic number.

Conjecture [Aboulker, Charbit, Naserasr, 2020]: The set Forb (H,F) has bounded dichromatic number if and only if:

- H is a hero and F is the disjoint union of stars FALSE or
- H is a transitive tournament and F is any oriented forest.

Theorem [Chudnovsky, Scott, Seymour, 2019] For every integer k and disjoint unions of stars F, $\operatorname{Forb}\left(~ T T_{k}, F\right)$ has bounded chromatic number.

Conjecture [Aboulker, Charbit, Naserasr, 2020]: The set Forb (H,F) has bounded dichromatic number if and only if:

- H is a hero and F is the disjoint union of stars FALSE or
- H is a transitive tournament and F is any oriented forest.

Let us say that H is a hero in \mathcal{C} if all H-free digraphs in \mathcal{C} have bounded dichromatic number.

Conjecture [Aboulker, Charbit, Naserasr, 2020]: The set Forb (H,F) has bounded dichromatic number if and only if:

- H is a hero and F is the disjoint union of stars FALSE or
- H is a transitive tournament and F is any oriented forest.

Let us say that H is a hero in \mathcal{C} if all H-free digraphs in \mathcal{C} have bounded dichromatic number.

Conjecture: for every disjoint union of stars S, heroes in Forb (S) are the same as heroes in tournaments FALSE

Conjecture: for every oriented tree T and every $k, T T_{k}$ is a hero in Forb (T).

Conjecture: for every disjoint union of stars S, heroes in Forb (S) are the same as heroes in tournaments FALSE

Conjecture: for every disjoint union of stars S, heroes in Forb (S) are the same as heroes in tournaments FALSE

Theorem [Harutyunyan, Le, Newman, Thomassé, 2019] Heroes in Forb $\left(K_{t}\right)$ has bounded dichromatic number.

Forb $\left(\bar{K}_{2}\right)$ is the class of tournaments.

Small forests

What about forest on three vertices.

Quasi-transitive graphs

Forb $\left(\vec{P}_{3}\right)$ is the class of quasi-transitive oriented graphs.

Quasi-transitive graphs

Forb $\left(\vec{P}_{3}\right)$ is the class of quasi-transitive oriented graphs.

Theorem [Bang-Jensen and Huang, 1995]
The class of quasi-transitive oriented graph is equal to the closure of $\mathcal{C}=\{$ tournaments \cup acyclic diraphs $\}$ under taking substitution.

Quasi-transitive graphs

Forb $\left(\vec{P}_{3}\right)$ is the class of quasi-transitive oriented graphs.

Theorem [Bang-Jensen and Huang, 1995]
The class of quasi-transitive oriented graph is equal to the closure of $\mathcal{C}=\{$ tournaments \cup acyclic diraphs $\}$ under taking substitution.

Corolary: Heroes in Forb $\left(\vec{P}_{3}\right)$ are the same as heroes in tournaments.

Complete multipartite oriented graphs

Forb $\left(\vec{K}_{2}+K_{1}\right)$ is the class of oriented complete multipartite graphs.

Complete multipartite oriented graphs

Forb $\left(\vec{K}_{2}+K_{1}\right)$ is the class of oriented complete multipartite graphs.

Theorem[A., Aubian, Charbit 2021+]:
There exists heros H such that H-free oriented complete multipartite graphs have arbitrarily large dichromatic number.

- Define the line graph $L(G)$ of an oriented graph.
- Prove that $\chi(L(G)) \geq \log (\chi(G))$.
- Build a oriented complete multipartite graphs from $L\left(L\left(T T_{n}\right)\right)$.
- Prove it does not contain some heros.

Complete multipartite oriented graphs

We say that a tournament H is a hero in \mathcal{C} if all H-free digraphs in \mathcal{C} have bounded dichromatic number.

Theorem[A., Aubian, Charbit 2022+, B. Walczak, 2022+]:
A digraph H is a hero in $\operatorname{Forb}\left(\vec{K}_{2}+K_{1}\right)$ if and only if:

- $H=K_{1}$,
- $H=H_{1} \Rightarrow H_{2}$, where H_{1} and H_{2} are heroes in Forb $\left(\vec{K}_{2}+K_{1}\right)$, or
- $H=\Delta\left(1,1, H_{1}\right)$ where H_{1} is a hero in Forb $\left(\vec{K}_{2}+K_{1}\right)$.

Local out-tournament

G is a local out-tournament if for every vertex $x, N^{+}(x)$ is a tournament.

It corresponds to $\operatorname{Forb}\left(S_{2}^{+}\right)$.

Local out-tournament

G is a local out-tournament if for every vertex $x, N^{+}(x)$ is a tournament.

It corresponds to Forb $\left(S_{2}^{+}\right)$.

Theorem: $\vec{\chi}\left(\operatorname{Forb}\left(\vec{C}_{3}, S_{2}^{+}\right)\right)=2$ [Steiner / Aboulker, Aubian, Charbit, 2021]

Conjecture: heroes in Forb $\left(S_{2}^{+}\right)$are the same as heroes in tournaments.

Recall the big conjecture:

Conjecture [Aboulker, Charbit, Naserasr, 2020]: The set Forb (H,F) has bounded dichromatic number if and only if:

- H is a hero and F is the disjoint union of stars FALSE or
- H is a transitive tournament and F is any oriented forest.

Conjecture: For every k and every oriented forest F , Forb $\left(T T_{k}, F\right)$ has bounded dichromatic number.

Conjecture: For every k and every oriented forest F , Forb $\left(T T_{k}, F\right)$ has bounded dichromatic number.

It is equivalent to:
Conjecture: For every k and every oriented tree T , Forb $\left(T T_{k}, T\right)$ has bounded dichromatic number.

