Extending the Gyárfás-Sumner conjecture to digraphs

Pierre Aboulker — ENS Paris

Mai 2021

(ENS) 1/22

• $\chi(G)$: chromatic number of G.

¹Size of a smallest cycle

- $\chi(G)$: chromatic number of G.
- Let \mathcal{F} be a set of graphs. $G \in Forb(\mathcal{F})$ if G does not contains any member of \mathcal{F} as an induced subgraph.

¹Size of a smallest cycle

- $\chi(G)$: chromatic number of G.
- Let \mathcal{F} be a set of graphs. $G \in Forb(\mathcal{F})$ if G does not contains any member of \mathcal{F} as an induced subgraph.

Question: for which **finite** set of graphs \mathcal{F} , *Forb* (\mathcal{F}) has bounded chromatic number?

¹Size of a smallest cycle

- $\chi(G)$: chromatic number of G.
- Let \mathcal{F} be a set of graphs. $G \in Forb(\mathcal{F})$ if G does not contains any member of \mathcal{F} as an induced subgraph.

Question: for which **finite** set of graphs \mathcal{F} , *Forb* (\mathcal{F}) has bounded chromatic number?

 $ightharpoonup \mathcal{F}$ must contain a complete graph.

¹Size of a smallest cycle

- $\chi(G)$: chromatic number of G.
- Let \mathcal{F} be a set of graphs. $G \in Forb(\mathcal{F})$ if G does not contains any member of \mathcal{F} as an induced subgraph.

Question: for which **finite** set of graphs \mathcal{F} , *Forb* (\mathcal{F}) has bounded chromatic number?

- $ightharpoonup \mathcal{F}$ must contain a complete graph.
- $ightharpoonup \mathcal{F}$ must contain a forest.

Because there is graphs with arbitrarily large girth¹ and chromatic number [Erdős, 60's]

¹Size of a smallest cycle

- $\chi(G)$: chromatic number of G.
- Let \mathcal{F} be a set of graphs. $G \in Forb(\mathcal{F})$ if G does not contains any member of \mathcal{F} as an induced subgraph.

Question: for which **finite** set of graphs \mathcal{F} , *Forb* (\mathcal{F}) has bounded chromatic number?

- $ightharpoonup \mathcal{F}$ must contain a complete graph.
- $ightharpoonup \mathcal{F}$ must contain a forest.

Because there is graphs with arbitrarily large girth¹ and chromatic number [Erdős, 60's]

Gyárfás-Sumner conjecture (1987)

For every integer k and every forest F, $Forb(K_k, F)$ has bounded chromatic number.

¹Size of a smallest cycle

• $\omega(G)$: size of a maximum clique of G.

• $\omega(G)$: size of a maximum clique of G.

$$\omega(G) \leq \chi(G)$$
 for every graph G

• $\omega(G)$: size of a maximum clique of G.

$$\omega(G) \leq \chi(G)$$
 for every graph G

A hereditary class of graphs is χ -bounded if $\chi(G) \leq f(\omega(G))$ for every G in the class.

Gyárfás-Sumner conjecture (1987)

Forb (F) is χ -bounded if and only if F is a forest.

• $\omega(G)$: size of a maximum clique of G.

$$\omega(G) \leq \chi(G)$$
 for every graph G

A hereditary class of graphs is χ -bounded if $\chi(G) \leq f(\omega(G))$ for every G in the class.

Gyárfás-Sumner conjecture (1987)

Forb (F) is χ -bounded if and only if F is a forest.

Result: It is enough to prove it for trees.

Directed world, dichromatic number

► Digraphs: no loop, no multiple arc.

► Oriented graphs: no digon.

► *Symmetric digraphs*: only digons.

(ENS) 4/22

Directed world, dichromatic number

- ▶ Digraphs: no loop, no multiple arc.
- ► Oriented graphs: no digon.
- ► *Symmetric digraphs*: only digons.

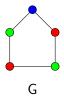
- Coloring a digraph *D*: no monochromatic directed cycle.
- $\vec{\chi}(D)$: the dichromatic number of D.

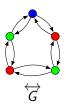
In other words: **partition** D **in acyclic induced subdigraphs** instead of stable sets.

(ENS) 4/22

Dichromatic number generalises chromatic number

Property: For every graph G, $\chi(G) = \vec{\chi}(\overleftarrow{G})$.





(ENS) 5/22

Heroic sets

Let \mathcal{F} be a set of oriented graphs.

Forb (\mathcal{F}) is the class of oriented graphs containing no member of \mathcal{F} as an induced subdigraph.

Problem: What are the finite sets \mathcal{F} for which $Forb(\mathcal{F})$ has bounded dichromatic number?

Such sets are heroic.

(ENS) 6/22

Heroic sets

Let \mathcal{F} be a set of oriented graphs.

Forb (\mathcal{F}) is the class of oriented graphs containing no member of \mathcal{F} as an induced subdigraph.

