# Clique number of tournaments 

Pierre Aboulker - ENS Paris

June 2022

## The chromatic number

Colouring: adjacent vertices receive distinct colours.

## $\Leftrightarrow$

Partition the vertices into independent sets.

$\chi=5$

$\chi=3$

$\chi=3$

Chromatic number of $G=\chi(G)$ : minimise the number of colours.

Question: How could we define directed graph colouring?

## The dichromatic number

- Coloring a digraph $D$ : no monochromatic (induced) directed cycle.
- $\vec{\chi}(D)$ : the dichromatic number of $D$.

In other words: partition $D$ in acyclic induced subdigraphs instead of stable sets.


## Dichromatic number generalises chromatic number

Property: For every graph $G, \chi(G)=\vec{\chi}(\overleftrightarrow{G})$.


G


There is more and more results on the dichromatic number of digraphs for which, in the special case of symmetric digraphs, we recover an existing result on undirected graph.

## Dichromatic number generalises chromatic number

Property: For every graph $G, \chi(G)=\vec{\chi}(\overleftrightarrow{G})$


G


There is more and more results on the dichromatic number of digraphs for which, in the special case of symmetric digraphs, we recover an existing result on undirected graph.

- Brooks' Theorem, Gallaï Theorem, Wilf Theorem (algebraic graph theory)...
- Extremal graph theory,
- List dichromatic number,
- Substructure forced by large dichromatic number,
- Dicolouring digraphs on surfaces.


## Clique number versus chromatic number

Question: why does a graph has large chromatic number?

## Clique number versus chromatic number

Question: why does a graph has large chromatic number?
(Partial) Answer: because it has a large clique (but there is triangle-free graphs with arbitrarily large chromatic number).

## Clique number versus chromatic number

Question: why does a graph has large chromatic number?
(Partial) Answer: because it has a large clique (but there is triangle-free graphs with arbitrarily large chromatic number).

A class of graphs $\mathcal{C}$ if $\chi$-bounded if there exists a function $f$ such that:

$$
\text { for every } G \in \mathcal{C}, \chi(G) \leq f(\omega(G)) \text {. }
$$

## Clique number versus chromatic number

Question: why does a graph has large chromatic number?
(Partial) Answer: because it has a large clique (but there is triangle-free graphs with arbitrarily large chromatic number).

A class of graphs $\mathcal{C}$ if $\chi$-bounded if there exists a function $f$ such that:

$$
\text { for every } G \in \mathcal{C}, \chi(G) \leq f(\omega(G)) \text {. }
$$

Perfect graphs: $\chi$-bounded by the function $f(x)=x$.

## Gyárfás-Sumner Conjecture:

Let $H$ be a graph. The class of $H$-free graphs is $\chi$-bounded if and only if $H$ is a forest.

Theorem[Folklor]: If $\mathcal{C}$ is $\chi$-bounded, then so is $\mathcal{C}^{\text {subst }}$

## Clique number versus chromatic number

Question: why does a graph has large chromatic number?
(Partial) Answer: because it has a large clique (but there is triangle-free graphs with arbitrarily large chromatic number).

A class of graphs $\mathcal{C}$ if $\chi$-bounded if there exists a function $f$ such that:

$$
\text { for every } G \in \mathcal{C}, \chi(G) \leq f(\omega(G)) \text {. }
$$

Perfect graphs: $\chi$-bounded by the function $f(x)=x$.

## Gyárfás-Sumner Conjecture:

Let $H$ be a graph. The class of $H$-free graphs is $\chi$-bounded if and only if $H$ is a forest.

Theorem[Folklor]: If $\mathcal{C}$ is $\chi$-bounded, then so is $\mathcal{C}^{\text {subst }}$

> What is The notion of clique number of a digraph?

## What is the clique number of a digraph?

We would like that, for every graph $G$ and every digraph $D$ :

$$
\omega(G)=\vec{\omega}(\overleftrightarrow{G}) \quad \text { and } \vec{\omega}(D) \leq \vec{\chi}(D)
$$

First attempt:
$\vec{\omega}(D)=$ size of a maximum symmetric clique in $D$. But for every oriented graphs $G, \vec{\omega}(G)=1$, not very satisfying.

## What is the clique number of a digraph?

We would like that, for every graph $G$ and every digraph $D$ :

$$
\omega(G)=\vec{\omega}(\overleftrightarrow{G}) \quad \text { and } \vec{\omega}(D) \leq \vec{\chi}(D)
$$

First attempt:
$\vec{\omega}(D)=$ size of a maximum symmetric clique in $D$.
But for every oriented graphs $G, \vec{\omega}(G)=1$, not very satisfying.

## Second attempt:

$\vec{\omega}(D)=$ size for a maximum transitive tournament of $D$. Interesting, but does not satisfy $\vec{\omega}(D) \leq \vec{\chi}(D)$.

## What is the clique number of a digraph?

We would like that, for every graph $G$ and every digraph $D$ :

$$
\omega(G)=\vec{\omega}(\overleftrightarrow{G}) \quad \text { and } \vec{\omega}(D) \leq \vec{\chi}(D)
$$

## First attempt:

$\vec{\omega}(D)=$ size of a maximum symmetric clique in $D$.
But for every oriented graphs $G \vec{\omega}(G)=1$, not very satisfying.

## Second attempt:

$\vec{\omega}(D)=$ size for a maximum transitive tournament of $D$. Interesting, but does not satisfy $\vec{\omega}(D) \leq \vec{\chi}(D)$.

Conjecture [PA, Charbit, Naserasr, 2020]: Let $H$ be an oriented graph. $H$-free oriented graphs are $\vec{\chi}$-bounded if and only $H$ is an oriented forest.

