
Parametrized Complexity and Graph Minor Theory

Pierre Aboulker - pierreaboulker@gmail.com

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 1 / 98

6 Hours’ Programm

Definitions of parametrized complexity (FPT, XP, W[1])

Branching method
I Vertex Cover in time O(1.46kn0(1))
I Branching vector
I Graph Modification Problem
I Feedback Vertex Set in time (3k)k · nO(1)

Kernelization
I k-Vertex Cover has a k2 + k kernel
I Vertex Cover has a 3k kernel (crown decomposition)
I Vertex Cover has a 2k kernel (Linear Programming)
I d-Hitting Set Problem has a d!kdd2 kernel (Sunflower Lemma)

Color Coding
I Longest Path in time 2kn0(1)

Iterative Compression
I Feedback Vertex Set in time 5kn0(1)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 2 / 98

Graphs

A graph G = (V ,E):

V is the set of vertices

E ⊆ V × V is the set of edges.

All along the course, particularly for complexity analysis,

n is the number of vertices,

m is the number of edges.

An algorithm going in time O(n + m) is said to be linear.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 3 / 98

Basic Definitions and Terminology

In this course, all graphs are simple (no parallel edges) and without loop, unless
expressly stated.

If G is a graph, we denote V (G) its set of vertices and E (G) its set of edges.

A vertex v is adjacent with a vertex u if uv ∈ E (G). The neighbourhood of u,
denoted N(u) is the set of neighbours of u.
Its degree, denoted tcdarkredd(u) is the cardinality of its neighbourhood. The
maximum degree of a graph is denoted ∆(G). Given a set of vertices X , N(X) is
the set of vertices not in X that have at least one neighbour in X .

A graph with no edge is a stable set, or independent set, and a graph with all
possible edges (

(
n
2

)
) is a clique, or complete graph. The complete graph on n

vertices is denoted Kn. The complete bipartite graph with parts of size a and b is
denoted Ka,b.

The path Pk is a graph with V (Pk) = {x1, x2, . . . , xk} and
E (Pk) = {xixi+1, 1 ≤ i ≤ k − 1}. The vertices x1 and xk are called the endpoints
of the path. If we add the edge xkx1 to Pk , then the resulting graph is the cycle
on k vertices, denoted Ck .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 4 / 98

Some graph parameters

δ(G): minimum degree.

∆(G): maximum degree.

ω(G): clique number.

α(G): size of a maximum independent set.

χ(G): chromatic number.

τ(G): vertex cover.

κ(G): vertex connectivity.

tw(G): treewidth, measure how much a graph looks like a tree.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 5 / 98

Parametrized Complexity and FPT Algorithms

Slides are inspired by a course of Daniel Marx, and another course of Marcin
Pilipczuk.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 6 / 98

Classical Complexity

A brief review:

We usually aim for polynomial-time algorithms: the worst-case running time
is O(nc), where n is the input size and c is a constant.

Classical polynomial-time algorithms: shortest path, perfect matching,
minimum spanning tree, maximum flow, 2-SAT etc

It is unlikely that polynomial-time algorithms exist for NP-hard problems.

Unfortunately, many problems of interest are NP-hard: Hamiltonian Cycle,
3-Coloring, 3-SAT, etc.

We expect that these problems can be solved only in exponential time (i.e.,
O(cn)).

Can we say anything nontrivial about NP-hard problems?

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 7 / 98

Classical Complexity

A brief review:

We usually aim for polynomial-time algorithms: the worst-case running time
is O(nc), where n is the input size and c is a constant.

Classical polynomial-time algorithms: shortest path, perfect matching,
minimum spanning tree, maximum flow, 2-SAT etc

It is unlikely that polynomial-time algorithms exist for NP-hard problems.

Unfortunately, many problems of interest are NP-hard: Hamiltonian Cycle,
3-Coloring, 3-SAT, etc.

We expect that these problems can be solved only in exponential time (i.e.,
O(cn)).

Can we say anything nontrivial about NP-hard problems?

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 7 / 98

Classical Complexity

A brief review:

We usually aim for polynomial-time algorithms: the worst-case running time
is O(nc), where n is the input size and c is a constant.

Classical polynomial-time algorithms: shortest path, perfect matching,
minimum spanning tree, maximum flow, 2-SAT etc

It is unlikely that polynomial-time algorithms exist for NP-hard problems.

Unfortunately, many problems of interest are NP-hard: Hamiltonian Cycle,
3-Coloring, 3-SAT, etc.

We expect that these problems can be solved only in exponential time (i.e.,
O(cn)).

Can we say anything nontrivial about NP-hard problems?

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 7 / 98

Classical Complexity

A brief review:

We usually aim for polynomial-time algorithms: the worst-case running time
is O(nc), where n is the input size and c is a constant.

Classical polynomial-time algorithms: shortest path, perfect matching,
minimum spanning tree, maximum flow, 2-SAT etc

It is unlikely that polynomial-time algorithms exist for NP-hard problems.

Unfortunately, many problems of interest are NP-hard: Hamiltonian Cycle,
3-Coloring, 3-SAT, etc.

We expect that these problems can be solved only in exponential time (i.e.,
O(cn)).

Can we say anything nontrivial about NP-hard problems?

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 7 / 98

Classical Complexity

A brief review:

We usually aim for polynomial-time algorithms: the worst-case running time
is O(nc), where n is the input size and c is a constant.

Classical polynomial-time algorithms: shortest path, perfect matching,
minimum spanning tree, maximum flow, 2-SAT etc

It is unlikely that polynomial-time algorithms exist for NP-hard problems.

Unfortunately, many problems of interest are NP-hard: Hamiltonian Cycle,
3-Coloring, 3-SAT, etc.

We expect that these problems can be solved only in exponential time (i.e.,
O(cn)).

Can we say anything nontrivial about NP-hard problems?

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 7 / 98

Classical Complexity

A brief review:

We usually aim for polynomial-time algorithms: the worst-case running time
is O(nc), where n is the input size and c is a constant.

Classical polynomial-time algorithms: shortest path, perfect matching,
minimum spanning tree, maximum flow, 2-SAT etc

It is unlikely that polynomial-time algorithms exist for NP-hard problems.

Unfortunately, many problems of interest are NP-hard: Hamiltonian Cycle,
3-Coloring, 3-SAT, etc.

We expect that these problems can be solved only in exponential time (i.e.,
O(cn)).

Can we say anything nontrivial about NP-hard problems?

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 7 / 98

Classical Complexity

A brief review:

We usually aim for polynomial-time algorithms: the worst-case running time
is O(nc), where n is the input size and c is a constant.

Classical polynomial-time algorithms: shortest path, perfect matching,
minimum spanning tree, maximum flow, 2-SAT etc

It is unlikely that polynomial-time algorithms exist for NP-hard problems.

Unfortunately, many problems of interest are NP-hard: Hamiltonian Cycle,
3-Coloring, 3-SAT, etc.

We expect that these problems can be solved only in exponential time (i.e.,
O(cn)).

Can we say anything nontrivial about NP-hard problems?

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 7 / 98

What can you do in front of a hard problem

If a problem is NP-hard, then there is no algorithm that solves

all instances

optimally

in poly-time

But why is a problem hard to solve?

It is certainly easy to solve on some easy instances.

But how to capture the notion of easy instances?

Maybe some parameter of the input play an important role, and if this parameter
is small we can solve the problem efficiently.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 8 / 98

What can you do in front of a hard problem

If a problem is NP-hard, then there is no algorithm that solves

all instances

optimally

in poly-time

But why is a problem hard to solve?

It is certainly easy to solve on some easy instances.

But how to capture the notion of easy instances?

Maybe some parameter of the input play an important role, and if this parameter
is small we can solve the problem efficiently.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 8 / 98

How to cheat in front of a hard problem?

The size of the input is never the only thing that affects the running time of an
algorithm.

Main idea: measure the complexity in term of the input size and something else.

Formally: Instead of expressing the running time by a function T (n) of the input
size n, express it by a function T (n, k) of the input size n and of a parameter k of
the input.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 9 / 98

Parametrized complexity

figure by Daniel Marx

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 10 / 98

Parametrized complexity

figure by Daniel Marx

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 10 / 98

Parametrized complexity, definitions

A parametrized algorithmic problem is a problem where a certain
parameter k is given in addition to the input (of size n).

The complexity is studied as a function of n and k .

k can be the size of the solution, or an implicit parameter of the input graph
(diameter, maximum degree, treewidth...).

There are roughly three possibilities for the complexity of a parametrized
algorithmic problem.

Either the problem is already hard for fixed k.
Example: decide if χ(G) ≤ k is NP-hard for k = 3. (Brute force gives kn)

Or the problem is NP-hard for k in the input but polynomial for k fixed.
Example: Decide if α(G) ≤ k with parameter k by exhaustive search needs :
O
(
nk
)

(we say it is XP).

Or it is Fixed Parameter Tractable (FPT) for k: Algorithm in time
O
(
f (k) · nO(1)

)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 11 / 98

Parametrized complexity, definitions

A parametrized algorithmic problem is a problem where a certain
parameter k is given in addition to the input (of size n).

The complexity is studied as a function of n and k .

k can be the size of the solution, or an implicit parameter of the input graph
(diameter, maximum degree, treewidth...).

There are roughly three possibilities for the complexity of a parametrized
algorithmic problem.

Either the problem is already hard for fixed k.
Example: decide if χ(G) ≤ k is NP-hard for k = 3. (Brute force gives kn)

Or the problem is NP-hard for k in the input but polynomial for k fixed.
Example: Decide if α(G) ≤ k with parameter k by exhaustive search needs :
O
(
nk
)

(we say it is XP).

Or it is Fixed Parameter Tractable (FPT) for k: Algorithm in time
O
(
f (k) · nO(1)

)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 11 / 98

Parametrized complexity, definitions

A parametrized algorithmic problem is a problem where a certain
parameter k is given in addition to the input (of size n).

The complexity is studied as a function of n and k .

k can be the size of the solution, or an implicit parameter of the input graph
(diameter, maximum degree, treewidth...).

There are roughly three possibilities for the complexity of a parametrized
algorithmic problem.

Either the problem is already hard for fixed k .
Example: decide if χ(G) ≤ k is NP-hard for k = 3. (Brute force gives kn)

Or the problem is NP-hard for k in the input but polynomial for k fixed.
Example: Decide if α(G) ≤ k with parameter k by exhaustive search needs :
O
(
nk
)

(we say it is XP).

Or it is Fixed Parameter Tractable (FPT) for k: Algorithm in time
O
(
f (k) · nO(1)

)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 11 / 98

Parametrized complexity, definitions

A parametrized algorithmic problem is a problem where a certain
parameter k is given in addition to the input (of size n).

