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6 Hours’ Programm

Wagner conjectures, Minors and Topological Minors
▶ Classes of graphs defined by fordding some graphs as minors or topological

minors.
▶ The k-disjoint path problem and its links with minors and topological minors.
▶ Wagner Conjecture and its links with minor clases classes.
▶ Wagner Conjecture, Well Quasi Orders and Kruskal Theorem (mostly out of

program).

Treewidth
▶ Definition and basic properties.
▶ Duality of treewidth: brumble and the game of cops and robber.
▶ Grid minor Theorem and treewidth of classes of rgaphs defined by forbidding a

minor.

The Graph Minor Theorem.

FPT algorithm using the Graph Minor Theorem.
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1 - Characterization of graph classes by forbidden
configurations
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Graph theory

Graphs: a mathematical object and an efficient modeling tool.

Important questions:

What classes of graphs have good algorithmic properties? (colouring, clique
max...)

What classes of graphs have good structural properties? (decomposition
theorem, elimination ordering...)

Forbidding a substructure:

Minors: Robertson and Seymour, 1983-2012

Topological minors

Induced subgraphs
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Chromatic number

χ(G )= minimum number of colors needed to color the vertices in such a way that
adjacent vertices receive distinct colors. In other words its a partitioning of the
vertex sets into stable sets, minimizing the number of stable sets.

Exercice 1
What is the chromatic of Ka,b? Kn? Cn?

Solution: easy.
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Let k an integer. A class of graphs C is k-degenerate if for all G ∈ C, G has a
vertex of degree at most k.

Exercice 2
Let C be a k-degenerate class of graphs closed under taking induced subgraph.
Prove that all graphs in G has chromatic number at most k + 1.

Solution: We do it by induction on the number of vertices. Graphs on 1 vertex
are easy to handle. Assume every graph in C on at most n − 1 vertices is
(k + 1)-colourable.

Let G ∈ C on n vertices. Since C is k-degenerate, it has a vertex x of degree at
most k. Since C is closed under taking induced subgraph, G \ x ∈ C and is thus
(k + 1)-colourable by induction. Now, since d(x) ≤ k, neighbours of x use at
most k colours. So we can extend the (k + 1)-colouring of G \ x to a
(k + 1)-colouring of G .
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Containment relations
We define four operations on a graph G :

1 Remove a vertex v (and all its incident edges), denoted G \ v .
2 Remove an edge e (but not its end vertices), denoted G \ e.
3 Contract an edge e = xy , denoted G/e:

(i.e. remove x and y , add a new vertex z with neighbourhood
N(z) = (N(x) ∪ N(u)) \ {z} (no loops))

4 Topological contraction is a contraction of edge e that has an endvertex of
degree 2. Its inverse is the subdivision operation which consists in removing
an edge xy , adding a new vertex z , and adding the edges xz and zy .

Definition
Let G and H be two graphs.

H induced subgraph of G if H obtained from G by the repeated use of 1.

H subgraph of G if H obtained from G by the repeated use of 1 and 2.

H topological minor of G if H is a minor of G and every contraction used
was topological.

H minor of G if H obtained from G by the repeated use of rule 1,2 and 3.
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Partial orders

Each of these containments relations define a partial order on graphs:

H induced subgraph of G : H ⊆i G

H subgraph of G : H ⊆ G

H topological minor of G : H ⪯t G

H minor of G : H ⪯m G

Let ⪯ be any of these orders. We say that a class of graphs C is ⪯-closed
(subgraph-closed, minor-closed...) if for all G ∈ C: H ⪯ G ⇒ H ∈ C.

The class of planar graphs is minor closed (and thus topological-minor-closed,
subgraph-closed and induced-subgraph-closed).

The class of bipartite graphs is subgraph-closed, but not
topological-minor-closed.

The class of all graphs whose connected components are cliques is
induced-subgraph-closed, but not subgraph-closed.
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Minors

Here is an equivalent definition for minors that is often useful:

Lemma

Let G and H be two graphs, and denote V (H) = {v1, . . . , vp}. Then H is a minor
of G if and only if there exists p connected and disjoint subgraphs G1, . . . ,Gp of
G such that for every edge vivj of H, there exists an edge between Gi and Gj .
The graphs induced by G1, . . . ,Gp is called a H-model of G.

Exercice 3

Show that the (3× 3)-grid has a K4-minor by showing it has a K4-model.
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Topological Minors

A topological minor is also called subdivision.
Here is an equivalent definition of topological minor.

Definition
A graph H is a topological minor of a graph G if there exists a injective mapping
f from V (H) to V (G ) such that for each edge uv of H, there exists in G a path
Puv connecting f (u) and f (v) in G with the property that all these path are
internally disjoint.

Exercice 4
Describe the graphs that do not contain the following graphs as topological
minors: K3, K1,3, K1,4. (For fun, do the same exercise for other containments
relations).
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Classes of graph defined by forbidden configurations

For a set F of graphs, let Forb≼(F) = {G : ∀F ∈ F ,F ⪯̸ G} i.e. the class of
graphs not containing any graphs of F under ≼-relation. We say such graph are
F-≼-free.

Forb≼t (K5,K3,3) = planar graphs = (K5,K3,3)-topological minor free graphs.

Forb⊆(C3,C5,C7, ...) = ??

Forb⊆i (K1,2) = ??

A graph F is a ≼-obstruction for a class C if F /∈ C but for every H ≼ F , H ∈ C.

Let Obst≼(C) be the set of all ≼-obstruction of G.
K5 is a topological-minor-obstruction for planar graphs since K5 is not planar,
but every proper topological-minor of K5 is.

