
Tutorial on FPT algorithms

1. Feedback Vertex Set in bipartite tournaments
A bipartite tournament is an orientation of a complete bipartite graph. A Feedback
Vertex Set of a directed graph G is a set of vertices S such that G−S has no directed
cycle.

(a) Show that if a bipartite tournament has a directed cycle, then it has a directed
cycle of length 4.

(b) Detail an algorithm with running time 4knO(1) that decides whether a bipartite
tournament has a feedback vertex of size at most k. Justify the running time and
the correctness of your algorithm.

Solution:
1. Let G be a bipartite tournament. Assume G has a directed cycle and let C =
(v1, v2, . . . , vk, v1) be a smallest directed cycleG. SinceG is bipartite, k is even. Assume
for contradiction that k ≥ 6. Since G is a bipartite tournament, there is an arc between
v1 and v4. If v4 → v1, then (v1, v2, v3, v4) is a directed cycle of length 4, contradicting
the minimality of C. If v1 → v4, then (v1, v4, . . . , vk, v1) is a directed cycle of length
k − 2, contradicting again the minimality of C.

2. The algorithm follows the same principle as the algorithm for vertex cover in slides
22.

We propose the following algorithm ALG for an instance (G, k).

(a) If G has no directed cycle of length 4, return YES.

(b) Otherwise, if k = 0, return NO.

(c) Otherwise:

• find a directed cycle (v1, v2, v3, v4) (this can be done in O(n4)).
• Compute, ALG(G− vi, k − 1) for i = 1, 2, 3, 4 and return YES, if one of the
ALG(G− vi, k − 1) return YES.

Each interior vertex of the search tree has degree 4, and the work done on each
node of the search tree is O(n4), so the total running time is 4kn4. The algo-
rithm is correct because, by question 1 a set of vertices S of a complete bipartite
tournament G is a FVS if and only if G− S has no directed cycle of length 4.

2. Polynomial kernel for Feedback Arc set in tournaments
Let G be a directed graph and F be a subset of arcs of T . We denote by G ⊗ F the
graph obtained from G after reversing each arc of F . F is a Feedback Arc Set (FAS
for short) if G− F is a directed acylic digrah (DAG for short).

Given a set of arcs F , you can define rev(F) = {yx : xy ∈ F}.

1

(a) Prove that if G⊗ F is a DAG, then F is a FAS.

(b) Give an example of a digraph D with a FAS F such that D ⊗ F is not a DAG.

(c) Let G be a directed graph and F a subset of arcs of G. Show that F is a minimal
FAS if and only if F is a minimal set of arcs such that G⊗ F is a DAG.

A tournament is a directed graph T such that for each pair of vertices (u, v), exactly
one of the arcs uv and vu is in T . In other words it is an orientation of a complete
graph. We are intereste in the k-Feedback Arc Set in Tournaments problem
that takes a tournament T and an integer k as input and return YES if and only if T
has a FAS of size at most k.

(d) Prove that a tournament is acyclic if and only it does not contain a directed
triangle (that is a directed cycle on 3 vertices).

(e) Find two simple reduction rules that will permit to get a kernel of size k(k + 2)
for the k-Feedback Arc Set in Tournaments problem.
Hint : The rules look a lot as the two rules saw in class for k-Vertex Cover in
graphs.

Solution: Section 2.2.2 of the textbook parametrized algorithms.

a) Easy

b) Take a directed cycle, the set of all arcs is a FAS, but when you reverse them you
don’t get a DAG.

c) Let F be a minimal FAS. We want to prove that G⊗F is acyclic and that, for every
e ∈ F , G ⊗ F \ e has a directed cycle. We first prove that G ⊗ F is a DAG. Assume
for contradiction that G ⊗ F has a directed cycle C. Let y1x1, . . . , y`x` be the arc of
A(C) ∩ rev(F) (where rev(F) = {xy : yx ∈ F}) is the order of their appearance on
C, and let ei = xiyi be the reverse of fi (so ei are arcs of F). By minimality of F , for
i = 1 . . . , `, there is a directed cycle containing ei = xiyi in G \ (F \ ei) , and thus a
directed path Pi from yi to xi included in G \ F . By replacing each fi = yixi by Pi in
C, we get a directed cycle of G disjoint from F , contradicting the fact that F is a FAS.

For the minimality, assume G⊗ (F \f) is a DAG for some f ∈ F . By question a, F \f
is a FAS, contradicting the minimality of F .

Assume now that F is such that G⊗F is a DAG and F is minimal with this property.
By question a), F is a FAS, and if there exists F ′ (F such that F ′ if a FAS, then by
the first part of the question, G⊗ F ′ is a DAG, contradicting the minimality of F . So
F is a minimal FAS.

d) Let T be a tournament with no directed triangle. Assume for contradiction that T
is not a DAG. Let C = v1v2 . . . vkv1 be a shorest directed cycle of T . By hypothesis
k ≥ 4. Since T is a tournament, there is an arc between v1 and v3. If v1v3 is an arc,

2

then v1v3 . . . vkv1 if a directed cycle, and if v3v1, then v1v2v3v1 is a directed cycle. In
both cases it contradicts the minimality of C.

e) Following question c), we aim to find a set of arcs F such that G ⊗ F is acylic.
Moreover, by question d), it is enough to find a set of arcs F such that G⊗ F has no
directed triangle.
Observe that if a vertex v is contained in no directed triangle, a set of arcs is a FAS of
G if and only if it is a FAS of G \ {v}. This gives us our first rule.