## Backedge graph

Given a digraph $D$, and a total order $\prec$ on $V(D)$, let $D^{\prec}$ be the (undirected) graph with vertex set $V(D)$ and edge $u v$ if $u \prec v$ and $v u \in A(D)$.
$D^{\prec}$ : backedge graph of $D$ with respect to $\prec$

For every $\prec$ :

$$
\vec{\chi}(D) \leq \chi\left(D^{\prec}\right)
$$

## Backedge graph

Given a digraph $D$, and a total order $\prec$ on $V(D)$, let $D^{\prec}$ be the (undirected) graph with vertex set $V(D)$ and edge $u v$ if $u \prec v$ and $v u \in A(D)$.
$D^{\prec}$ : backedge graph of $D$ with respect to $\prec$

For every $\prec$ :

$$
\vec{\chi}(D) \leq \chi\left(D^{\prec}\right)
$$

Moreover, there exists $\prec$ such that $\chi\left(D^{\prec}\right) \leq \vec{\chi}(D)$.

Hence:

$$
\vec{\chi}(D)=\min \left\{\chi\left(D^{\prec}\right): \prec \text { is a total order of } V(D)\right\}
$$

## Clique number of digraphs

So we have a new definition of the dichromatic number:

$$
\vec{\chi}(D)=\min \left\{\chi\left(D^{\prec}\right): \prec \text { is a total order of } V(D)\right\}
$$

This leads a natural definition of the clique number of a digraph:

$$
\vec{\omega}(D)=\min \left\{\omega\left(D^{\prec}\right): \prec \text { is a total order on } V(D)\right\}
$$

## Clique number of digraphs

So we have a new definition of the dichromatic number:

$$
\vec{\chi}(D)=\min \left\{\chi\left(D^{\prec}\right): \prec \text { is a total order of } V(D)\right\}
$$

This leads a natural definition of the clique number of a digraph:

$$
\vec{\omega}(D)=\min \left\{\omega\left(D^{\prec}\right): \prec \text { is a total order on } V(D)\right\}
$$

We clearly have:

- $\vec{\omega}(\overleftrightarrow{G})=\omega(G)$ (because for every $\prec, ~ \overleftrightarrow{G} \prec=G$ ), and
- $\vec{\omega}(D) \leq \vec{\chi}(D)$.


## Tournaments

- Tournament $=$ orientation of a complete graph.
- $\vec{C}_{3}$ is the directed triangle.
- Transitive tournament $\left(T T_{k}\right)$ : acyclic tournament $\Leftrightarrow$ tournaments with no $\vec{C}_{3}$
- Tournaments can have large dichromatic number.

Let $S_{1}=T T_{1}, S_{k}=\Delta\left(T T_{1}, S_{k-1}, S_{k-1}\right)$. We have $\vec{\chi}\left(S_{k}\right)=k$

## Tournaments with clique number 1 or 2

$$
\vec{\omega}(T)=\min \left\{\omega\left(T^{\prec}\right): \prec \text { is a total order on } V(T)\right\}
$$

## Properties:

- $\vec{\omega}\left(T T_{n}\right)=1$.
- $\vec{\omega}\left(\vec{C}_{3}\right)=2$.

Let $T$ be a tournament.

- $\vec{\omega}(T)=1$ if and only if $T$ is a transitive tournament.
- $\vec{\omega}(T) \geq 2$ is and only if $T$ contains a $\vec{C}_{3}$.

Question: what is the complexitiy of deciding if $\vec{\omega}(T) \geq 3$ ?

## First properties of $\vec{\omega}$

Property: The clique number of a digraph is equal to the maximum clique number of its strong components.

## First properties of $\vec{\omega}$

Property: The clique number of a digraph is equal to the maximum clique number of its strong components.

Fundamental inequality [Nguyen, Scott, Seymour, 2023]:
For every tournament $T$ and every ordering $\prec$ of $V(T)$.

$$
\frac{\chi\left(T^{\prec}\right)}{\omega\left(T^{\prec}\right)} \leq \vec{\chi}(T) \leq \chi\left(T^{\prec}\right)
$$

## First properties of $\vec{\omega}$

Property: The clique number of a digraph is equal to the maximum clique number of its strong components.

Fundamental inequality [Nguyen, Scott, Seymour, 2023]:
For every tournament $T$ and every ordering $\prec$ of $V(T)$.

$$
\frac{\chi\left(T^{\prec}\right)}{\omega\left(T^{\prec}\right)} \leq \vec{\chi}(T) \leq \chi\left(T^{\prec}\right)
$$

Application: construction of interesting tournaments from undirected graphs.

## $\vec{\omega}$-ordering and $\vec{\chi}$-ordering

Let $T$ a tournament and $\prec$ be an ordering of $V(T)$. It is a:

$$
\vec{\omega} \text {-ordering if } \omega\left(T^{\prec}\right)=\vec{\omega}(T) \quad \vec{\chi} \text {-ordering if } \chi\left(T^{\prec}\right)=\vec{\chi}(T)
$$

## $\vec{\omega}$-ordering and $\vec{\chi}$-ordering

Let $T$ a tournament and $\prec$ be an ordering of $V(T)$. It is a:

$$
\vec{\omega} \text {-ordering if } \omega\left(T^{\prec}\right)=\vec{\omega}(T) \quad \vec{\chi} \text {-ordering if } \chi\left(T^{\prec}\right)=\vec{\chi}(T)
$$

Property: For every tournament $T$ and every $\vec{\omega}$-ordering $\prec$ we have:

$$
\vec{\chi}(T) \leq \chi\left(T^{\prec}\right) \leq \vec{\chi}(T) \cdot \vec{\omega}(T) \leq \vec{\chi}(T)^{2}
$$

Question: Is there always an ordering $\prec$ that is both an $\vec{\omega}$-ordering and a $\vec{\chi}$-ordering?