The complexity is studied as a function of n and k .

k can be the size of the solution, or an implicit parameter of the input graph
(diameter, maximum degree, treewidth...).

There are roughly three possibilities for the complexity of a parametrized
algorithmic problem.

Either the problem is already hard for fixed k .
Example: decide if χ(G) ≤ k is NP-hard for k = 3. (Brute force gives kn)

Or the problem is NP-hard for k in the input but polynomial for k fixed.
Example: Decide if α(G) ≤ k with parameter k by exhaustive search needs :
O
(
nk
)

(we say it is XP).

Or it is Fixed Parameter Tractable (FPT) for k: Algorithm in time
O
(
f (k) · nO(1)

)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 11 / 98

Parametrized complexity, definitions

A parametrized algorithmic problem is a problem where a certain
parameter k is given in addition to the input (of size n).

The complexity is studied as a function of n and k .

k can be the size of the solution, or an implicit parameter of the input graph
(diameter, maximum degree, treewidth...).

There are roughly three possibilities for the complexity of a parametrized
algorithmic problem.

Either the problem is already hard for fixed k .
Example: decide if χ(G) ≤ k is NP-hard for k = 3. (Brute force gives kn)

Or the problem is NP-hard for k in the input but polynomial for k fixed.
Example: Decide if α(G) ≤ k with parameter k by exhaustive search needs :
O
(
nk
)

(we say it is XP).

Or it is Fixed Parameter Tractable (FPT) for k : Algorithm in time
O
(
f (k) · nO(1)

)
Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 11 / 98

Formal definition

We consider only decision problem.

Let Σ be a finite alphabet used to encode the input.

I Σ = {0, 1} for binary encoding.

A parametrized problem is a set P ⊆ Σ∗ × N.

I ={(x1, k1), (x2, k2), . . . }.
I The set P contains the couples (x , k) for which the answer to the question

encoded by (x , k) is YES; k is the parameter.

A parametrized problem P is Fixed-Parameter Tractable if there is an
algorithm that, given an input (x , k)

I Decide if (x , k) belongs to P or not, and
I run in time f (k)nc for some computable function f and a constant c.

A parametrized problem P is XP if there is an algorithm that, given an input
(x , k)

I Decide if (x , k) belongs to P or not, and
I run in time nf (k) for some computable function f and a constant c.

For example, the set of tuples {(G , k) ∈ G × N : vc(G) ≤ k} is the problem
Vertex-Cover parametrized by the size of the solution.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 12 / 98

Formal definition

We consider only decision problem.

Let Σ be a finite alphabet used to encode the input.

I Σ = {0, 1} for binary encoding.

A parametrized problem is a set P ⊆ Σ∗ × N.

I ={(x1, k1), (x2, k2), . . . }.
I The set P contains the couples (x , k) for which the answer to the question

encoded by (x , k) is YES; k is the parameter.

A parametrized problem P is Fixed-Parameter Tractable if there is an
algorithm that, given an input (x , k)

I Decide if (x , k) belongs to P or not, and
I run in time f (k)nc for some computable function f and a constant c.

A parametrized problem P is XP if there is an algorithm that, given an input
(x , k)

I Decide if (x , k) belongs to P or not, and
I run in time nf (k) for some computable function f and a constant c.

For example, the set of tuples {(G , k) ∈ G × N : vc(G) ≤ k} is the problem
Vertex-Cover parametrized by the size of the solution.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 12 / 98

Formal definition

We consider only decision problem.

Let Σ be a finite alphabet used to encode the input.
I Σ = {0, 1} for binary encoding.

A parametrized problem is a set P ⊆ Σ∗ × N.

I ={(x1, k1), (x2, k2), . . . }.
I The set P contains the couples (x , k) for which the answer to the question

encoded by (x , k) is YES; k is the parameter.

A parametrized problem P is Fixed-Parameter Tractable if there is an
algorithm that, given an input (x , k)

I Decide if (x , k) belongs to P or not, and
I run in time f (k)nc for some computable function f and a constant c.

A parametrized problem P is XP if there is an algorithm that, given an input
(x , k)

I Decide if (x , k) belongs to P or not, and
I run in time nf (k) for some computable function f and a constant c.

For example, the set of tuples {(G , k) ∈ G × N : vc(G) ≤ k} is the problem
Vertex-Cover parametrized by the size of the solution.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 12 / 98

Formal definition

We consider only decision problem.

Let Σ be a finite alphabet used to encode the input.
I Σ = {0, 1} for binary encoding.

A parametrized problem is a set P ⊆ Σ∗ × N.

I ={(x1, k1), (x2, k2), . . . }.
I The set P contains the couples (x , k) for which the answer to the question

encoded by (x , k) is YES; k is the parameter.

A parametrized problem P is Fixed-Parameter Tractable if there is an
algorithm that, given an input (x , k)

I Decide if (x , k) belongs to P or not, and
I run in time f (k)nc for some computable function f and a constant c.

A parametrized problem P is XP if there is an algorithm that, given an input
(x , k)

I Decide if (x , k) belongs to P or not, and
I run in time nf (k) for some computable function f and a constant c.

For example, the set of tuples {(G , k) ∈ G × N : vc(G) ≤ k} is the problem
Vertex-Cover parametrized by the size of the solution.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 12 / 98

Formal definition

We consider only decision problem.

Let Σ be a finite alphabet used to encode the input.
I Σ = {0, 1} for binary encoding.

A parametrized problem is a set P ⊆ Σ∗ × N.
I ={(x1, k1), (x2, k2), . . . }.

I The set P contains the couples (x , k) for which the answer to the question
encoded by (x , k) is YES; k is the parameter.

A parametrized problem P is Fixed-Parameter Tractable if there is an
algorithm that, given an input (x , k)

I Decide if (x , k) belongs to P or not, and
I run in time f (k)nc for some computable function f and a constant c.

A parametrized problem P is XP if there is an algorithm that, given an input
(x , k)

I Decide if (x , k) belongs to P or not, and
I run in time nf (k) for some computable function f and a constant c.

For example, the set of tuples {(G , k) ∈ G × N : vc(G) ≤ k} is the problem
Vertex-Cover parametrized by the size of the solution.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 12 / 98

Formal definition

We consider only decision problem.

Let Σ be a finite alphabet used to encode the input.
I Σ = {0, 1} for binary encoding.

A parametrized problem is a set P ⊆ Σ∗ × N.
I ={(x1, k1), (x2, k2), . . . }.
I The set P contains the couples (x , k) for which the answer to the question

encoded by (x , k) is YES; k is the parameter.

A parametrized problem P is Fixed-Parameter Tractable if there is an
algorithm that, given an input (x , k)

I Decide if (x , k) belongs to P or not, and
I run in time f (k)nc for some computable function f and a constant c.

A parametrized problem P is XP if there is an algorithm that, given an input
(x , k)

I Decide if (x , k) belongs to P or not, and
I run in time nf (k) for some computable function f and a constant c.

For example, the set of tuples {(G , k) ∈ G × N : vc(G) ≤ k} is the problem
Vertex-Cover parametrized by the size of the solution.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 12 / 98

Formal definition

We consider only decision problem.

Let Σ be a finite alphabet used to encode the input.
I Σ = {0, 1} for binary encoding.

A parametrized problem is a set P ⊆ Σ∗ × N.
I ={(x1, k1), (x2, k2), . . . }.
I The set P contains the couples (x , k) for which the answer to the question

encoded by (x , k) is YES; k is the parameter.

A parametrized problem P is Fixed-Parameter Tractable if there is an
algorithm that, given an input (x , k)

I Decide if (x , k) belongs to P or not, and
I run in time f (k)nc for some computable function f and a constant c.

A parametrized problem P is XP if there is an algorithm that, given an input
(x , k)

I Decide if (x , k) belongs to P or not, and
I run in time nf (k) for some computable function f and a constant c.

For example, the set of tuples {(G , k) ∈ G × N : vc(G) ≤ k} is the problem
Vertex-Cover parametrized by the size of the solution.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 12 / 98

Formal definition

We consider only decision problem.

Let Σ be a finite alphabet used to encode the input.
I Σ = {0, 1} for binary encoding.

A parametrized problem is a set P ⊆ Σ∗ × N.
I ={(x1, k1), (x2, k2), . . . }.
I The set P contains the couples (x , k) for which the answer to the question

encoded by (x , k) is YES; k is the parameter.

A parametrized problem P is Fixed-Parameter Tractable if there is an
algorithm that, given an input (x , k)

I Decide if (x , k) belongs to P or not, and

I run in time f (k)nc for some computable function f and a constant c.

A parametrized problem P is XP if there is an algorithm that, given an input
(x , k)

I Decide if (x , k) belongs to P or not, and
I run in time nf (k) for some computable function f and a constant c.

For example, the set of tuples {(G , k) ∈ G × N : vc(G) ≤ k} is the problem
Vertex-Cover parametrized by the size of the solution.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 12 / 98

Formal definition

We consider only decision problem.

Let Σ be a finite alphabet used to encode the input.
I Σ = {0, 1} for binary encoding.

A parametrized problem is a set P ⊆ Σ∗ × N.
I ={(x1, k1), (x2, k2), . . . }.
I The set P contains the couples (x , k) for which the answer to the question

encoded by (x , k) is YES; k is the parameter.

A parametrized problem P is Fixed-Parameter Tractable if there is an
algorithm that, given an input (x , k)

I Decide if (x , k) belongs to P or not, and
I run in time f (k)nc for some computable function f and a constant c.

A parametrized problem P is XP if there is an algorithm that, given an input
(x , k)

I Decide if (x , k) belongs to P or not, and
I run in time nf (k) for some computable function f and a constant c.

For example, the set of tuples {(G , k) ∈ G × N : vc(G) ≤ k} is the problem
Vertex-Cover parametrized by the size of the solution.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 12 / 98

Formal definition

We consider only decision problem.

Let Σ be a finite alphabet used to encode the input.
I Σ = {0, 1} for binary encoding.

A parametrized problem is a set P ⊆ Σ∗ × N.
I ={(x1, k1), (x2, k2), . . . }.
I The set P contains the couples (x , k) for which the answer to the question

encoded by (x , k) is YES; k is the parameter.

A parametrized problem P is Fixed-Parameter Tractable if there is an
algorithm that, given an input (x , k)

I Decide if (x , k) belongs to P or not, and
I run in time f (k)nc for some computable function f and a constant c.

A parametrized problem P is XP if there is an algorithm that, given an input
(x , k)

I Decide if (x , k) belongs to P or not, and
I run in time nf (k) for some computable function f and a constant c.

