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1 Definitions and notations
Let G be a digraph. We denote by V (G) its set of vertices and by A(G) its set of arcs. For a vertex x of G, we denote
by N+(x) (resp. N−(x), No(x)) the set of its out-neighbours (resp. in-neighbours, non-neighbours). For a given set
of vertices X ⊆ V (G), we denote by G[X] the subgraph of G induced by X .

For two disjoint set of vertices X,Y , we write X ⇒ Y to say that for every x ∈ X and for every y ∈ Y ,
xy ∈ A(G), and we write X → Y to say that every arc with one end in X and the other one in Y is oriented from X
to Y (but some vertices of X might be non-adjacent to some vertices of Y ). When X = {x} we write x ⇒ Y and
x→ Y .

A tournament is an orientation of a complete graph. A transitive tournament is an acyclic tournament and
we denote by TTn the unique acyclic tournament on n vertices. Given a transitive tournament T on n vertices
{v1, . . . , vn}, we say that v1, . . . , vn is the topological ordering of T if, for all 1 ≤ i < j ≤ n, we have vivj ∈ A(T ).

Given two tournaments H1 and H2, we denote by ∆(1, H1, H2) the tournament obtained from pairwise disjoint
copies of H1 and H2 plus a vertex x, and all arcs from x to the copy of H1, all arcs from the copy of H1 to the copy
of H2, and all arcs from the copy of H2 to x. When ℓ and k are integers, we write ∆(1, k,H) for ∆(1, TTk, H) and
∆(1, ℓ, k) for ∆(1, TTℓ, TTk). The tournament ∆(1, 1, 1) is also denoted by C⃗3 and called a directed triangle.

Given a class of digraphs C, we say that a digraph H is a hero in C is all H-free digraphs in C have bounded
dichromatic number.

Given a set of digraphs F , we denote by Forbind(F) the class of digraphs which have no member of F as an
induced subgraph. We extend the notation Forbind(F) by allowing (non-oriented) graphs in F . If F is such a set, we
define Forbind(F) to be the set of digraphs that does not contain as an induced subdigraph: any digraph of F , and
any orientation of a non-oriented graph of F .

Given a class of digraphs C, we define the chromatic number χ(C) = max{χ(G) | G ∈ C} with understanding
that χ(C) =∞ when it is not bounded.
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2 Induced subgraphs of digraphs with large dichromatic number
A k-colouring of a graph G is a mapping ϕ : V (G)→ [1, k] such that for all i ∈ [1, k], ϕ−1(i) is a stable set. In other
words it is a partition of the vertices of G into at most k stable sets. The chromatic number χ(G) of a graph G is the
minimum k such that G admits a k-colouring.

It is not an easy task to extend the notion of chromatic number to digraphs in a meaningful way. Anyway, since
a few years, more and more results are showing that the (now) so-called notion of dichromatic number is the right
concept to generalise chromatic number to directed graphs, and more and more efforts are made to extend colouring
results from undirected graphs to directed graphs through this notion.

A k-dicolouring of a digraph D is a mapping ϕ : V (D)→ [1, k] such that for all i ∈ [1, k], ϕ−1(i) is acyclic (that
is, ϕ−1(i) has no directed cycle). In other words, it is a partition of the vertices of D in at most k sets such that each
of these sets induce a directed acyclic graph. The dichromatic number χ⃗(D) of a digraph D is the minimum k such
that D admits a k-dicolouring.

The dichromatic number was first introduced by Neumann-Lara [20] in 1982 and was rediscovered by Mohar [18]

20 years later. It is easy to see that for any undirected graph G, the symmetric digraph
↔
G obtained from G be replacing

each edge by a digon satisfies χ(G) = χ⃗(
↔
G). This simple fact permits to generalise results on the chromatic number

of undirected graphs to digraphs via the dichromatic number.
Let us give an example. The maximum degree of an undirected graph G is denoted by ∆(G). It is an easy

observation that for every graph G, χ(G) ≤ ∆(G) + 1. The following classical result of Brooks characterises the
(very few) graph for which equality holds.

Theorem 2.1 (Brooks’ Theorem, [8]). A graph G satisfies χ(G) = ∆(G) + 1 if and only if G is an odd cycle or a
complete graph.

This result was generalised by Mohar[19] (see also [1]) to digraphs via the dichromatic number. First, observe
that the maximum degree of a graph does not have a clear analogue for digraphs. We now introduce two ways to
measure maximum degree in a digraph that make sense in the context of Brooks’ Theorem. Let v be a vertex of a
digraph G. We define the maxdegree of v as dmax(v) = max(d+(v), d−(v)) and the mindegree of v as dmin(v) =
min(d+(v), d−(v)). We can then define the corresponding maximum degrees: ∆max(G) = maxv∈V (G)(dmax(v))
and ∆min(G) = maxv∈V (G)(dmin(v)).

Exercise 2.2. For every digraph G, χ⃗(G) ≤ ∆min(G) + 1 ≤ ∆max(G) + 1.

We are now ready to state the directed Brooks’ Theorem:

Theorem 2.3 ([19, 1]). Let G be a connected digraph, then χ⃗(G) ≤ ∆max(G) + 1 and equality holds if and only if
one of the following occurs: G is a directed cycle, or a bidirected cycle of odd length or a bidirected complete graph.

Observe that we recover the undirected Brooks’ Theorem by adding the hypothesis that the digraph is bidirected in
the above theorem. It is interesting to not that one cannot replace ∆max by ∆min in the above Theorem, it is actually
NP-complete to decide if a digraph D is ∆min(D)-dicolourable [1].

More and more theorems of this flavour are being proved this past decade and this is an exciting line of research:
take your favourite colouring theorem, and try to generalise it to digraph.

3 The Gyárfás-Sumner Conjecture
Given a set of graphs F , we denote by Forbind(F) the class of graphs which have no member of F as an induced sub-
graph. Given a class of graphs C, we define the chromatic number χ(C) = max{χ(G) | G ∈ C} with understanding
that χ(C) =∞ when it is not bounded.

The following question has been deeply studied: what induced substructures are expected to be found inside a
graph if we assume it has very large chromatic number? Or equivalently what are the minimal families F such that
Forbind(F) has bounded chromatic number? See [21] for a survey on this question. Let us investigate the case
where F is finite. Since complete graphs have unbounded chromatic number and do not contain any induced subgraph
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other than complete graphs themselves, it is clear that such an F must contain a complete graph. Moreover, Erdős’s
celebrated result on the existence of graphs of high girth and high chromatic number [13] implies that if F is finite,
then at least one member ofF must be a forest. These two facts constitute the “only if” part of the following tantalising
and still widely open conjecture of Gyárfás and Sumner (see section 3 of [21] for a survey on known results).

Conjecture 3.1 (Gyárfás-Sumner, [24, 15]). Given a set of graphs F , Forbind(F) has bounded chromatic number if
and only if F contains a complete graph and a forest.

We denote by ω(G) the size of a maximum clique in G. It is clear that for every graph G, ω(G) ≤ χ(G). Given
a class of graphs C, we say that C is χ-bounded is for every G ∈ C, χ(G) ≤ f(ω(G)). This leads to the following
equivalent formulation of the Gyárfás-Sumner Conjecture.

Conjecture 3.2 (Gyárfás-Sumner Conjecture [24, 15]). For every forest T , Forbind(T ) is χ-bounded.

Exercise 3.3. It is enough to prove the Gyárfás-Sumner Conjecture for trees.

4 Extending the Gyárfás-Sumner conjecture to digraphs
The whole course is on the following problem:

Problem 4.1. What are the finite setsF of digraphs for which the class Forbind(F) has bounded dichromatic number?

Harutyunyan and Mohar [16] proved the existence of digraphs with large dichromatic number, and whose underly-
ing graph has large girth. Hence, Forbind(F) has bounded dichromatic number only if F contains an oriented forest.