## Tournaments with arbitrarily large clique number

Question: Can you find tournaments with arbitrarily large clique number?

Let $\tilde{S}_{1}=T T_{1}$ and inductively, for $n \geq 1$, let $\tilde{S}_{n}=\Delta\left(\tilde{S}_{n-1}, \tilde{S}_{n-1}, \tilde{S}_{n-1}\right)$.

Lemma: For any integer $n, \vec{\omega}\left(\tilde{S}_{n}\right) \geq n$.
Proof: By induction on $n$. Let $\prec$ be an $\vec{\omega}$-ordering. Look at the in-neighbour of the first vertex in $\prec$.

## Relations with the dominating set number

Dominating number: size of the smallest $X \subseteq V(T)$ such that $N^{+}[X]=V(T)$.

Property: For every tournament $T$,

$$
\operatorname{dom}(T) \leq \vec{\omega}(T) \leq \vec{\chi}(T)
$$

## $\vec{\chi}$-bounded class of tournaments

A class of tournaments $\mathcal{T}$ is $\vec{\chi}$-bounded if there exists a function $f$ such that, for every $T \in \mathcal{T}$,

$$
\vec{\chi}(T) \leq f(\vec{\omega}(T))
$$

## $\vec{\chi}$-bounded class of tournaments

A class of tournaments $\mathcal{T}$ is $\vec{\chi}$-bounded if there exists a function $f$ such that, for every $T \in \mathcal{T}$,

$$
\vec{\chi}(T) \leq f(\vec{\omega}(T))
$$

Theorem [A, Aubian, Charbit, Lopes, 2023] if $\mathcal{T}$ is $\vec{\chi}$-bounded, then so is $\mathcal{T}^{\text {subst }}$.

## $\vec{\chi}$-bounded class of tournaments

A class of tournaments $\mathcal{T}$ is $\vec{\chi}$-bounded if there exists a function $f$ such that, for every $T \in \mathcal{T}$,

$$
\vec{\chi}(T) \leq f(\vec{\omega}(T))
$$

Theorem [A, Aubian, Charbit, Lopes, 2023] if $\mathcal{T}$ is $\vec{\chi}$-bounded, then so is $\mathcal{T}^{\text {subst }}$.

Theorem [Chudnovsky, Penev, Scott, Trotignon, 2013] If $\mathcal{C}$ is polynomially $\chi$-bounded, then so is $\mathcal{C}^{\text {subst }}$.

## $\vec{\chi}$-bounded class of tournaments

A class of tournaments $\mathcal{T}$ is $\vec{\chi}$-bounded if there exists a function $f$ such that, for every $T \in \mathcal{T}$,

$$
\vec{\chi}(T) \leq f(\vec{\omega}(T))
$$

Theorem [A, Aubian, Charbit, Lopes, 2023] if $\mathcal{T}$ is $\vec{\chi}$-bounded, then so is $\mathcal{T}^{\text {subst }}$.

Theorem [Chudnovsky, Penev, Scott, Trotignon, 2013] If $\mathcal{C}$ is polynomially $\chi$-bounded, then so is $\mathcal{C}^{\text {subst }}$.

Question: Is it true that if $\mathcal{T}$ is polynomially $\vec{\chi}$-bounded, then so is $\mathcal{T}^{\text {subst }}$.

## $\vec{\chi}$-bounded class of tournaments

A class of tournaments $\mathcal{T}$ is $\vec{\chi}$-bounded if there exists a function $f$ such that, for every $T \in \mathcal{T}$,

$$
\vec{\chi}(T) \leq f(\vec{\omega}(T))
$$

Theorem [A, Aubian, Charbit, Lopes, 2023] if $\mathcal{T}$ is $\vec{\chi}$-bounded, then so is $\mathcal{T}^{\text {subst }}$.

Theorem [Chudnovsky, Penev, Scott, Trotignon, 2013] If $\mathcal{C}$ is polynomially $\chi$-bounded, then so is $\mathcal{C}^{\text {subst }}$.

Question: Is it true that if $\mathcal{T}$ is polynomially $\vec{\chi}$-bounded, then so is $\mathcal{T}^{\text {subst }}$.

Conjecture: Let $\mathcal{D}$ be a class of digraphs. If $\mathcal{D}$ is $\vec{\chi}$-bounded, then so is $\mathcal{D}^{\text {subst }}$.

## Relation between $\vec{\chi}$-boundedness and $\chi$-boundedness

Given a class of tournaments $\mathcal{T}$, let us denote by $\mathcal{T}^{\prec}$ the class of all backedge graphs of tournaments in $\mathcal{T}$ :

$$
\mathcal{T}^{\prec}=\left\{T^{\prec} \mid T \in \mathcal{T}, \prec \text { an ordering of } T\right\}
$$

## Relation between $\vec{\chi}$-boundedness and $\chi$-boundedness

Given a class of tournaments $\mathcal{T}$, let us denote by $\mathcal{T}^{\prec}$ the class of all backedge graphs of tournaments in $\mathcal{T}$ :

$$
\mathcal{T}^{\prec}=\left\{T^{\prec} \mid T \in \mathcal{T}, \prec \text { an ordering of } T\right\}
$$

Theorem: Let $\mathcal{T}$ be a class of tournaments. The following properties are equivalent:
(i) $\mathcal{T}$ is $\vec{\chi}$-bounded.
(ii) $\mathcal{T}^{\prec}$ is $\chi$-bounded.
(iii) $\mathcal{T}^{\prec \vec{\omega}}$ is $\chi$-bounded.

$$
\mathcal{T}^{\prec}=\left\{T^{\prec} \mid T \in \mathcal{T}, \prec \text { an ordering of } T\right\}
$$

- $\mathcal{T}$ is $\vec{\chi}$-bounded $\Rightarrow \mathcal{T}^{\prec}$ is $\chi$-bounded.