Conjecture: For every k and every oriented forest F , Forb $\left(T T_{k}, F\right)$ has bounded dichromatic number.

It is equivalent to:
Conjecture: For every k and every oriented tree T, Forb $\left(T T_{k}, T\right)$ has bounded dichromatic number.

It is equivalent to:
Conjecture: For every k and every oriented tree $T, \operatorname{Forb}\left(K_{k}, T\right)$ has bounded dichromatic number.

This is because: $\operatorname{Forb}\left(T T_{k}, T\right) \subseteq \operatorname{Forb}\left(K_{2^{k}}, T\right)$

Conjecture: For every k and every oriented forest F , Forb $\left(T T_{k}, F\right)$ has bounded dichromatic number.

It is equivalent to:
Conjecture: For every k and every oriented tree T, Forb $\left(T T_{k}, T\right)$ has bounded dichromatic number.

It is equivalent to:
Conjecture: For every k and every oriented tree T, $\operatorname{Forb}\left(K_{k}, T\right)$ has bounded dichromatic number.

This is because: $\operatorname{Forb}\left(T T_{k}, T\right) \subseteq \operatorname{Forb}\left(K_{2^{k}}, T\right)$
So we get a notion of $\vec{\chi}$-boundedness!
Conjecture: for every oriented tree T, Forb (T) is $\vec{\chi}$-bounded
i.e. there is a function f such that for all $G \in \operatorname{Forb}(T), \vec{\chi}(G) \leq f(\omega(G))$.

Forbidding a path

Theorem [Gyárfás, 80's]: Forb $\left(P_{k}\right)$ is χ-bounded.
Proof that in a triangle-free (connected) graph with sufficiently large chromatic number, every vertex is the starting point of a long induced path.

Directed path

Conjecture: Forb $\left(\vec{P}_{k}\right)$ is $\vec{\chi}$-bounded.

Directed path

Conjecture: Forb $\left(\vec{P}_{k}\right)$ is $\vec{\chi}$-bounded.

Theorem [Cook, Masarík, Pilipczuk, Reinald, Souza, 2022+]: Forb $\left(\overrightarrow{P_{4}}\right)$ is $\vec{\chi}$-bounded.

Directed path

Conjecture: Forb $\left(\vec{P}_{k}\right)$ is $\vec{\chi}$-bounded.

Theorem [Cook, Masarík, Pilipczuk, Reinald, Souza, 2022+]: Forb $\left(\overrightarrow{P_{4}}\right)$ is $\vec{\chi}$-bounded.

Theorem [A. Aubian, Charbit, Thomassé, 2022+]
Forb $\left(K_{3}, \vec{P}_{6}\right)$ have bounded dichromatic number.

The levelling technic

Let us prove that $\operatorname{Forb}\left(K_{3}, \overrightarrow{P_{4}}\right)$ has dichromatic number at most 2 .

The levelling technic

Let us prove that $\operatorname{Forb}\left(K_{3}, \overrightarrow{P_{4}}\right)$ has dichromatic number at most 2 .

Let x be a vertex.
Let L_{i} the set of vertices at out-distance i from x.
If $\vec{\chi}\left(L_{i}\right) \leq k$ for every i, then $\vec{\chi}(G) \leq 2 k$.

The levelling technic

Let us prove that $\operatorname{Forb}\left(K_{3}, \overrightarrow{P_{4}}\right)$ has dichromatic number at most 2 .

Let x be a vertex.
Let L_{i} the set of vertices at out-distance i from x.
If $\vec{\chi}\left(L_{i}\right) \leq k$ for every i, then $\vec{\chi}(G) \leq 2 k$.
Theorem: If $G \in \operatorname{Forb}\left(K_{3}, \overrightarrow{P_{4}}\right)$, then $\vec{\chi}(G) \leq 2$ because every L_{i} is a stable set.

Nice sets

Definition: A nonempty set of vertices S is nice if each vertex in S either has no out-neighbor in $V(D) \backslash S$ or has no in-neighbor in $V(D) \backslash S$.

Nice sets

Definition: A nonempty set of vertices S is nice if each vertex in S either has no out-neighbor in $V(D) \backslash S$ or has no in-neighbor in $V(D) \backslash S$.

Lemma: Given a class of digraphs \mathcal{C}, if every digraph in \mathcal{C} has a nice set with dichromatic number at most c, then digraphs in \mathcal{C} have dichromatic number at most $2 c$.

Partial recap of open cases

Conjecture: Heroes in Forb $\left(S_{2}^{+}\right)$are the same as heroes in tournaments.

Conjecture: Forb $\left(\vec{C}_{3}, S\right)$ has bounded dichromatic number for every oriented star S.

Conjecture: For every k, $\operatorname{Forb}\left(\vec{P}_{k}\right)$ is $\vec{\chi}$-bounded.
First open cases:

- Forb $\left(K_{4}, \vec{P}_{5}\right)$ is $\vec{\chi}$-bounded.
- Forb $\left(K_{3}, \vec{P}_{7}\right)$ has bounded dichromatic number.

Partial recap of open cases

Conjecture: Heroes in Forb $\left(S_{2}^{+}\right)$are the same as heroes in tournaments.

Conjecture: Forb $\left(\vec{C}_{3}, S\right)$ has bounded dichromatic number for every oriented star S.

Conjecture: For every k, Forb $\left(\vec{P}_{k}\right)$ is $\vec{\chi}$-bounded.
First open cases:

- Forb $\left(K_{4}, \vec{P}_{5}\right)$ is $\vec{\chi}$-bounded.
- Forb $\left(K_{3}, \vec{P}_{7}\right)$ has bounded dichromatic number.

Thank You For Your Attention