K6 is not a topological-minor-obstruction for planar graphs since K5 ≼t K6

and K5 is not planar.
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Exercises

Exercice 5
Let C be a class of graphs and ≼ a containment relation on graphs.
Prove that C is ≼-closed if and only if there exists a (possibly infinite) set of
graphs F such that C = Forb≼(F).

Exercice 6
Prove that a graph G is a forest if and only if it does not contain C3 as a minor.

Exercice 7

Prove that, if H is a subcubic graph (that is H has maximum degree 3), then
Forb≼t (H) = Forb≼m(H).

Exercice 8
1 Prove that every graph with average degree at least 2r−2 contains Kr as a

minor.

2 For r fixed, does there exist Kr minor-free graphs with arbitrarily large
chromatic number?
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Solution

Solution Exercise 8:
1- Recall that the average degree of a graph is

∑
v∈V (G) d(v)

|V (G)| = 2|E(G)|
|V (G)| .

We proceed by induction on r . Easy when r = 1 or 2. Let G be a graph of

average degree at least 2r−2. Therefore |E(G)|
|V (G)| ≥ 2r−3. Let H be minimal amongst

all minors of G such that |E(H)|
|V (H)| ≥ 2r−3. It implies that when one contracts an

edge in H, one must loose at least 2r−3 edges (otherwise the inequality would still
be satisfied, and H would not be minor minimal). Hence, for any xy edge of H, x
and y have at least 2r−3 common neighbours. In other words, if x is a vertex in
H, then the minimum degree in its neighbourhood is at least 2r−3, so by induction
it contains a Kr−1 minor, which yields with x the desired Kr minor.

2- Hence Kr -minor-free graphs has a vertex of degree at most 2r−2 and is thus
2r−2 + 1 colourable.

Pierre Aboulker - pierreaboulker@gmail.com Graph Minor Theory and its algorithmic consequences MPRI Parametrized Complexity 13 / 79



2 - Three Algorithmic Problems
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A Classical Connectivity Problem

Consider the following problem of connectivity.

Problem ( k disjoint paths problem)

Input : A graph G , an integer k and two subsets of vertices A and B of size k
Output : TRUE if there exist k vertex disjoint paths from A to B

CLASSIC : Can be solved in time O((k |E (G )|) using Ford-Fulkerson Algorithm.

From a structural point of view, the maximum number of paths linking A and B
corresponds to a minimum cut-vertex separating A and B and is a classical result
of Menger.

Theorem (Menger,1927)

Let x and y be distinct vertices of a graph G. Then the minimum number of
vertices whose deletion separates x from y is equal to the maximum number of
internally disjoint paths linking x and y.

Pierre Aboulker - pierreaboulker@gmail.com Graph Minor Theory and its algorithmic consequences MPRI Parametrized Complexity 15 / 79



A Classical Connectivity Problem

Consider the following problem of connectivity.

Problem ( k disjoint paths problem)

Input : A graph G , an integer k and two subsets of vertices A and B of size k
Output : TRUE if there exist k vertex disjoint paths from A to B

CLASSIC : Can be solved in time O((k |E (G )|) using Ford-Fulkerson Algorithm.

From a structural point of view, the maximum number of paths linking A and B
corresponds to a minimum cut-vertex separating A and B and is a classical result
of Menger.

Theorem (Menger,1927)

Let x and y be distinct vertices of a graph G. Then the minimum number of
vertices whose deletion separates x from y is equal to the maximum number of
internally disjoint paths linking x and y.

Pierre Aboulker - pierreaboulker@gmail.com Graph Minor Theory and its algorithmic consequences MPRI Parametrized Complexity 15 / 79



A Classical Connectivity Problem

Consider the following problem of connectivity.

Problem ( k disjoint paths problem)

Input : A graph G , an integer k and two subsets of vertices A and B of size k
Output : TRUE if there exist k vertex disjoint paths from A to B

CLASSIC : Can be solved in time O((k |E (G )|) using Ford-Fulkerson Algorithm.

From a structural point of view, the maximum number of paths linking A and B
corresponds to a minimum cut-vertex separating A and B and is a classical result
of Menger.

Theorem (Menger,1927)

Let x and y be distinct vertices of a graph G. Then the minimum number of
vertices whose deletion separates x from y is equal to the maximum number of
internally disjoint paths linking x and y.

Pierre Aboulker - pierreaboulker@gmail.com Graph Minor Theory and its algorithmic consequences MPRI Parametrized Complexity 15 / 79



Exercise on connectivity

Let G be a graph, x ∈ V (G ) and Y ⊆ V (G ) \ {x}. A family of k internally
disjoint (x ,Y )-paths whose terminal vertices are distinct is referred to as a k-fan
from x to Y .

Exercice 9
Let G be a k-connected graph.

1 Let x be a vertex of G, and let Y ⊆ V \ {x} be a set of at least k vertices of
G . Then there exists a k-fan in G from x to Y . (This property is known as
the Fan Lemma).

2 Let S be a set of k vertices in a k-connected graph G , where k ≥ 2. Then
there is a cycle in G which includes all the vertices of S .

For a very good presentation of Menger Theorem and its consequences, see the
book Graph Theory of J. A. Bondy and U. S. R. Murty, chapters 9.1 and 9.2.
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A similar problem.

Problem (k-disjoint rooted paths problem)

Input : A graph G , an integer k , and two subsets of vertices S = {s1, s2, . . . , sk}
and T = {t1, t2, . . . , tk}
Output : TRUE iff there exists disjoint paths P1,P2, . . . ,Pk , such that Pi is a
path from si to ti .

Crucial role in VLSI design, related to commodity flow problem, many
applications.

With k ≥ 2 part of the input, this problem is NP-complete, even restricted to
the class of planar graphs.