Whereas complete graphs are somehow trivial objects regarding chromatic number, tournaments are already a
complex and rich family regarding dichromatic number. Observe for example that the transitive tournament on n
vertices (i.e. the unique up to isomorphism tournament on n vertices that contains no directed cycle), denoted by TTn,
has dichromatic number 1. On the other hand, there exists tournaments with arbitrarily large dichromatic number, as
we explain now.

Let us construct a sequence of tournaments Sk such that χ⃗(Sk) = k. Let S1 be the tournament on one vertex.
Having defined Sk, set Sk+1 = ∆(1, Sk, Sk). If you try to k-dicolour Sk+1, then the two copies of Sk must use the k
colours, and no colour is available to colour the last vertex. Hence, χ⃗(Sk) = k for every k.

This shows that a finite set F such that Forbind(F) has bounded dichromatic number must contain a tournament.

4.1 Heroes in tournaments
In a seminal paper [7], Berger et al. gave a full characterisation of tournaments H such that every H-free-tournament
has bounded dichromatic number. Such tournaments are said to be heroes in tournaments.

Theorem 4.2 (Berger et al. [7]). A digraph H is a hero in tournaments if and only if:

• H = K1, or

• H = H1 ⇒ H2, where H1 and H2 are heroes in tournaments, or

• H = ∆(1, k,H1) or H = ∆(1, H1, k), where k ≥ 1 and H1 is a hero in tournaments.

4.2 Strong connected components of heroes
The goal of the subsection is to prove this second bullet of Theorem 4.2:

Theorem 4.3. If H1 and H2 are heroes in tournaments, then so is H1 ⇒ H2.
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Observe that it implies that a digraph is a hero in tournaments if and only if each of its strong connected components
are. Indeed, the only if part of the assertion holds because a subgraph of a hero in tournament (or in any class of
digraphs) is a hero in tournament (or in this other class of digraphs).

We actually prove the following stronger result:

Theorem 4.4. Let H1, H2 and F be digraphs such that H1 ⇒ H2 is a hero in Forbind(F ) and H1 and H2 are heroes
in Forbind(K1 + F ). Then H1 ⇒ H2 is a hero in Forbind(K1 + F ).

To see that Theorem 4.4 implies Theorem 4.3, take F = K1 and observe that Forbind(K1) is empty (so all
digraphs is a hero in it), and that Forbind(K1 +K1) is the class of tournaments.

The rest of this subsection is devoted to the proof of Theorem 4.4. The proof comes from [?], and is inspired but
simpler (we got rid of the intricate notion of r-mountain) than the proof of Theorem 4.4 in [7], even though it is more
general.

We start with a few definitions and notations. First, in order to simplify statements of the lemmas, we assume H1,
H2 and F are fixed all along the subsection and are as in the statement of Theorem 4.4. So there exists a constant c
such that:

• H1 and H2 have at most c vertices,

• digraphs in Forbind(F,H1 ⇒ H2) have dichromatic number at most c,

• for i = 1, 2, digraphs in Forbind(K1 + F,Hi) have dichromatic number c.

If G is a digraph and uv ∈ E, we set Cuv = N+(v) ∩N−(u), that is the of vertices that form a directed triangle
with u and v. Finally, for t ≥ 1, we say that a digraph K is a t-cluster if χ⃗(K) ≥ t and |V (K)| ≤ f(t), where f(t) is
the function defined recursively by f(1) = 1 and f(t) = 1 + f(t− 1)(1 + f(t− 1)).

The structure of the proof is very simple, we prove that digraphs in Forbind(K1 + F,H1 ⇒ H2) that do not
contain a t-cluster for some t have bounded dichromatic number (Lemma 4.5), and then that the ones that contains a
t-cluster for some t also have bounded dichromatic number (Lemma 4.6).

Lemma 4.5. There exists a function ϕ such that if t is an integer and G is a digraph in Forbind(K1 + F,H1 ⇒ H2)
which contains no t-cluster as a subgraph, then χ⃗(G) ≤ ϕ(c, t)

Proof. We prove this by induction on t. For t = 1 the result is trivial as a 1-cluster is simply a vertex. Assume the
existence of ϕ(c, t− 1), and assume G is a digraph in Forbind(K1 + F,H1 ⇒ H2) which contains no t-cluster. Say
an arc uv is heavy if Ce contains a (t−1)-cluster, and light otherwise. For a vertex u we define Nh(u) = {v ∈ V (G) |
uv or vu is a heavy arc}.

Claim 1. For any vertex u, Nh(u) contains no (t− 1)-cluster, and thus χ⃗(Nh(u)) ≤ ϕ(c, t− 1).

Proof. Assume by contradiction that K is a (t − 1)-cluster in Nh(u). By definition of Nh(u), for every v ∈ V (K),
there exists a (t − 1)-cluster Kv in Cuv or Cvu (depending on which of uv or vu is an arc). Let K ′ = {u} ∪
V (K) ∪ (∪v∈KV (Kv)). We claim that K ′ is a t-cluster. First note that the number of vertices of K ′ is at most
1 + f(t− 1) + f(t− 1) · f(t− 1) = f(t). We need to prove that K ′ is not (t− 1)-colourable, so let us consider for
contradiction a (t− 1)-colouring of its vertices, and without loss of generality assume u gets colour 1. Because K is
a (t − 1)-cluster, some vertex v in K must also receive colour 1, and since Kv is also a (t − 1)-cluster, some vertex
w in Kv must also receive colour 1, which produces a monochromatic directed triangle. So K ′ is indeed a t-cluster, a
contradiction. ♦

Claim 2. For any vertex u, min(χ⃗(N−(u)), χ⃗(N+(u))) ≤ (c+ 1) · (c+ ϕ(c, t− 1)).

Proof. Let u ∈ V (G). By the previous claim and the induction hypothesis, Nh(u) induces a digraph of dichromatic
number at most ϕ(c, t− 1), so it is enough to prove that one of the sets N−

ℓ (u) := (N−(u) \Nh(u)) and N+
ℓ (u) :=

(N+(u) \Nh(u)) induces a digraph with dichromatic number at most c · ϕ(c, t− 1) + c · (c+ 1).
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If N+
ℓ (u) induces a H2-free digraph, then it has dichromatic number at most c < c ·ϕ(c, t− 1)+ c · (c+1), so we

can assume that there exists V2 ⊆ N+
ℓ (u) such that G[V2] = H2. We now partition N−

ℓ (u) into three sets A,B,C,
each of which will have bounded dichromatic number.

Let A = N−
ℓ (u) ∩ (∪v∈V2

N+(v)) = N−
ℓ (u) ∩ (∪v∈V2

Cuv). For every v ∈ V2, uv ∈ E is light (because
V2 ⊆ u−

ℓ ), so G[Cuv ∩ A] does not contain a (t − 1)-cluster and is thus ϕ(c, t − 1)-colourable by induction. Now,
since H2 contains at most h vertices, we get χ⃗(A) ≤ c · ϕ(c, t− 1).

Let B = N−
ℓ (u)∩(∪v∈V2v

0). Since G is (K1+F,H1 ⇒ H2)-free, for every v ∈ V2, No(v) is (F,H1 ⇒ H2)-free
and thus χ⃗(G[No(v)]) ≤ c. Hence, χ⃗(B) ≤ c2.

