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The chromatic number

Colouring: adjacent vertices receive distinct colours.

~

Partition the vertices into independent sets.

= GRS RN

Chromatic number of G = x(G): minimise the number of colours.

Question: How could we define directed graph colouring?
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The dichromatic number

e Coloring a digraph D: no monochromatic (induced) directed cycle.

e \(D): the dichromatic number of D.

In other words: partition D in acyclic induced subdigraphs instead of stable

=
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Dichromatic number generalises chromatic number
Property: For every graph G, x(G) = 7(?)

G G

There is more and more results on the dichromatic number of digraphs for which,
in the special case of symmetric digraphs, we recover an existing result on
undirected graph.
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Dichromatic number generalises chromatic number
Property: For every graph G, x(G) = 7(?)

{

G G

There is more and more results on the dichromatic number of digraphs for which,
in the special case of symmetric digraphs, we recover an existing result on
undirected graph.

@ Brooks' Theorem, Gallai Theorem, Wilf Theorem (algebraic graph theory)...

@ Extremal graph theory,

@ List dichromatic number,

@ Substructure forced by large dichromatic number,

°

Dicolouring digraphs on surfaces.

e



Clique number versus chromatic number

Question: why does a graph has large chromatic number?
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Clique number versus chromatic number

Question: why does a graph has large chromatic number?

(Partial) Answer: because it has a large clique
(but there is triangle-free graphs with arbitrarily large chromatic number).
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Clique number versus chromatic number

Question: why does a graph has large chromatic number?

(Partial) Answer: because it has a large clique
(but there is triangle-free graphs with arbitrarily large chromatic number).

A class of graphs C if y-bounded if there exists a function f such that:

for every G € C, x(G) < f(w(G)).
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Clique number versus chromatic number

Question: why does a graph has large chromatic number?

(Partial) Answer: because it has a large clique
(but there is triangle-free graphs with arbitrarily large chromatic number).

A class of graphs C if y-bounded if there exists a function f such that:

for every G € C, x(G) < f(w(G)).

Perfect graphs: x-bounded by the function f(x) = x.

Gyarfas-Sumner Conjecture:
Let H be a graph. The class of H-free graphs is x-bounded if and only if H is a
forest.

Theorem|[Folklor]: If C is x-bounded, then so is CsUb5
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Clique number versus chromatic number

Question: why does a graph has large chromatic number?

(Partial) Answer: because it has a large clique
(but there is triangle-free graphs with arbitrarily large chromatic number).

A class of graphs C if y-bounded if there exists a function f such that:

for every G € C, x(G) < f(w(G)).

Perfect graphs: x-bounded by the function f(x) = x.

Gyarfas-Sumner Conjecture:
Let H be a graph. The class of H-free graphs is x-bounded if and only if H is a
forest.

Theorem|[Folklor]: If C is x-bounded, then so is CsUb5

WHAT IS THE NOTION OF CLIQUE NUMBER OF A DIGRAPH?
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What is the clique number of a digraph?

We would like that, for every graph G and every digraph D:
w(6)=B(C) and D(D) < X(D)

First attempt:

W (D) = size of a maximum symmetric clique in D.
But for every oriented graphs G, @(G) = 1, not very satisfying.
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What is the clique number of a digraph?

We would like that, for every graph G and every digraph D:
w(G6)=F(G) and T(D)<¥(D

First attempt:

W (D) = size of a maximum symmetric clique in D.
But for every oriented graphs G, @(G) = 1, not very satisfying.

Second attempt:

W (D) = size for a maximum transitive tournament of D.
Interesting, but does not satisfy (D) < X' (D).
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What is the clique number of a digraph?

We would like that, for every graph G and every digraph D:
w(G6)=F(G) and T(D)<¥(D

First attempt:

W (D) = size of a maximum symmetric clique in D.
But for every oriented graphs G, @(G) = 1, not very satisfying.

Second attempt:

W (D) = size for a maximum transitive tournament of D.
Interesting, but does not satisfy (D) < X' (D).