Nevertheless, in the Graph Minor series of papers, Robertson and Seymour
proved a polynomial algorithm for fixed k .

Theorem (Robertson-Seymour, 1995 (XIII))

The k-disjoint rooted path problem can be solved in time O
(
(f (k).n3

)
(improved to quadratic time by Kawarabayashi, Kobashi and Reed, 2012)
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Topological Minor Detection I

Problem (Topological H-minor detection)

Input : A graph G and a graph H.
Output : TRUE if H is a topological minor of G , FALSE otherwise.

With H part of the input: NP-complete

With H fixed, polynomial thanks to the k-disjoint path problem algorithm:

▶ Complexity: O
(
f (k)nk

)
, where k = |V (H)|, and n = |V (G)|. Therefore

polynomial for every fixed k. So the problem is in (XP).

▶ In 2010, Grohe, Kawabarayashi, Marx, and Wollan proved much better:
O
(
f (k)n3

)
. So the problem is actually FPT.
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Topological Minor Detection II

Theorem
Let H be a fixed graph with k edges. One can decide whether H is a topological
minor of a given graph G in time O

(
f (k)nk

)
.

Sketch proof:
Let f : V (H) → V (G ) be an injection.
Observe that there is

(
n

|V (H)|
)
such injections.

Do the following for each injection.
We want to decide if there exists disjoint paths in G between the f (v)
corresponding to edges of H.
To do that, we replace (in G ) each vertex f (v) by dH(v) copies of f (v) (having
the same neighbours).
Now, for k = |E (H)|, solving the k-Rooted Disjoint Paths Problem for well chosen
sets solve the problem.
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Consequences

In particular, the previous theorem implies that any family of graphs that is
defined with forbidding a FINITE family of graphs as topological minors is
polynomially testable.

In other words if C = Forb≼t (F) where F is a finite set of graphs, than we can
decide in polynomial time if a graph G belongs to C.

Example of such class?

Theorem (Kuratowski, 1930)

A graph G is planar if and only if it does not contain K5 nor K3,3 as a topological
minor.

Note that one does not need to solve k rooted paths problem to get polytime
algorithms for recognizing planar graphs (there exist even linear algorithms to do
that).
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3 - Wagner Conjecture and minor closed classes
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Wagner Conjecture (now Graph Minor Theorem)

Reinhart Diestel
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Minors Vs Topological Minors

By definition: H topological minor of G ⇒ H minor of G

Exercise: converse not true: find a pair of graphs G and H such that H is a
minor of G but H is not a topological minor of G .

Solution: Set H to be two disjoint K1,2 and link their vertices of degree 2 by
an edge. Then H is a minor of K1,4, but not a topological minor.

When H is subcubic (maximum degree at most 3), this is nevertheless true.

Theorem
Let H be a graph with maximum degree at most 3. Then a graph G has an
H-minor if and only if it contains an H-subdivision.

Proof on the next slide.
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Theorem
Let H be a graph with maximum degree at most 3. Then a graph G has an
H-minor if and only if it contains an H-subdivision.

Sketch proof:

Assume H is a minor of G

Let G ′ be a minimal topological minor of G such that H is a minor of G ′

([V (G )|+ |E (G )| is minimized).

Note that G ′ is a topological minor of G means that G ′ is btained from G by
deleting vertices, edges, a contracting edges with at least one extremity of
degree at most 2.

Look at an H-model (G1, . . . ,Gp) (where p = |V (H)|) of G .

By minimality of G , each Gi is a tree with at most 3 leaves and no vertex of
degree 2 (at most three leaves because if it has 4, then one is not used to
connect Gi to another Gj , and if there is a vertex of degree 2 (resp. a cycle)
we can contract an edge (resp. delete an edge) and have a smaller
topological minor of G that still contains an H-model).

Each such tree must be a star, so we get the topological minor.
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Minors Vs Topological Minors

A similar argument proves this more general result.

Theorem
For every graph F , there exists a finite family of graphs F such that:
G contains F as a minor if and only if it contains some graph in F as a
topological minor.
In other words: Forb≼m(F ) = Forb≼t (F).

Proof: We start the proof exactly as in the previous result, and by again choosing
minimal Gi , we now get for each Gi a tree with at most |H| leaves and no vertex
of degree 2. There is finitely many such trees (why?). So by replacing the vertices
of H by these trees in all possible ways, we obtain a finite collection of graphs H
with the desired properties.
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Minor detection

This result combined with the theorem on topological minor detection now clearly
implies the following theorem.

Theorem (Robertson and Seymour, 1995)

Let H be a fixed graph. There exists a polynomial time algorithm to decide
whether H is a minor of a given graph G.

Corollary

If C is a class of graphs defined by forbidding finitely many minors, then there
exists a polynomial algorithm to decide wether an input graph belongs to C
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Wagner Conjecture

Question
What are the families defined by finitely many forbidden minors?

Examples :

Graph Class Minor minimal graphs
Forests triangle

Union of Paths triangle, claw
Planar K5 , K3,3

Toric ≥ 17523 (but finite)

Exercice 10
For each of the following classes, decide if it is minor closed or not. If it is, find
the set of obstructions, if it is not not, try to describe the smallest minor closed
class containing it: cliques, paths, cycles, graphs of max degree k?
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Minor Closed Classes

Question
What are the families defined by finitely many forbidden minors?

A trivial fact is that such families are closed under taking minors (every
minor of a graph in the family is in the family).

In a monumental work (>700 pages, Graph Minors I-II-III-...-XXV),
Robertson and Seymour solved a conjecture of Wagner from 1937 saying that
this is sufficient.