For example, the set of tuples {(G , k) ∈ G × N : vc(G) ≤ k} is the problem
Vertex-Cover parametrized by the size of the solution.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 12 / 98

Formal definition

We consider only decision problem.

Let Σ be a finite alphabet used to encode the input.
I Σ = {0, 1} for binary encoding.

A parametrized problem is a set P ⊆ Σ∗ × N.
I ={(x1, k1), (x2, k2), . . . }.
I The set P contains the couples (x , k) for which the answer to the question

encoded by (x , k) is YES; k is the parameter.

A parametrized problem P is Fixed-Parameter Tractable if there is an
algorithm that, given an input (x , k)

I Decide if (x , k) belongs to P or not, and
I run in time f (k)nc for some computable function f and a constant c.

A parametrized problem P is XP if there is an algorithm that, given an input
(x , k)

I Decide if (x , k) belongs to P or not, and

I run in time nf (k) for some computable function f and a constant c.

For example, the set of tuples {(G , k) ∈ G × N : vc(G) ≤ k} is the problem
Vertex-Cover parametrized by the size of the solution.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 12 / 98

Formal definition

We consider only decision problem.

Let Σ be a finite alphabet used to encode the input.
I Σ = {0, 1} for binary encoding.

A parametrized problem is a set P ⊆ Σ∗ × N.
I ={(x1, k1), (x2, k2), . . . }.
I The set P contains the couples (x , k) for which the answer to the question

encoded by (x , k) is YES; k is the parameter.

A parametrized problem P is Fixed-Parameter Tractable if there is an
algorithm that, given an input (x , k)

I Decide if (x , k) belongs to P or not, and
I run in time f (k)nc for some computable function f and a constant c.

A parametrized problem P is XP if there is an algorithm that, given an input
(x , k)

I Decide if (x , k) belongs to P or not, and
I run in time nf (k) for some computable function f and a constant c.

For example, the set of tuples {(G , k) ∈ G × N : vc(G) ≤ k} is the problem
Vertex-Cover parametrized by the size of the solution.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 12 / 98

Formal definition

We consider only decision problem.

Let Σ be a finite alphabet used to encode the input.
I Σ = {0, 1} for binary encoding.

A parametrized problem is a set P ⊆ Σ∗ × N.
I ={(x1, k1), (x2, k2), . . . }.
I The set P contains the couples (x , k) for which the answer to the question

encoded by (x , k) is YES; k is the parameter.

A parametrized problem P is Fixed-Parameter Tractable if there is an
algorithm that, given an input (x , k)

I Decide if (x , k) belongs to P or not, and
I run in time f (k)nc for some computable function f and a constant c.

A parametrized problem P is XP if there is an algorithm that, given an input
(x , k)

I Decide if (x , k) belongs to P or not, and
I run in time nf (k) for some computable function f and a constant c.

For example, the set of tuples {(G , k) ∈ G × N : vc(G) ≤ k} is the problem
Vertex-Cover parametrized by the size of the solution.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 12 / 98

Formal definition

We consider only decision problem.

Let Σ be a finite alphabet used to encode the input.
I Σ = {0, 1} for binary encoding.

A parametrized problem is a set P ⊆ Σ∗ × N.
I ={(x1, k1), (x2, k2), . . . }.
I The set P contains the couples (x , k) for which the answer to the question

encoded by (x , k) is YES; k is the parameter.

A parametrized problem P is Fixed-Parameter Tractable if there is an
algorithm that, given an input (x , k)

I Decide if (x , k) belongs to P or not, and
I run in time f (k)nc for some computable function f and a constant c.

A parametrized problem P is XP if there is an algorithm that, given an input
(x , k)

I Decide if (x , k) belongs to P or not, and
I run in time nf (k) for some computable function f and a constant c.

For example, the set of tuples {(G , k) ∈ G × N : vc(G) ≤ k} is the problem
Vertex-Cover parametrized by the size of the solution.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 12 / 98

Parametrized Complexity

figure by Daniel Lokshtanov
Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 13 / 98

Parametrized Complexity

figure by Daniel Lokshtanov
Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 13 / 98

Parametrized Complexity

figure by Daniel LokshtanovPierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 13 / 98

Parametrized Complexity

figure by Daniel Lokshtanov
Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 13 / 98

W [1]-hardness

Negative evidence similar to NP-completeness: if a (parametrized) problem is
W [1]-hard, then the problem is not FPT unless FPT = W [1].

Some W [1]-hard problem:

Find a clique/stable set of size k .

Find a dominating set of size k

Set cover

...

General Principal to prove hardness:
With an appropriate reduction from k-Clique to problem P, we show that if
problem P is FPT, then k-Clique is also FPT

Exponential Time Hypothesis (ETH):
n-variable 3-SAT cannot be solved in time 2o(n).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 14 / 98

W [1]-hardness

Negative evidence similar to NP-completeness: if a (parametrized) problem is
W [1]-hard, then the problem is not FPT unless FPT = W [1].

Some W [1]-hard problem:

Find a clique/stable set of size k .

Find a dominating set of size k

Set cover

...

General Principal to prove hardness:
With an appropriate reduction from k-Clique to problem P, we show that if
problem P is FPT, then k-Clique is also FPT

Exponential Time Hypothesis (ETH):
n-variable 3-SAT cannot be solved in time 2o(n).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 14 / 98

W [1]-hardness

Negative evidence similar to NP-completeness: if a (parametrized) problem is
W [1]-hard, then the problem is not FPT unless FPT = W [1].

Some W [1]-hard problem:

Find a clique/stable set of size k .

Find a dominating set of size k

Set cover

...

General Principal to prove hardness:
With an appropriate reduction from k-Clique to problem P, we show that if
problem P is FPT, then k-Clique is also FPT

Exponential Time Hypothesis (ETH):
n-variable 3-SAT cannot be solved in time 2o(n).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 14 / 98

Clique parametrized by maximum degree

Problem (clique parametrized by ∆)

Input : A graph G with maximum degree ∆ and an integer k
Question : Does G has a clique of size at least k?

Algorithm: For each vertex v , check for a maximum clique in N(v)

Running time: O(2∆n), FPT!!

So clique parametrized by ∆(G) is FPT.

But clique parametrized by solution size k is W [1]-hard. That is, probably no
algorithm in time f (k) · nO(1).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 15 / 98

Clique parametrized by maximum degree

Problem (clique parametrized by ∆)

Input : A graph G with maximum degree ∆ and an integer k
Question : Does G has a clique of size at least k?

Algorithm: For each vertex v , check for a maximum clique in N(v)

Running time: O(2∆n), FPT!!

So clique parametrized by ∆(G) is FPT.

But clique parametrized by solution size k is W [1]-hard. That is, probably no
algorithm in time f (k) · nO(1).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 15 / 98

Clique parametrized by maximum degree

Problem (clique parametrized by ∆)

Input : A graph G with maximum degree ∆ and an integer k
Question : Does G has a clique of size at least k?

Algorithm: For each vertex v , check for a maximum clique in N(v)

Running time: O(2∆n), FPT!!

So clique parametrized by ∆(G) is FPT.

But clique parametrized by solution size k is W [1]-hard. That is, probably no
algorithm in time f (k) · nO(1).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 15 / 98

Parametrized Complexity

figure by Daniel Marx

The study of parameterized complexity was initiated by Downey and Fellows
in the early 90s.

First monograph in 1999.

By now, strong presence in most algorithmic conferences.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 16 / 98

Source for this class

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 17 / 98

Algorihtmic techniques to design FPT algorithm

Figure by Daniel Marx

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 18 / 98

1 - Branching Method

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 19 / 98

First problem:

Vertex Cover

A vertex cover of a graph G is a set S of vertices such that G \ S is edgeless.
In other words S hits all edges.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 20 / 98

Vertex Cover

A vertex cover is a set S of vertices such that G \ S is edgeless. In other words S
hits all edges.

Problem (Vertex Cover parametrized by the size of the solution)

Question: Given (G , k), does G have a vertex cover of size at most k?

Brute force: For every set S of k vertices, check if G \ S is edgeless.
Running time: O(nk · n2) = O(nk+2).

So Vertex Cover parametrized by the size of the solution is in XP.

But is it in FPT?

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 21 / 98

Thinking about the problem

For each edge uv , either u or v is in the solution.

So G has a VC of size at most k if and only if G \ {u} or G \ {v} has a VC
of size at most k − 1.

In other words, for every edge uv :

(G , k) is a YES instance if and only if (G \ {u}, k − 1) or (G \ {v}, k − 1) is

The tree search has depth at most k , so has at most 2k vertices.

(G , k) is a YES-instance if and only if the graph on the leaves are edgeless.

So the running time: O(2k · nO(1)).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 22 / 98

Thinking about the problem

For each edge uv , either u or v is in the solution.

So G has a VC of size at most k if and only if G \ {u} or G \ {v} has a VC
of size at most k − 1.

In other words, for every edge uv :

(G , k) is a YES instance if and only if (G \ {u}, k − 1) or (G \ {v}, k − 1) is

The tree search has depth at most k, so has at most 2k vertices.

(G , k) is a YES-instance if and only if the graph on the leaves are edgeless.

So the running time: O(2k · nO(1)).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 22 / 98

Thinking about the problem

For each edge uv , either u or v is in the solution.

So G has a VC of size at most k if and only if G \ {u} or G \ {v} has a VC
of size at most k − 1.

In other words, for every edge uv :

(G , k) is a YES instance if and only if (G \ {u}, k − 1) or (G \ {v}, k − 1) is

The tree search has depth at most k, so has at most 2k vertices.

(G , k) is a YES-instance if and only if the graph on the leaves are edgeless.

So the running time: O(2k · nO(1)).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 22 / 98

Thinking about the problem

For each edge uv , either u or v is in the solution.

So G has a VC of size at most k if and only if G \ {u} or G \ {v} has a VC
of size at most k − 1.

In other words, for every edge uv :

(G , k) is a YES instance if and only if (G \ {u}, k − 1) or (G \ {v}, k − 1) is

The tree search has depth at most k, so has at most 2k vertices.

(G , k) is a YES-instance if and only if the graph on the leaves are edgeless.

So the running time: O(2k · nO(1)).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 22 / 98

Thinking about the problem

For each edge uv , either u or v is in the solution.

So G has a VC of size at most k if and only if G \ {u} or G \ {v} has a VC
of size at most k − 1.

In other words, for every edge uv :

(G , k) is a YES instance if and only if (G \ {u}, k − 1) or (G \ {v}, k − 1) is

The tree search has depth at most k , so has at most 2k vertices.

(G , k) is a YES-instance if and only if the graph on the leaves are edgeless.

So the running time: O(2k · nO(1)).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 22 / 98

Thinking about the problem

For each edge uv , either u or v is in the solution.