Proof: let $f$ be a function such that for every $T \in \mathcal{T}$, we have $\vec{\chi}(T) \leq f(\vec{\omega}(T))$. Now, for every $T^{\prec} \in \mathcal{T}^{\prec}$ :

$$
\begin{array}{rlr}
\chi\left(T^{\prec}\right) & \leq \omega\left(T^{\prec}\right) \cdot \vec{\chi}(T) \quad \text { by the fundamental inequality } \\
& \leq \omega\left(T^{\prec}\right) \cdot f(\vec{\omega}(T)) \\
& \leq \omega\left(T^{\prec}\right) \cdot f\left(\omega\left(T^{\prec}\right)\right)
\end{array}
$$

$$
\mathcal{T}^{\prec}=\left\{T^{\prec} \mid T \in \mathcal{T}, \prec \text { an ordering of } T\right\}
$$

- $\mathcal{T}$ is $\vec{\chi}$-bounded $\Rightarrow \mathcal{T}^{\prec}$ is $\chi$-bounded.

Proof: let $f$ be a function such that for every $T \in \mathcal{T}$, we have $\vec{\chi}(T) \leq f(\vec{\omega}(T))$. Now, for every $T^{\prec} \in \mathcal{T}^{\prec}$ :

$$
\begin{array}{rlr}
\chi\left(T^{\prec}\right) & \leq \omega\left(T^{\prec}\right) \cdot \vec{\chi}(T) \quad \text { by the fundamental inequality } \\
& \leq \omega\left(T^{\prec}\right) \cdot f(\vec{\omega}(T)) \\
& \leq \omega\left(T^{\prec}\right) \cdot f\left(\omega\left(T^{\prec}\right)\right)
\end{array}
$$

- $\mathcal{T}^{\prec} \vec{\omega}$ is $\chi$-bounded $\Rightarrow \mathcal{T}$ is $\vec{\chi}$-bounded.

Proof: Let $g$ be a function such that for every $T^{\prec} \in \mathcal{T}^{\prec} \vec{\omega}, \chi\left(T^{\prec}\right) \leq g\left(\omega^{\prec}(T)\right)$. Now, for any $T \in \mathcal{T}$ and every $\vec{\omega}$-ordering $\prec$ of $T$.

$$
\vec{\chi}(T) \leq \chi\left(T^{\prec}\right) \leq g\left(\omega\left(T^{\prec}\right)\right)=g(\vec{\omega}(T))
$$

## Classes of tournaments defined by forbidding a single tournament

Given a tournament $H, \operatorname{Forb}(\mathrm{H})$ is the class of tournaments $T$ such that $T$ does not contain $H$ as a subtournament.

Question: for which tournament $H$ is $\operatorname{Forb}(H) \vec{\chi}$-bounded?
i.e. there is a function $f$ such that, for every $T \in \operatorname{Forb}(H)$,

$$
\vec{\chi}(T) \leq f(\vec{\omega}(T))
$$

We say that such that $H$ are $\vec{\chi}$-binding.

## Heroes

Question: for which tournament $H$ is $\operatorname{Forb}(H) \vec{\chi}$-bounded?

The most trivial case of $\chi$-bounding function is a constant function.

Question: for which tournament $H$ there is a number $c_{H}$ such that, for every $T \in \operatorname{Forb}(H), \vec{\chi}(T) \leq c_{H}$ ?

Answer: such tournaments are called heroes and have been characterised by Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé in 2013.

## Gentlemen

- A tournament $H$ is a gentlemen if there exists a number $c_{H}$ such that every $H$-free tournaments $T$ has $\vec{\omega}(T) \leq c_{H}$.

Question: Who are the gentlemen?

Of course, all heroes are gentlemen.

## Tournaments and Heroes

- A tournament $H$ is a hero if there exists a number $c_{H}$ such that every $H$-free tournaments $T$ has $\vec{\chi}(T) \leq c_{H}$.

For example, $\vec{C}_{3}$ and $T T_{k}$ are heroes .

## Tournaments and Heroes

- A tournament $H$ is a hero if there exists a number $c_{H}$ such that every $H$-free tournaments $T$ has $\vec{\chi}(T) \leq c_{H}$.

For example, $\vec{C}_{3}$ and $T T_{k}$ are heroes .

Theorem: [Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé, 2013]
A digraph $H$ is a hero if and only if:

- $H=K_{1}$.
- $H=\left(H_{1} \Rightarrow H_{2}\right)$
- $H=\Delta(1, k, H)$ or $H=\Delta(1, H, k)$, where $k \geq 1$ and $H$ is a hero.


## Tournaments and Heroes

- A tournament $H$ is a hero if there exists a number $c_{H}$ such that every $H$-free tournaments $T$ has $\vec{\chi}(T) \leq c_{H}$.

For example, $\vec{C}_{3}$ and $T T_{k}$ are heroes .

Theorem: [Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé, 2013]
A digraph $H$ is a hero if and only if:

- $H=K_{1}$.
- $H=\left(H_{1} \Rightarrow H_{2}\right)$
- $H=\Delta(1, k, H)$ or $H=\Delta(1, H, k)$, where $k \geq 1$ and $H$ is a hero.


## Gentlement and heroes are the same

Theorem [PA, Aubian, Charbit, Lopes, 2023]: Heroes and gentlement are the same.