Theorem (Graph Minor Theorem, Robertson and Seymour, XX)

Any minor closed class of graphs is defined by a finite list of forbidden minors

With an important consequence (among many others):

Corollary

If C is a minor closed class, then there exists a polynomial time algorithm to
decide if a given graph belongs to C.
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Recap

� The k-routed disjoint path problem is solvable in FPT time parametrized by k
(f (k)n3).

This implies that:

� Given a finite set of graphs F , deciding if a given graph G belongs to
Forb≺t (F) can be done in FPT time parametrized by the size of F (we have seen
that the k-routed disjoint path problem implies XP-time, but Grohe et al proved
FPT-time: f (F)n3).

� Given a finite set of graphs F , deciding if a given graph G belongs to
Forb≺t (F) can be done in FPT time parametrized by the size of F .

Then, by the graph minor theorem, we have the final super strong result:

� Given a minor-closed class C, one can decide in polytime if a given graph G
belongs to C.
More detailed: Since C is minor-closed, there is a finite set of graphs F such that
C = Forb≺m(F), and thus there is a (F)n3-time algorithme to decide if a rgaph G
belongs to Forb≺m(F)
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Exercises

Exercice 11

Prove that the following problems are solvable in time O
(
f (k)n3

)
.

k-Vertex Cover
Input : A graph G .
Output : TRUE if there exists a set S of at most k vertices such that G \ S
has no edge.

k-Feedback vertex set
Input : A graph G .
Output : TRUE if there exists a set S of at most k vertices such that G \ S
has no cycle.

k-leaf Spanning Tree
Input : A graph G .
Output : TRUE if there exists in G a spanning tree T with at least k leaves.

HINT: Observe that for each of these problems, the set of TRUE instances is
closed under taking minor.

The idea is that any property closed under taking minor is testable in time
O(f (k)) n3
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4 - Well Quasi Orders and Wagner Conjecture
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Introduction

WE SKIP THIS SECTION BECAUSE WE HAVE NO TIME. FEEL FREE TO
READ IT IF YOU LIKE THE TOPIC!

In this section we will try to understand some of the ideas behind the proof of
Wagner’s conjecture by proving similar but (much) easier results.

We first introduce the notion of well quasi order that gives an equivalent way to
state Wagner Conjecture.

Then we will prove a theorem due to Kruskal saying that trees are well quasi
ordered for the minor relation.

In the next section, we will explain through the notion of treewidth why Kruskal
Theorem and its proof is central in Robertson and Seymour’s proof.
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Wagner’s Conjecture

Definition (Obstructions)

For a given minor closed class C, a graph H is said to be an obstruction of C if H
is not in C but every strict minor of H is.

Proposition

Let C be a minor closed class, and O be its (possibly infinite) set of obstructions.
Then G ∈ C if and only if G does not contain any graph of O as a minor
In particular C = Forb≼m(O). Moreover, O is the smallest set of graphs with this
property.

So Wagner’s conjecture is to prove that a set of obstructions is always finite.

Observe that by definition the set of obstructions forms an antichain of the
minor partial order: no obstruction is a minor of another obstruction.

Is it true that every antichain is finite?
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Wagner’s Conjecture - continued

Proposition

The following are equivalent :

Every minor closed class has a finite set of obstructions.

There is no infinite antichain for the minor relation.

Definition

A partial order ≼ defined on a set X is a well quasi order (WQO) if there is no
infinite strictly decreasing sequence and no infinite antichain.

Wagner’s conjecture is equivalent to say that the class of all graphs with the
minor relation is a WQO.
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Exercises on well quasi ordering

Exercice 12
For each of these, say if it is a wqo.

(N,⩽).

(R,⩽).

(N2,≼) where (x , y) ≼ (x ′y ′) iff (x ≼ x ′ and y ≼ y ′),

(G,⊆i ) where G is the class of all graphs (recall that H ⊆i G means H is an
induce subgraph of G ).

Finite trees ordered by subgraph relation.

(G,≼) where G ≼ H if G topological minor of H

Some solution one the next slide.
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Finite trees ordered by subgraph relation. No: take double broom: paths with
end vertices of degree 3.

(G,≼) where G ≼ H if G topological minor of H: NO, take the family of thick
cycle, where a thick cycle is a cycle where each edge is doubles (parallel edges).
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Dealing with WQO: a first tool

Proposition: Let (X ,≼) be a partially ordered set and (xi )i∈N be any sequence.
Then (xi )i∈N has an infinite subsequence that is either strictly increasing, or
strictly decreasing or an antichain.

Proof: By Ramsey, or: Let (xi ) be any sequence. Starts with x1, and consider

A1 = {j, j > 1 and x1 ≼ xj}
B1 = {j, j > 1 and x1 ≼ xi}
C1 = {j, j > 1 and x1 and xj are incomparable}

If A1 is infinite we say that x1 is of type A and delete all elements that are not in A1. If not, but B1 is infinite,
say that x1 is of type B and delete all elements that are not in B1. Finally in the last case, say that x1 is of
type C and delete all vertices not in C1.
Up to extracting a subsequence and renaming, we can assume no element were deleted, so that the xi with
i ≥ 2 were all in A1, or all in B1, or all in C1. We do this sequentially for x2, then x3, ... . I.e., at each step,
we define Ai , Bi , Ci as

Ai = {j, j > i and xi ≼ xj}
Bi = {j, j > i and xj ≼ xi}
Ci = {j, j > i and xi and xj are incomparable}

and at each step we define the type of xi to be one of A, B, C depending on which is infinite. Then we extract
by keeping only the elements in the infinite set.
Eventually we have a type for each element of the sequence (which is in fact a subsequence of the original
sequence). Now there must be a type with infinitely number of elements and to each type clearly corresponds
one of the three possible type of infinite subsequence.
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Dealing with WQO: a first tool

Corollary

Let (X ,≼) be a partially ordered set. The three assertions are equivalent

1 (X ,≼) is a wqo.