Finally, consider C = N−
ℓ (u) \ (A ∪ B). By definition of A and B, we get C ⇒ V2. Since G is H1 ⇒ H2-free,

G[C] is H1-free, and therefore χ⃗(C) ≤ c.
All together, we get χ⃗(Nℓ(x)

−) ≤ c · ϕ(c, t− 1) + c · (c+ 1) as desired. ♦

By the previous claim, we can partition the set of vertices into the two sets V − and V + defined by:

V − = {u ∈ V | χ⃗(N−(u)) ≤ (c+ 1) · (c+ ϕ(c, t− 1))}
V + = {u ∈ V | χ⃗(N+(u)) ≤ (c+ 1) · (c+ ϕ(c, t− 1))}

If G[V −] is H1-free and G[V +] is H2-free, then χ⃗(G) ≤ 2c < ϕ(c, t) and we are done. Assume that there exists
V1 ⊆ V − such that G[V1] = H1 (the case where V + contains an induced copy of H2 is symmetrical).

We now partition V (G) \ V1 into three sets of vertices depending on their relation with V1 and prove that each of
these set induces a digraph with bounded dichromatic number.

Let A =
⋃

v∈V1
N−(v). By definition of N−(v) and since V1 ⊆ N−(v), for every v ∈ V1, N−(v) has dichromatic

number at most (c+1)(c+ϕ(c, t−1)), and since H1 has at most c vertices we get that χ⃗(A) ≤ c·(c+1)·(c+ϕ(c, t−1)).
Let B =

⋃
v∈V1

v0. Since G is (K1 + F,H1 ⇒ H2)-free, for every v ∈ V1, v0 is (F,H1 ⇒ H2)-free and thus
χ⃗(G[v0]) ≤ c. Hence, χ⃗(B) ≤ c · h.

Finally, let C = V (G) \ (A ∪B ∪ V1). By definition of A and B, we have V1 ⇒ C, hence C is H2-free and thus
χ⃗(C) ≤ c.

All together, we get that χ⃗(G) ≤ h+ h · (h+ 1) · (c+ ϕ(c, t− 1)) + ch+ c := ϕ(c, t).

The proof of the theorem will follow from the second lemma below.

Lemma 4.6. If G ∈ C contains a (3c+ 1)-cluster, then χ⃗(G) ≤ c · 2f(3c+1)+1.

Proof. Let K be a (3c+1)-cluster in G. Assume there exists a vertex u ∈ V (G) such that N−(u)∩V (K) is H1-free
and N+(u) ∩ V (K) is H2-free. Since u0 ∩ V (K) is by assumption (F,H1 ⇒ H2)-free, we get a partition of V (K)
into three sets that induce digraphs with dichromatic number at most c, a contradiction (this still holds if u ∈ K as we
can add it to any of the sets without increasing the dichromatic number).

So, for every u ∈ V (G), either N−(u)∩ V (K) contains a copy of H1, or N+(u)∩ V (K) contains a copy of H2.
Now for every V1 ⊆ V (K) such that G[V1] is isomorphic to H1, the set of vertices u such that V1 ⊂ N−(u) is H2-free
and therefore has dichromatic number at most c. Similarly, for every V2 ⊂ V (K) such that G[V2] is isomorphic to H2,
the set of vertices u such that V2 ⊂ N+(u) is H1-free and therefore has dichromatic number at most c. By doing this
for every possible copy of H1 or H2 inside V (K) we can cover every vertex of V (G). Moreover, the number of subsets
of V (K) that induces a copy of H1 (resp. of H2) is at most 2f(3c+1). Hence, we get that χ⃗(G) ≤ c · 2f(3c+1)+1.

Proof of Theorem 4.4. By Lemma 4.5 and Lemma 4.6, we get that every digraph in Forbind(K1 +F,H1 ⇒ H2) has
dichromatic number at most max(ϕ(c, 3c+ 1), 2f(3c+1)+1c), which proves Theorem 4.4.

4.3 Strong heroes
A strongly connected hero is called a strong hero.

To prove Theorem 4.2, it remains to prove that H is a strong hero of and only if H = ∆(1, k,H1) or H =
∆(1, H1, k) for some hero H1.

The proof is quite hard, we are only going to prove the only if part.
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Lemma 4.7. If H is a strong hero, then H = ∆(1, H1, H2) for some heroes H1 and H2.

Proof. Let H be a hero. Let S1 = TT1 and, having defined Sk, set Sk+1 = ∆(1, Sk, Sk). As we already said,
χ⃗(Sk) = k, so there is a smallest integer k such that H is a subtournament of Sk. Name A and B the vertices of the
copies of Sk−1 in Sk, and x the last vertex of Sk+1. Since H is strong, the copy of H in Sk+1 must contain x and
intersect both A and B. Together with the fact that a subtournament of a hero is a hero, it implies the result.

Let D be a tournament with an order on its vertices v1, . . . , vn. The backedge graph B of D is the undirected
graph induced by arcs of D that are in the wrong direction. Observe that a stable set of B is an acyclic induced
subgraph of D. Hence:

Proposition 4.8. Let D be a digraph and B a backedge graph of D. Then χ⃗(D) ≤ χ(B).

Backedge graph is a powerful tool to bound the dichromatic number of a digraph.
Next two lemmas give a construction, based on the backedge graph, of tournaments with arbitrarily large dichro-

matic number.

Lemma 4.9. Let B be a triangle-free graph with an ordering on its vertices and let D be the tournament with backedge
graph B. Then χ⃗(D) ≥ χ(B)/2.

Proof. It is enough to prove that all transitive tournament of D is the union of two stable sets of B. Let T be a
transitive subtournament of D. Let < be the ordering on V (D) such that B is the backedge graph of D with respect
to <. If u, v, w ∈ V (T ), u < v < w and wv, vu ∈ A(T ), then either uw ∈ A(T ), a contradiction to the fact that
T is transitive, or wu ∈ A(T ), a contradiction to the fact that B is triangle-free. Hence, this cannot happen and thus,
setting X = {x ∈ T : no backedge of T ends in x} and Y = {y ∈ T : no backedge of T starts in y}, we get that
V (T ) = X ∪ Y . Moreover, it is clear that both X and Y are stable sets of B.

Lemma 4.10. Every hero is 2-colourable. In particular ∆(1, C⃗3, C⃗3) is not a hero.

Proof. Let H a hero on at least 4 vertices (tournament with at most 3 vertices are 2-colourable). Let B an undirected
graph with large chromatic number, and girth at least V (H). Let D the tournament with backedge graph B. By
Lemma 4.9 χ⃗(D) ≥ χ(B)/2 i.e. D has large dichromatic number. So D contains H . Since B has no cycle of length
at most V (H), the backedge graph of H is a forest. Hence, by Proposition 4.8, χ⃗(H) ≤ 2.

Now, since a tournament with not C⃗3 is transitive, Lemmas 4.7 and 4.10, we get that a tournament H is a hero
only if H = ∆(1, k,H1) or H = ∆(1, H1, k) for some hero H1.

4.4 Family of digraphs with large dichromatic number
Let us go back to Problem 4.1, that is: What are the finite sets F of digraphs for which the class Forbind(F) has
bounded dichromatic number? We know that such a set F must contain a hero in tournaments.

Harutyunian and Mohar proved the following:

Theorem 4.11. [16] Given positive integers g and k there exists an oriented graph whose underlying graph has girth
at least g and whose dichromatic number is at least k.

This implies that a set of digraphs F such that Forbind(F) has bounded dichromatic number must contain an
oriented forest.

Now, the potential candidate for problem 4.1 are sets {H,F} where H is a hero in tournaments, and F is an
oriented forest. We now give a simple construction that rules out a lot of such couple.

We first need to extend our notation Forbind(F) by allowing (non-oriented) graphs in F . If F is a set of digraphs
and graphs, we define Forbind(F) to be the set of digraphs that does not contain as an induced subdigraph: any
digraph of F , and any orientation of any graph of F . For example Forbind(K3) is the class of digraphs with no C⃗3

nor TT3.
We denote by Pk the (undirected) path on k vertices.
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Theorem 4.12. [4] Digraphs in Forbind(C⃗3, P4) have arbitrarily large dichromatic number.