Conjecture [PA, Charbit, Naserasr, 2020]: Let H be an oriented graph. H-free
oriented graphs are Y-bounded if and only H is an oriented forest.
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Backedge graph

Given a digraph D, and a total order < on V/(D), let D= be the (undirected)
graph with vertex set V(D) and edge uv if u < v and vu € A(D).

D=: backedge graph of D with respect to <

For every <:

X (D) < x(D~)
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Backedge graph

Given a digraph D, and a total order < on V/(D), let D= be the (undirected)
graph with vertex set V(D) and edge uv if u < v and vu € A(D).

D=: backedge graph of D with respect to <
For every <:

X(D) < x(D7)
Moreover, there exists < such that x(D~) < X' (D).
Hence:

X (D) = min {x(D~): < is a total order of V(D)}
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Clique number of digraphs

So we have a new definition of the dichromatic number:

X (D) = min {x(D~): < is a total order of V(D)}

This leads a natural definition of the clique number of a digraph:

W(D) = min {w(D~): < is a total order on V(D)}
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Clique number of digraphs

So we have a new definition of the dichromatic number:

X (D) = min {x(D~): < is a total order of V(D)}

This leads a natural definition of the clique number of a digraph:

W(D) = min {w(D~): < is a total order on V(D)}

We clearly have:
° ﬁ(?) = w(G) (because for every <, G = G), and

o W(D) < X(D).
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Tournaments

e Tournament = orientation of a complete graph.

e C; is the directed triangle.

e Transitive tournament (TTj): acyclic tournament < tournaments with no Cs

e Tournaments can have large dichromatic number.

Let 5 =TTy, Sk = A( TTl,Sk_l,Sk_l). We have Y(Sk) =k
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Tournaments with clique number 1 or 2

W(T) =min {w(T=): < is a total order on V(T)}

Properties:
o W(TT,) =1
(*] 3(63) =2.

Let T be a tournament.
e W(T)=1if and only if T is a transitive tournament.
o W(T)>2isand only if T contains a Cs.

Question: what is the complexitiy of deciding if & (T) > 3?

T



First properties of o

Property: The clique number of a digraph is equal to the maximum clique
number of its strong components.
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First properties of o

Property: The clique number of a digraph is equal to the maximum clique
number of its strong components.

Fundamental inequality [Nguyen, Scott, Seymour, 2023]:
For every tournament T and every ordering < of V(T).

x(T7)
w(T=) ~

X(T) = X(TY)
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First properties of o

Property: The clique number of a digraph is equal to the maximum clique
number of its strong components.

Fundamental inequality [Nguyen, Scott, Seymour, 2023]:
For every tournament T and every ordering < of V(T).

EEH < U < (T

Application: construction of interesting tournaments from undirected graphs.

e



7—ordering and 7—ordering

Let T a tournament and < be an ordering of V(T). Itis a:

W-ordering if w(T=) = W(T) X -ordering if x(T<) = X(T)
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ﬁ—ordering and 7—ordering

Let T a tournament and < be an ordering of V(T). Itis a:

W-ordering if w(T=) = W(T) X -ordering if x(T~)=X(T)

Property: For every tournament T and every ﬁ—ordering < we have:

X(T) < X(T%) < XUTM)-T(T) < N(T)P

Question: Is there always an ordering < that is both an ﬁ—ordering and a
¥ -ordering?

o



Tournaments with arbitrarily large clique number

Question: Can you find tournaments with arbitrarily large clique number?

Let 5; = TT; and inductively, for n > 1, let 5, = A(S,_1,5n-1, 50-1).

Lemma: For any integer n, @ (3,) > n.

Proof: By induction on n. Let < be an ﬁ—ordering. Look at the in-neighbour of
the first vertex in <.

B



Relations with the dominating set number

Dominating number: size of the smallest X C V/(T) such that N*[X] = V(T).