Problem: What are the finite sets \mathcal{F} for which $Forb(\mathcal{F})$ has bounded dichromatic number?

Such sets are heroic.

- Tournament = orientation of a complete graph.
- \overrightarrow{C}_3 is the directed triangle.
- Transitive tournament: tournaments with no \overrightarrow{C}_3

(ENS) 6/22

Oriented graphs that must be contained in all heroic sets

Problem: What are the finite sets \mathcal{F} for which $Forb(\mathcal{F})$ has bounded dichromatic number?

 $\triangleright \mathcal{F}$ must contain a tournament T.

(ENS) 7/22

Oriented graphs that must be contained in all heroic sets

Problem: What are the finite sets \mathcal{F} for which $Forb(\mathcal{F})$ has bounded dichromatic number?

 $\triangleright \mathcal{F}$ must contain a tournament \mathcal{T} .

 \triangleright \mathcal{F} must contain an oriented forest \mathcal{F} .

(ENS) 7/22

Oriented graphs that must be contained in all heroic sets

Problem: What are the finite sets \mathcal{F} for which $Forb(\mathcal{F})$ has bounded dichromatic number?

- \triangleright F must contain a tournament T.
- \triangleright F must contain an oriented forest F.

Harutyunyan and Mohar (2012): there is oriented graph with large dichromatic number and such that its underlying graph has large girth.

7 / 22

Tournaments and Heroes

 \blacktriangleright A tournament H is a hero if and only if the class of H-free tournaments have bounded dichromatic number.

For example, TT_k and \overrightarrow{C}_3 are heroes.

(ENS) 8/22

Tournaments and Heroes

▶ A tournament H is a hero if and only if the class of H-free tournaments have bounded dichromatic number.

For example, TT_k and \overrightarrow{C}_3 are heroes.

Theorem: [Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé, 2015

- A strong tournament is a hero if and only if it is equal to $\Delta(H, TT_k, TT_1)$ or $\Delta(H, TT_1, TT_k)$, where H is a hero.
- A tournament H is a hero if and only if all its strong connected components are heroes.

(ENS) 8/22

Theorem: $Forb(\overrightarrow{C}_3, P_4)$ has arbitrarily large dichromatic number.

Theorem: $Forb(\overrightarrow{C}_3, P_4)$ has arbitrarily large dichromatic number.

Conjecture [Aboulker, Charbit, Naserasr, 2020]: The set Forb(H, F) has bounded dichromatic number if and only if:

▶ H is a hero and F is the disjoint union of stars or

Theorem: $Forb(\overrightarrow{C}_3, P_4)$ has arbitrarily large dichromatic number.

Conjecture [Aboulker, Charbit, Naserasr, 2020]: The set Forb(H, F) has bounded dichromatic number if and only if:

- ▶ H is a hero and F is the disjoint union of stars or
- ► H is a transitive tournament and F is any oriented forest.

Theorem: $Forb(\overrightarrow{C}_3, P_4)$ has arbitrarily large dichromatic number.

Conjecture [Aboulker, Charbit, Naserasr, 2020]: The set Forb(H, F) has bounded dichromatic number if and only if:

- ► H is a hero and F is the disjoint union of stars FALSE or
- ▶ *H* is a transitive tournament and *F* is any oriented forest.

Some partial answers

Theorem [Chudnovsky, Scott, Seymour, 2019] For every integer k and disjoint unions of stars F, $Forb(TT_k, F)$ has bounded chromatic number.

(ENS) 10/22

Some partial answers

Theorem [Chudnovsky, Scott, Seymour, 2019] For every integer k and disjoint unions of stars F, $Forb(TT_k, F)$ has bounded <u>chromatic number</u>.

Theorem [Harutyunyan, Le, Newman, Thomassé, 2019] For every integer t and every hero H, $Forb(H, \overline{K}_t)$ has bounded dichromatic number.

Forb (\overline{K}_2) is the class of tournaments.

(ENS) 10/22

First part of the conjecture

Conjecture: for every hero H and every disjoint union of stars F, Forb(H, F) has bounded dichromatic number.

What about forest on three vertices.

(ENS) 11/22

Complete multipartite oriented graphs

Forb $(\overrightarrow{K}_2 + K_1)$ is the class of complete multipartite oriented graphs.

Conjecture: for every hero H, H-free complete multipartite graph has bounded dichromatic number.

Theorem: $\vec{\chi}(Forb(\overrightarrow{C}_3, \overrightarrow{K}_2 + K_1)) = 2$ (Aboulker, Charbit, Naserasr, 2021)

12 / 22

Quasi-transitive graphs

Forb (\overrightarrow{P}_3) is the class of quasi-transitive oriented graphs.

Quasi-transitive graphs

Forb (\overrightarrow{P}_3) is the class of quasi-transitive oriented graphs.

Transitive oriented graphs are transitive orientation of co-graphs.

