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Sylvester-Gallai and de Bruijn-Erdos

Sylvester-Gallai Theorem (1944) : n non-collinear points in
the plan induce at least one line with exactly two points in it.

De Bruijn-Erdos Theorem : n non-collinear points in the plan
induce at least n distinct lines.
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The true DBE Theorem

A finite geometry is a hypergraph H = (V, E) such that every
pair of vertices belong to exactly one hyperedge.

So the hyperedges can be seen as lines.
Theorem [de Bruijn, Erdés, 1948] : if H = (V, E) is a finite

geometry, then |E| > |V| and equality occurs iff H is a near
pencil or a finite projective plane.
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From Euclidean plane to metric spaces through
betweenness relations

In a metric space, a point b is between two points a and c iff
dist(a, b) + dist(b, c) = dist(a, c)

(we write [abc] and we say that {a, b, c} is collinear).

y a x b z
° ® 0 .
[yab] [axb] [abz]

ab = {a, b} U {x : [xba] or [axb] or [abx]}
= {a,b} U{x: {a, b, x} is collinear}



Weirdness of lines in metric spaces

S @ Two lines may intersect on more then 2 points.
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@ A lines might be the proper subset of another.

@ Sylvester Gallai does not hold in metric spaces.

e ab={a,b,c,e}
G 0 ac = {a,b,c} C ab

a e No line with exactly two points
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Chen-Chvatal Conjecture

Chen-Chvatal Conjecture, 2004 :

Any finite metric space on n points either induce at least n
distinct lines, or induce a universal line, that is a line contai-
ning all the points.

Theorem (P.A., Chen, Huzhang, Kapadia, Supko, 2015) :

A metric space either has a universal line or induces at least
(% —0(1)) - v/n distinct lines.
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What is the primitive notion behind the concept of
lines ?

Three notions to define lines :

@ Distances

@ Betweenness : [abc] < dist(a, b) + dist(b, ¢) = dist(a, c)

o Collinearity : {a, b, c} is a collinear triple iff [abc] or [ach],
or [bac]
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Lines in 3-graphs

A 3-graph H = (V, E) is a hypergraph with hyperedges of size
3.

Interpret the fact that {a, b,c} € E as {a, b, c} is collinear.

We now can define lines in 3-graphs :

ab={a,b}U{c:{ab,c}€E}

Question : Do 3-graphs have the DBE property ?
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A 3-graph H = (V, E) is a hypergraph with hyperedges of size
3.

Interpret the fact that {a, b,c} € E as {a, b, c} is collinear.

Lines in
3-graphs

(collinearity) We now can define lines in 3-graphs :

ab={a,b}U{c:{ab,c}€E}

Question : Do 3-graphs have the DBE property ?

Observation : A 3-graph with no universal line define at least
log n distinct lines.
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Question

Do 3-graphs have the DBE property ? NO'!
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Lines in general 3-graphs

Question : Do 3-graphs have the DBE property 7 NO !

Theorem (Chen, Chvatal, 2008) :
There is 3-graphs with no universal line that define as few as

cV'8" lines (which is asymptotically smaller than any
polynomial in n).
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Lines in general 3-graphs

Question : Do 3-graphs have the DBE property 7 NO !

Theorem (Chen, Chvatal, 2008) :

There is 3-graphs with no universal line that define as few as
V1€ lines (which is asymptotically smaller than any
polynomial in n).

Theorem (P.A., Bondy, Chen, Chiniforooshan, Chvatal, Miao,
2013) :

A 3-graph with no universal line define at least (2 — o(1)) Ig(n)
lines.



Lines in general 3-graphs

Question : Do 3-graphs have the DBE property 7 NO !

Theorem (Chen, Chvatal, 2008) :
There is 3-graphs with no universal line that define as few as

Line in cV'e" lines (which is asymptotically smaller than any
3-graphs

(eallieais) polynomial in n).

Theorem (P.A., Bondy, Chen, Chiniforooshan, Chvatal, Miao,
2013) :

A 3-graph with no universal line define at least (2 — o(1)) Ig(n)
lines.

Question : what is the minimum number of lines induced by an
n-point 3-graph with no universal line?




The original de Bruijn-Erdés Theorem

A finite geometry is a hypergraph (V, £) such that every pair
of vertices belong to exactly one line.

. DBE Theorem : If (V, L) is a finite geometry, then [£| > |V/|
3-graphs or L contains a unique line made of all the points. Moreover
equality holds iff (V, L) is a near-pencil or a finite projective
plan.