Proof. We construct inductively a sequence D1, D2, . . . , if digraphs such that Di ∈ Forbind(C⃗3, P4) and χ⃗(Di) = i.
Set D1 = K1, and having defined Di, define Di+1 as follows: take three disjoint copies V1, V2, V3 of Di plus a
vertex x, and add all arcs from V1 to V2, from V2 to V3, from V3 to x and from x to V1.

It is easy to check the Di’s has the announced properties.

Now, since a digraph with no P4 is a forest of oriented stars, and a hero in tournaments with no C⃗3 is a transitive
tournament, the possible finite sets F such that Forbind(F) has bounded dichromatic number are the following:

1. {TTk, F}, where T is an oriented forest,

2. {H,S} such that H is a hero in tournaments and S is a forest of oriented stars.

We are going to see that suspects of the second bullet are not all guilty, while no suspect of the first bullet have
proved their innocence.

As for undirected graph, there is some kind of χ-boundedness point of view for these questions: given a class of
digraphs C, what are the tournaments H that are heroes in C?

5 χ⃗-boundedness
In this Section, we look at the following question: for which couple {TTk, F} does Forbind({TTk, F}) have bounded
dichromatic number. Since no counter-example is known, and because if true it would be beautiful, in [4] the authors
venture to conjecture that it is true for every such couple. That is, they conjecture the following:
(*) For every oriented forest F and every integer k, Forbind(F, TTk) has bounded dichromatic number.

Note that this is the same as saying that, for every integer k and every oriented forest F , TTk is a hero in
Forbind(F ). As we have seen, heroes in tournaments are way more complicated then undirected complete graphs.
But in this case, since the sequence (TTk)k∈N is totally ordered, we can define a natural analogue of χ-boundedness
as we explain now.

Let D be a digraph. We denote by ω(D) the clique number of the underlying graph of D. We say that a class of
digraph C is χ⃗-bounded if there exists a function f such that for every D ∈ C, χ⃗(D) ≤ f(ω(D)).

By Ramsey Theorem, Forbind(TTk, T ) ⊆ Forbind(K2k , T ), hence, (∗) is equivalent to: For every oriented forest
F , Forbind(F ) is χ⃗-bounded. And finally, as in the undirected case, it is enough to prove it for oriented trees. Hence,
we get the following Conjecture, that can be seen as an oriented analogue of the Gyárfás-Sumner Conjecture 3.2.

Conjecture 5.1. [4] For every oriented tree T , Forbind(T ) is χ⃗-bounded.

Let P⃗k be the directed path on k vertices. The first natural case to look at is Forbind(P⃗k):

Conjecture 5.2. [4] For every integer k, Forbind(P⃗k) is χ⃗-bounded.

For k = 1, 2 it is trivial. The conjecture is true for k = 3, but since P⃗3 is an oriented star we will study this case in
Section 6. The conjecture was proved very recently for k = 4 and is open for k ≥ 5.

Theorem 5.3 (Cook, Pilipczuk, Masařik, Reinald, Souza (2022+), [11]). Forbind(P⃗4) is χ⃗-bounded.

In order to show proof techniques, we will first prove that Forbind(K3, P⃗4) has bounded dichromatic number, and
we will then give a very rough idea of the proof of the whole result.
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5.1 The levelling technique
Let D be a digraph and let x, y be two vertices of D. The distance between x and y is the distance between x and y
in the underlying graph of D. The out-distance from x to y is the length of a shortest directed path from x to y. The
in-distance from x to y is the length of a shortest directed path from y to x.

The levelling technique is a method to bound the dichromatic number of a digraph. The idea is the following:
Let D be a digraph and x a vertex of D. Let Li be the set of vertices at distance exactly i from x. If all layers as
c-dicolourable, then D is 2c-dicolourable. Thsi is true because no arc jumping from a level Li to a level Lj as soon
as |i− j| ≥ 2. Note that the same holds if one replace distance by out-distance or by in-distance. This technique is a
straightforward adaptation of a classic technique used in the undirected case.

Theorem 5.4. χ⃗(Forbind(K3, P
+(3)) = 2.

Proof. Let D ∈ Forbind(K3, P
+(3)). Assume D is strongly connected (otherwise just take the strong connected

component with largest dichromatic number). Let x ∈ V (D). For i ≥ 0, set Li to be the set of vertices at out-distance
i from x. Since D is strongly connected, the collection of Li’s is a partition of V (D). We are going to prove that
each layer induces a stable set. Let k be the maximum integer such that each Li is a stable set for i = 1, . . . , k. Since
D is K3-free, L1 is a stable set, so k ≥ 1. If Lk+1 is empty, we are done. So assume Lk+1 is not empty, and by
maximality of k, Lk+1 contains an arc ab. There exists a1 ∈ Lk and a2 ∈ Lk−1 such that a2 → a1 → a. Since
a2 → a1 → a→ b cannot be induced and a1 and b are non-adjacent (because D is triangle-free), b→ a2. There exists
b1 ∈ Lk and b2 ∈ Lk−1 such that b2 → b1 → b. Since D is K3-free, b1 ̸= a1, b2 ̸= a2 and b1 is not adjacent with a2.
Moreover, since Lk−1 is a stable set, a2 is not adjacent with b2. Hence b2b1ba2 is an induced P+(3), a contradiction.

Now, color every vertex at odd out-distance from x with color 1, every vertex at even out-distance from x with
color 2 and x with color 2. It is easy to check that this gives a proper dicoloring.

5.2 Nice sets: a tool to bound the dichromatic number of a class of digraphs

Nice sets was first introduced in [4] and then used in [11] to prove that Forbind(P⃗4) is χ⃗-bounded. It is a tool to prove
that a class of digraphs has bounded dichromatic number. This one is not adapted from the undirected case.

Definition 5.5. Let D be a digraph. A set of vertices S of D is said to be nice if each vertex in S either has no
out-neighbour in V (D) \ S or has no in-neighbour in V (D) \ S. The set of vertices in S with no out-neighbour in
V (D) \ S is called the in-part of S, and the set of vertices in S with no in-neighbour in V (D) \ S is the out-part of S.

The next lemma gives a sufficient condition for a class of digraph to have bounded dichromatic number.

Lemma 5.6. Let C be a hereditary class of digraphs. Assume that there exists two integers c1 and c2 such that every
digraph in C contains a nice set S such that the in-part of S has dichromatic number at most c1 and its out-part has
dichromatic number at most c2. Then χ⃗(C) ≤ c1 + c2. In particular, if there exists c such that every digraph in C
admits a nice set with dichromatic number at most c, then χ⃗(C) ≤ 2c.

Proof. Let C be a class of digraph as in the statement. Let D ∈ C be a minimal counter example, that is: χ⃗(D) =
c1 + c2 + 1 and for every proper subdigraph H of D, χ⃗(H) ≤ c1 + c2. By hypothesis, D admits a nice set S, with
in-part S1 and out-part S2 such that χ⃗(S1) = c1 and χ⃗(S2) = c2.

The key observation is that a directed cycle that intersects both S and V (D) \ S must intersect both S1 and S2

(note that if S1 (resp. S2) is empty, then no directed cycle can intersect both V (D) \ S and S). Hence, by minimality
of D we can dicolour V (D) \ S with c1 + c2 colours, and extend this dicoloring to D by using colours 1, . . . , c1 for
S1 and c1 + 1, . . . , c1 + c2 for S2.

In [11], the following is proved and implies, together with Lemma 5.6, that Forbind(P4) is χ⃗-bounded.