## Proof:

- Take a minimal counter-example $H$.
- All subtournaments of $H$ are gentlemen, and thus heroes by induction.
- Consider the sequence of tournaments $S_{1}, S_{2}, S_{3}, \ldots$.
- We proved that they have arbitrarily large $\vec{\omega}$.
- So $H$ is of the form $\Delta(1, A, B)$.
- Nguyen, Scott and Seymour proved $S_{3}=\Delta\left(1, \vec{C}_{3}, \vec{C}_{3}\right)$ is not a gentlemen.
- So one of $A$ or $B$ is a transitive tournament, so $H$ is a hero.


## Gyárfás-Sumner Conjecture for tournaments

Conjecture: Let $H$ be a tournament. Forb $(H)$ is $\vec{\chi}$-bounded if and only if $H$ has an ordering $\prec$ for which $\mathrm{H}^{\prec}$ is a forest.

## Gyárfás-Sumner Conjecture for tournaments

Conjecture: Let $H$ be a tournament. Forb $(H)$ is $\vec{\chi}$-bounded if and only if $H$ has an ordering $\prec$ for which $\mathrm{H}^{\prec}$ is a forest.

Recall that:
Gyárfás-Sumner Conjecture, 1981:
Let $H$ be a graph. Forb(H) is $\chi$-bounded if and only if $H$ is a forest.

## Gyárfás-Sumner Conjecture for tournaments

Conjecture: Let $H$ be a tournament. Forb $(H)$ is $\vec{\chi}$-bounded if and only if $H$ has an ordering $\prec$ for which $\mathrm{H}^{\prec}$ is a forest.

We proved:

- the only if part,
- it is enough to prove it for trees instead of forests,
- if it holds for a tournament $T$ then it holds for the tournaments obtained by reversing every arc of $T$,
- If $H_{1}$ and $H_{2}$ are $\vec{\chi}$-binding, then so is $H_{1} \Rightarrow H_{2}$,
- It holds for $H=T\left[\vec{P}_{k}\right]$.

Theorem: $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded $\Rightarrow \mathrm{H}$ has an ordering $\prec$ such that $H^{\prec}$ is a forest.

- Let $H$ be a tournament such that no backedge graph of $H$ is a forest.

Theorem: $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded $\Rightarrow \mathrm{H}$ has an ordering $\prec$ such that $H^{\prec}$ is a forest.

- Let $H$ be a tournament such that no backedge graph of $H$ is a forest.
- Let $\mathcal{C}$ be a the class of (undirected) graph with girth at least $|V(H)|+1$.

Theorem: $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded $\Rightarrow \mathrm{H}$ has an ordering $\prec$ such that $H^{\prec}$ is a forest.

- Let $H$ be a tournament such that no backedge graph of $H$ is a forest.
- Let $\mathcal{C}$ be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of $\mathcal{C}$ as a backedge graph.

Theorem: $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded $\Rightarrow \mathrm{H}$ has an ordering $\prec$ such that $H^{\prec}$ is a forest.

- Let $H$ be a tournament such that no backedge graph of $H$ is a forest.
- Let $\mathcal{C}$ be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of $\mathcal{C}$ as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H -free

Theorem: $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded $\Rightarrow \mathrm{H}$ has an ordering $\prec$ such that $H^{\prec}$ is a forest.

- Let $H$ be a tournament such that no backedge graph of $H$ is a forest.
- Let $\mathcal{C}$ be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of $\mathcal{C}$ as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is $H$-free
- Let $T \in \mathcal{T}[\mathcal{C}]$. So there is $\prec$ such that $T^{\prec} \in \mathcal{C}$, i.e. $T^{\prec}$ has girth $|V(H)|+1$.

Theorem: $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded $\Rightarrow \mathrm{H}$ has an ordering $\prec$ such that $H^{\prec}$ is a forest.

- Let $H$ be a tournament such that no backedge graph of $H$ is a forest.
- Let $\mathcal{C}$ be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of $\mathcal{C}$ as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is $H$-free
- Let $T \in \mathcal{T}[\mathcal{C}]$. So there is $\prec$ such that $T^{\prec} \in \mathcal{C}$, i.e. $T^{\prec}$ has girth $|V(H)|+1$.
- Hence, for every $X \subseteq T$ such that $|X|=|V(H)|, T^{\prec}[X]$ is a forest, and thus distinct from $H$.

Theorem: $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded $\Rightarrow \mathrm{H}$ has an ordering $\prec$ such that $H^{\prec}$ is a forest.

- Let $H$ be a tournament such that no backedge graph of $H$ is a forest.
- Let $\mathcal{C}$ be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of $\mathcal{C}$ as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is $H$-free
- Let $T \in \mathcal{T}[\mathcal{C}]$. So there is $\prec$ such that $T^{\prec} \in \mathcal{C}$, i.e. $T^{\prec}$ has girth $|V(H)|+1$.
- Hence, for every $X \subseteq T$ such that $|X|=|V(H)|, T^{\prec}[X]$ is a forest, and thus distinct from $H$.
- So $T$ is $H$-free.

Theorem: $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded $\Rightarrow \mathrm{H}$ has an ordering $\prec$ such that $H^{\prec}$ is a forest.

- Let $H$ be a tournament such that no backedge graph of $H$ is a forest.
- Let $\mathcal{C}$ be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of $\mathcal{C}$ as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is $H$-free
- Let $T \in \mathcal{T}[\mathcal{C}]$. So there is $\prec$ such that $T^{\prec} \in \mathcal{C}$, i.e. $T^{\prec}$ has girth $|V(H)|+1$.
- Hence, for every $X \subseteq T$ such that $|X|=|V(H)|, T^{\prec}[X]$ is a forest, and thus distinct from $H$.
- So $T$ is $H$-free.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\vec{\omega}(T) \leq 2$.

Theorem: $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded $\Rightarrow \mathrm{H}$ has an ordering $\prec$ such that $H^{\prec}$ is a forest.