Property: For every tournament T,

dom(T) < W(T) < X(T)
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Y—bounded class of tournaments

A class of tournaments 7T is Y—bounded if there exists a function f such that, for

every T €T,
N(T) < F(W(T))
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Y—bounded class of tournaments

A class of tournaments 7T is Y—bounded if there exists a function f such that, for
every T €T,

X(T) < F(&(T))

Theorem [A, Aubian, Charbit, Lopes, 2023] if 7 is ' -bounded, then so is 7565t
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Y—bounded class of tournaments

A class of tournaments 7 is Y—bounded if there exists a function f such that, for

every T €T,
N(T) < F(W(T))

Theorem [A, Aubian, Charbit, Lopes, 2023] if 7 is ' -bounded, then so is 7565t

Theorem [Chudnovsky, Penev, Scott, Trotignon, 2013] If C is polynomially
x-bounded, then so is C3Ubst,
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Y—bounded class of tournaments

A class of tournaments 7 is Y—bounded if there exists a function f such that, for

every T €T,
N(T) < F(W(T))

Theorem [A, Aubian, Charbit, Lopes, 2023] if 7 is ' -bounded, then so is 7565t

Theorem [Chudnovsky, Penev, Scott, Trotignon, 2013] If C is polynomially
x-bounded, then so is C3Ubst,

Question: Is it true that if 7 is polynomially Y—bounded, then so is Tsubst,
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Y—bounded class of tournaments

A class of tournaments 7 is ?—bounded if there exists a function f such that, for

every T €T,
N(T) < F(W(T))

Theorem [A, Aubian, Charbit, Lopes, 2023] if T is X' -bounded, then so is 7555t

Theorem [Chudnovsky, Penev, Scott, Trotignon, 2013] If C is polynomially
x-bounded, then so is C3Ubst,

Question: Is it true that if 7 is polynomially -bounded, then so is 7545,

Conjecture: Let D be a class of digraphs. If D is Y—bounded, then so is Dsubst,

B



Relation between Y—boundedness and y-boundedness

Given a class of tournaments 7T, let us denote by 7= the class of all backedge
graphs of tournaments in 7T

T=*={T"| TeT,< an ordering of T}
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Relation between Y—boundedness and y-boundedness

Given a class of tournaments 7T, let us denote by 7= the class of all backedge
graphs of tournaments in 7T

T=={T=| Te&T,< an ordering of T}

Theorem: Let 7 be a class of tournaments. The following properties are
equivalent:

(i) T is X -bounded.
(i) T is x-bounded.
(iii) T=< is x-bounded.

T



“={T=|TeT,< anordering of T}

e T is X-bounded = 7= is y-bounded.

Proof: let f be a function such that for every T € T, we have X' (T) < f(&(T)).
Now, for every T= € T~:

(T <w(T¥)-X(T) by the fundamental inequality
<w(T%)-F(J(T))
Sw(TH) - f(w(TT))
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“={T=|TeT,< anordering of T}

e T is X-bounded = 7= is y-bounded.

Proof: let f be a function such that for every T € T, we have X' (T) < f(&(T)).
Now, for every T= € T~:

(T <w(T¥)-X(T) by the fundamental inequality
<w(T%)-F(J(T))
Sw(TH) - f(w(TT))

e 7<% is x-bounded = T is \'-bounded.

Proof: Let g be a function such that for every T= € T=%, x(T7) < g(w=(T)).
Now, for any T € T and every w-ordering < of T.

N(T) < x(T7) < g(w(T7)) = g(F(T))

e



Classes of tournaments defined by forbidding a single
tournament

Given a tournament H, Forb(H) is the class of tournaments T such that T does
not contain H as a subtournament.

Question: for which tournament H is Forb(H) ’-bounded?

i.e. there is a function f such that, for every T € Forb(H),

X(T) < F(&(T))

We say that such that H are ' -binding.

T



Heroes

Question: for which tournament H is Forb(H) X -bounded?

The most trivial case of xy-bounding function is a constant function.

Question: for which tournament H there is a number cy such that, for every
T € Forb(H), X(T) < cu?

Answer: such tournaments are called heroes and have been characterised by
Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé in
2013.

B



Gentlemen

» A tournament H is a gentlemen if there exists a number cy such that every
H-free tournaments T has & (T) < cu.

Question: Who are the gentlemen?