(R1) if a vertex v is not contained in any directed triangle, then delete v from T .

Observe that if an arc e if contained in at least k + 1 directed triangles, then e must
be contained in any FAS of size at most k. This gives us our second rule:

(R2) if an arc e is contained in at least k + 1 directed triangles, then reverse e and
reduce k by 1.

Let (T, k) be an instance of k-Feedback Arc Set in Tournaments and (T ′, `) be
the instance obtained from (T, k) after an exhaustive application of R1 and R2. We
have that (T, k) is a YES-instance if and only if (T ′, `) is.

Let F ba a FAS of (T ′, `). We have:

• Since F is a FAS, every directed triangle of T contains an arc in F .

• By (R2): each arc is contained in at most ` directed triangles.

So T ahs at most |F |×` directed triangle. Moreover, by (R1), each vertex is contained
in a directed triangle. So T has at most |F | × (`+ 2) vertices.

Hence, if (T, k) has a FAS of size at most k, then (T ′, `) has a FAS of size at most `
and thus has at most `(`+ 2) ≤ k(k + 2) vertices.

3. Polynomial kernel for the k-Connected Vertex Cover Problem
In the k-Connected Vertex Cover Problem, we are given a graph G and an
integer k, and the objective is to decide if G contains a vertex cover S of size at most
k and such that G[S] is connected (where G[S] is the subgraph of G induced by S).

(a) Give a simple graph for which the kernelization procedure seen in class for k-
Vertex-Cover fails for k-Connected Vertex Cover.

(b) Show that k-Connected Vertex Cover admits a kernel with at most 2k +
O(k2) vertices.

Solution:

(a) The kernelization consists in applying these two rules as much as possible:

3

(R1) If a vertex has degree 0, delete it.
(R2) If a vertex has degree at least k+1, delete it (and put it in the solution) and

decrease k by 1.

Recall that after applying these two reduction rules, Vertex Cover has a kernel
with k2 edges and k2 + k vertices, that is a YES instance has at most k2 edges
and k2 + k vertices.
The problem is with the first rule that might delete some vertex usefull to make
the solution connected. For example: take two vertices a and b both adjacent to
k + 1 vertices and add a vertex c adjacent to a and b. Applying the second rules
leads to the deletion of a and b, and then the first rule leads to the deletion of c,
while {a, b, c} is a solution.

(b) Let G be a YES-instance.
Delete vertices of degree 0 in G, they are useless.
Let X be the set of vertices of degree at least k+1. Each vertex of X must belong
to any solution, so |X| ≤ k.
Let Y be the set of vertices of degree 0 in G − X, and let Z = G − (X ∪ Y).
Observe that Y is the set of vertices that would have been deleted by (R1)
Z must have a vertex cover of size at most k (actually of size at most k − |X|),
and vertices in Z has degree at most k. So Z has at most k2 edges, and since
vertices in Z have degree at least 1, |Z| ≤ 2k2.
Now, as explained in the previous question, the only purpose for adding a vertex
of Y in the solution, is to make it connected. Hence, if u and v are two vertices
in Y with the same neighborhood (which is included in X), we can delete one
of them. Hence, we keep at most 2|X| ≤ 2k vertices of Y : at most one for each
subset of X.
All together, and after reductions (delete the vertices of degree 0 in the original
graph, then delete vertices in Y that have the same neighborhood), either we
return NO, or the graphs has at most 2k + k + 2k2 vertices.

4. Triangle Packing
Given a graph G and an integer k, the goal is to decide if G contains k vertex-disjoint
triangles. Using colour coding, show that the problem can be solved in times 2O(k)nO(1).

5. Closest String Problem
The closest string is an NP-Hard problem which tries to find the geometrical center of
a set of input strings.
Given n strings s1, . . . , sn each of length m and an integer d, find a string x of length
m such that dH(x, si) ≤ d for i = 1, . . . ,m, where dH denotes the Hamming distance.
Find an FPT algorithm for Closest String Problem running in time O(nm+nd(d+1)d).

6. Randomized algorithm for Feedback Vertex set
A feedback vertex set is a set of vertices S such that G \ S is a forest.

4

(a) Let G be a multigraph with minimum degree at least 3 and let S be a feedback
vertex set of G. Prove that more than half of the edges are incident to at least
one vertex of S.

(b) Prove that there exists a polynomial-time randomized Monte-Carlo algorithm
with one-sided error that, given a Feedback Vertex Set instance (G, k), either
reports a FALSE or finds a feedback vertex set in G of size at most k. If the
algorithm is given a YES-instance, it returns a solution with probability at least
4−k.

(c) Prove that there exists a randomized algorithm that, given a Feedback Vertex
Set instance (G, k), in time 4k · nO(1), either reports a failure or finds a feedback
vertex set in G of size at most k. Moreover, if the algorithm is given a yes-instance,
it returns a solution with constant probability.

7. Iterative compression for Feedback Vertex Set in tournaments
Feedback Vertex Set in tournament is the following problem:
Input : A tournament T and an integer k
Question: Is there S ⊆ V (T) such that T \ S is acyclic?
The goal of the exercise is to use iterative compression to get a 2k ·nO(1)-time algorithm
for FVS in tournaments.

(a) Design a 3k · nO(1)-time algorithm using a simple branching.

(b) Define the problems FVS Compression and Disjoint FVS in tournaments.

(c) Prove that if we can solve Disjoint FVS in tournaments in time nO(1), then we
can solve FVS in tournaments in time 2k · nO(1).

(d) Design a polynomial-time algorithm to solve Disjoint FVS in tournament.

5