- Let $H$ be a tournament such that no backedge graph of $H$ is a forest.
- Let $\mathcal{C}$ be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of $\mathcal{C}$ as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is $H$-free
- Let $T \in \mathcal{T}[\mathcal{C}]$. So there is $\prec$ such that $T^{\prec} \in \mathcal{C}$, i.e. $T^{\prec}$ has girth $|V(H)|+1$.
- Hence, for every $X \subseteq T$ such that $|X|=|V(H)|, T^{\prec}[X]$ is a forest, and thus distinct from $H$.
- So $T$ is $H$-free.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\vec{\omega}(T) \leq 2$.
- Moreover, by a celebrated theorem of Erdős, graph in $\mathcal{C}$ can have arbitrarily large chromatic number.

Theorem: $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded $\Rightarrow \mathrm{H}$ has an ordering $\prec$ such that $H^{\prec}$ is a forest.

- Let $H$ be a tournament such that no backedge graph of $H$ is a forest.
- Let $\mathcal{C}$ be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of $\mathcal{C}$ as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is $H$-free
- Let $T \in \mathcal{T}[\mathcal{C}]$. So there is $\prec$ such that $T^{\prec} \in \mathcal{C}$, i.e. $T^{\prec}$ has girth $|V(H)|+1$.
- Hence, for every $X \subseteq T$ such that $|X|=|V(H)|, T^{\prec}[X]$ is a forest, and thus distinct from $H$.
- So $T$ is $H$-free.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\vec{\omega}(T) \leq 2$.
- Moreover, by a celebrated theorem of Erdős, graph in $\mathcal{C}$ can have arbitrarily large chromatic number.
- Hence, by the fundamental inequality, tournaments in $\mathcal{T}[\mathcal{C}]$ can have arbitrarily large dichromatic number.

Theorem: $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded $\Rightarrow \mathrm{H}$ has an ordering $\prec$ such that $H^{\prec}$ is a forest.

- Let $H$ be a tournament such that no backedge graph of $H$ is a forest.
- Let $\mathcal{C}$ be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of $\mathcal{C}$ as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H -free
- Let $T \in \mathcal{T}[\mathcal{C}]$. So there is $\prec$ such that $T^{\prec} \in \mathcal{C}$, i.e. $T^{\prec}$ has girth $|V(H)|+1$.
- Hence, for every $X \subseteq T$ such that $|X|=|V(H)|, T^{\prec}[X]$ is a forest, and thus distinct from $H$.
- So $T$ is $H$-free.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\vec{\omega}(T) \leq 2$.
- Moreover, by a celebrated theorem of Erdős, graph in $\mathcal{C}$ can have arbitrarily large chromatic number.
- Hence, by the fundamental inequality, tournaments in $\mathcal{T}[\mathcal{C}]$ can have arbitrarily large dichromatic number.
- So $\mathcal{T}[\mathcal{C}]$ is not $\vec{\chi}$-bounded, and thus $H$-free tournaments is not $\vec{\chi}$-bounded.

Theorem: If $H_{1}$ and $H_{2}$ are $\vec{\chi}$-binding, then so it $H_{1} \Rightarrow H_{2}$.

Theorem [Le, Harutyunyan, Thomassé and Wu, 2017]
There exists a function $\lambda$ such that, if for every vertex $v), \vec{\chi}\left(T\left[N^{+}(v)\right]\right) \leq t$, then $\vec{\chi}(T) \leq \lambda(t)$.

Theorem: If $H_{1}$ and $H_{2}$ are $\vec{\chi}$-binding, then so it $H_{1} \Rightarrow H_{2}$.

Theorem [Le, Harutyunyan, Thomassé and Wu, 2017] There exists a function $\lambda$ such that, if for every vertex $v), \vec{\chi}\left(T\left[N^{+}(v)\right]\right) \leq t$, then $\vec{\chi}(T) \leq \lambda(t)$.

Theorem: if $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded, then so is $\operatorname{Forb}(\operatorname{rev}(H))$, where $\operatorname{rev}(H)$ is obtained by reversing every arc if $H$.

## Proof:

- Recall that: $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded $\Leftrightarrow \operatorname{Forb}(H)^{\prec}$ is $\chi$-bounded.

Theorem: If $H_{1}$ and $H_{2}$ are $\vec{\chi}$-binding, then so it $H_{1} \Rightarrow H_{2}$.

Theorem [Le, Harutyunyan, Thomassé and Wu, 2017] There exists a function $\lambda$ such that, if for every vertex $v), \vec{\chi}\left(T\left[N^{+}(v)\right]\right) \leq t$, then $\vec{\chi}(T) \leq \lambda(t)$.

Theorem: if $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded, then so is $\operatorname{Forb}(\operatorname{rev}(H))$, where $\operatorname{rev}(H)$ is obtained by reversing every arc if $H$.

## Proof:

- Recall that: $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded $\Leftrightarrow \operatorname{Forb}(H)^{\prec}$ is $\chi$-bounded.
- Observe that $T^{\prec}=\operatorname{rev}(T)^{\operatorname{rev}(\prec)}$.

Theorem: If $H_{1}$ and $H_{2}$ are $\vec{\chi}$-binding, then so it $H_{1} \Rightarrow H_{2}$.

Theorem [Le, Harutyunyan, Thomassé and Wu, 2017] There exists a function $\lambda$ such that, if for every vertex $v), \vec{\chi}\left(T\left[N^{+}(v)\right]\right) \leq t$, then $\vec{\chi}(T) \leq \lambda(t)$.

Theorem: if $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded, then so is $\operatorname{Forb}(\operatorname{rev}(H))$, where $\operatorname{rev}(H)$ is obtained by reversing every arc if $H$.