Theorem [Bang-Jensen and Huang, 1995] The class of quasi-transitive oriented graph is equal to the closure of $\mathcal{C} = \{\text{tournaments} \cup \text{transitive oriented graphs}\}$ under taking substitution.

Quasi-transitive graphs

Forb (\overrightarrow{P}_3) is the class of quasi-transitive oriented graphs.

Transitive oriented graphs are transitive orientation of co-graphs.

Theorem [Bang-Jensen and Huang, 1995] The class of quasi-transitive oriented graph is equal to the closure of $\mathcal{C} = \{\text{tournaments} \cup \text{transitive oriented graphs}\}$ under taking substitution.

Corolary: for every hero H, H-free quasi-transitive graphs have bounded dichromatic number.

Local out-tournament

G is a **local out-tournament** if for every vertex x, $N^+(x)$ is a tournament.

It corresponds to Forb (S_2^+) .

Theorem: $\vec{\chi}$ (Forb (\vec{C}_3 , S_2^+)) = 2 [Steiner / Aboulker, Aubian, Charbit, 2021]

Conjecture: for every hero H, H-free local out-tournament have bounded dichromatic number.

14 / 22

(ENS) 15 / 22

It is equivalent to:

Conjecture: For every k and every oriented tree T, Forb (TT_k, T) has bounded dichromatic number.

(ENS) 15/22

It is equivalent to:

Conjecture: For every k and every oriented tree T, $Forb(TT_k, T)$ has bounded dichromatic number.

It is equivalent to:

Conjecture: For every k and every oriented tree T, $Forb(K_k, T)$ has bounded dichromatic number.

This is because: $Forb(TT_k, T) \subseteq Forb(K_{2^k}, T)$

(ENS) 15/22

It is equivalent to:

Conjecture: For every k and every oriented tree T, $Forb(TT_k, T)$ has bounded dichromatic number.

It is equivalent to:

Conjecture: For every k and every oriented tree T, $Forb(K_k, T)$ has bounded dichromatic number.

This is because: $Forb(TT_k, T) \subseteq Forb(K_{2^k}, T)$

So we get a notion of $\vec{\chi}$ -boundedness!

Conjecture: for every oriented tree T, Forb(T) is $\vec{\chi}$ -bounded

i.e. there is a function f such that for all $G \in Forb(T)$, $\vec{\chi}(G) \leq f(\omega(G))$.

(ENS) 15/22

Forbidding a path

Theorem [Gyárfás, 80's]: $Forb(P_k)$ is χ -bounded.

Proof that in a triangle-free (connected) graph with sufficiently large chromatic number, every vertex is the starting point of a long induced path.

(ENS) 16/22

Directed path

Conjecture: $Forb(\overrightarrow{P}_k)$ is $\vec{\chi}$ -bounded.

- ▶ In a triangle-free (strongly connected) oriented graph with large $\vec{\chi}$, it is not true that every vertex is the starting point of a long induced path.
- ▶ Even if an oriented graph is strongly connected, there does need to be induced directed path between any pair of vertices.

(ENS) 17/22

Forbidding \overrightarrow{P}_4

First open case:

Conjecture: Forb $(\overrightarrow{P_4})$ is $\vec{\chi}$ -bounded.

► Forb $(K_3, \overrightarrow{P_4})$ has dichromatic number at most 2.

► Forb $(K_4, \overrightarrow{P_4})$ has dichromatic number at most 414

18 / 22

The levelling technic

Let x be a vertex.

Let L_i the set of vertices at distance i from x.

If $\vec{\chi}(L_i) \leq k$ for every i, then $\vec{\chi}(G) \leq 2k$.

(ENS) 19 / 22

The levelling technic

Let x be a vertex.

Let L_i the set of vertices at distance i from x.

If $\vec{\chi}(L_i) \leq k$ for every i, then $\vec{\chi}(G) \leq 2k$.

Theorem: If $G \in Forb(K_3, \overrightarrow{P_4})$, then $\vec{\chi}(G) \leq 2$ because every L_i is a stable set.

(ENS) 19 / 22

Nice sets

Theorem: If $G \in Forb(K_4, \overrightarrow{P}_4)$, then $\vec{\chi}(G) \leq 414$.

Proof: *G* has a **nice set** with bounded dichromatic number.

Definition: A nonempty set of vertices S is nice if each vertex in S either has no out-neighbor in $V(D) \setminus S$ or has no in-neighbor in $V(D) \setminus S$.

Recap

Conjecture: For every hero H and every disjoint union of stars F, digraphs in Forb(H, F).

Conjecture: or every integer k and every oriented tree T, $Forb(K_k, T)$ has bounded dichromatic number.

- ▶ Forb $(K_k, \overrightarrow{P_4})$ has bounded dichromatic number $(k \ge 5)$?
- ► Forb $(K_3, \overrightarrow{P_t})$ has bounded dichromatic number $(t \ge 5)$?

THANK YOU FOR YOUR ATTENTION

(ENS) 21/22