Theorem 5.7. For every integer k and for every digraph D in Forbind(Kk, P⃗4) has a nice set with bounded dichro-
matic number.
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Proof. (Rough sketch). The proof goes by induction on k. Let D ∈ Forbind(Kk, P⃗4). Start with a maximum clique
clique K of D (so K has size at most k). If it is not strongly connected, then it has a strongly connected component
C1 such that vertices in C1 have no in-neighbour in K−C1 and a strongly connected component C2 such that vertices
in C2 have no out-neighbour in K − C2. Let P be a shortest directed path from C2 to C1 and let C = D[K ∪ P ].
Observe that D[C] is strongly connected.

The authors call such an object C a closed clique. Here, an important feature of closed cliques is that they have
bounded dichromatic number. Indeed, K has bounded number of vertices, so bounded dichromatic number, and P
being a shortest directed path, it has a backedge graph isomorphic to a path, and thus D[P ] is 2-dicolourable. Hence,
we can use C to find a nice set.

We are going find a nice set using C, neighbours of C and some neighbours of neighbours of C. Partition N(C)
into three sets as follows:

• X+ = {x ∈ N(C) : x has only out-neighbour in C}

• X− = {x ∈ N(C) : x has only in-neighbour in C}

• Y = {x ∈ N(C) : x has both in- and out-neighbour in C}

Finally, define:

• Z = N(Y )− (C ∪X+ ∪X−).

The authors prove that S = C ∪X+ ∪X− ∪ Y ∪Z is a nice set with bounded dichromatic number. Showing that
it is a nice set is not hard, and rely on the fact that C is strongly connected.

The proof that S has bounded dichromatic number is quite involved technically. By induction, the neighbourhood
of a vertex has bounded dichromatic number, so the union of the neighbourhood of a bounded number of vertices have
bounded dichromatic number. Unfortunately, the path P (used to make C strongly connected) may have arbitrarily
many vertices. The hard part is to prove that neighbours of P have bounded dichromatic number.

5.3 Forbidding all directed cycle except one
We call t-chordal the class of digraphs in which all induced directed cycle have length exactly t. Quite surprisingly,
the following holds:

Theorem 5.8. [9] The class of t-chordal digraphs is not χ⃗-bounded.

Theorem 5.9. [9] For every integer k, the class of t-chordal digraphs with no induced P⃗k is χ⃗-bounded.

6 Forbidding a forest of oriented stars
Recall that, given a class of digraphs C, a digraph H is a hero in C if H-free digraphs have bounded dichromatic
number. In this section, we study the following problem: Given a forest of oriented stars F , what are the heroes in
Forbind(S)?

In [4], the authors venture to conjecture that for every forest of oriented stars F , heroes in Forbind(S) are the
same as hero in tournaments. We are going to see that this is not true.

Chudnovsky, Scott and Seymour proved that for every k and every oriented forest of stars, TTk is a hero in
Forbind(F ). Actually, they proved the following stronger result:

Theorem 6.1. [10] For every k and every oriented forest of stars, the chromatic number of the underlying graphs of
digraphs in Forbind(TTk, F ) have bounded chromatic number.

Hence, we are only interested in tournaments containing C⃗3.
What is the simplest forest of oriented stars that you can think of? Well, it is the digraph with no arc! Let Kt

denotes the digraph on n vertices and no arc.
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Theorem 6.2 (Harutyunyan, Le, Newman, Thomassé (2019) [17]). For every t ≥ 2, heroes in Forbind(Kt) are the
same as heroes in tournaments.

Observe that Forbind(K2) is the class of tournaments, so this result generalises Theorem 4.2. The proof is by
induction on t, is very involved and follows the strategy of the proof of Theorem 4.2. The main reason why it works
is that, for every D ∈ Forbind(Kt), the non-neighbourhood of a vertex belonging to Forbind(Kt−1), it has bounded
dichromatic number by induction. Anyway, an interesting difference between the two proofs is that the following
beautiful result is proved and used [17]:

Theorem 6.3 (Harutyunyan, Le, Newman, Thomassé (2019) [17]). For every D ∈ Forbind(Kt), if for every x ∈
V (D), χ⃗(N+(x)) is bounded, then χ⃗(D) is bounded.

Let us formalise the notion. A digraphs D is t-local if for every x ∈ V (D), χ⃗(N+(x)) ≤ t. A class of digraphs C
has the local to global property if there exists a function f such that for every integer t and for every t-local digraph
G in C, χ⃗(G) ≤ f(t). Hence, Theorem 6.3 says that Forbind(Kt) has the local to global property. Now, a natural
problem is:

Problem 6.4. What classes of digraphs have the local to global property?

The next step is the study of heroes in Forbind(F ) when F is very small. The cases when F has only three vertices
is already hard and interesting.

K⃗1,2P⃗3 K1 + TT2

In the newt three subsections, we are going to study heroes in Forbind(P⃗3), Forbind(K⃗1,2 and Forbind(K1 +
TT2).

6.1 Heroes in Forbind(P⃗3) = heroes in quasi-transitive digraphs

The goal of this subsection is to prove that heroes in Forbind(P⃗3) are the same as heroes in tournaments.
A digraph G is quasi-transitive if for every triple of vertices x, y, z, if xy, yz ∈ A(G), then xz ∈ A(G) or

zx ∈ A(G). Hence, the class of quasi-transitive digraphs is precisely Forbind(P⃗3).
We now introduce an interesting operation called substitution. Given two digraphs G1 and H1 with disjoint vertex

sets, a vertex u ∈ G1, and a digraph G, we say that G is obtained by substituting H1 for u in G1, provided that the
following hold:

• V (G) = (V (G1) \ u) ∪ V (H1),

• G[V (G1) \ u] = G1 \ u,

• G[V (H1)] = H1

• for all v ∈ V (G1) \ u if v sees (resp. is seen by, resp. is non-adjacent to) u in G1, then v sees (resp. is seen by,
resp. is non-adjacent with) every vertex in V (G2) in G.

Let T be the class of tournaments and A the class of acyclic digraphs. Let (A ∪ T )∗ be the closure of A ∪ T
under taking substitution, that is to say digraphs in (A ∪ T )∗ are the digraphs obtained from a vertex by repeatedly
substituting vertices by digraphs in A ∪ T . A classic result of Bang-Jensen and Huang [6] (see also Proposition 8.3.5
in [5]), implies that quasi-transitive digraphs are all in (A ∪ T )∗.

Theorem 6.5. Heroes in (A ∪ T )∗ are the same as heroes in tournaments. In particular, heroes in Forbind(P⃗3) are
the same as heroes in tournaments.
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Proof. Let H be a hero in tournaments and c be the maximum dichromatic number of an H-free tournament. We prove
by induction on the number of vertices that H-free digraphs in (A ∪ T )∗ are also c-dicolourable. Let G ∈ (A ∪ T )∗
on n ≥ 2 vertices and assume that all digraphs in (A ∪ T )∗ on at most n− 1 vertices are c-dicolourable.

There exist G1, . . . , Gs, H1, . . . ,Hs−1 and vertices v1 . . . , vs−1 such that the Gi’s and the Hi’s are digraphs of
A ∪ T with at least two vertices, G1 = K1, Gs = G, vi ∈ V (Gi) and for i = 1, . . . s− 1, Gi+1 = Gi(vi ← Hi).

If all Hi are tournaments, then G is a tournament and is thus c-dicolourable. So we may assume that there exists
1 ≤ i ≤ s − 1 such that Hi is an acyclic digraph. Let x1, . . . , xt be the vertices of Hi. There exist t digraphs
X1, . . . , Xt in (A ∪ T )∗ such that G is obtained from Gi+1 by substituting x1 by X1, x2 by X2, . . . , xt by Xt and
some vertices of V (Gi+1) \ {x1, . . . , xt} by digraphs in (A ∪ T )∗. Note that the order in which these substitutions
are performed does not matter.