Of course, all heroes are gentlemen.
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Tournaments and Heroes

» A tournament H is a hero if there exists a number cy such that every H-free
tournaments T has X' (T) < cp.

For example, 63 and TTj are heroes .
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Tournaments and Heroes

» A tournament H is a hero if there exists a number cy such that every H-free
tournaments T has X' (T) < cp.

For example, 63 and TTj are heroes .

Theorem: [Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and
Thomassé, 2013]

A digraph H is a hero if and only if:
e H=Kj.
o H=(H = H>)
o H=A(1,k,H) or H= A(1, H, k), where k > 1 and H is a hero.
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Tournaments and Heroes

» A tournament H is a hero if there exists a number cy such that every H-free
tournaments T has X' (T) < cp.

For example, 63 and TTj are heroes .

Theorem: [Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and
Thomassé, 2013]
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Gentlement and heroes are the same

Theorem [PA, Aubian, Charbit, Lopes, 2023]: Heroes and gentlement are the
same.

Proof:

@ Take a minimal counter-example H.

All subtournaments of H are gentlemen, and thus heroes by induction.
Consider the sequence of tournaments 51, 55, Ss, .. ..

We proved that they have arbitrarily large .

So H is of the form A(1, A, B).

Nguyen, Scott and Seymour proved S3 = A(1, G, 53) is not a gentlemen.

@ So one of A or B is a transitive tournament, so H is a hero.

o



Gyarfas-Sumner Conjecture for tournaments

Conjecture: Let H be a tournament. Forb(H) is ' -bounded if and only if H has
an ordering < for which H™ is a forest.
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Gyarfas-Sumner Conjecture for tournaments

Conjecture: Let H be a tournament. Forb(H) is ' -bounded if and only if H has
an ordering < for which H™ is a forest.

Recall that:

Gyarfas-Sumner Conjecture, 1981:
Let H be a graph. Forb(H) is x-bounded if and only if H is a forest.

Y



Gyarfas-Sumner Conjecture for tournaments

Conjecture: Let H be a tournament. Forb(H) is % -bounded if and only if H has
an ordering < for which H= is a forest.

We proved:

the only if part,
it is enough to prove it for trees instead of forests,

if it holds for a tournament T then it holds for the tournaments obtained by
reversing every arc of T,

If H; and H> are Y—binding, then so is H; = H»,
It holds for H = T[P].

A



Theorem: Forb(H) is \'-bounded = H has an ordering < such that H= is a
forest.

@ Let H be a tournament such that no backedge graph of H is a forest.
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Theorem: Forb(H) is \'-bounded = H has an ordering < such that H= is a
forest.

@ Let H be a tournament such that no backedge graph of H is a forest.
@ Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
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Theorem: Forb(H) is \'-bounded = H has an ordering < such that H= is a
forest.

@ Let H be a tournament such that no backedge graph of H is a forest.
@ Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.

o Let T[C] be the class of tournament admitting a graph of C as a backedge
graph.

T



Theorem: Forb(H) is \'-bounded = H has an ordering < such that H= is a
forest.

@ Let H be a tournament such that no backedge graph of H is a forest.
@ Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.

o Let T[C] be the class of tournament admitting a graph of C as a backedge
graph.
e We claim that 7[C] is H-free
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Theorem: Forb(H) is X -bounded = H has an ordering < such that H= is a
forest.

@ Let H be a tournament such that no backedge graph of H is a forest.
o Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
o Let T[C] be the class of tournament admitting a graph of C as a backedge
graph.
e We claim that 7[C] is H-free
o Let T € T[C]. So there is < such that T~ € C, i.e. T~ has girth |V(H)| + 1.
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Theorem: Forb(H) is X -bounded = H has an ordering < such that H= is a
forest.

@ Let H be a tournament such that no backedge graph of H is a forest.

o Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.

o Let T[C] be the class of tournament admitting a graph of C as a backedge
graph.

e We claim that 7[C] is H-free

o Let T € T[C]. So there is < such that T~ € C, i.e. T~ has girth |V(H)| + 1.
o Hence, for every X C T such that |X| = |V(H)|, T7[X] is a forest, and thus
distinct from H.
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Theorem: Forb(H) is X -bounded = H has an ordering < such that H= is a
forest.