2 from every sequence (xi )i∈N one can extract an infinite increasing
subsequence.

3 from every sequence (xi )i∈N one can extract i < j such that xi ≼ xj .

This will be useful: in order to prove that a given partial order is a WQO, we will
only prove the third statement, but when we use the fact that an order is a WQO
(for example in a proof by induction), we can use the second statement which is
(in appearance) much stronger.

(xi , xj) is a good pair if i < j and xi ≼ xj .

Hence, (X ,≼) is a WQO if and only if every sequence (xi )i∈N has a good pair.
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Second tool: extending a partial order

Let (X ,≤) be a partial order. For finite subsets A,B ⊂ X , write A ≼ B if there is
an injective mapping f : A → B such that a ≤ f (a) for all a ∈ A.

This naturally extends ≤ to a partial order on [X ]ω, the set of all finite subsets of
X .

Lemma

If X is a WQO, then so is [X ]ω.

Proof [see Diestel, Lemma 12.1.3]: Main idea: start with a “minimum”
infinite antichain.
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Proof sketch
Assume for contradiction that [X ]w has a bad sequence, i.e. an infinite
sequence with no good pair.

We construct a ”minimal” bad sequence (An)n∈N as follows:

Assume inductively that Ai has been defined for every i < n, and that there
exists a bad sequence in [X ]w starting with A0, . . . ,An−1.

Choose An such that some bad sequence starts with (A0, . . . ,An−1,An) and
|An| is minimum with this property.

For each n, pick en element an ∈ An, and set Bn = An \ {an}.
Since X is WQO, (an)n∈N has an infinite increasing subsequence (ani )i∈N

Now look at sequence (A0, . . . ,An0−1,Bn0 ,Bn1 , . . . ).

By the the minimal choice of An, it is not a bad sequence, i.e. there exists a
good pair (X ,Y ), i.e. X ≺ Y .

If X = Ai and Y = Aj where i < j < n0, contradiction since (A0,A1, . . . ) has
no good pair.

If X = Ai and Y = Bnj , then Ai ≺ Bnj ≺ Anj so (Ai ,Anj is a good pair of
(A0,A1, . . . ), contradiction.

If X = Bni and Y = Bnj with i < j , then, since ai ≺ aj , we again have
Ani ≺ Anj , again the same contradiction.
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The graph minor theorem for trees

Theorem (Kruskal 1960)

The finite trees are WQO by the topological minor relation, i.e. for every infinite
sequence of trees T0,T1, . . . , there exists i < j such that Ti ≼t Tj .

Proof: See Theorem 12.2.1 In Diestel’s book.
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Proof

Let T1 and T2 be two rooted trees. We say that T1 ≤ T2 if there is a subdivision
of T1 that can be embedded into T2 so that the root of T1 is mapped onto the
root of T2.

We are going to prove (on board) that the set of tree is WQO by ≤ (which is
slightly stronger than the announced result).

Reinhart Diestel
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5 - TreeWidth
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Treewidth

We proved (Kruskal Theorem) that Wagner conjecture holds for trees. So
maybe we can use the same ideas to prove Wagner conjecture for graphs that
look like trees. So we would like a notion that measure how much a graph
looks like a tree.

Moreover, since it is easy to compute on trees, it should be easy to compute
on graphs that “looks like” trees.

This is achieved by the notion of Treewidth which is a notion of
“treelikeness”. In other words it measures how much a graph look like a tree.

You can understand it like this: if a graph has treewidth 5, then it is at
distance 5 from being a tree. Or it is a tree of width 5.

The goal of this section is to introduce treewidth, tree decomposition, and to
extend Kruskal Theorem to graphs with bounded treewidth (no proof), look
at graphs of treewidth at most 3.
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Definition of a tree decomposition and of treewidth

Let G be a graph. A tree decomposition of G is a pair (T ,W ), where T is a
tree and W = (Wt)t∈V (T ) a collection of subsets of V (G ) indexed on V (T )
satisfying :

(T1) For every v ∈ V (G ), there exists t ∈ V (T ) such that v ∈ Wt

- every vertex is in some bag -

(T2) For every edge uv ∈ E (G ), there exists t ∈ V (T ) such that u, v ∈ Wt

- every edge is in a bag -

(T3) For every u ∈ V (G ), Tu = {t ∈ V (T ) , u ∈ Wt} induces a connected
subgraph of T .

The width of a tree decomposition is maxt∈V (T )(|Wt | − 1)

The tree width of a graph G , denoted tw(G), is the minimum width of a tree
decomposition of G .
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Equivalent definitions of tree decomposition

Equivalent definition of tree decomposition: a tree decomposition of G is a
tree T along with a collection of subtrees Tv if T , one for each vertex of G , with
the condition that Tu and Tv intersect if uv is an edge of G .
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Example of a tree decomposition
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Example of a tree decomposition
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Helly Property
Here is a key lemma regarding subtrees intersection; by analogy with Helly’s
Theorem on convex subsets of Rd , this property is often called Helly property for
subtrees of a tree.

Lemma (Helly property for subtrees of a tree)

Let T be a collection of pairwise intersecting subtrees of a given tree T . Then
∩T∈FT ̸= ∅.

Proof:

Assume not. So for each vertex x of T , there is a subtree Tx in T that does
not contain x .

Therefore Tx is contained in one of the components of T \ x .
One edge incident to x corresponds to this component, orient this edge out
from x .

