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The chromatic number

Colouring: adjacent vertices receive distinct colours.

⇔
Partition the vertices into independent sets.

χ = 3χ = 5 χ = 3

Chromatic number of G = χ(G ): minimise the number of colours.

Question: How could we define directed graph colouring?

(ENS) 2 / 32



The dichromatic number

• Coloring a digraph D: no monochromatic (induced) directed cycle.

• −→χ (D): the dichromatic number of D.

In other words: partition D in acyclic induced subdigraphs instead of stable
sets.
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Dichromatic number generalises chromatic number
Property: For every graph G , χ(G ) = −→χ (

←→
G ).

G
←→
G

There is more and more results on the dichromatic number of digraphs for which,
in the special case of symmetric digraphs, we recover an existing result on
undirected graph.

Brooks’ Theorem, Galläı Theorem, Wilf Theorem (algebraic graph theory)...

Extremal graph theory,

List dichromatic number,

Substructure forced by large dichromatic number,

Dicolouring digraphs on surfaces.
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Clique number versus chromatic number

Question: why does a graph has large chromatic number?

(Partial) Answer: because it has a large clique
(but there is triangle-free graphs with arbitrarily large chromatic number).

A class of graphs C if χ-bounded if there exists a function f such that:

for every G ∈ C, χ(G ) ≤ f (ω(G )).

Perfect graphs: χ-bounded by the function f (x) = x .

Gyárfás-Sumner Conjecture:
Let H be a graph. The class of H-free graphs is χ-bounded if and only if H is a
forest.

Theorem[Folklor]: If C is χ-bounded, then so is Csubst

What is the notion of clique number of a digraph?
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What is the clique number of a digraph?

We would like that, for every graph G and every digraph D:

ω(G ) = −→ω (
←→
G ) and −→ω (D) ≤ −→χ (D)

First attempt:
−→ω (D) = size of a maximum symmetric clique in D.
But for every oriented graphs G , −→ω (G ) = 1, not very satisfying.

Second attempt:
−→ω (D) = size for a maximum transitive tournament of D.
Interesting, but does not satisfy −→ω (D) ≤ −→χ (D).

Conjecture [PA, Charbit, Naserasr, 2020]: Let H be an oriented graph. H-free
oriented graphs are −→χ -bounded if and only H is an oriented forest.
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Backedge graph

Given a digraph D, and a total order ≺ on V (D), let D≺ be the (undirected)
graph with vertex set V (D) and edge uv if u ≺ v and vu ∈ A(D).

D≺: backedge graph of D with respect to ≺

For every ≺:
−→χ (D) ≤ χ(D≺)

Moreover, there exists ≺ such that χ(D≺) ≤ −→χ (D).

Hence:
−→χ (D) = min

{
χ(D≺) : ≺ is a total order of V (D)

}
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Clique number of digraphs

So we have a new definition of the dichromatic number:

−→χ (D) = min
{
χ(D≺) : ≺ is a total order of V (D)

}

This leads a natural definition of the clique number of a digraph:

−→ω (D) = min
{
ω(D≺) : ≺ is a total order on V (D)

}

We clearly have:
−→ω (
←→
G ) = ω(G ) (because for every ≺,

←→
G ≺ = G ), and

−→ω (D) ≤ −→χ (D).
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Tournaments

• Tournament = orientation of a complete graph.

• C⃗3 is the directed triangle.

• Transitive tournament (TTk): acyclic tournament ⇔ tournaments with no C⃗3

• Tournaments can have large dichromatic number.

Let S1 = TT1, Sk = ∆(TT1,Sk−1,Sk−1). We have −→χ (Sk) = k
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Tournaments with clique number 1 or 2

−→ω (T ) = min
{
ω(T≺) : ≺ is a total order on V (T )

}

Properties:
−→ω (TTn) = 1.
−→ω (C⃗3) = 2.

Let T be a tournament.
−→ω (T ) = 1 if and only if T is a transitive tournament.
−→ω (T ) ≥ 2 is and only if T contains a C⃗3.

Question: what is the complexitiy of deciding if −→ω (T ) ≥ 3?
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First properties of −→ω

Property: The clique number of a digraph is equal to the maximum clique
number of its strong components.

Fundamental inequality [Nguyen, Scott, Seymour, 2023]:
For every tournament T and every ordering ≺ of V (T ).