So G has a VC of size at most k if and only if G \ {u} or G \ {v} has a VC
of size at most k − 1.

In other words, for every edge uv :

(G , k) is a YES instance if and only if (G \ {u}, k − 1) or (G \ {v}, k − 1) is

The tree search has depth at most k , so has at most 2k vertices.

(G , k) is a YES-instance if and only if the graph on the leaves are edgeless.

So the running time: O(2k · nO(1)).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 22 / 98

Thinking about the problem

For each edge uv , either u or v is in the solution.

So G has a VC of size at most k if and only if G \ {u} or G \ {v} has a VC
of size at most k − 1.

In other words, for every edge uv :

(G , k) is a YES instance if and only if (G \ {u}, k − 1) or (G \ {v}, k − 1) is

The tree search has depth at most k , so has at most 2k vertices.

(G , k) is a YES-instance if and only if the graph on the leaves are edgeless.

So the running time: O(2k · nO(1)).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 22 / 98

Branching method, size of the search tree and complexity

To solve instance (G , k) of Vertex Cover:

Main idea: reduce the problem to solving a bounded number of problems
with paramater k ′ < k.

We need to be able to solve instance (G , k) in poly-time knowing the
solution of the new instances.

Since the parameter decrease in every recursive call, the depth of the search
tree is at most k.

Size of the seach tree:
I If we branch into c directions: ck

I If we branch into k directions: kk = 2k log(k)

I If we branch into log(n) directions: n + 2k log(k)

We are now going to solve Vertex Cover in time 1.46k · nO(1)!

Notation: 1.46k · nO(1) = O∗(1.46k)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 23 / 98

Branching method, size of the search tree and complexity

To solve instance (G , k) of Vertex Cover:

Main idea: reduce the problem to solving a bounded number of problems
with paramater k ′ < k.

We need to be able to solve instance (G , k) in poly-time knowing the
solution of the new instances.

Since the parameter decrease in every recursive call, the depth of the search
tree is at most k.

Size of the seach tree:
I If we branch into c directions: ck

I If we branch into k directions: kk = 2k log(k)

I If we branch into log(n) directions: n + 2k log(k)

We are now going to solve Vertex Cover in time 1.46k · nO(1)!

Notation: 1.46k · nO(1) = O∗(1.46k)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 23 / 98

More thinking about the problem

Idea: instead of branching on edges, we are going to branch on vertices of degree
at least 3. It is going to work faster because in some of the branches, the
parameter is going to decrease faster.

For each vertex u of degree at least 3:
I either u is in the solution ⇒ parameter decreases by 1
I or all the neighbors of u are in the solution ⇒ parameter decrease by at least 3

If every vertex has degree at most 2, we can solve Vertex Cover in
poly-time because the graph is the disjoint union of paths and cycles. Such
graphs will correspond to the leaf node of our searchtree.

(G , k) is a YES instance if and only if (G \ {u}, k − 1) or (G \ N[u], k − d(u)) is

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 24 / 98

More thinking about the problem

Idea: instead of branching on edges, we are going to branch on vertices of degree
at least 3. It is going to work faster because in some of the branches, the
parameter is going to decrease faster.

For each vertex u of degree at least 3:
I either u is in the solution ⇒ parameter decreases by 1
I or all the neighbors of u are in the solution ⇒ parameter decrease by at least 3

If every vertex has degree at most 2, we can solve Vertex Cover in
poly-time because the graph is the disjoint union of paths and cycles. Such
graphs will correspond to the leaf node of our searchtree.

(G , k) is a YES instance if and only if (G \ {u}, k − 1) or (G \ N[u], k − d(u)) is

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 24 / 98

More thinking about the problem

Idea: instead of branching on edges, we are going to branch on vertices of degree
at least 3. It is going to work faster because in some of the branches, the
parameter is going to decrease faster.

For each vertex u of degree at least 3:
I either u is in the solution ⇒ parameter decreases by 1
I or all the neighbors of u are in the solution ⇒ parameter decrease by at least 3

If every vertex has degree at most 2, we can solve Vertex Cover in
poly-time because the graph is the disjoint union of paths and cycles. Such
graphs will correspond to the leaf node of our searchtree.

(G , k) is a YES instance if and only if (G \ {u}, k − 1) or (G \ N[u], k − d(u)) is

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 24 / 98

More thinking about the problem

Idea: instead of branching on edges, we are going to branch on vertices of degree
at least 3. It is going to work faster because in some of the branches, the
parameter is going to decrease faster.

For each vertex u of degree at least 3:
I either u is in the solution ⇒ parameter decreases by 1
I or all the neighbors of u are in the solution ⇒ parameter decrease by at least 3

If every vertex has degree at most 2, we can solve Vertex Cover in
poly-time because the graph is the disjoint union of paths and cycles. Such
graphs will correspond to the leaf node of our searchtree.

(G , k) is a YES instance if and only if (G \ {u}, k − 1) or (G \ N[u], k − d(u)) is

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 24 / 98

Algebraic resolution

Let T (k) be the number of leaves in the search tree, and T (k) = 0 if k ≤ 1.
Then:

T (k) ≤ T (k − 1) + T (k − 3)

Let us prove by induction that T (k) ≤ ck for some constant c ≥ 1 as small as
possible.
What is a good value for c? We are happy if it satisfies:

ck ≥ ck−1 + ck−3

and in particular:
c3 − c2 − 1 ≥ 0

So we want to find the smallest positive root of this equation.
Actually, such equations have a unique postive root.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 25 / 98

Algebraic resolution

Let T (k) be the number of leaves in the search tree, and T (k) = 0 if k ≤ 1.
Then:

T (k) ≤ T (k − 1) + T (k − 3)

Let us prove by induction that T (k) ≤ ck for some constant c ≥ 1 as small as
possible.
What is a good value for c? We are happy if it satisfies:

ck ≥ ck−1 + ck−3

and in particular:
c3 − c2 − 1 ≥ 0

So we want to find the smallest positive root of this equation.
Actually, such equations have a unique postive root.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 25 / 98

Algebraic resolution

Let T (k) be the number of leaves in the search tree, and T (k) = 0 if k ≤ 1.
Then:

T (k) ≤ T (k − 1) + T (k − 3)

Let us prove by induction that T (k) ≤ ck for some constant c ≥ 1 as small as
possible.
What is a good value for c? We are happy if it satisfies:

ck ≥ ck−1 + ck−3

and in particular:
c3 − c2 − 1 ≥ 0

So we want to find the smallest positive root of this equation.
Actually, such equations have a unique postive root.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 25 / 98

Solving the equation

c = 1.4656 is a good value, so we get T (k) ≤ 1.4656k .
And thus we get a O∗(1.4656k) algorithm for Vertex Cover

Best known FPT algorithm: O∗(1.2738k), by J. Chen, I. A. Kanj and G. Xia,
Simplicity is beauty: improved upper bounds for Vertex Cover.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 26 / 98

Solving the equation

c = 1.4656 is a good value, so we get T (k) ≤ 1.4656k .
And thus we get a O∗(1.4656k) algorithm for Vertex Cover

Best known FPT algorithm: O∗(1.2738k), by J. Chen, I. A. Kanj and G. Xia,
Simplicity is beauty: improved upper bounds for Vertex Cover.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 26 / 98

Branching method

The branching vector of our O∗(1.4656k) Vertex Cover algorithm was (1, 3).

Example: Let us bound the search tree for the branching vector (2, 5, 6, 6, 7, 7).
(2 out of the 6 branches decrease the parameter by 7, etc.).

The value c > 1 has to satisfy:

ck ≥ ck−2 + ck−5 + 2ck−6 + 2ck−7

And thus c satisfies:
c7 − c5 − c2 − 2c − 2 ≥ 0

Unique positive root of the characteristic equation: 1.4483, so T (k) ≤ 1.4483k .

In general, it is hard to compare branching vectors intuitively.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 27 / 98

Next problem:

Graph modification problem

Definition: Given a graph property P, find a set of vertices S such that G \ S
satisfies P.

If P is the property of being edgeless, we recover vertex cover.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 28 / 98

Triangle-free deletion problem

Problem (Triangle-free deletion)

Given: a graph G and an integer k ,
Question: is there a set of at most k vertices such that G \ S is triangle-free?

Key idea showing that the branching method is going to work:

If v1v2v3 is a triangle of G , then:

(G , k) is a YES instance
⇔

(G \ {vi}, k − 1) is a YES instance for some i ∈ {1, 2, 3}

Algo:

Find a triangle v1v2v3 (time: O(n3))

Solve the instance (G \ vi , k − 1) for i = 1, 2, 3.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 29 / 98

Triangle-free deletion problem

Problem (Triangle-free deletion)

Given: a graph G and an integer k ,
Question: is there a set of at most k vertices such that G \ S is triangle-free?

Key idea showing that the branching method is going to work:

If v1v2v3 is a triangle of G , then:

(G , k) is a YES instance
⇔

(G \ {vi}, k − 1) is a YES instance for some i ∈ {1, 2, 3}

Algo:

Find a triangle v1v2v3 (time: O(n3))

Solve the instance (G \ vi , k − 1) for i = 1, 2, 3.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 29 / 98

Triangle-free deletion problem

Problem (Triangle-free deletion)

Given: a graph G and an integer k ,
Question: is there a set of at most k vertices such that G \ S is triangle-free?

Key idea showing that the branching method is going to work:

If v1v2v3 is a triangle of G , then:

(G , k) is a YES instance
⇔

(G \ {vi}, k − 1) is a YES instance for some i ∈ {1, 2, 3}

Algo:

Find a triangle v1v2v3 (time: O(n3))

Solve the instance (G \ vi , k − 1) for i = 1, 2, 3.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 29 / 98

Complexity analysis

The search tree has depth at most k and thus has at most 3k+1 vertices.

Find a triangle or check if a graph is triangle-free: n3,

Running time: O(3k · n3).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 30 / 98

Graph modification problem

Problem (Graph modification problem)

Given: (G , k)
Question: do at most k allowed operation on G can make G to have property P?

Allowed operations: vertex deletion, edge deletion, edge contraction, edge
addition...

Property P: edgeless, no triangle, no cycles, disconnected...

Examples:

Vertex cover: delete k vertices to make G edgeless,

Triangle-free deletion: delete k vertices to make G triangle-free,

Feedback vertex set: delete k vertices to make G a forest.

Chordal completion: add k edges to make the graph chordal.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 31 / 98

Graph modification problem

Problem (Graph modification problem)

Given: (G , k)
Question: do at most k allowed operation on G can make G to have property P?

Allowed operations: vertex deletion, edge deletion, edge contraction, edge
addition...

Property P: edgeless, no triangle, no cycles, disconnected...