(collinearity)
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Let H=(V, E) be a 3-graph and L(H) the set of lines induced
by H.

Then (V,L(H)) is a finite geometry iff any four points of H
belong to 0, 1 or 4 hyperedges of H.
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Lines in 3-graphs

DBE Theorem : If H= (V, E) is a 3-graph such that any four
points of H belong to 0, 1 or 4 hyperedges, then |L(H)| > | V]|
and equality holds iff L(H) is a near penceil or a finite
projective plan.
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Theorem (Beaudou, Bondy, Chen, Chiniforooshan, Chudnovsky,
Chvatal, Fraiman, Zwols, 2013) :

If H= (V,E) is a 3-graph such that any four points of V
belong to 0, 1,3 or 4 hyperedges, then |£(H)| > |V| and
equality holds iff £(H) is a near pencil, a finite projective plan
or if H is the complement of a Steiner triple system.
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Forbidding induced sub-3-graph

Let 1 €{0,1,2,3,4}.
We call H, the class of 3-graph such that any 4 vertices of H
carry i edges for an i € .

DBE Theorem : H{g 14y have the DBE property.

Chen an Chvatal proved that Hq 124 fails to have the DBE
property.

Theorem (Beadou et al.) : Hyo 134}, H{o,1,23}, Hjo,2,4) have
the DBE property.



Forbidding induced sub-3-graph : open questions

Pierre
Aboulker,

ENS Questions : Do H{17274}, H{17273’4}, H{273’4} and H{0727374} have
the DBE property ?

Lines in

3-graphs Question : which class of 3-graphs F must be forbidden in
order to ensure that F-free 3-graphs have the DBE property 7

(collinearity)

Theorem (P.A., Lagarde, Malec, Methuku, Tompkins, 2014)
Let G be a graph and let H be a 3-graph such that
{a,b,c} € E(H) iff abc is a triangle of G.

Then H has the DBE property.
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Metric and pseudo metric betweenness

Metric spaces induce naturally a betweenness relation :
[abc] < dist(a, b) + dist(b, c) = dist(a, c)

Every metric betweenness satisfies the following axioms :

B1 :if [abc], then [cba] (symmetry).
P B2 : if [abc], then [acb] does not hold.
space and T1 :if [abc] and [bxc], then [abxc] (inner transitivity).

betweenness

relations

Definition : A Betweenness relation is a pseudo metric
betweenness if it satisfies B1, B2 and T1.

Conjecture : Pseudo metric betweenness have the de
Bruijn-Erd6s property.




n?/5 in Pseudo Metric betweenness

Theorem (P.A., Chen, Huzhang, Kapadia, Supko, 2015) :
iarpeeed A pseudo metric betweenness with no universal line has a
Zii\fveeeanﬂiss Q(n2/5) diStinCt Iines.

relations
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Recall that :  ab = {a, b} U {x : [xab] or [axb] or [abx]}

[x1x2 ... xk] means that [x,xsx;] holds for any
1<r<s<t<k.

The sequence (x1,x2, ..., xk) is said to be a geodesic.

Lemma : if B is a pseudo metric betweenness with no universal
line and [x1x2 ... xx] holds, then B has at least k lines.

Proof : Fori=1,..., k—1, let pi ¢ XiXit1.

We prove that lines in :

{X1x2, P1X1, P2X2, - - - s Pk—1Xk—1}

are pairwise distinct.
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2/5

Proof of n“/° in Pseudo Metric betweenness

Let x € V, define the following poset on V' \ x : a < b iff [xab]

e If there is a chain of size n?/5, then there is a geodesic of size
n?/5 and we win by the Lemma.

So there is an antichain A of size n3/5.
e Partition Ain Ay, ..., At, where two points u, v € A; iff
Xu = Xv

o If t > n?/% it is over, so there exists A; of size at least n'/5.

e Three points in A; cannot be colinear, so there is at least
AN _ /5y 2/5\ |
(|2|) = (", ) = Q(n*>) lines.
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Lines in betweenness relations

Four important axioms :

T1 if [abc] and [bxc], then [abxc] (inner transitivity).
T2 if [abc] and [bex], then [abex] (outer transitivity).
[0 : [abc] and [abd] then [abcd] or [abdc].
v : [abc] and [adc] and [abdc] or [adbc].