χ(T≺)

ω(T≺)
≤ −→χ (T ) ≤ χ(T≺)

Application: construction of interesting tournaments from undirected graphs.
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−→ω -ordering and −→χ -ordering

Let T a tournament and ≺ be an ordering of V (T ). It is a:

−→ω -ordering if ω(T≺) = −→ω (T ) −→χ -ordering if χ(T≺) = −→χ (T )

Property: For every tournament T and every −→ω -ordering ≺ we have:

−→χ (T ) ≤ χ(T≺) ≤ −→χ (T ) · −→ω (T ) ≤ −→χ (T )2

Question: Is there always an ordering ≺ that is both an −→ω -ordering and a
−→χ -ordering?
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Tournaments with arbitrarily large clique number

Question: Can you find tournaments with arbitrarily large clique number?

Let S̃1 = TT1 and inductively, for n ≥ 1, let S̃n = ∆(S̃n−1, S̃n−1, S̃n−1).

Lemma: For any integer n, −→ω (S̃n) ≥ n.

Proof: By induction on n. Let ≺ be an −→ω -ordering. Look at the in-neighbour of
the first vertex in ≺.
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Relations with the dominating set number

Dominating number: size of the smallest X ⊆ V (T ) such that N+[X ] = V (T ).

Property: For every tournament T ,

dom(T ) ≤ −→ω (T ) ≤ −→χ (T )
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−→χ -bounded class of tournaments

A class of tournaments T is −→χ -bounded if there exists a function f such that, for
every T ∈ T ,

−→χ (T ) ≤ f (−→ω (T ))

Theorem [A, Aubian, Charbit, Lopes, 2023] if T is −→χ -bounded, then so is T subst .

Theorem [Chudnovsky, Penev, Scott, Trotignon, 2013] If C is polynomially
χ-bounded, then so is Csubst .

Question: Is it true that if T is polynomially −→χ -bounded, then so is T subst .

Conjecture: Let D be a class of digraphs. If D is −→χ -bounded, then so is Dsubst .
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Relation between −→χ -boundedness and χ-boundedness

Given a class of tournaments T , let us denote by T ≺ the class of all backedge
graphs of tournaments in T :

T ≺ = {T≺ | T ∈ T ,≺ an ordering of T}

Theorem: Let T be a class of tournaments. The following properties are
equivalent:

(i) T is −→χ -bounded.

(ii) T ≺ is χ-bounded.

(iii) T ≺−→ω is χ-bounded.
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T ≺ = {T≺ | T ∈ T ,≺ an ordering of T}

• T is −→χ -bounded ⇒ T ≺ is χ-bounded.

Proof: let f be a function such that for every T ∈ T , we have −→χ (T ) ≤ f (−→ω (T )).
Now, for every T≺ ∈ T ≺:

χ(T≺) ≤ ω(T≺) · −→χ (T ) by the fundamental inequality

≤ ω(T≺) · f (−→ω (T ))

≤ ω(T≺) · f (ω(T≺))

• T ≺−→ω is χ-bounded ⇒ T is −→χ -bounded.

Proof: Let g be a function such that for every T≺ ∈ T ≺−→ω , χ(T≺) ≤ g(ω≺(T )).
Now, for any T ∈ T and every −→ω -ordering ≺ of T .

−→χ (T ) ≤ χ(T≺) ≤ g(ω(T≺)) = g(−→ω (T ))
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Classes of tournaments defined by forbidding a single
tournament

Given a tournament H, Forb(H) is the class of tournaments T such that T does
not contain H as a subtournament.

Question: for which tournament H is Forb(H) −→χ -bounded?

i.e. there is a function f such that, for every T ∈ Forb(H),

−→χ (T ) ≤ f (−→ω (T ))

We say that such that H are −→χ -binding.
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Heroes

Question: for which tournament H is Forb(H) −→χ -bounded?

The most trivial case of χ-bounding function is a constant function.

Question: for which tournament H there is a number cH such that, for every
T ∈ Forb(H), −→χ (T ) ≤ cH?

Answer: such tournaments are called heroes and have been characterised by
Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé in
2013.
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Gentlemen

� A tournament H is a gentlemen if there exists a number cH such that every
H-free tournaments T has −→ω (T ) ≤ cH .

Question: Who are the gentlemen?

Of course, all heroes are gentlemen.
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Tournaments and Heroes

� A tournament H is a hero if there exists a number cH such that every H-free
tournaments T has −→χ (T ) ≤ cH .

For example, C⃗3 and TTk are heroes .

Theorem: [Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and
Thomassé, 2013]

A digraph H is a hero if and only if:

H = K1.