Examples:

Vertex cover: delete k vertices to make G edgeless,

Triangle-free deletion: delete k vertices to make G triangle-free,

Feedback vertex set: delete k vertices to make G a forest.

Chordal completion: add k edges to make the graph chordal.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 31 / 98

Subgraphs and induce subgraph

1 Remove a vertex v (and all its incident edges), denoted G \ v .

2 Remove an edge e (but not its end vertices), denoted G \ e.

• H is an induced subgraph of G if H obtained from G by the repeated use of 1.

• H is a subgraph of G if H obtained from G by the repeated use of 1 and 2.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 32 / 98

Subgraphs and induce subgraph

1 Remove a vertex v (and all its incident edges), denoted G \ v .

2 Remove an edge e (but not its end vertices), denoted G \ e.

• H is an induced subgraph of G if H obtained from G by the repeated use of 1.

• H is a subgraph of G if H obtained from G by the repeated use of 1 and 2.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 32 / 98

Hereditary property

Definition: a graph property P is hereditary or closed under taking induced
subgraph if whenever G ∈ P, every induced subgraph H of G are also in P.

small-Deleting vertices do not ruin the property-

Examples: edgeless, triangle-free, bipartite, planar...

Observation: Every hereditary property P can be characterized by a (finite or
infinite) set F of minimal obstructions or forbidden induced subgraphs: G ∈ P if
and only if G does not have an induced subgraph isomorphic to a member of F .

Example: a graph is bipartite if and only if it does not contain odd cycles as
induced subgraph.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 33 / 98

Hereditary property

Definition: a graph property P is hereditary or closed under taking induced
subgraph if whenever G ∈ P, every induced subgraph H of G are also in P.

small-Deleting vertices do not ruin the property-

Examples: edgeless, triangle-free, bipartite, planar...

Observation: Every hereditary property P can be characterized by a (finite or
infinite) set F of minimal obstructions or forbidden induced subgraphs: G ∈ P if
and only if G does not have an induced subgraph isomorphic to a member of F .

Example: a graph is bipartite if and only if it does not contain odd cycles as
induced subgraph.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 33 / 98

Graph properties

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 34 / 98

Graph properties

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 34 / 98

Graph properties

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 34 / 98

Graph properties

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 34 / 98

Graph properties

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 34 / 98

Graph properties

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 34 / 98

Graph properties

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 34 / 98

Graph properties

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 34 / 98

Graph properties

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 34 / 98

Graph properties

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 34 / 98

Finite set of obstructions

Theorem
If P is a hereditary graph property and can be characterized by a finite set F of
forbidden induced subgraphs, then the graph modifications problems
corresponding to P are FPT.

Proof:

Suppose that every graph in F has at most r vertices. Observe that r is a
constant.

Check if G contains a forbidden graphs. This can be done by brute force in
time |F| · nr = O(nr).

If a forbidden subgraph F exists, then we have to delete one of the at most r
vertices of the copy of F .

The tree has at most rk+1 vertices, and the work to be done at each vertex is
O(nr).

Total running time: O(rk+1 · nr).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 35 / 98

Finite set of obstructions

Theorem
If P is a hereditary graph property and can be characterized by a finite set F of
forbidden induced subgraphs, then the graph modifications problems
corresponding to P are FPT.

Proof:

Suppose that every graph in F has at most r vertices. Observe that r is a
constant.

Check if G contains a forbidden graphs. This can be done by brute force in
time |F| · nr = O(nr).

If a forbidden subgraph F exists, then we have to delete one of the at most r
vertices of the copy of F .

The tree has at most rk+1 vertices, and the work to be done at each vertex is
O(nr).

Total running time: O(rk+1 · nr).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 35 / 98

Finite set of obstructions

Theorem
If P is a hereditary graph property and can be characterized by a finite set F of
forbidden induced subgraphs, then the graph modifications problems
corresponding to P are FPT.

Proof:

Suppose that every graph in F has at most r vertices. Observe that r is a
constant.

Check if G contains a forbidden graphs. This can be done by brute force in
time |F| · nr = O(nr).

If a forbidden subgraph F exists, then we have to delete one of the at most r
vertices of the copy of F .

The tree has at most rk+1 vertices, and the work to be done at each vertex is
O(nr).

Total running time: O(rk+1 · nr).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 35 / 98

Finite set of obstructions

Theorem
If P is a hereditary graph property and can be characterized by a finite set F of
forbidden induced subgraphs, then the graph modifications problems
corresponding to P are FPT.

Proof:

Suppose that every graph in F has at most r vertices. Observe that r is a
constant.

Check if G contains a forbidden graphs. This can be done by brute force in
time |F| · nr = O(nr).

If a forbidden subgraph F exists, then we have to delete one of the at most r
vertices of the copy of F .

The tree has at most rk+1 vertices, and the work to be done at each vertex is
O(nr).

Total running time: O(rk+1 · nr).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 35 / 98

Finite set of obstructions

Theorem
If P is a hereditary graph property and can be characterized by a finite set F of
forbidden induced subgraphs, then the graph modifications problems
corresponding to P are FPT.

Proof:

Suppose that every graph in F has at most r vertices. Observe that r is a
constant.

Check if G contains a forbidden graphs. This can be done by brute force in
time |F| · nr = O(nr).

If a forbidden subgraph F exists, then we have to delete one of the at most r
vertices of the copy of F .

The tree has at most rk+1 vertices, and the work to be done at each vertex is
O(nr).

Total running time: O(rk+1 · nr).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 35 / 98

Finite set of obstructions

Theorem
If P is a hereditary graph property and can be characterized by a finite set F of
forbidden induced subgraphs, then the graph modifications problems
corresponding to P are FPT.

Proof:

Suppose that every graph in F has at most r vertices. Observe that r is a
constant.

Check if G contains a forbidden graphs. This can be done by brute force in
time |F| · nr = O(nr).

If a forbidden subgraph F exists, then we have to delete one of the at most r
vertices of the copy of F .

The tree has at most rk+1 vertices, and the work to be done at each vertex is
O(nr).

Total running time: O(rk+1 · nr).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 35 / 98

An active area of research

Graph modification problem is a very wide and active research area in
parameterized algorithms.

If the set of forbidden subgraphs is finite, then the problem is immediately
FPT (e.g., Vertex Cover, Triangle Free Deletion). Here the
challange is improving the naive running time.

If the set of forbidden subgraphs is infinite, then very different techniques are
needed to show that the problem is FPT (e.g., Feedback Vertex Set,
Bipartite Deletion, Planar Deletion).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 36 / 98

Next problem:

Feedback Vertex Set

A Feedback Vertex Set (FVS) of a graph G is a set S of vertices such that
G \ S is a forest.
In other words S hits all cycles.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 37 / 98

Feeback Vertex set

Problem (Feedback Vertex set (FVS))

Question: Given (G , k), find a set S of at most k vertices such that G \ S has no
cycle (i.e. G \ S is a forest).

We allow loop, and multiple edges (G is a multigraph).

A Feedback Vertex Set is a set of vertices that hits every cycle of the graph.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 38 / 98

Feeback Vertex set

Problem (Feedback Vertex set (FVS))

Question: Given (G , k), find a set S of at most k vertices such that G \ S has no
cycle (i.e. G \ S is a forest).

We allow loop, and multiple edges (G is a multigraph).

A Feedback Vertex Set is a set of vertices that hits every cycle of the graph.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 38 / 98

Feeback Vertex set

Problem (Feedback Vertex set (FVS))

Question: Given (G , k), find a set S of at most k vertices such that G \ S has no
cycle (i.e. G \ S is a forest).

We allow loop, and multiple edges (G is a multigraph).

A Feedback Vertex Set is a set of vertices that hits every cycle of the graph.

Link with vertex cover: a vertex cover is a set of vertices that hits every edge of
the graph.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 38 / 98

Thinking about the problem

In Vertex Cover, at least one extremity of each edge must be in the solution.

In Feedback Vertex set, at least one vertex of each cycle must be in the
solution. But the size of a cycle can be arbitrarily large.

We are going to: identify a set of O(k) vertices such that any size-k
feedback vertex set has to contain one of these vertices, and branch on it.

But first, as often, some reduction rules.

The reduction rules are here to simplify the input in such a way that the new
input is a YES-instance if and only if the orginal one is.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 39 / 98

Thinking about the problem

In Vertex Cover, at least one extremity of each edge must be in the solution.

In Feedback Vertex set, at least one vertex of each cycle must be in the
solution. But the size of a cycle can be arbitrarily large.

We are going to: identify a set of O(k) vertices such that any size-k
feedback vertex set has to contain one of these vertices, and branch on it.

But first, as often, some reduction rules.

The reduction rules are here to simplify the input in such a way that the new
input is a YES-instance if and only if the orginal one is.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 39 / 98

Thinking about the problem

In Vertex Cover, at least one extremity of each edge must be in the solution.

In Feedback Vertex set, at least one vertex of each cycle must be in the
solution. But the size of a cycle can be arbitrarily large.

We are going to: identify a set of O(k) vertices such that any size-k
feedback vertex set has to contain one of these vertices, and branch on it.

But first, as often, some reduction rules.

The reduction rules are here to simplify the input in such a way that the new
input is a YES-instance if and only if the orginal one is.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 39 / 98

Reduction rules for FVS
(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Reduction rules for FVS
(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Reduction rules for FVS
(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Reduction rules for FVS
(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Reduction rules for FVS

(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Reduction rules for FVS

(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Reduction rules for FVS

(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Reduction rules for FVS

(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Reduction rules for FVS

(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Reduction rules for FVS

(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Reduction rules for FVS

(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Reduction rules for FVS

(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Reduction rules for FVS

(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Reduction rules for FVS

(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Reduction rules for FVS

(R1) If there is a loop at v , then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to
2.

(R3) If there is a vertex v of degree 0 or 1, then delete v .

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the
neighbors of v .

After exhaustively applying these reduction rules, the resulting graph G satisfies:

no loop,

edge multiplicity is 1 or 2,

minimum degree 3

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 40 / 98

Key property of reduction rules

Key Property of the reduction rules:
If (G , k) is an instance of FVS graph and (G ′, k ′) is the instance obtained after
applying the reduction rules as much as we can, then

G has a FVS of size at most k if and only if G ′ has a FVS of size at most k ′

and

If S is a FVS of G ′, then it is a FVS of G together with the vertices deletes
by R1. (not necessary if we don’t care about the set and just want a
YES/NO answer).

In other words, we can safely apply the reduction rules and work on the resulting
graph.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 41 / 98

Branching

Lemma: Let G be a graph with minimum degree 3, and let V3k be the 3k largest
degree vertices. Then every Feedback Vertex set of size at most k contains at
least one vertex of V3k .