@ Let H be a tournament such that no backedge graph of H is a forest.

o Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.

o Let T[C] be the class of tournament admitting a graph of C as a backedge
graph.

e We claim that 7[C] is H-free

o Let T € T[C]. So there is < such that T~ € C, i.e. T~ has girth |V(H)| + 1.

o Hence, for every X C T such that |X| = |V(H)|, T7[X] is a forest, and thus
distinct from H.

e So T is H-free.
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Theorem: Forb(H) is X -bounded = H has an ordering < such that H= is a
forest.

@ Let H be a tournament such that no backedge graph of H is a forest.
o Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
o Let T[C] be the class of tournament admitting a graph of C as a backedge
graph.
e We claim that 7[C] is H-free
o Let T € T[C]. So there is < such that T~ € C, i.e. T~ has girth |V(H)| + 1.
o Hence, for every X C T such that |X| = |V(H)|, T7[X] is a forest, and thus

distinct from H.
o So T is H-free.

o Observe that every T € T[C] has W(T) < 2.
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Theorem: Forb(H) is X -bounded = H has an ordering < such that H= is a
forest.

@ Let H be a tournament such that no backedge graph of H is a forest.
o Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
Let T[C] be the class of tournament admitting a graph of C as a backedge
graph.
We claim that T[C] is H-free
o Let T € T[C]. So there is < such that T~ € C, i.e. T~ has girth |V(H)| + 1.
o Hence, for every X C T such that |X| = |V(H)|, T7[X] is a forest, and thus
distinct from H.
e So T is H-free.
Observe that every T € T[C] has W(T) < 2.

Moreover, by a celebrated theorem of Erdds, graph in C can have arbitrarily
large chromatic number.

T



Theorem: Forb(H) is X -bounded = H has an ordering < such that H= is a
forest.

@ Let H be a tournament such that no backedge graph of H is a forest.

@ Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.

o Let T[C] be the class of tournament admitting a graph of C as a backedge
graph.

e We claim that 7[C] is H-free

o Let T € T[C]. So there is < such that T~ € C, i.e. T~ has girth |V(H)| + 1.

o Hence, for every X C T such that |X| = |V(H)|, T7[X] is a forest, and thus
distinct from H.

e So T is H-free.

o Observe that every T € T[C] has W(T) < 2.

@ Moreover, by a celebrated theorem of Erdés, graph in C can have arbitrarily
large chromatic number.

@ Hence, by the fundamental inequality, tournaments in 7[C] can have
arbitrarily large dichromatic number.
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Theorem: Forb(H) is X -bounded = H has an ordering < such that H= is a
forest.

@ Let H be a tournament such that no backedge graph of H is a forest.

@ Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.

o Let T[C] be the class of tournament admitting a graph of C as a backedge
graph.

e We claim that 7[C] is H-free

o Let T € T[C]. So there is < such that T~ € C, i.e. T~ has girth |V(H)| + 1.

o Hence, for every X C T such that |X| = |V(H)|, T7[X] is a forest, and thus
distinct from H.

e So T is H-free.

o Observe that every T € T[C] has W(T) < 2.

@ Moreover, by a celebrated theorem of Erdés, graph in C can have arbitrarily
large chromatic number.

@ Hence, by the fundamental inequality, tournaments in 7[C] can have
arbitrarily large dichromatic number.

So T1C] is not X-bounded, and thus H-free tournaments is not X -bounded.
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Theorem: If H; and H, are Y—binding, then so it H; = H,.

Theorem [Le, Harutyunyan, Thomassé and Wu, 2017]
There exists a function A such that, if for every vertex v), X (T[N*(v)]) < t,

then ' (T) < A(¢).
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Theorem: If H; and H, are Y—binding, then so it H; = H,.

Theorem [Le, Harutyunyan, Thomassé and Wu, 2017]
There exists a function A such that, if for every vertex v), X (T[N*(v)]) < t,

then X (T) < A(t).