Let X = ∪1≤i≤tV (Xi). So V (G) \X can be partitioned into 3 sets S+, S−, S0 such that for every v ∈ X , v sees
all vertices of S+, is seen by all vertices of S− and is non-adjacent with all vertices of S0.

For i = 1, . . . , t, let Di = G[Gi \ (X \Xi)]. By induction, the Di’s are c-dicolourable. For i = 1, . . . , t, let ϕi

be a c-dicolouring of Di. Assume without loss of generality that |ϕ1(X1)| ≥ |ϕi(Xi)| for 1 ≤ i ≤ t. In particular
χ⃗(Xi) ≤ |ϕ1(X1)| for i = 1, . . . , t. Extend ϕ1 to a c-dicolouring of D by dicolouring each Xi (independently) with
colours from ϕ1(X1). We claim that this gives a c-dicolouring of G.

Let C be an induced directed cycle of G. If C is included in X or V (G) \X , then C is not monochromatic. So
we may assume that C intersects both V (G) \X and X . Since vertices in X share the same neighbourhood outside
X and C is induced, C must intersect X on exactly one vertex, and this vertex can be chosen to be any vertex of X .
In particular we may assume that it is in X1. Hence C is not monochromatic.

6.2 Heroes in Forbind(K⃗1,2) = heroes in local out-tournament
A digraph D is a local out-tournament if for every vertex x ∈ V (D), N+(x) is a tournament. Hence, local out-
tournaments are precisely digraphs in Forbind(K⃗1,2).

The following result was proved indepently by Steiner [23] and Aboulker, Aubian and Charbit [2]

Theorem 6.6 ([2] and [23]). K1 ⇒ C3 (and thus C3 too) is a hero in Forbind(K⃗1,2), and digraphs in Forbind(K1 ⇒
C3, K⃗1,2) are 2-dicolourable.

Both proofs are similar, and a precise description of digraphs in Forbind(K1 ⇒ C3, K⃗1,2).

Conjecture 6.7. Heroes in local out-tournaments are the same as heroes in tournaments.

In order to prove this conjecture, a first step should be the following:

Conjecture 6.8. If H1 and H2 are heroe sin local out-tournaments, then so is H1 ⇒ H2.

6.3 Heroes in Forbind(K1 + TT2) = heroes in oriented complete multipartite digraphs
Result of this section comes from [3].

It is easy to see that Forbind(K1 + TT2) is the same as the class of oriented complete multipartite graphs, that is
orientations of complete multipartite graphs.

It was conjectured in [4] that heroes in oriented complete multipartite graphs are the same as heroes in tournaments.
This conjectures was proved wrong:

Theorem 6.9. [3] The digraphs ∆(1, 2, C⃗3), ∆(1, C⃗3, 2), ∆(1, 2, 3) and ∆(1, 3, 2) are not heroes in tournaments.

On the positive side, it is proved that:

Theorem 6.10. [3] A digraph H is a hero in oriented complete multipartite graphs if:

• H = K1,

• H = H1 ⇒ H2, where H1 and H2 are heroes in oriented complete multipartite graphs, or
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• H = ∆(1, 1, H1) where H1 is a hero in oriented complete multipartite graphs.

Observe that the second bullet of the theorem above implies that a digraph is a hero in oriented complete multipar-
tite graphs if and only if each of its strong connected components are. Indeed, the only if part of the assertion holds
because a subgraph of a hero in any class is a hero in this class. Moreover, it is implied by Theorem 4.4.

Since a hero in oriented complete multipartite graphs must be a hero in tournaments, Theorem 4.2, Theorem 6.9
and Theorem 6.10 imply that, to get a full characterisation of heroes in oriented complete multipartite graphs, it
suffices to decide whether ∆(1, 2, 2) is a hero in oriented complete multipartite graphs or not. If it is not, then heroes
in oriented complete multipartite graphs are precisely the ones described in Theorem 6.10. If it is, then a digraph H is
a hero in oriented complete multipartite graphs if and only if:

• H = K1 or H = ∆(1, 2, 2),

• H = H1 ⇒ H2, where H1 and H2 are heroes in oriented complete multipartite graphs, or

• H = ∆(1, 1, H1) where H1 is a hero in oriented complete multipartite graphs.

Question 6.11. Is ∆(1, 2, 2) a hero in oriented complete multipartite graphs?

The proof that ∆(1, 1, H1) where H1 is a hero in oriented complete multipartite graphs follows the strategy of the
proof that ∆(1, k,H1) where H1 is a hero in tournaments is a hero in tournaments [7]. It is not easy.

Let us prove Theorem 6.9 that is ∆(1, 2, C⃗3), ∆(1, C⃗3, 2), ∆(1, 2, 3) and ∆(1, 3, 2) are not heroes in oriented
complete multipartite graphs. Since reversing all arcs of a ∆(1, 2, C⃗3)-free oriented complete multipartite graph
results in a ∆(1, C⃗3, 2)-free oriented complete multipartite graph and does not change the dichromatic number, if
∆(1, 2, C⃗3) is not a hero in oriented complete multipartite graphs then ∆(1, C⃗3, 2) is not either. Similarly, if ∆(1, 2, 3)
is not a hero in oriented complete multipartite graphs then ∆(1, 3, 2) is not either. Hence, it is enough to prove that
∆(1, 2, C3) nor ∆(1, 2, 3) are heroes in oriented complete multipartite graphs. This is implied by the existence of
{∆(1, 2, C3),∆(1, 2, 3)}-free oriented complete multipartite graphs with arbitrarily large dichromatic number. The
rest of this section is dedicated to the description of such digraphs.

A feedback arc set of a given digraph G is a set of arcs F of G such that their deletion from G yields an acylic
digraph. The idea of the construction comes from the fact that a feedback arc set of ∆(1, 2, C⃗3) or of ∆(1, 2, 3)
must induce a digraph with at least one vertex of in- or out-degree at least 2. We then describe an oriented complete
multipartite graph with large dichromatic number in which every subtournament has a feedback arc set inducing
disjoint directed paths, implying that it does not contain ∆(1, 2, C⃗3) nor ∆(1, 2, 3) by the fact above.

Given an undirected graph H , a k-colouring of H is a partition of V (G) into k independent sets. The chromatic
number of H is the minimum k such that H is k-colourable. Let G be a digraph. We denote by χ(G) the chromatic
number of the underlying graph of G. The (undirected) line graph of G is denoted by L(G) and defined as follows:
its vertex set is A(G), and two of its vertices vertices ab, cd ∈ A(G) are adjacent if and only if b = c.

Be aware that the next lemma deals with chromatic number and not dichromatic number. We think it appears for
the first time in [14].

Lemma 6.12. [14] For every digraph G, we have χ(L(G)) ≥ log(χ(G)).

Proof. Let G be a digraph and assume L(G) admits a k-colouring. Observe that a colouring of L(G) is the same as
a colouring of the arcs of G in such a way that no P⃗3 is monochromatic. Consider the following colouring of G: for
each v ∈ V (G), colour v with the set of colours received be the arcs entering in v. This is a 2k-colouring of G because
the colouring of A(G) does not have monochromatic P⃗3.

Let s ≥ 3 be an integer and let us describe the graph L(L(TTs)). Assuming the vertices of TTs are num-
bered v1, . . . , vs in the topological ordering (that is, for all 1 ≤ i < j ≤ s, we have vivj ∈ A(T )), for any
i < j < k, {vi, vj , vk} induces a P⃗3 in TTs. This way, we get a natural name for the vertices of L(L(TTs)),
namely V (L(L(TTs))) = {(vi, vj , vk) | for every i < j < k}. Moreover, edges of L(L(TTs)) are of the form
(vi, vj , vk)(vj , vk, vℓ) for every i < j < k < ℓ. For 2 ≤ j ≤ s − 1, set Vj = {(vi, vj , vk)} : i < j < k}. So Vj’s
partition the vertices of L(L(TTs)) into stable sets.
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We now define the digraph Ds from L(L(TTs)) as follows. The vertices of Ds are the same as the vertices of
L(L(TTs)) and Ds is an oriented complete multipartite graph with parts (V2, V3, . . . , Vs−1) and we orient the arcs as
follow: given j < k, the edges of L(L(TTs)) are oriented from Vj to Vk and all the other arcs are oriented from Vk to
Vj . This complete the description of Ds.