Assuming the Lemma we can easily design our FPT algorithm:

Apply reduction rules to obtain G ′ and compute V3k .

Branch on each vertex x ∈ V3k , that is solve the problems for the k
instances: (G ′ \ {x}, k − 1).

Branching into 3k directions ⇒ O∗((3k)k)

Applying reduction rules and finding the 3k largest degree vertices can easily
be done in poly-time.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 42 / 98

Branching

Lemma: Let G be a graph with minimum degree 3, and let V3k be the 3k largest
degree vertices. Then every Feedback Vertex set of size at most k contains at
least one vertex of V3k .

Assuming the Lemma we can easily design our FPT algorithm:

Apply reduction rules to obtain G ′ and compute V3k .

Branch on each vertex x ∈ V3k , that is solve the problems for the k
instances: (G ′ \ {x}, k − 1).

Branching into 3k directions ⇒ O∗((3k)k)

Applying reduction rules and finding the 3k largest degree vertices can easily
be done in poly-time.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 42 / 98

Proof of the Lemma

Lemma: Let G be a graph with minimum degree 3, and let V3k be the 3k largest
degree vertices. Then every Feedback Vertex set of size at most k contains at
least one vertex of V3k .

Proof:

Let S be a solution disjoint from V3k .

Let d be the min degree of vertices in V3k .

Let X = V (G)− (S ∪ V3k)∑
v∈X∪V3k

d(v) ≥ 3|X |+ 3kd

G [X ∪V3k] is a forest, so the number of edges in G [X ∪V3k] ≤ |X |+ 3k − 1.

So sum of the degree in G [X ∪ V3k] is at most 2|X |+ 6k − 2.

And now, the number of edges between S and X ∪ V3k is:

I ≥ 3kd + 3|X | − (2|X |+ 6k − 2) > 3kd − 6k
I ≤ dk because S has k vertices, each of degree at most d .

So 3kd − 6k < kd ⇔ 2kd − 6k < 0 which is false because d ≥ 3.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 43 / 98

Proof of the Lemma

Lemma: Let G be a graph with minimum degree 3, and let V3k be the 3k largest
degree vertices. Then every Feedback Vertex set of size at most k contains at
least one vertex of V3k .

Proof:

Let S be a solution disjoint from V3k .

Let d be the min degree of vertices in V3k .

Let X = V (G)− (S ∪ V3k)∑
v∈X∪V3k

d(v) ≥ 3|X |+ 3kd

G [X ∪V3k] is a forest, so the number of edges in G [X ∪V3k] ≤ |X |+ 3k − 1.

So sum of the degree in G [X ∪ V3k] is at most 2|X |+ 6k − 2.

And now, the number of edges between S and X ∪ V3k is:

I ≥ 3kd + 3|X | − (2|X |+ 6k − 2) > 3kd − 6k
I ≤ dk because S has k vertices, each of degree at most d .

So 3kd − 6k < kd ⇔ 2kd − 6k < 0 which is false because d ≥ 3.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 43 / 98

Proof of the Lemma

Lemma: Let G be a graph with minimum degree 3, and let V3k be the 3k largest
degree vertices. Then every Feedback Vertex set of size at most k contains at
least one vertex of V3k .

Proof:

Let S be a solution disjoint from V3k .

Let d be the min degree of vertices in V3k .

Let X = V (G)− (S ∪ V3k)∑
v∈X∪V3k

d(v) ≥ 3|X |+ 3kd

G [X ∪V3k] is a forest, so the number of edges in G [X ∪V3k] ≤ |X |+ 3k − 1.

So sum of the degree in G [X ∪ V3k] is at most 2|X |+ 6k − 2.

And now, the number of edges between S and X ∪ V3k is:

I ≥ 3kd + 3|X | − (2|X |+ 6k − 2) > 3kd − 6k
I ≤ dk because S has k vertices, each of degree at most d .

So 3kd − 6k < kd ⇔ 2kd − 6k < 0 which is false because d ≥ 3.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 43 / 98

Proof of the Lemma

Lemma: Let G be a graph with minimum degree 3, and let V3k be the 3k largest
degree vertices. Then every Feedback Vertex set of size at most k contains at
least one vertex of V3k .

Proof:

Let S be a solution disjoint from V3k .

Let d be the min degree of vertices in V3k .

Let X = V (G)− (S ∪ V3k)

∑
v∈X∪V3k

d(v) ≥ 3|X |+ 3kd

G [X ∪V3k] is a forest, so the number of edges in G [X ∪V3k] ≤ |X |+ 3k − 1.

So sum of the degree in G [X ∪ V3k] is at most 2|X |+ 6k − 2.

And now, the number of edges between S and X ∪ V3k is:

I ≥ 3kd + 3|X | − (2|X |+ 6k − 2) > 3kd − 6k
I ≤ dk because S has k vertices, each of degree at most d .

So 3kd − 6k < kd ⇔ 2kd − 6k < 0 which is false because d ≥ 3.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 43 / 98

Proof of the Lemma

Lemma: Let G be a graph with minimum degree 3, and let V3k be the 3k largest
degree vertices. Then every Feedback Vertex set of size at most k contains at
least one vertex of V3k .

Proof:

Let S be a solution disjoint from V3k .

Let d be the min degree of vertices in V3k .

Let X = V (G)− (S ∪ V3k)∑
v∈X∪V3k

d(v) ≥ 3|X |+ 3kd

G [X ∪V3k] is a forest, so the number of edges in G [X ∪V3k] ≤ |X |+ 3k − 1.

So sum of the degree in G [X ∪ V3k] is at most 2|X |+ 6k − 2.

And now, the number of edges between S and X ∪ V3k is:

I ≥ 3kd + 3|X | − (2|X |+ 6k − 2) > 3kd − 6k
I ≤ dk because S has k vertices, each of degree at most d .

So 3kd − 6k < kd ⇔ 2kd − 6k < 0 which is false because d ≥ 3.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 43 / 98

Proof of the Lemma

Lemma: Let G be a graph with minimum degree 3, and let V3k be the 3k largest
degree vertices. Then every Feedback Vertex set of size at most k contains at
least one vertex of V3k .

Proof:

Let S be a solution disjoint from V3k .

Let d be the min degree of vertices in V3k .

Let X = V (G)− (S ∪ V3k)∑
v∈X∪V3k

d(v) ≥ 3|X |+ 3kd

G [X ∪V3k] is a forest, so the number of edges in G [X ∪V3k] ≤ |X |+ 3k − 1.

So sum of the degree in G [X ∪ V3k] is at most 2|X |+ 6k − 2.

And now, the number of edges between S and X ∪ V3k is:

I ≥ 3kd + 3|X | − (2|X |+ 6k − 2) > 3kd − 6k
I ≤ dk because S has k vertices, each of degree at most d .

So 3kd − 6k < kd ⇔ 2kd − 6k < 0 which is false because d ≥ 3.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 43 / 98

Proof of the Lemma

Lemma: Let G be a graph with minimum degree 3, and let V3k be the 3k largest
degree vertices. Then every Feedback Vertex set of size at most k contains at
least one vertex of V3k .

Proof:

Let S be a solution disjoint from V3k .

Let d be the min degree of vertices in V3k .

Let X = V (G)− (S ∪ V3k)∑
v∈X∪V3k

d(v) ≥ 3|X |+ 3kd

G [X ∪V3k] is a forest, so the number of edges in G [X ∪V3k] ≤ |X |+ 3k − 1.

So sum of the degree in G [X ∪ V3k] is at most 2|X |+ 6k − 2.

And now, the number of edges between S and X ∪ V3k is:

I ≥ 3kd + 3|X | − (2|X |+ 6k − 2) > 3kd − 6k
I ≤ dk because S has k vertices, each of degree at most d .

So 3kd − 6k < kd ⇔ 2kd − 6k < 0 which is false because d ≥ 3.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 43 / 98

Proof of the Lemma

Lemma: Let G be a graph with minimum degree 3, and let V3k be the 3k largest
degree vertices. Then every Feedback Vertex set of size at most k contains at
least one vertex of V3k .

Proof:

Let S be a solution disjoint from V3k .

Let d be the min degree of vertices in V3k .

Let X = V (G)− (S ∪ V3k)∑
v∈X∪V3k

d(v) ≥ 3|X |+ 3kd

G [X ∪V3k] is a forest, so the number of edges in G [X ∪V3k] ≤ |X |+ 3k − 1.

So sum of the degree in G [X ∪ V3k] is at most 2|X |+ 6k − 2.

And now, the number of edges between S and X ∪ V3k is:

I ≥ 3kd + 3|X | − (2|X |+ 6k − 2) > 3kd − 6k
I ≤ dk because S has k vertices, each of degree at most d .

So 3kd − 6k < kd ⇔ 2kd − 6k < 0 which is false because d ≥ 3.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 43 / 98

Proof of the Lemma

Lemma: Let G be a graph with minimum degree 3, and let V3k be the 3k largest
degree vertices. Then every Feedback Vertex set of size at most k contains at
least one vertex of V3k .

Proof:

Let S be a solution disjoint from V3k .

Let d be the min degree of vertices in V3k .

Let X = V (G)− (S ∪ V3k)∑
v∈X∪V3k

d(v) ≥ 3|X |+ 3kd

G [X ∪V3k] is a forest, so the number of edges in G [X ∪V3k] ≤ |X |+ 3k − 1.

So sum of the degree in G [X ∪ V3k] is at most 2|X |+ 6k − 2.

And now, the number of edges between S and X ∪ V3k is:
I ≥ 3kd + 3|X | − (2|X |+ 6k − 2) > 3kd − 6k

I ≤ dk because S has k vertices, each of degree at most d .

So 3kd − 6k < kd ⇔ 2kd − 6k < 0 which is false because d ≥ 3.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 43 / 98

Proof of the Lemma

Lemma: Let G be a graph with minimum degree 3, and let V3k be the 3k largest
degree vertices. Then every Feedback Vertex set of size at most k contains at
least one vertex of V3k .

Proof:

Let S be a solution disjoint from V3k .

Let d be the min degree of vertices in V3k .

Let X = V (G)− (S ∪ V3k)∑
v∈X∪V3k

d(v) ≥ 3|X |+ 3kd

G [X ∪V3k] is a forest, so the number of edges in G [X ∪V3k] ≤ |X |+ 3k − 1.

So sum of the degree in G [X ∪ V3k] is at most 2|X |+ 6k − 2.

And now, the number of edges between S and X ∪ V3k is:
I ≥ 3kd + 3|X | − (2|X |+ 6k − 2) > 3kd − 6k
I ≤ dk because S has k vertices, each of degree at most d .

