Tutorial on FPT algorithms

1. Polynomial kernel for Feedback Edge set in tournaments
Let G be a directed graph and F be a subset of edges of T. We denote by $G \otimes F$ the graph obtained from G after reversing each edge of F. F is a feedback edge set if when we delete all the edges in F, G becomes a directed acyclic graph.

(a) Let G be a directed graph and F a subset of edges of G. Show that F is a minimal feedback edge set if and only if F is a minimal set of edges such that $G \otimes F$ is a directed acyclic graph.

(b) A tournament is a directed graph T such that for each pair of vertices (u, v), exactly one of the edges uv and vu is in T. In the Feedback Arc Set in Tournaments problem we are given a tournament T and a non-negative integer k. The objective is to decide whether T has a feedback edge set of size at most k. Find two simple reduction rules that will permit to get a polynomial kernel.

Solution: Section 2.2.2 of the textbook parametrized algorithms.

2. Closest String Problem
The closest string is an NP-Hard problem which tries to find the geometrical center of a set of input strings.
Given n strings s_1, \ldots, s_n each of length m and an integer d, find a string x of length m such that $d_H(x, s_i) \leq d$ for $i = 1, \ldots, m$, where d_H denotes the Hamming distance. Find an FPT algorithm for Closest String Problem running in time $O(nm + nd(d+1)^d)$.

Solution: Section 3.5 of the textbook.

3. Randomized algorithm for Feedback Vertex set
A feedback vertex set is a set of vertices S such that $G \setminus S$ is a forest.

(a) Let G be a multigraph with minimum degree at least 3 and let S be a feedback vertex set of G. Prove that more than half of the edges are incident to at least one vertex of S.

(b) Prove that there exists a polynomial-time randomized algorithm that, given a Feedback Vertex Set instance (G, k), either reports a failure or finds a feedback vertex set in G of size at most k. Moreover, if the algorithm is given a yes-instance, it returns a solution with probability at least 4^{-k}.

(c) Prove that there exists a randomized algorithm that, given a Feedback Vertex Set instance (G, k), in time $4^k \cdot n^{O(1)}$, either reports a failure or finds a feedback vertex set in G of size at most k. Moreover, if the algorithm is given a yes-instance, it returns a solution with constant probability.

Solution: Section 5.1 of the textbook.
4. Triangle Packing
Given a graph G and an integer k, the goal is to decide if G contains k vertex-disjoint triangles. Design a randomized FPT algorithm for this problem.

Sketch of solution: Choose a random coloring $V(G) \rightarrow [3k]$. Check if there is a colorful solution, where the $3k$ vertices of the k triangles use distinct colors. (Use DP on subsets of size 3^i, $i = 0, \ldots, k$). Success probability $\frac{(3k)!}{(3k)^k} \geq e^{-3k}$. Hence, we can achieve constant error probability by repeating the algorithm e^{3k} times.

Derandomization: $3k$-perfect family of functions instead of random coloring.

5. Polynomial kernel for the Connected Vertex Cover Problem
In the Connected Vertex Cover Problem, we are given a graph G and an integer k, and the objective is to decide if G contains a vertex cover S of size at most k and such that $G[S]$ is connected (where $G[S]$ is the subgraph of G induced by S).

(a) Give a simple graph for which the kernelization procedure seen in class for Vertex-Cover fails for Connected Vertex Cover.

(b) Show that Connected Vertex Cover admits a kernel with at most $2^k + O(k^2)$ vertices.

Solution:

(a) The kernelization consists in applying these two rules as much as possible:

(R1) If a vertex has degree 0, delete it.
(R2) If a vertex has degree at least $k + 1$, delete it (and put it in the solution) and decrease k by 1.

Recall that after applying these two reduction rules, Vertex Cover has a kernel with k^2 edges and $k^2 + k$ vertices, that is a YES instance has at most k^2 edges and $k^2 + k$ vertices.

The problem is with the first rule that might delete some vertex useful to make the solution connected. For example: take two vertices a and b both adjacent to $k + 1$ vertices and add a vertex c adjacent to a and b. Applying the second rules leads to the deletion of a and b, and then the first rule leads to the deletion of c, while $\{a, b, c\}$ is a solution.

(b) Let G be a YES-instance.
Delete vertices of degree 0 in G, they are useless.
Let X be the set of vertices of degree at least $k + 1$. Each vertex of X must belong to any solution, so $|X| \leq k$.
Let Y be the set of vertices of degree 0 in $G - X$, and let $Z = G - (X \cup Y)$. Observe that Y is the set of vertices that would have been deleted by (R1).
Z must have a vertex cover of size at most k (actually of size at most $k - |X|$),
and vertices in Z has degree at most k. So Z has at most k^2 edges, and since vertices in Z have degree at least 1, $|Z| \leq 2k^2$.

Now, as explained in the previous question, the only purpose for adding a vertex of Y in the solution, is to make it connected. Hence, if u and v are two vertices in Y with the same neighborhood (which is included in X), we can delete one of them. Hence, we keep at most $2^{|X|} \leq 2^k$ vertices of Y: at most one for each subset of X.

All together, and after reductions (delete the vertices of degree 0 in the original graph, then delete vertices in Y that have the same neighborhood), either we return NO, or the graphs has at most $2^k + k + 2k^2$ vertices.

6. **Iterative compression for Feedback Vertex Set in tournaments**

Feedback Vertex Set in tournament is the following problem:

Input: A tournament T and an integer k

Question: Is there $S \subseteq V(T)$ such that $T \setminus S$ is acyclic?

The goal of the exercise is to use iterative compression to get a $2^k \cdot n^{O(1)}$-time algorithm for FVS in tournaments.

(a) Design a $3^k \cdot n^{O(1)}$-time algorithm using a simple branching.

(b) Define the problems **FVS Compression** and **Disjoint FVS** in tournaments.

(c) Prove that if we can solve **Disjoint FVS** in tournaments in time $n^{O(1)}$, then we can solve FVS in tournaments in time $2^k \cdot n^{O(1)}$.

(d) Design a polynomial-time algorithm to solve **Disjoint FVS** in tournament.

Solution: Section 4.2 of the textbook.