The arcs vivj such that i < j are called the forward arcs of Ds, and the other arcs the backward arcs of Ds.
Observe that the underlying graph of the graphs induced by the forward arcs of Ds is L(L(TTs)).

The following remark is the crucial feature of Ds.

Remark 6.13. Given a vertex (vi, vj , vk) of Ds, the forwards arcs going out (vi, vj , vk) are included in Vk and the
forward arcs going in (vi, vj , vk) are included in Vi.

An out-star (resp. in-star) is a connected digraph made of one vertex of in-degree 0 (resp. of out-degree 0) and
vertices of in-degree 1 (resp. out-degree 1). Observe that a digraph that does not contain P⃗3 as a subgraph is a disjoint
union of in- and out-stars.

Lemma 6.14. For every integer s, χ⃗(Ds) ≥ 1
2 log(log(s)).

Proof. Let V2, . . . , Vs−1 be the partition of Ds as in the definition. Recall that V (Ds) = {(vi, vj , vk) : 1 ≤ i < j <
k ≤ s}. Denote by Fs the digraph induced by the forward arcs of Ds. So the underlying graph of Fs is L(L(TTs))
and by Lemma 6.12, χ(Fs) ≥ log(log(s)).

Let R be an acyclic induced subgraph of Ds. Observe that a directed path on 3 vertices in Ds using only arcs in
Fs must be of the form (vi1 , vi2 , vi3)→ (vi2 , vi3 , vi4)→ (vi3 , vi4 , vi5) where 1 ≤ i1 < i2 < i3 < i4 < i5 ≤ s and is
thus contained in a directed triangle of Ds (because (vi1 , vi2 , vi3)(vi3 , vi4 , vi5) is not an edge of L(L(TTs)), and thus
is not an arc of Fs, and thus (vi3 , vi4 , vi5)(vi1 , vi2 , vi3) is an arc of Ds). Hence, A(R)∩A(Fs) does not contain P⃗3 as
a subgraph and is thus a disjoint union of out- and in-stars. So A(R) ∩ A(Fs) can be partitioned into two stable sets
of Fs. Hence, a t-dicolouring of Ds implies a 2t-(undirected) colouring of Fs. As we have that χ(Fs) ≥ log(log(s)),
the result follows.

Lemma 6.15. If T is a tournament contained in Ds, then T has a feedback arc set formed by disjoint union of directed
paths.

Proof. Let T be a subgraph of Ds inducing a tournament. Then each vertex of T belongs to a distinct Vi and thus, by
Remark 6.13, the forward arcs of Ds that are in T induce a disjoint union of directed paths (i.e. every vertex have in-
and out-degree at most 1) and clearly form a feedback arc set of T .

Lemma 6.16. For every s ≥ 1, Ds does not contain ∆(1, 2, C3) nor ∆(1, 2, 3).

Proof. Observe that the two digraphs ∆(1, 2, C3) and ∆(1, 2, 3) only differ on the orientation of one arc: reversing
an arc of the copy of C3 in ∆(1, 2, C3) leads to ∆(1, 2, 3) and reversing an arc of the copy of TT3 in ∆(1, 2, 3) leads
to ∆(1, 2, C3). Our argument does not make any use of the orientations between the vertices inside this oriented K3.
Let H be one of ∆(1, 2, C3) or ∆(1, 2, 2), and let x be the vertex in the copy of K1, and y1 and y2 the vertices in the
copy of TT2. See Figure 1.

Thanks to Lemma 6.15, it is enough to prove that in every feedback arc set of H , there exists a vertex with in- or
out-degree at least 2. Let F be a feedback arc set of H and assume for contradiction that it induces a disjoint union
of directed paths. Then both xy1 and xy2 cannot belong to F . So we may assume without loss of generality that
xy1 /∈ F . But then F must intersect the three disjoint paths of length 2 that go from y1 to x, which necessarily implies
that F contains either two arcs coming out of y1 or two arcs coming in x.

By Lemma 6.14 and Lemma 6.16, ∆(1, 2, C3) and ∆(1, 2, 3) are not heroes in oriented complete multipartite
graphs.
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Figure 1: whatever the orientations of blue edges, Ds does not contain this tournament and hence does not contain
∆(1, 2, C3) nor ∆(1, 2, 3).

7 Orientations of chordal graphs
We are now going to turn our attention on class of digraphs defined as follows: take a class of (undirected) graphs C,
and look at all possible orientations of all graphs of C.

A graph G is chordal if it contains no induced cycle of length at least 4. Chordal graphs have been studied for
the first time in the pioneer work of Dirac [12] who proved that every chordal graph G is either a complete graph, or
contains a clique S such that G \ S is disconnected. This easily implies that all chordal graphs can be obtained by
gluing complete graphs along cliques. From this point of view, it is natural to try to generalise results on tournaments
to orientations of chordal graphs.

Lemma 7.1 ([12] Dirac, 1961). Let G1 and G2 be two chordal graphs such that V (G1) ∩ V (G2) induces a complete
graph both in G1 and G2. Then their union is a chordal graph.

This implies for undirected graph colouring that chordal graphs are perfect graphs, and thus their chromatic num-
bers and colouring properties are determined solely by the (largest) cliques contained in them. It is then natural to ask
whether also for the dichromatic number of oriented chordal graphs important characteristics are determined by the
largest dichromatic numbers of their subtournaments. In particular, it is a natural problem to characterise the heroes in
oriented chordal graphs and to see whether they are the same as for tournaments.

It is actually not all the case, next theorem gives a full characterisation of heroes in oriented chordal graphs

Theorem 7.2. A digraph H is a hero in oriented chordal graphs if and only if H is a transitive tournament or is
isomorphic to ∆(1, 1, k) for some integer k ≥ 1.

Moreover, the constructions showing that some heroes in tournaments are not heroes in oriented chordal graphs
exhibit some oriented chordal graphs with arbitrarily large dichromatic number and in which all subtournaments are
2-dicolourable.

Here is how we prove Theorem 7.2. By Theorem 4.2, it is easy to see that a hero in tournaments is either a
transitive tournament, or is ∆(1, 1, k) for some integer k ≥ 1, or contains one of the heroes ∆(1, 2, 2), K1 ⇒ C⃗3 or
C⃗3 ⇒ K1 as a subtournament. Moreover, since reversing all arcs of a (C⃗3 ⇒ K1)-free oriented chordal graph results
in a (K1 ⇒ C⃗3)-free oriented chordal graph and does not change the dichromatic number, proving that C⃗3 ⇒ K1

is not a hero in oriented chordal graphs implies that K1 ⇒ C⃗3 is not either. Hence, to prove Theorem 7.2, it will be
enough to prove the following:

• Transitive tournaments and ∆(1, 1, k) for k ≥ 1 are heroes in oriented chordal graphs. This is done in Sec-
tion 7.0.1.

• ∆(1, 2, 2) and C⃗3 ⇒ K1 are not heroes in oriented chordal graphs. This is respectively done in subsections 7.0.2
and 7.0.3.
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7.0.1 ∆(1, 1, k) and transitive tournaments are heroes in oriented chordal graphs

We’ll need the two following results:

Theorem 7.3 (Stearns, [22]). For each integer n ≥ 1, a tournament with at least 2n−1 vertices contains a transitive
tournament with n vertices.