H = (H1 ⇒ H2)

H = ∆(1, k,H) or H = ∆(1,H, k), where k ≥ 1 and H is a hero.
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Gentlement and heroes are the same

Theorem [PA, Aubian, Charbit, Lopes, 2023]: Heroes and gentlement are the
same.

Proof:

Take a minimal counter-example H.

All subtournaments of H are gentlemen, and thus heroes by induction.

Consider the sequence of tournaments S1,S2,S3, . . . .

We proved that they have arbitrarily large −→ω .

So H is of the form ∆(1,A,B).

Nguyen, Scott and Seymour proved S3 = ∆(1, C⃗3, C⃗3) is not a gentlemen.

So one of A or B is a transitive tournament, so H is a hero.
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Gyárfás-Sumner Conjecture for tournaments

Conjecture: Let H be a tournament. Forb(H) is −→χ -bounded if and only if H has
an ordering ≺ for which H≺ is a forest.

Recall that:

Gyárfás-Sumner Conjecture, 1981:
Let H be a graph. Forb(H) is χ-bounded if and only if H is a forest.
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Gyárfás-Sumner Conjecture for tournaments

Conjecture: Let H be a tournament. Forb(H) is −→χ -bounded if and only if H has
an ordering ≺ for which H≺ is a forest.

We proved:

the only if part,

it is enough to prove it for trees instead of forests,

if it holds for a tournament T then it holds for the tournaments obtained by
reversing every arc of T ,

If H1 and H2 are −→χ -binding, then so is H1 ⇒ H2,

It holds for H = T [P⃗k ].
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Theorem: Forb(H) is −→χ -bounded ⇒ H has an ordering ≺ such that H≺ is a
forest.

Let H be a tournament such that no backedge graph of H is a forest.

Let C be a the class of (undirected) graph with girth at least |V (H)|+ 1.

Let T [C] be the class of tournament admitting a graph of C as a backedge
graph.

We claim that T [C] is H-free

Let T ∈ T [C]. So there is ≺ such that T≺ ∈ C, i.e. T≺ has girth |V (H)|+ 1.
Hence, for every X ⊆ T such that |X | = |V (H)|, T≺[X ] is a forest, and thus
distinct from H.
So T is H-free.

Observe that every T ∈ T [C] has −→ω (T ) ≤ 2.

Moreover, by a celebrated theorem of Erdős, graph in C can have arbitrarily
large chromatic number.

Hence, by the fundamental inequality, tournaments in T [C] can have
arbitrarily large dichromatic number.

So T [C] is not −→χ -bounded, and thus H-free tournaments is not −→χ -bounded.
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large chromatic number.

Hence, by the fundamental inequality, tournaments in T [C] can have
arbitrarily large dichromatic number.

So T [C] is not −→χ -bounded, and thus H-free tournaments is not −→χ -bounded.

(ENS) 25 / 32



Theorem: Forb(H) is −→χ -bounded ⇒ H has an ordering ≺ such that H≺ is a
forest.

Let H be a tournament such that no backedge graph of H is a forest.

Let C be a the class of (undirected) graph with girth at least |V (H)|+ 1.

Let T [C] be the class of tournament admitting a graph of C as a backedge
graph.

We claim that T [C] is H-free

Let T ∈ T [C]. So there is ≺ such that T≺ ∈ C, i.e. T≺ has girth |V (H)|+ 1.
Hence, for every X ⊆ T such that |X | = |V (H)|, T≺[X ] is a forest, and thus
distinct from H.
So T is H-free.

Observe that every T ∈ T [C] has −→ω (T ) ≤ 2.

Moreover, by a celebrated theorem of Erdős, graph in C can have arbitrarily
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Theorem: If H1 and H2 are −→χ -binding, then so it H1 ⇒ H2.

Theorem [Le, Harutyunyan, Thomassé and Wu, 2017]
There exists a function λ such that, if for every vertex v), −→χ (T [N+(v)]) ≤ t,
then −→χ (T ) ≤ λ(t).

Theorem: if Forb(H) is −→χ -bounded, then so is Forb(rev(H)), where rev(H) is
obtained by reversing every arc if H.

Proof:

Recall that: Forb(H) is −→χ -bounded ⇔ Forb(H)≺ is χ-bounded.

Observe that T≺ = rev(T )rev(≺).