This way, we get an orientation of some edges of T such that each vertex has
one outgoing edge.

Since there are less edges than vertices in a tree, there must be an edge
oriented both ways, which results in two non intersecting subtrees in T .
Contradiction.
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Helly Property

Lemma (Helly property for subtrees of a tree)

Let T be a collection of pairwise intersecting subtrees of a given tree T . Then
∩T∈FT ̸= ∅.

Corollary

Let G be a graph and K be a complete subgraph of G. In any tree decomposition
(T ,W ) of G, there exists a vertex t of T such that K ⊆ Wt .
in particular, tw(G ) ≥ ω(G )− 1

Proof: Set V (K ) = {v1, . . . , vk}. For every i ̸= j , Tvi intersects Tvj , so the Tvi

pairwise intersect and thus, by the Helly property for subtrees of a tree, the Tvi

have a common intersection, i.e. there is a vertex of T containing all the vi .
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A first lower bound on tree-width

Proposition

For every graph G, there exists a tree decomposition of width tw(G ) such that for
every edge st ∈ E (T ), Ws ̸⊂ Wt and Wt ̸⊂ Ws . Such a tree decomposition is
called irreducible.

Proof idea: If st ∈ E (T ) and Ws ⊆ Wt , contract st.

Corollary

In every graph G, there exists a vertex of degree at most tw(G ), i.e.
δ(G ) ≤ tw(G ).

Proof idea: look at a bag corresponding to a leaf.

Corollary

The class of graph with treewidth at most k is k-degenerated.
Hence, for all graphs G, χ(G ) ≤ tw(G ) + 1.
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Separation property of tree decompositions

The following is an easy but fundamental result. It says that a tree decomposition
transfers the separation properties of the tree to the decomposed graph.

Proposition (Separation Property)

Let (T ,W ) be a tree decomposition of G and t1t2 be an edge of T and let
S = Wt1 ∩Wt2 . For i = 1, 2, denote by Ti the connected component of T \ t1t2
containing ti , and Gi the subgraph of G induced by ∪t∈Ti (Wt \ S). Then S is a
cutset of G separating G1 from G2.

Sketch of the proof: To prove that S separates G1 from G2, it is enough to
prove that V (G1) ∩ V (G2) = ∅, and there is no edge between V (G1) and V (G2).

Assume there exists u ∈ V (G1) ∩ V (G2). Then there exists xi ∈ Ti such that
u ∈ Wx1 \ S , and u ∈ Wx2 \ S . Let P be the unique path linking x1 and x2 in T .
P contains the edge t1t2. Moreover, since Tu is a connected subtree of T , u is in
every bag Wy such that y ∈ V (P). In particular, u ∈ Wt1 ∩Wt2 = S , a
contradiction. This proves that V (G1) ∩ V (G2) = ∅.
The proof that there is no edge between V (G1) and V (G2) is similar.
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Closure property

Proposition

Let G be a graph, v a vertex of G and e an edge of G.

tw(G \ e) ≤ tw(G )

tw(G \ v) ≤ tw(G )

tw(G/e) ≤ tw(G )

Proof:

for G \ e, do nothing

for G \ v , just remove v from every bag containing it.

for G/e, where e = uv : let w be the new vertex. Add w in every bag
containing u or v , and delete every occurrence of u and v .
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Treewidth and Minors

Here are two corollaries of the proposition of the previous slide.

Corollary

If H is a minor of G, then tw(H) ≤ tw(G )

Corollary

The class of graphs of treewidth at most k is closed under taking minors.
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Wagner’s conjecture for graphs with bounded tree-width

Graphs with bounded treewidth are sufficiently similar to trees that it becomes
possible to adapt the proof of Kruskal Theorem to them.

Very roughly, one has to iterate the “minimal bad sequence” used in Kruskal proof
tw(G ) times.

This takes us a step further towards a proof of the Graph Minor Theorem:

Theorem (Robertson and Seymour, IV)

Given an infinite sequence of graphs G1, . . . ,Gn, . . . , all of treewidth at most k,
there exists i , j such that Gi ≺m Gj .

Corollary

The class of graphs of treewidth at most k has a finite number of obstructions.
I.e., there exists a finite set of graphs F , such that Forb≼m(F) is exactly the class
of graphs with treewidth at most k.
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Obstructions for graphs with treewidth at most 2

So, for every fixed k , the class {G : tw(G ) ≼ k} has a finite number of
obstructions.

Let us try to describe the obstructions for small values of k.

Theorem

tw(G ) ≤ 1 ⇔ G is a forest ⇔ G does not contain K3 as a minor
⇔ G ∈ Forb≼m(K3)

tw(G ) ≤ 2 ⇔ G does not contain K4 as a minor ⇔ G ∈ Forb≼m(K4)

The first item is easy, let us prove the second.
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Proof sketch:

If G contains K4 as a minor, then tw(G ) ≥ tw(K4) = 3. So
tw(G ) ≤ 2 ⇒ G ∈ Forb≼m(K4).

Let G ∈ Forb≼m(K4) and let us prove that tw(G ) ≤ 2. We proceed by
induction on V (G ).

So every proper induced subgraph of G has treewidth at most 2.

Prove first that every 3-connected graph contains K4 as a minor (Use Menger
Theorem).

So we may assume that G has a cutset of size S at most 2.

If S = {a} is of size 1: let C1 be a connected component of G \ x ,
C2 = G − (C1 ∪ {x}).
Set G1 = G [C1 ∪ {x}] and G2 = G [C2 ∪ {x}].
By induction tw(G1) ≤ 2 and tw(G2) ≤ 2.

Let (T1,W1) and (T2,W2) be tree decomposition of G1 and G2.