So 3kd − 6k < kd ⇔ 2kd − 6k < 0 which is false because d ≥ 3.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 43 / 98

Proof of the Lemma

Lemma: Let G be a graph with minimum degree 3, and let V3k be the 3k largest
degree vertices. Then every Feedback Vertex set of size at most k contains at
least one vertex of V3k .

Proof:

Let S be a solution disjoint from V3k .

Let d be the min degree of vertices in V3k .

Let X = V (G)− (S ∪ V3k)∑
v∈X∪V3k

d(v) ≥ 3|X |+ 3kd

G [X ∪V3k] is a forest, so the number of edges in G [X ∪V3k] ≤ |X |+ 3k − 1.

So sum of the degree in G [X ∪ V3k] is at most 2|X |+ 6k − 2.

And now, the number of edges between S and X ∪ V3k is:
I ≥ 3kd + 3|X | − (2|X |+ 6k − 2) > 3kd − 6k
I ≤ dk because S has k vertices, each of degree at most d .

So 3kd − 6k < kd ⇔ 2kd − 6k < 0 which is false because d ≥ 3.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 43 / 98

2 - Kernelization

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 44 / 98

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 45 / 98

Data reduction

Kernelization is a method for parameterized preprocessing:
We want to efficiently reduce the size of the instance (x , k) to an equivalent
instance with size bounded by f (k).

A basic way of obtaining FPT algorithms:
Reduce the size of the instance to f (k) in polynomial time and then apply
any brute force algorithm to the shrunk instance.

Figure by Daniel Marx

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 46 / 98

Kernelization: formal definition

Let P ⊆ Σ∗ × N be a parametrized problem and let f : N→ N be a
computable function.

A kernel of size f (k) for P is an algorithm that, given (x , k), runs in
polynomial time in |x |+ k and outputs an instance (x ′, k ′) such that:

• (x , k) ∈ P ⇔ (x ′, k ′) ∈ P.
• |x ′| ≤ f (k) and k ′ ≤ k.

A polynomial kernel is a kernel whose function f is polynomial.

Question: which problem has a kernel??

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 47 / 98

Kernelization: formal definition

Let P ⊆ Σ∗ × N be a parametrized problem and let f : N→ N be a
computable function.

A kernel of size f (k) for P is an algorithm that, given (x , k), runs in
polynomial time in |x |+ k and outputs an instance (x ′, k ′) such that:

• (x , k) ∈ P ⇔ (x ′, k ′) ∈ P.
• |x ′| ≤ f (k) and k ′ ≤ k .

A polynomial kernel is a kernel whose function f is polynomial.

Question: which problem has a kernel??

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 47 / 98

Kernelization: formal definition

Let P ⊆ Σ∗ × N be a parametrized problem and let f : N→ N be a
computable function.

A kernel of size f (k) for P is an algorithm that, given (x , k), runs in
polynomial time in |x |+ k and outputs an instance (x ′, k ′) such that:

• (x , k) ∈ P ⇔ (x ′, k ′) ∈ P.
• |x ′| ≤ f (k) and k ′ ≤ k .

A polynomial kernel is a kernel whose function f is polynomial.

Question: which problem has a kernel??

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 47 / 98

Kernelization: formal definition

Let P ⊆ Σ∗ × N be a parametrized problem and let f : N→ N be a
computable function.

A kernel of size f (k) for P is an algorithm that, given (x , k), runs in
polynomial time in |x |+ k and outputs an instance (x ′, k ′) such that:

• (x , k) ∈ P ⇔ (x ′, k ′) ∈ P.
• |x ′| ≤ f (k) and k ′ ≤ k .

A polynomial kernel is a kernel whose function f is polynomial.

Question: which problem has a kernel??

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 47 / 98

Kernelization: formal definition

Let P ⊆ Σ∗ × N be a parametrized problem and let f : N→ N be a
computable function.

A kernel of size f (k) for P is an algorithm that, given (x , k), runs in
polynomial time in |x |+ k and outputs an instance (x ′, k ′) such that:

• (x , k) ∈ P ⇔ (x ′, k ′) ∈ P.
• |x ′| ≤ f (k) and k ′ ≤ k .

A polynomial kernel is a kernel whose function f is polynomial.

Question: which problem has a kernel??

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 47 / 98

A crazy equivalence

Theorem: A parametrized problem is FPT if and only if it is decidable and has a
kernel (of arbitrary size).

Proof:
• If the problem has a kernel:
reduce the size of the instance in poly-time and use brute force on it ⇒ FPT.

• If the problem can be solved in time f (k) · |x |c :

If |x | ≤ f (k), then we already have our kernel.

If |x | ≥ f (k), then we can solve the problem in time f (k) · |x |c ≤ |x |c+1

(which is polynomial in |x |) and then output a trivial YES or NO answer.

So asking if there is a kernel is the same question as asking for an FPT
algorithm.

The important question: is there a polynomial kernel?

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 48 / 98

A crazy equivalence

Theorem: A parametrized problem is FPT if and only if it is decidable and has a
kernel (of arbitrary size).

Proof:
• If the problem has a kernel:
reduce the size of the instance in poly-time and use brute force on it ⇒ FPT.

• If the problem can be solved in time f (k) · |x |c :

If |x | ≤ f (k), then we already have our kernel.

If |x | ≥ f (k), then we can solve the problem in time f (k) · |x |c ≤ |x |c+1

(which is polynomial in |x |) and then output a trivial YES or NO answer.

So asking if there is a kernel is the same question as asking for an FPT
algorithm.

The important question: is there a polynomial kernel?

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 48 / 98

A crazy equivalence

Theorem: A parametrized problem is FPT if and only if it is decidable and has a
kernel (of arbitrary size).

Proof:
• If the problem has a kernel:
reduce the size of the instance in poly-time and use brute force on it ⇒ FPT.

• If the problem can be solved in time f (k) · |x |c :

If |x | ≤ f (k), then we already have our kernel.

If |x | ≥ f (k), then we can solve the problem in time f (k) · |x |c ≤ |x |c+1

(which is polynomial in |x |) and then output a trivial YES or NO answer.

So asking if there is a kernel is the same question as asking for an FPT
algorithm.

The important question: is there a polynomial kernel?

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 48 / 98

A crazy equivalence

Theorem: A parametrized problem is FPT if and only if it is decidable and has a
kernel (of arbitrary size).

Proof:
• If the problem has a kernel:
reduce the size of the instance in poly-time and use brute force on it ⇒ FPT.

• If the problem can be solved in time f (k) · |x |c :

If |x | ≤ f (k), then we already have our kernel.

If |x | ≥ f (k), then we can solve the problem in time f (k) · |x |c ≤ |x |c+1

(which is polynomial in |x |) and then output a trivial YES or NO answer.

So asking if there is a kernel is the same question as asking for an FPT
algorithm.

The important question: is there a polynomial kernel?

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 48 / 98

Back to vertex cover

Let us prove that Vertex Cover has a polynomial kernel.

A vertex cover of a graph G is a set S of vertices such that G \ S is edgeless.
In other words S hits all edges.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 49 / 98

Thinking about the problem

Observe that if a vertex v has degree 0, then:
G has a vertex cover of size k if and only if G − {v} has a vertex cover of size k.

Observe that if a vertex v has degree k + 1, then v must be in all vertex cover of
size at most k. So:
G has a vertex cover of size k if and only if G − {v} has a vertex cover of size
k − 1.

This leads us to define the two following reduction rules:

(R1) If v has degree 0, then reduce to (G − v , k)

(R2) If v has degree at least k + 1, then reduce to (G − v , k − 1).

Now, if (G , k) is an instance of Vertex Cover and (G ′, k ′) is the instance
obtained after an exhaustive application of R1 and R2, then:

(G , k) is a YES-instance if and only if (G ′, k ′) is a YES-instance.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 50 / 98

Thinking about the problem

Observe that if a vertex v has degree 0, then:
G has a vertex cover of size k if and only if G − {v} has a vertex cover of size k.

Observe that if a vertex v has degree k + 1, then v must be in all vertex cover of
size at most k. So:
G has a vertex cover of size k if and only if G − {v} has a vertex cover of size
k − 1.

This leads us to define the two following reduction rules:

(R1) If v has degree 0, then reduce to (G − v , k)

(R2) If v has degree at least k + 1, then reduce to (G − v , k − 1).

Now, if (G , k) is an instance of Vertex Cover and (G ′, k ′) is the instance
obtained after an exhaustive application of R1 and R2, then:

(G , k) is a YES-instance if and only if (G ′, k ′) is a YES-instance.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 50 / 98

Thinking about the problem

Observe that if a vertex v has degree 0, then:
G has a vertex cover of size k if and only if G − {v} has a vertex cover of size k.

Observe that if a vertex v has degree k + 1, then v must be in all vertex cover of
size at most k. So:
G has a vertex cover of size k if and only if G − {v} has a vertex cover of size
k − 1.

This leads us to define the two following reduction rules:

(R1) If v has degree 0, then reduce to (G − v , k)

(R2) If v has degree at least k + 1, then reduce to (G − v , k − 1).

Now, if (G , k) is an instance of Vertex Cover and (G ′, k ′) is the instance
obtained after an exhaustive application of R1 and R2, then:

(G , k) is a YES-instance if and only if (G ′, k ′) is a YES-instance.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 50 / 98

Kernel for vertex cover

Reduction rules:

(R1) If v has degree 0, then reduce to (G − v , k)

(R2) If v has degree at least k + 1, then reduce to (G − v , k − 1).

Lemma: If (G , k) is a YES-instance for k-vertex cover on which reduction rules 1
and 2 cannot be applied, then G has at most k2 edges and at most k2 + k vertices.

Proof:

Let S be a vertex cover of G of size at most k.

Each vertex hits at most k edges because (R2) does not apply. So there is at
most k2 edges.

Each vertex is either in S , or is one of the k neighbors of a vertex in S . So
|V (G)| ≤ k2 + k.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 51 / 98

Kernel for vertex cover

Reduction rules:

(R1) If v has degree 0, then reduce to (G − v , k)

(R2) If v has degree at least k + 1, then reduce to (G − v , k − 1).

Lemma: If (G , k) is a YES-instance for k-vertex cover on which reduction rules 1
and 2 cannot be applied, then G has at most k2 edges and at most k2 + k vertices.

Proof:

Let S be a vertex cover of G of size at most k.

Each vertex hits at most k edges because (R2) does not apply. So there is at
most k2 edges.

Each vertex is either in S , or is one of the k neighbors of a vertex in S . So
|V (G)| ≤ k2 + k.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 51 / 98

Kernel for vertex cover

Reduction rules:

(R1) If v has degree 0, then reduce to (G − v , k)

(R2) If v has degree at least k + 1, then reduce to (G − v , k − 1).