A vertex is simplicial if its neighbourhood induces a complete graph.

Lemma 7.4. [12] Every chordal graph has a simplicial vertex.

In the following, we define the triangle degree of a vertex x in a digraph G as the maximum size of a collection
of directed triangles that pairwise share the common vertex x but no further vertices.

Lemma 7.5. Every vertex of a ∆(1, 1, k)-free tournament has triangle degree less than 22k−2.

Proof. Let G be a ∆(1, 1, k)-free tournament and x a vertex of G. Assume for contradiction that x has triangle degree
at least 22k−2, that is, there exist pairwise distinct vertices a1, b1, . . . , a22k−2 , b22k−2 such that x→ ai → bi → x. By
Theorem 7.3 we can find a transitive tournament T in G[{a1, . . . , a22k−2}] of size at least 2k − 1. Up to renaming
the vertices, we may assume that T = G[{a1, . . . , a2k−1}] and that a1, . . . , a2k−1 is the topological ordering of T .
Then look at b2k−1. Set b+2k−1 ∩ T = T+ and b−2k−1 ∩ T = T− and observe that V (T ) = T+ ∪ T− since we are
in a tournament. If |T+| ≥ k, then T+ together with b2k−1 and a2k−1 contains a ∆(1, 1, k), a contradiction. So
|T+| ≤ k− 1. If |T−| ≥ k, then T− together with b2k−1 and x contains ∆(1, 1, k), a contradiction. So |T+| ≤ k− 1.
Hence, |V (T )| ≤ 2k − 2, a contradiction.

Theorem 7.6. Transitive tournaments and ∆(1, 1, k) are heroes in oriented chordal graphs. More precisely, TTk-free
oriented chordal graphs have dichromatic number at most 2k−1− 1 and ∆(1, 1, k)-free oriented chordal graphs have
dichromatic number at most 22k−2.

Proof. A TTk-free oriented chordal graph has no clique of size at least 2k−1 − 1 by Theorem 7.3, and since chordal
graphs are perfect graphs, its underlying graph has chromatic number at most 2k−1 − 1 and thus dichromatic number
at most 2k−1 − 1.

We now prove that ∆(1, 1, k)-free oriented chordal graphs have dichromatic number at most 22k−2. We proceed
by induction on the number of vertices. Let G be a ∆(1, 1, k)-free oriented chordal graph. Let x be a simplicial
vertex of the underlying graph of G. Note that the triangle degree of x in G is equal to the triangle degree of x in the
subtournament G[{x} ∪ x+ ∪ x−], which by Lemma 7.5 is less than 22k−2.

We can then find an acyclic colouring of G\x with 22k−2 colours by induction, and since the triangle degree of x in
G is less than 22k−2, there is a colour i ∈ {1, . . . , 22k−2} such that assigning i to x does not produce a monochromatic
directed triangle. The resulting colouring is thus an acyclic colouring of G: For if there existed a monochromatic
directed cycle in this colouring of G, there would also have to exist an induced monochromatic directed cycle, and
since all induced cycles in G have length 3, this cycle would have to be a monochromatic directed triangle. However,
such a triangle does not exist, neither through x nor in G \ x (by inductive assumption).

7.0.2 ∆(1, 2, 2) is not a hero in orientations of chordal graphs

We inductively construct a sequence (Gk)k∈N of digraphs such that for each k ≥ 1, the digraph Gk is an orientation
of a chordal graph with no copy of ∆(1, 2, 2) and satisfying χ⃗(Gk) = k.

Let G1 be the digraph on one vertex, and having defined Gk, define Gk+1 as follows. Start with a copy T of
TTk+1, and for each arc e = uv of T , create a distinct copy Ge

k of Gk (vertex-disjoint for different choices of the arc
e ∈ A(T ), and all vertex-disjoint from T ). Next, for each e = uv ∈ A(T ), we add all the arcs vy and yu for every
y ∈ V (Ge

k).
One can prove that for every k ≥ 1, Gk is a ∆(1, 2, 2)-free oriented chordal graph with dichromatic number k.

Hence, ∆(1, 2, 2) is not a hero in oriented chordal graphs.
The fact that χ⃗(Gk) ≥ k is implied by the facts that in any (k − 1)-dicolouring of Gk, we should have

• The copy of TTk must have a monochromatic arc, and
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• Each copy of Gk−1 must use all the k − 1 colours.

which easily implies that no (k − 1)-dicolouring can exist.

7.0.3 C⃗3 ⇒ K1 is not a hero in orientations of chordal graphs

All along this subsection, we denote by C the class of (C⃗3 ⇒ K1)-free oriented chordal graphs. The goal of this
subsection is to construct digraphs in C with arbitrarily large dichromatic number.

In the following, given a k-colouring c : V (F ) → {1, . . . , k} of a digraph F , we say that a subdigraph of F is
rainbow (with respect to c), if its vertices are assigned pairwise distinct colours.

Lemma 7.7. Let G ∈ C such that χ⃗(G) = k. There exists a digraph F = F (G) ∈ C with χ⃗(F ) = k satisfying the
following property: For every k-dicolouring of F , there exists a rainbow transitive tournament of size k contained in
F .

Proof sketch. We prove the lemma by showing the following statement using induction on i (the lemma then follows
by setting F := F (k)).

(⋆) For every i ∈ {1, . . . , k}, there exists a digraph F (i) ∈ C such that χ⃗(F (i)) = k, and for every k-dicolouring
of F (i), there exists a copy of TTi contained in F (i) which is rainbow.

The statement of (⋆) is trivially true for i = 1, since we may put F (1) := G, and in every k-dicolouring of F (1)

any single vertex forms a rainbow TT1.
For the inductive step, let i ∈ {1, . . . , k− 1} and suppose we have established the existence of a digraph F (i) ∈ C

of dichromatic number k such that every k-dicolouring of F (i) contains a rainbow copy of TTi.
We now construct a digraph F (i+1) from F (i) as follows: Let X denote the set of all X ⊆ F (i) such that X

induces a TTi in F (i). Now, for every X ∈ X create a distinct copy GX of the digraph G (pairwise vertex-disjoint for
different choices of X , and all vertex-disjoint from F (i)). Finally, for every X ∈ X , add all the arcs xy with x ∈ X
and y ∈ V (GX). This complete the description of F i+1. One can prove that F i+1 has the desired properties.

Theorem 7.8. The digraph C⃗3 ⇒ K1 is not a hero in oriented chordal graphs.

Proof. We construct a sequence of digraphs (Gk)k∈N such that χ⃗(Gk) = k and Gk ∈ C. Let G1 be the one-vertex-
digraph and, having defined Gk, define Gk+1 as follows. Let Fk := F (Gk) ∈ C be the digraph given by Lemma 7.7,
so χ⃗(Fk) = k and every k-dicolouring of Fk contains a rainbow copy of TTk.

Let T denote the set of subdigraphs of Fk that are transitive tournaments. Now, for each transitive subtournament
T ∈ T , add a copy FT

k of Fk (vertex-disjoint for different choices of T , and all vertex-disjoint from Fk). Next, for
every T ∈ T , add all the arcs xy with x ∈ V (T ) and y ∈ V (FT

k ). Finally, for every choice of T ∈ T and every
transitive subtournament T ′ of FT

k , add a vertex xT,T ′ that is seen by every vertex of T ′ and that sees every vertex of
T . One can proof that the Gk’s have the desired properties.
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[11] L. Cookn, T. Masařik, M. Pilipczuk, A. Reinald, and U. Souza. Forbidding any orientation of p4 and any clique
bounds the dichromatic number. Manuscript, 2022.

[12] Gabriel A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Universität
Hamburg, 25:71–76, 1961.
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