Let t1 ∈ V (T1) such that x ∈ Wt1 and t2 ∈ V (T2) such that x ∈ Wt2 .

Take the disjoint union of T1 and T2 and add an edge between t1 and t2, and
don’t change the bags.

Check that this gives a tree decomposition of G (i.e. check that the three
axioms of the definition of tree decomposition are still satisfied).
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Check that this gives a tree decomposition of G (i.e. check that the three
axioms of the definition of tree decomposition are still satisfied).
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Assume now that S = {a, b}.
If ab /∈ E (G ), then add ab to G and prove that this does not create a
K4-minor.

To do it, assume that G + ab has a K4 model, then prove that you can
choose it such that it is included in G [C ∪ S ] for some connected component
of G \ S . Then observe that you can replace the edge ab by a path linking a
and b that has interior vertices in a connected component C ′ ̸= C . Conclude
that this gives a K4-model in G , contradiction.

So now S is a clique (we call that a clique cutset).

Let C1 be a connected component of G \ S and C2 = G \ (S ∪ C1).

For i = 1, 2, set Gi = G [Ci ∪ S ] (The Gi are often called block
decomposition). By minimality of G , tw(Gi ) ≤ 2.

Take a tree decomposition of G1 and G2 of width at most 2 and link a bag of
G1 containing ab to a bag of G2 containing ab.

Prove that this is a tree decomposition of G of width 2.
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Bounds for graphs with treewidth at most 2

Theorem

tw(G ) ≤ 1 ⇔ G ∈ Forb≼m(K3)

tw(G ) ≤ 2 ⇔ G ∈ Forb≼m(K4)

The proof for tw(G ) = 2 shows the role of separators with treewidth.

One could hope for a general result of the type:

tw(G ) ≤ k iff G ∈ Forb≼m(Kk+2) FALSE

It is clear that if tw(G ) ≤ k, then G ∈ Forb≺m(Kk+2).
But there exists graph with no K5 minor and with arbitrarily large treewidth.
(As we will soon see, even planar graphs can have arbitrarily large treewidth).
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Obstructions for graphs with treewidth at most 3

Theorem

tw(G ) ≤ 3 ⇔ G does not contain one of the four following graphs as as a minor :
K5,W8, O and C5 × K2.
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Digression : Hadwiger Conjecture

We know that for every graph G :

ω(G ) ≤ χ(G ) ≤ tw(G ) + 1

ω(G ) ≤ ωm(G ) ≤ tw(G ) + 1

where ωm(G ) is the largest integer k such that G has a Kk minor.

Conjecture (Hadwiger)

For every graph G , χ(G ) ≤ ωm(G ).

For k = 2: ωm(G ) ≤ 2 ⇔ G is a forest ⇒ χ(G ) ≤ 2.

For k = 3: ωm(G ) ≤ 3 ⇔ tw(G ) ≤ 2 ⇒ χ(G ) ≤ 3 by the above inequalities.

For k = 4: ωm(G ) ≤ 4 ⇒ χ(G ) ≤ 4 contains the Four Colour Theorem since
planar graphs are K5-minor free. In fact it is equivalent (and hence true),
thanks to a structural characterisation of graphs with no K5 minor due to
Wagner.
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Theorem (Wagner, 1956)

G is K5-minor free if and only G is a subgraph of some graph built recursively by
clique sums operation, starting from planar graphs and W8.

We will see later in the course that this theorem together with the 4-color theorem
implies Hadwiger conjecture for k = 5, that is

ωm(G ) ≤ 4 ⇒ χ(G ) ≤ 4
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Exercises on treewidth

Exercice 13

Prove that if H is a subdivision of G , then tw(H) = tw(G )

Solution: H is a subdivision of G means that H can be obtained from G be
replacing some edges by path.

If G is a tree then H is also a tree and we have tw(H) = tw(G ) = 1. Otherwise
tw(G ) ≥ 2. Then for each bag W containing both a and b, add a a new bag
{a, x , b} adjacent to it.
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The following exercise says that classes of graphs with bounded treewidth are
sparse.

Exercice 14
Show that graphs G of treewidth at most k with k ≥ 1 have strictly less than
k |V (G )| edges.

Next exercise is very important to design algorithm based on the tree
decomposition.

Exercice 15

Show that every graph G admits a tree decomposition of width tw(G ) with at
most |V (G )| bags.

Hint: prove the stronger statement that a irreducible tree decomposition has at
most n bags.
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Exercises on treewidth

Exercice 16
Determine the treewidth of a path, a tree, a complete graph, a complete bipartite
graph, the cube.

Exercice 17

Prove that if G contains (as a subgraph) a complete bipartite graph with parts A
and B, then in every tree decomposition there exists a bag that contains A or a
bag that contains B.

Hint: Delete all vertices but the vertices of the complete bipartite graph. We
have a tree decomposition of the complete bipartite. A bag that is not a leaf must
be a cutset, and thus contains A or B.
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You should be able to do this exercise, moreover the fact it proves is quite
important.

Exercice 18
Prove that if x and y are two vertices that are joined by k + 1 internally vertex
disjoints paths, then in every tree decomposition of G of width at most k, there
exists a bag containing both x and y .

Hint: Use the separation property of tree decomposition.

Solution on the next slide.
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Solution Let (T ,W ) an irreducible (no bag is included in another one) tree
decomposition of width k = tw(G ). Assume for contradiction that no bag
contains both x and y . Let t and t ′ two nodes of T such that x ∈ Wt , y ∈ Wt′ .
Let uv be an edge on the unique path linking t and t ′ in T . Then, by the
separation property, Wu ∩Wv is a cutset of G , of size at most k (because the tree
decomposition is irreducible) that separates x and y . By Menger Theorem, it
contradicts the fact that x and y are linked by k + 1 internally vertex disjoint
paths.
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As you have already seen, treewidth also plays a crucial
role in algorithmic. We’ll come back to it.
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6 - Brambles - Duality - Cops and Robbers
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In the previous section, we have seen that Wagner Conjecture holds for class of
graphs with bounded treewidth.