## Proof:

- Recall that: $\operatorname{Forb}(H)$ is $\vec{\chi}$-bounded $\Leftrightarrow \operatorname{Forb}(H)^{\prec}$ is $\chi$-bounded.
- Observe that $T^{\prec}=\operatorname{rev}(T)^{\operatorname{rev}(\prec)}$.
- So $\operatorname{Forb}(H)^{\prec}=\operatorname{Forb}(\operatorname{rev}(H))^{\prec}$.

Relations with $\chi$-boundedness of classes of ordered graphs

Theorem:
Forb $(H)$ is $\vec{\chi}$-bounded if and only if $\operatorname{Forb}_{\circ}\left(\left\{\left(H^{\prec}, \prec\right): \prec\right.\right.$ is an ordering of $\left.\left.H\right\}\right)$

## Relations with $\chi$-boundedness of classes of ordered graphs

Theorem:
Forb $(H)$ is $\vec{\chi}$-bounded if and only if $\operatorname{Forb}_{\circ}\left(\left\{\left(H^{\prec}, \prec\right): \prec\right.\right.$ is an ordering of $\left.\left.H\right\}\right)$

Theorem [Briański, Davies and Walczak, 2023+] Let $(M, \prec)$ be an order graph with maximum degree 1 . Then Forb $_{o}(M, \prec)$ is $\chi$-bounded.

Theorem: $\operatorname{Forb}\left(H_{\vec{p}_{k}}\right)$ is $\vec{\chi}$-bounded.

## Complexity

Open Question: what is the complexity of deciding if a tournament $T$ has $\vec{\omega}(T) \geq 3$ ?

## Complexity

Open Question: what is the complexity of deciding if a tournament $T$ has $\vec{\omega}(T) \geq 3$ ?

Theorem: We can decide in poly-time if, given a tournament $T$ $\vec{\omega}(T) \geq 3$, or $\vec{\omega}(T) \leq 10^{10}$

## Complexity

Open Question: what is the complexity of deciding if a tournament $T$ has $\vec{\omega}(T) \geq 3$ ?

Theorem: We can decide in poly-time if, given a tournament $T$ $\vec{\omega}(T) \geq 3$, or $\vec{\omega}(T) \leq 10^{10}$

Lemma: If $\vec{\omega}(T) \leq 2$ and $N_{\vec{C}_{3}}(x y) \geq 3$, then $y \prec x$ in every $\vec{\omega}$-ordering.

## Complexity

Open Question: what is the complexity of deciding if a tournament $T$ has $\vec{\omega}(T) \geq 3$ ?

Theorem: We can decide in poly-time if, given a tournament $T$ $\vec{\omega}(T) \geq 3$, or $\vec{\omega}(T) \leq 10^{10}$

Lemma: If $\vec{\omega}(T) \leq 2$ and $N_{\vec{C}_{3}}(x y) \geq 3$, then $y \prec x$ in every $\vec{\omega}$-ordering.

Colouring 2-colourable tournaments [Klingelhoefer and Newman, 2023]: we can decide in polytime if, given a tournament $T: \vec{\chi}(T) \geq 3$, or $\vec{\chi}(T) \leq 10$

## Complexity

Open Question: what is the complexity of deciding if a tournament $T$ has $\vec{\omega}(T) \geq 3$ ?

Theorem: We can decide in poly-time if, given a tournament $T$ $\vec{\omega}(T) \geq 3$, or $\vec{\omega}(T) \leq 10^{10}$

Lemma: If $\vec{\omega}(T) \leq 2$ and $N_{\vec{C}_{3}}(x y) \geq 3$, then $y \prec x$ in every $\vec{\omega}$-ordering.

Colouring 2-colourable tournaments [Klingelhoefer and Newman, 2023]: we can decide in polytime if, given a tournament $T: \vec{\chi}(T) \geq 3$, or $\vec{\chi}(T) \leq 10$

Arc local to global Theorem [Klingelhoefer and Newman, 2023] If $G$ is an oriented graph such that $\alpha(G) \leq \alpha$, and $N_{\vec{C}_{3}}(x y) \leq k$, then $\vec{\chi}(G) \leq f(\alpha, k)$.

## Complexity

Open (?) for $k \geq 3$ : what is the complexity of deciding if a tournament $T$ has $\vec{\omega}(T) \geq k$ ?

## Complexity

Open (?) for $k \geq 3$ : what is the complexity of deciding if a tournament $T$ has $\vec{\omega}(T) \geq k$ ?

Equivalently: decide if a tournament has a Feedback Arc Set that induces a $K_{k}$-free graphs

## Complexity

Open (?) for $k \geq 3$ : what is the complexity of deciding if a tournament $T$ has $\vec{\omega}(T) \geq k$ ?

Equivalently: decide if a tournament has a Feedback Arc Set that induces a $K_{k}$-free graphs

General question: given a class of undirected graph $\mathcal{C}$, decide if a tournament has a Feedback Arc Set which induced a graph that belongs to $\mathcal{C}$.

It is NP-hard when:

- $\mathcal{C}=\{k$-colourable graphs $\}, k \geq 2$
- $\mathcal{C}=\{$ forests $\}$ (In preparation).


## Complexity

Open (?) for $k \geq 3$ : what is the complexity of deciding if a tournament $T$ has $\vec{\omega}(T) \geq k$ ?

Equivalently: decide if a tournament has a Feedback Arc Set that induces a $K_{k}$-free graphs

General question: given a class of undirected graph $\mathcal{C}$, decide if a tournament has a Feedback Arc Set which induced a graph that belongs to $\mathcal{C}$.

It is NP-hard when:

- $\mathcal{C}=\{k$-colourable graphs $\}, k \geq 2$
- $\mathcal{C}=\{$ forests $\}$ (In preparation).

Parameterised complexity, approximation algorithms etc, nothing is known.