So Forb(H)≺ = Forb(rev(H))≺.
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Relations with χ-boundedness of classes of ordered graphs

Theorem:
Forb(H) is −→χ -bounded if and only if Forbo({(H≺,≺) :≺ is an ordering of H})

Theorem [Briański, Davies and Walczak, 2023+] Let (M,≺) be an order graph
with maximum degree 1. Then Forbo(M,≺) is χ-bounded.

Theorem: Forb(HP⃗k
) is −→χ -bounded.
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Complexity

Open Question: what is the complexity of deciding if a tournament T has
−→ω (T ) ≥ 3?

Theorem: We can decide in poly-time if, given a tournament T
−→ω (T ) ≥ 3, or −→ω (T ) ≤ 1010

Lemma: If −→ω (T ) ≤ 2 and NC⃗3
(xy) ≥ 3, then y ≺ x in every −→ω -ordering.

Colouring 2-colourable tournaments [Klingelhoefer and Newman, 2023]:
we can decide in polytime if, given a tournament T : −→χ (T ) ≥ 3, or −→χ (T ) ≤ 10

Arc local to global Theorem [Klingelhoefer and Newman, 2023] If G is an
oriented graph such that α(G ) ≤ α, and NC⃗3

(xy) ≤ k , then −→χ (G ) ≤ f (α, k).
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Complexity

Open (?) for k ≥ 3: what is the complexity of deciding if a tournament T has
−→ω (T ) ≥ k?

Equivalently: decide if a tournament has a Feedback Arc Set that induces a
Kk -free graphs

General question: given a class of undirected graph C, decide if a tournament
has a Feedback Arc Set which induced a graph that belongs to C.

It is NP-hard when:

C = {k-colourable graphs}, k ≥ 2

C = {forests} (In preparation).

Parameterised complexity, approximation algorithms etc, nothing is known.
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Relation with the Erdős-Hajnal Conjecture

Erdős-Hajnal Conjecture (1981): Let H be a graph. there exists a number cH
such that every H-free graph G has a clique or a stable set of size |V (G )|cH .

Alon, Pach, Solymosi (2001) proved that it is equivalent with:

Erdős-Hajnal Conjecture: Let H be a tournament. There exists a number cH
such that every H-free graph T has a transitive tournament |V (T )|cH .

Theorem: If Forb(H) is polynomially −→χ -bounded, then H has the Erdő-Hajnal
property.
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The BIG ⇒ BIG Conjecture

T has the BIG ⇒ BIG property if for every T ∈ T , if −→χ (T ) ≥ f (t), then T
contains two disjoint subtournaments A and B such that −→χ (A),−→χ (B) ≥ t and
A⇒ B.

BIG ⇒ BIG Conjecture [Nguyen, Scott, Seymour, 2023]: The class of all
tournaments has the BIG ⇒ BIG property.

Erdős-El Zahar Conjecture, 1985: If G has chromatic number sufficiently larger
then its clique number, then G contains two independent subgraphs with large
chromatic number.

Theorem [Nguyen, Scott, Seymour, 2023; Klingelhoefer and Newman, 2023]:
Erdős-El Zahar Conjecture and the BIG ⇔ BIG property are equivalent.

Theorem: If T is −→χ -bounded, then Ţ has the BIG ⇒ BIG property.

(ENS) 31 / 32



The BIG ⇒ BIG Conjecture

T has the BIG ⇒ BIG property if for every T ∈ T , if −→χ (T ) ≥ f (t), then T
contains two disjoint subtournaments A and B such that −→χ (A),−→χ (B) ≥ t and
A⇒ B.

BIG ⇒ BIG Conjecture [Nguyen, Scott, Seymour, 2023]: The class of all
tournaments has the BIG ⇒ BIG property.
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Some more open questions

Conjecture: The class of tournaments with twinwidth at most k is −→χ -bounded.

Conjecture: For every integer k ≥ 3, there is an infinite number of k-−→ω -critical
tournaments. True for k ≤ 4, maybe entirely solved by Aubian.

Conjecture (Large −→ω implies a −→ω -cluster)
There exists two functions f and ℓ such that, for every integer k, every
tournament T with −→ω (T ) ≥ f (k) contains a subtournament X with |X | ≤ ℓ(k)
and −→ω (X ) ≥ k .

Conjecture: There exists a function g such that, if −→ω (N+(v)) ≤ t for every
vertex v , then −→ω (T ) ≤ g(t).

Conjecture: for every n-vertex tournament T , −→ω (T ) = O(log(n))
Thank You For Your Attention
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