To make a proof of the general case, we should be able to say stuff about the
graphs it does not cover, i.e. to deduce informations about a graph from the
assumption it has large treewidth.

The main theorem of this section achieves that: it identifies a canonical
obstruction to small treewidth, a structural phenomenon that occurs in a graph if
and only if it has large treewidth.

This phenomenon is called Bramble.

(In reality, it is mainly used to get certificate on the value of the treewidth of a
graph, the notion of tangle is used as an obstruction for large treewidth, but we
won’t see it during this class).
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Bramble

Definition (Bramble)

We say that two connected subgraphs of G touch if they have non empty
intersection or if they are joined by an edge.

A bramble of G is a collection B of connected subgraphs that are pairwise
touching.

A transversal of a bramble B is a set of vertices of G that has non empty
intersection with each element of B.
The order of a bramble B is the minimum size of a transversal of B.
The bramble number of G , denoted bn(G ), is the maximum order of a
bramble of G .

Note that if G contains Kp as a minor, then the connected subgraphs of a
Kp-model of G form a bramble (no intersection, just touching) of order p.

Note that we have already seen the notion of transversal, for example a vertex
cover is a transversal of the edges.
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A Bramble

A bramble of order 4 of G3,3:
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Duality Theorem I
Proposition: If (T ,W ) is a tree decomposition of G and B is a bramble in G ,
then there exists t ∈ T such that Wt is a transversal of B. Hence
bn(G ) ≤ tw(G ) + 1.
Proof sketch: (main idea: ”orientation of edges of the tree decomposition”.)

For each edge t1t2, if S = Wt1 ∩Wt2 intersects all sets of the bramble, we are
done.

Otherwise, for i = 1, 2, denote by Ti the connected component of T \ t1t2
containing ti , and Gi the subgraph of G induced by ∪t∈Ti (Wt \ S).
We know that S is a cutset of G separating G1 from G2.

If every B ∈ B intersects S , we are done. So there is B ∈ B such that B is
included in Gi for some i ∈ {1, 2}, say i = 1.

Hence no B ′ ∈ B is included in G2, otherwise it does not touch B.

This implies that every B ∈ B intersects V (G1) ∪ S .

Orient the edge t1t2 toward t1. Hence, we may assume that all edges of the
tree T has an orientation.

Hence, we get an orientation of every edge of T such that each vertex has ne
outgoing edge.

But the last vertex of a maximal directed path has no outgoing edge,
contradiction.
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Duality Theorem II

Proposition

If (T ,W ) is a tree decomposition of G and B is a bramble in G, then there exists
t ∈ T such that Wt is a transversal of B.

Therefore
bn(G ) ≤ tw(G ) + 1

The converse inequality is true but harder to prove.
It gives the following sort of minmax theorem (in fact maxmin=minmax).

Theorem (Seymour and Thomas, 1993)

For every graph G, bn(G ) = tw(G ) + 1
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Grids

Now, we know that if a graph has large treewidth, then it also has a large
brumble. But is it so usefull?

We are going to see later that it also has a large grid (as a minor), which is often
way more useful. For the moment, let us just prove that grids have large treewidth.
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What is the treewidth of the grid?

Proposition

The treewidth of the grid Gn,n is equal to n.

To prove that tw(Gn,n) ≤ n, find a tree decomposition (actually you can find
a path decomposition) of width n.

To prove that tw(Gn,n) ≥ n, it is enough to find a bramble of order n + 1.

It is easy to check that the following is a bramble of order n + 1:
▶ A = {xi,1, 1 ≤ i ≤ n}, the last row,
▶ B = {x1,j , 1 ≤ j < n} the last column minus its last element,
▶ Cij = {xkj , 1 ≤ k < n} ∪ {xik , 1 ≤ k < n, } (crosses minus the last element

of row and column).
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A Game of Cops and Robber

2 player game on a graph: one controls the Robber, the other control Cops

Goal of the cops is to capture the robber

Many variants exist

In our variant :

cops and robbers are standing on vertices of the graph

at each turn a fraction of the cops can move by helicopter and land on any
vertex of the graph.

The robber sees an helicopter approaching and can instantly move at infinite
speed to any other vertex along a path of a graph. The only constraint is
that he is not permitted to run through a vertex occupied by some cop.

The cops win if at some point they occupy all vertices adjacent to the position of
the robber, and an extra cop lands by helicopter on the robber.

Definition

The cop number of a graph G , denoted cn(G ), is the smallest number of cops
needed to ensure the capture of the robber from any starting position.
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TreeDec = strategy for the cops

Proposition

cn(G ) ≤ tw(G ) + 1

Put every cop on the vertices of some bag Wt .

The robber, if it escapes has to be in some vertex appearing only in the bags
of some component of T \ t.
Let t ′ the neighbour of t in T in the direction of this component.

Wt′ separates the component containing he robber form the rest of the graph.

At the next move, cops in Wt \Wt′ move to occupy all of Wt′ .

Cops apply this strategy until it reaches some leaf of the tree and the robber
cannot escape.
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Brambles = Strategy for the Robber

Proposition

bn(G ) ≤ cn(G )

Let B be a bramble of order bn(G ) and assume only bn(G )− 1 cops.

Let C1 ⊆ V (G ) be the set of initial positions of the cops.
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