Question : Which properties must be satisfied by a betweenness
relation B to ensure it has the DBE property ?
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Lines in metric spaces

Theorem (A., Chen, Huzhang, Kapadia, Supko, 2015) :

A metric space with no universal line has (2 — o(1)) - \/n

V2
distinct lines.

Proof : Let (V,d) be a metric space on n points.
Let a, b € V such that d(a,b) = D and D is maximal.
Define :

Xy ={xeV:d(ax)>D/2},

Xp={xe V:d(b,x)>D/2},

Y ={xe€ V:d(a,x)=d(b,x)=D/2}.

V=X,UX,€Y.



Metric spaces with particular properties

Observation : It is enough to prove the conjecture for metric
spaces with integral distances.
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Metric spaces with bounded number of distances

Theorem (A., Chen, Huzhang, Kapadia, Supko, 2015) :
A metric space with D distinct distances and with no universal
line has n/5D distinct lines.

Proof : Let (V, dist) be a metric space on n points of diameter
Lines in metric D

space and
betweenness

relations Prove that there is Q(n?) pairs of vertices at distance D.

So there is a line ¢ generated by Q(n) pairs of vertices such
that vertices in a pair are at distance exactly D/2 :

(=T1vi =Wva = -+ - = Uelg and d(u;, v;) = D/2




Particular metric spaces

Particular types of metric spaces that verify the Chen-Chvatal
conjecture :

o (Chvatal, 2013) Metric spaces where all distances are in

{0,1,2}.
Lines in metric
space and
betweenness
relations o (Kantor and Patkds, 2013) Metric spaces consisting of

points in general position in the plane with the L; metric.
(at least n/47 lines when the points are not in general
position).




When two pairs of points define the same line in
pseudometric betweenness
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We define :
I(a,b) = {x : [axb]}, E(a,b) ={x:[xab] or [abx]}

If ab = cd, then one of the following is true :
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When two pairs of points define the same line in
pseudometric betweenness

Let B be a pseudometric betweenness on a set V.

We define :
I(a,b) = {x : [axb]}, E(a,b) ={x:[xab] or [abx]}

If ab = cd, then one of the following is true :
(o) {a, b, c,d} (a set of size 3 or 4) is geodesic;
(B) [abc], [bcd], [cda], [dab] and I(a, b) = I(c,d) = 0.

(7) [ach], [cbd], [bda], [dac] and E(a, b) = E(c,d) = 0.



Graph metrics

Theorem (A., Chen, Huzhang, Kapadia, Supko, 2015) :

An n-point graph metric with no universal line and diameter D
has (n/D)*/3 distinct lines.
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Graph metrics

Theorem (A., Chen, Huzhang, Kapadia, Supko, 2015) :

An n-point graph metric with no universal line and diameter D
has (n/D)*/3 distinct lines.

Lines in metric

space and

petweenness Theorem (A., Chen, Huzhang, Kapadia, Supko, 2015) :

relations

An n-point graph metric with no universal line has a Q(n4/7)
distinct lines.
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Graph classes

Special classes of graphs that satisfy the Chen-Chvatal
Conjecture :

e Chrodal graph ahs the DBE property ((Beaudou, Bondy,
Chen, Chiniforooshan, Chudnovsky, Chvatal, Fraiman,
Zwols, 2012).

e Distance hereditary graphs have the DBE property (P.A,
Kapadia, 2014)

@ A super class of distance hereditary graph and chordal
graph have the DBE property (P.A, Matamala, Rocher,
Zamora, 2016).

@ Graphs where no line is a proper subset of another line
(Chen, Huzhang, Miao, Yang, 2014).
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The average intersection
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lines.
Let V be n points in the plane inducing lines /1, ..., ¢n.

We note 5, (V) the average intersection, that is :

o £inNd;
iav(V) _ 21§I<J§m ’ J‘

A possible (m) -
refinement of 2

the DBE
Theorem in
the Euclidean
plan

where /; are the lines defines by V.




Conjecture

(V) -m>n

A possible
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: for every set V of n points in the plane :
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DBE: m>n

Conjecture : for every set V' of n points in the plane :
iav(V)-m>n
or equivalently

>_dv)-(d(v)=1)=n-(m-1)

vev

Where d(v) is the number of lines that goes through v.
Observe that if the degree is constant it is equivalent to :

dd—-1)>m-1
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A tight example

/

13 lines, 9 points, all of degree 4.



Thank you for your attention
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