## Relation with the Erdős-Hajnal Conjecture

Erdős-Hajnal Conjecture (1981): Let $H$ be a graph. there exists a number $c_{H}$ such that every $H$-free graph $G$ has a clique or a stable set of size $|V(G)|^{c_{H}}$.

Alon, Pach, Solymosi (2001) proved that it is equivalent with:
Erdős-Hajnal Conjecture: Let $H$ be a tournament. There exists a number $c_{H}$ such that every $H$-free graph $T$ has a transitive tournament $|V(T)|^{c_{H}}$.

## Relation with the Erdős-Hajnal Conjecture

Erdős-Hajnal Conjecture (1981): Let $H$ be a graph. there exists a number $c_{H}$ such that every $H$-free graph $G$ has a clique or a stable set of size $|V(G)|^{c_{H}}$.

Alon, Pach, Solymosi (2001) proved that it is equivalent with:
Erdős-Hajnal Conjecture: Let $H$ be a tournament. There exists a number $c_{H}$ such that every $H$-free graph $T$ has a transitive tournament $|V(T)|^{c_{H}}$.

Theorem: If Forb $(H)$ is polynomially $\vec{\chi}$-bounded, then $H$ has the Erdö-Hajnal property.

## The BIG $\Rightarrow$ BIG Conjecture

$\mathcal{T}$ has the $B I G \Rightarrow B I G$ property if for every $T \in \mathcal{T}$, if $\vec{\chi}(T) \geq f(t)$, then $T$ contains two disjoint subtournaments $A$ and $B$ such that $\vec{\chi}(A), \vec{\chi}(B) \geq t$ and $A \Rightarrow B$.

BIG $\Rightarrow$ BIG Conjecture [Nguyen, Scott, Seymour, 2023]: The class of all tournaments has the BIG $\Rightarrow$ BIG property.

## The BIG $\Rightarrow$ BIG Conjecture

$\mathcal{T}$ has the $B I G \Rightarrow B I G$ property if for every $T \in \mathcal{T}$, if $\vec{\chi}(T) \geq f(t)$, then $T$ contains two disjoint subtournaments $A$ and $B$ such that $\vec{\chi}(A), \vec{\chi}(B) \geq t$ and $A \Rightarrow B$.

BIG $\Rightarrow$ BIG Conjecture [Nguyen, Scott, Seymour, 2023]: The class of all tournaments has the BIG $\Rightarrow$ BIG property.

Erdős-El Zahar Conjecture, 1985: If $G$ has chromatic number sufficiently larger then its clique number, then $G$ contains two independent subgraphs with large chromatic number.

## The BIG $\Rightarrow$ BIG Conjecture

$\mathcal{T}$ has the BIG $\Rightarrow B I G$ property if for every $T \in \mathcal{T}$, if $\vec{\chi}(T) \geq f(t)$, then $T$ contains two disjoint subtournaments $A$ and $B$ such that $\vec{\chi}(A), \vec{\chi}(B) \geq t$ and $A \Rightarrow B$.

BIG $\Rightarrow$ BIG Conjecture [Nguyen, Scott, Seymour, 2023]: The class of all tournaments has the BIG $\Rightarrow$ BIG property.

Erdős-El Zahar Conjecture, 1985: If $G$ has chromatic number sufficiently larger then its clique number, then $G$ contains two independent subgraphs with large chromatic number.

Theorem [Nguyen, Scott, Seymour, 2023; Klingelhoefer and Newman, 2023]: Erdős-El Zahar Conjecture and the $B I G \Leftrightarrow B I G$ property are equivalent.

## The BIG $\Rightarrow$ BIG Conjecture

$\mathcal{T}$ has the BIG $\Rightarrow B I G$ property if for every $T \in \mathcal{T}$, if $\vec{\chi}(T) \geq f(t)$, then $T$ contains two disjoint subtournaments $A$ and $B$ such that $\vec{\chi}(A), \vec{\chi}(B) \geq t$ and $A \Rightarrow B$.

BIG $\Rightarrow$ BIG Conjecture [Nguyen, Scott, Seymour, 2023]: The class of all tournaments has the BIG $\Rightarrow$ BIG property.

Erdős-El Zahar Conjecture, 1985: If $G$ has chromatic number sufficiently larger then its clique number, then $G$ contains two independent subgraphs with large chromatic number.

Theorem [Nguyen, Scott, Seymour, 2023; Klingelhoefer and Newman, 2023]: Erdős-El Zahar Conjecture and the $B I G \Leftrightarrow B I G$ property are equivalent.

Theorem: If $\mathcal{T}$ is $\vec{\chi}$-bounded, then $T$ has the $B I G \Rightarrow B I G$ property.

## Some more open questions

Conjecture: The class of tournaments with twinwidth at most $k$ is $\vec{\chi}$-bounded.
Conjecture: For every integer $k \geq 3$, there is an infinite number of $k$ - $\vec{\omega}$-critical tournaments. True for $k \leq 4$, maybe entirely solved by Aubian.

Conjecture (Large $\vec{\omega}$ implies a $\vec{\omega}$-cluster)
There exists two functions $f$ and $\ell$ such that, for every integer $k$, every tournament $T$ with $\vec{\omega}(T) \geq f(k)$ contains a subtournament $X$ with $|X| \leq \ell(k)$ and $\vec{\omega}(X) \geq k$.

Conjecture: There exists a function $g$ such that, if $\vec{\omega}\left(N^{+}(v)\right) \leq t$ for every vertex $v$, then $\vec{\omega}(T) \leq g(t)$.

$$
\begin{gathered}
\text { Conjecture: for every } n \text {-vertex tournament } T, \vec{\omega}(T)=O(\log (n)) \\
\text { Thank You For Your Attention }
\end{gathered}
$$