Theorem: if Forb(H) is \'-bounded, then so is Forb(rev(H)), where rev(H) is
obtained by reversing every arc if H.

Proof:
@ Recall that: Forb(H) is X'-bounded < Forb(H)= is x-bounded.
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Theorem: If H; and H, are Y—binding, then so it H; = H,.

Theorem [Le, Harutyunyan, Thomassé and Wu, 2017]
There exists a function A such that, if for every vertex v), X (T[N*(v)]) < t,

then X (T) < A(t).

Theorem: if Forb(H) is \'-bounded, then so is Forb(rev(H)), where rev(H) is
obtained by reversing every arc if H.
Proof:

@ Recall that: Forb(H) is X'-bounded < Forb(H)= is x-bounded.

@ Observe that T= = rev(T)r (=),

@ So Forb(H)™ = Forb(rev(H))=.

Y



Relations with y-boundedness of classes of ordered graphs

Theorem:
Forb(H) is Y -bounded if and only if Forb,({(H=,<) :< is an ordering of H})
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Relations with y-boundedness of classes of ordered graphs

Theorem:
Forb(H) is Y -bounded if and only if Forb,({(H=,<) :< is an ordering of H})

Theorem [Briariski, Davies and Walczak, 2023+] Let (M, <) be an order graph
with maximum degree 1. Then Forb,(M, <) is x-bounded.

Theorem: Forb(Hp,) is X -bounded.

I



Complexity

Open Question: what is the complexity of deciding if a tournament T has

W(T)>3?
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Complexity

Open Question: what is the complexity of deciding if a tournament T has

W(T)>3?

Theorem: We can decide in poly-time if, given a tournament T
W(T) >3, 0or W(T) < 10%0
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Complexity

Open Question: what is the complexity of deciding if a tournament T has

W(T)>3?

Theorem: We can decide in poly-time if, given a tournament T
W(T) >3, 0or W(T) < 10%0

Lemma: If W(T) <2 and Ne (xy) = 3, then y < x in every W-ordering.
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Complexity

Open Question: what is the complexity of deciding if a tournament T has
W(T)>3?

Theorem: We can decide in poly-time if, given a tournament T
W(T) >3, 0or W(T) < 10%0

Lemma: If W(T) <2 and Ne (xy) = 3, then y < x in every W-ordering.

COLOURING 2-COLOURABLE TOURNAMENTS [Klingelhoefer and Newman, 2023]:
we can decide in polytime if, given a tournament T: Y(T) >3, or Y(T) <10
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Complexity

Open Question: what is the complexity of deciding if a tournament T has

W(T)>3?

Theorem: We can decide in poly-time if, given a tournament T
W(T) >3, 0or W(T) < 10%0

Lemma: If W(T) <2 and Ne (xy) = 3, then y < x in every W-ordering.

COLOURING 2-COLOURABLE TOURNAMENTS [Klingelhoefer and Newman, 2023]:
we can decide in polytime if, given a tournament T: Y(T) >3, or Y(T) <10

Arc local to global Theorem [Klingelhoefer and Newman, 2023] If G is an
oriented graph such that a(G) < a, and Ng (xy) < k, then X(G) < f(a, k).

S



Complexity

Open (?) for k > 3: what is the complexity of deciding if a tournament T has
W(T) > k?
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Complexity

Open (?) for k > 3: what is the complexity of deciding if a tournament T has
W(T) > k?

Equivalently: decide if a tournament has a Feedback Arc Set that induces a
Ki-free graphs

General question: given a class of undirected graph C, decide if a tournament
has a Feedback Arc Set which induced a graph that belongs to C.

It is NP-hard when:
o C = {k-colourable graphs}, k > 2
o C = {forests} (In preparation).
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Complexity

Open (?) for k > 3: what is the complexity of deciding if a tournament T has

W(T) > k?

Equivalently: decide if a tournament has a Feedback Arc Set that induces a
Ki-free graphs

General question: given a class of undirected graph C, decide if a tournament
has a Feedback Arc Set which induced a graph that belongs to C.

It is NP-hard when:
o C = {k-colourable graphs}, k > 2
o C = {forests} (In preparation).

