Tutorial on FPT algorithms

1. Polynomial kernel for Feedback Arc set in tournaments

Let G be a directed graph and F be a subset of arcs of T. We denote by $G \otimes F$ the graph obtained from G after reversing each arc of F. F is a Feedback Arc Set (FAS for short) if $G-F$ is a directed acylic digrah (DAG for short).
Given a set of $\operatorname{arcs} F$, you can define $\operatorname{rev}(F)=\{y x: x y \in F\}$.
(a) Prove that if $G \otimes F$ is a DAG, then F is a FAS.
(b) Give an example of a digraph D with a FAS F such that $D \otimes F$ is not a DAG.
(c) Let G be a directed graph and F a subset of arcs of G. Show that F is a minimal FAS if and only if F is a minimal set of arcs such that $G \otimes F$ is a DAG.

A tournament is a directed graph T such that for each pair of vertices (u, v), exactly one of the arcs $u v$ and $v u$ is in T. In other words it is an orientation of a complete graph. We are intereste in the k-Feedback Arc Set in Tournaments problem that takes a tournament T and an integer k as input and return YES if and only if T has a FAS of size at most k.
(d) Prove that a tournament is acyclic if and only it does not contain a directed triangle (that is a directed cycle on 3 vertices).
(e) Find two simple reduction rules that will permit to get a kernel of size $k(k+2)$ for the k-Feedback Arc Set in Tournaments problem.
Hint: The rules look a lot as the two rules saw in class for k-VERTEX Cover in graphs.
2. Polynomial kernel for the k-Connected Vertex Cover Problem

In the Connected k-Vertex Cover Problem, we are given a graph G and an integer k, and the objective is to decide if G contains a vertex cover S of size at most k and such that $G[S]$ is connected (where $G[S]$ is the subgraph of G induced by S).
(a) Give a simple graph for which the kernelization procedure seen in class for k -Vertex-Cover fails for Connected k - Vertex Cover.
(b) Show that Connected Vertex Cover admits a kernel with at most $2^{k}+O\left(k^{2}\right)$ vertices.

3. Triangle Packing

Given a graph G and an integer k, the goal is to decide if G contains k vertex-disjoint triangles. Using colour coding, show that the problem can be solved in times $2^{O(k)} n^{O(1)}$.
4. Randomized algorithm for Feedback Vertex set

A feedback vertex set is a set of vertices S such that $G \backslash S$ is a forest.
(a) Let G be a multigraph with minimum degree at least 3 and let S be a feedback vertex set of G. Prove that more than half of the edges are incident to at least one vertex of S.
(b) Prove that there exists a polynomial-time randomized algorithm that, given a Feedback Vertex Set instance (G, k), either reports a failure or finds a feedback vertex set in G of size at most k. Moreover, if the algorithm is given a yes-instance, it returns a solution with probability at least 4^{-k}.
(c) Prove that there exists a randomized algorithm that, given a Feedback Vertex SET instance (G, k), in time $4^{k} \cdot n^{O(1)}$, either reports a failure or finds a feedback vertex set in G of size at most k. Moreover, if the algorithm is given a yes-instance, it returns a solution with constant probability.

5. Iterative compression for Feedback Vertex Set in tournaments

Feedback Vertex Set in tournament is the following problem:
Input: A tournament T and an integer k
Question: Is there $S \subseteq V(T)$ such that $T \backslash S$ is acyclic?
The goal of the exercise is to use iterative compression to get a $2^{k} \cdot n^{O(1)}$-time algorithm for FVS in tournaments.
(a) Design a $3^{k} \cdot n^{O(1)}$-time algorithm using a simple branching.
(b) Define the problems FVS Compression and Disjoint FVS in tournaments.
(c) Prove that if we can solve Disjoint FVS in tournaments in time $n^{O(1)}$, then we can solve FVS in tournaments in time $2^{k} \cdot n^{O(1)}$.
(d) Design a polynomial-time algorithm to solve Disjoint FVS in tournament.

6. Closest String Problem

The closest string is an NP-Hard problem which tries to find the geometrical center of a set of input strings.
Given n strings s_{1}, \ldots, s_{n} each of length m and an integer d, find a string x of length m such that $d_{H}\left(x, s_{i}\right) \leq d$ for $i=1, \ldots, m$, where d_{H} denotes the Hamming distance. Find an FPT algorithm for Closest String Problem running in time $O\left(n m+n d(d+1)^{d}\right)$.