Parameterised complexity, approximation algorithms etc, nothing is known.
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Relation with the Erdés-Hajnal Conjecture

Erdds-Hajnal Conjecture (1981): Let H be a graph. there exists a number cy
such that every H-free graph G has a clique or a stable set of size |V/(G)|.

Alon, Pach, Solymosi (2001) proved that it is equivalent with:

Erd6s-Hajnal Conjecture: Let H be a tournament. There exists a number cy
such that every H-free graph T has a transitive tournament |V/(T)|.
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Relation with the Erdés-Hajnal Conjecture

Erdds-Hajnal Conjecture (1981): Let H be a graph. there exists a number cy
such that every H-free graph G has a clique or a stable set of size |V/(G)|.

Alon, Pach, Solymosi (2001) proved that it is equivalent with:

Erd6s-Hajnal Conjecture: Let H be a tournament. There exists a number cy
such that every H-free graph T has a transitive tournament |V/(T)|.

Theorem: If Forb(H) is polynomially '-bounded, then H has the Erdé-Hajnal
property.
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The BIG = BIG Conjecture

T has the BIG = BIG property if for every T € T, if X (T) > f(t), then T
contains two disjoint subtournaments A and B such that X' (A), X' (B) > t and
A= B.

BIG = BIG Conjecture [Nguyen, Scott, Seymour, 2023]: The class of all
tournaments has the BIG = BIG property.
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The BIG = BIG Conjecture

T has the BIG = BIG property if for every T € T, if Y(T) > f(t), then T
contains two disjoint subtournaments A and B such that X' (A), X' (B) > t and
A= B.

BIG = BIG Conjecture [Nguyen, Scott, Seymour, 2023]: The class of all
tournaments has the BIG = BIG property.

Erdés-El Zahar Conjecture, 1985: If G has chromatic number sufficiently larger
then its clique number, then G contains two independent subgraphs with large
chromatic number.
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The BIG = BIG Conjecture

T has the BIG = BIG property if for every T € T, if X (T) > f(t), then T
contains two disjoint subtournaments A and B such that X' (A), X' (B) > t and
A= B.

BIG = BIG Conjecture [Nguyen, Scott, Seymour, 2023]: The class of all
tournaments has the BIG = BIG property.

Erdés-El Zahar Conjecture, 1985: If G has chromatic number sufficiently larger
then its clique number, then G contains two independent subgraphs with large
chromatic number.

Theorem [Nguyen, Scott, Seymour, 2023; Klingelhoefer and Newman, 2023]:
Erd6s-El Zahar Conjecture and the BIG < BIG property are equivalent.
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The BIG = BIG Conjecture

T has the BIG = BIG property if for every T € T, if X (T) > f(t), then T
contains two disjoint subtournaments A and B such that X' (A), X' (B) > t and
A= B.

BIG = BIG Conjecture [Nguyen, Scott, Seymour, 2023]: The class of all
tournaments has the BIG = BIG property.

Erdés-El Zahar Conjecture, 1985: If G has chromatic number sufficiently larger
then its clique number, then G contains two independent subgraphs with large
chromatic number.

Theorem [Nguyen, Scott, Seymour, 2023; Klingelhoefer and Newman, 2023]:
Erd6s-El Zahar Conjecture and the BIG < BIG property are equivalent.

Theorem: If T is \'-bounded, then T has the BIG = BIG property.
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Some more open questions
Conjecture: The class of tournaments with twinwidth at most k is ¥ -bounded.

Conjecture: For every integer k > 3, there is an infinite number of k- -critical
tournaments. True for k < 4, maybe entirely solved by Aubian.

Conjecture (Large W implies a &-cluster)

There exists two functions f and ¢ such that, for every integer k, every
tournament T with &(T) > f(k) contains a subtournament X with |X| < ¢(k)
and W(X) > k.

Conjecture: There exists a function g such that, if &(NT(v)) < t for every
vertex v, then (T) < g(t).

Conjecture: for every n-vertex tournament T, W(T) = O(log(n))
THANK YOU FOR YOUR ATTENTION
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