Lemma: If (G , k) is a YES-instance for k-vertex cover on which reduction rules 1
and 2 cannot be applied, then G has at most k2 edges and at most k2 + k vertices.

Proof:

Let S be a vertex cover of G of size at most k .

Each vertex hits at most k edges because (R2) does not apply. So there is at
most k2 edges.

Each vertex is either in S , or is one of the k neighbors of a vertex in S . So
|V (G)| ≤ k2 + k.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 51 / 98

Kernel for vertex cover

Reduction rules:

(R1) If v has degree 0, then reduce to (G − v , k)

(R2) If v has degree at least k + 1, then reduce to (G − v , k − 1).

Lemma: If (G , k) is a YES-instance for k-vertex cover on which reduction rules 1
and 2 cannot be applied, then G has at most k2 edges and at most k2 + k vertices.

Kernelization for Vertex Cover:

Apply rules (R1) and (R2) exhaustively. We get a new instance (G ′, k ′) with
k ′ ≤ k and such that (G , k) is a YES-instance if and only if (G ′, k ′) is.

If |E (G ′)| > k ′2 or |V (G)| > k ′2 + k ′, output NO.

Otherwise we have a kernel of size O(2k2 + k).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 52 / 98

Crown decomposition

Theorem: Vertex Cover has a kernel with at most 3k vertices.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 53 / 98

Crown decomposition

A crown decomposition of a graph G is a partitioning of V (G) into three parts C ,
H and R such that:

1 C is a nonempty independent set;

2 There are no edge between C and R;

3 There is a matching between C and H of size |H|.
C is the crown, H the head, and R the rest.

Figure from Parametrized Algorithm by CFKLMPPS

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 54 / 98

Matching in bipartite graphs

Let G be a bipartite graph with partition (V1,V2).

Kőnig’s Theorem: The size of a maximum matching of G equal the size of a
minimum vertex cover.

Hall’s Theorem: G has a matching saturating V1 if and only if for all X ⊆ V1,
|N(X)| ≥ |X |.

Hopcroft-Karp algorithm: There is a O
(
m
√
n
)
-time algorithm that finds a

maximum matching as well as a minimum vertex cover in G . It furthermore finds
a matching saturating V1, or a inclusion-wise minimal set X ⊆ V1 such that
|N(X)| < |X |.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 55 / 98

Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Corollary: Vertex Cover has a kernel with at most 3k vertices.

Proof: Consider a Vertex Cover instance (G , k). By an exhaustive application of
(R1), we may assume G has no isolated vertex. If |V (G)| ≥ 3k + 1, by the crown
lemma applied to (G , k), either G has a (k + 1) matching, or a crown
decomposition (C ,H,R). In a former case, output NO. In the latter case, let M be
a matching between H and C of size |H|. Observe that the matching M witnesses
that, for every vertex cover X of G , X contains at least |M| = |H| vertices of
H ∪ C to cover the edges of M. On the other hand, H covers all edges of G that
are incident to H ∪ C . Consequently, there exists a minimum vertex cover of G
that contains H. Moreover, vertices in C are isolated in G −H. Hence, (G , k) is a
YES-instance if and only if (G − (C ∪ H), k − |H|) is. As H 6= ∅, we can run the
crown algorithm until it outputs a matching of size k + 1 or until |V (G)| ≤ 3k. �

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 56 / 98

Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Corollary: Vertex Cover has a kernel with at most 3k vertices.

Proof: Consider a Vertex Cover instance (G , k). By an exhaustive application of
(R1), we may assume G has no isolated vertex. If |V (G)| ≥ 3k + 1, by the crown
lemma applied to (G , k), either G has a (k + 1) matching, or a crown
decomposition (C ,H,R). In a former case, output NO. In the latter case, let M be
a matching between H and C of size |H|. Observe that the matching M witnesses
that, for every vertex cover X of G , X contains at least |M| = |H| vertices of
H ∪ C to cover the edges of M. On the other hand, H covers all edges of G that
are incident to H ∪ C . Consequently, there exists a minimum vertex cover of G
that contains H. Moreover, vertices in C are isolated in G −H. Hence, (G , k) is a
YES-instance if and only if (G − (C ∪ H), k − |H|) is. As H 6= ∅, we can run the
crown algorithm until it outputs a matching of size k + 1 or until |V (G)| ≤ 3k. �

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 56 / 98

Proof of the crown lemma
Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Proof:

Greedily find a maximal matching M.

If |M| ≥ k + 1, we are done, so |M| ≤ k.

Set VM = V (M) and I = V (G) \ V (M). Note that I is an independent set.

Let GI ,VM
the bipartite graph formed by edges between I and VM .

Compute a maximum matching M ′ and a minimum vertex cover X of GI ,VM
.

|M ′| ≤ k (for otherwise we are done) and by Kőnig’s Theorem |X | = |M ′|.
If X ⊆ I , then X = I (because no isolated vertex) and thus |V (G)| ≤ 3k and
we are done.

Hence |X ∩ VM | 6= ∅.
Let M∗ the edges of M ′ with an extremity in X ∩ VM , and VM∗ = V (M∗).

Set H = X ∩ VM = X ∩ VM∗ , C = VM∗ ∩ I , R = V (G) \ (C ∪ H).

Prove that it is a crown decomposition and check that it gives a poly-time
algorithm.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 57 / 98

Proof of the crown lemma
Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Proof:

Greedily find a maximal matching M.

If |M| ≥ k + 1, we are done, so |M| ≤ k.

Set VM = V (M) and I = V (G) \ V (M). Note that I is an independent set.

Let GI ,VM
the bipartite graph formed by edges between I and VM .

Compute a maximum matching M ′ and a minimum vertex cover X of GI ,VM
.

|M ′| ≤ k (for otherwise we are done) and by Kőnig’s Theorem |X | = |M ′|.
If X ⊆ I , then X = I (because no isolated vertex) and thus |V (G)| ≤ 3k and
we are done.

Hence |X ∩ VM | 6= ∅.
Let M∗ the edges of M ′ with an extremity in X ∩ VM , and VM∗ = V (M∗).

Set H = X ∩ VM = X ∩ VM∗ , C = VM∗ ∩ I , R = V (G) \ (C ∪ H).

Prove that it is a crown decomposition and check that it gives a poly-time
algorithm.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 57 / 98

Proof of the crown lemma
Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Proof:

Greedily find a maximal matching M.

If |M| ≥ k + 1, we are done, so |M| ≤ k .

Set VM = V (M) and I = V (G) \ V (M). Note that I is an independent set.

Let GI ,VM
the bipartite graph formed by edges between I and VM .

Compute a maximum matching M ′ and a minimum vertex cover X of GI ,VM
.

|M ′| ≤ k (for otherwise we are done) and by Kőnig’s Theorem |X | = |M ′|.
If X ⊆ I , then X = I (because no isolated vertex) and thus |V (G)| ≤ 3k and
we are done.

Hence |X ∩ VM | 6= ∅.
Let M∗ the edges of M ′ with an extremity in X ∩ VM , and VM∗ = V (M∗).

Set H = X ∩ VM = X ∩ VM∗ , C = VM∗ ∩ I , R = V (G) \ (C ∪ H).

Prove that it is a crown decomposition and check that it gives a poly-time
algorithm.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 57 / 98

Proof of the crown lemma
Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Proof:

Greedily find a maximal matching M.

If |M| ≥ k + 1, we are done, so |M| ≤ k .

Set VM = V (M) and I = V (G) \ V (M). Note that I is an independent set.

Let GI ,VM
the bipartite graph formed by edges between I and VM .

Compute a maximum matching M ′ and a minimum vertex cover X of GI ,VM
.

|M ′| ≤ k (for otherwise we are done) and by Kőnig’s Theorem |X | = |M ′|.
If X ⊆ I , then X = I (because no isolated vertex) and thus |V (G)| ≤ 3k and
we are done.

Hence |X ∩ VM | 6= ∅.
Let M∗ the edges of M ′ with an extremity in X ∩ VM , and VM∗ = V (M∗).

Set H = X ∩ VM = X ∩ VM∗ , C = VM∗ ∩ I , R = V (G) \ (C ∪ H).

Prove that it is a crown decomposition and check that it gives a poly-time
algorithm.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 57 / 98

Proof of the crown lemma
Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Proof:

Greedily find a maximal matching M.

If |M| ≥ k + 1, we are done, so |M| ≤ k .

Set VM = V (M) and I = V (G) \ V (M). Note that I is an independent set.

Let GI ,VM
the bipartite graph formed by edges between I and VM .

Compute a maximum matching M ′ and a minimum vertex cover X of GI ,VM
.

|M ′| ≤ k (for otherwise we are done) and by Kőnig’s Theorem |X | = |M ′|.
If X ⊆ I , then X = I (because no isolated vertex) and thus |V (G)| ≤ 3k and
we are done.

Hence |X ∩ VM | 6= ∅.
Let M∗ the edges of M ′ with an extremity in X ∩ VM , and VM∗ = V (M∗).

Set H = X ∩ VM = X ∩ VM∗ , C = VM∗ ∩ I , R = V (G) \ (C ∪ H).

Prove that it is a crown decomposition and check that it gives a poly-time
algorithm.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 57 / 98

Proof of the crown lemma
Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Proof:

Greedily find a maximal matching M.

If |M| ≥ k + 1, we are done, so |M| ≤ k .

Set VM = V (M) and I = V (G) \ V (M). Note that I is an independent set.

Let GI ,VM
the bipartite graph formed by edges between I and VM .

Compute a maximum matching M ′ and a minimum vertex cover X of GI ,VM
.

|M ′| ≤ k (for otherwise we are done) and by Kőnig’s Theorem |X | = |M ′|.
If X ⊆ I , then X = I (because no isolated vertex) and thus |V (G)| ≤ 3k and
we are done.

Hence |X ∩ VM | 6= ∅.
Let M∗ the edges of M ′ with an extremity in X ∩ VM , and VM∗ = V (M∗).

Set H = X ∩ VM = X ∩ VM∗ , C = VM∗ ∩ I , R = V (G) \ (C ∪ H).

Prove that it is a crown decomposition and check that it gives a poly-time
algorithm.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 57 / 98

Proof of the crown lemma
Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Proof:

Greedily find a maximal matching M.

If |M| ≥ k + 1, we are done, so |M| ≤ k .

Set VM = V (M) and I = V (G) \ V (M). Note that I is an independent set.

Let GI ,VM
the bipartite graph formed by edges between I and VM .

Compute a maximum matching M ′ and a minimum vertex cover X of GI ,VM
.

|M ′| ≤ k (for otherwise we are done) and by Kőnig’s Theorem |X | = |M ′|.

If X ⊆ I , then X = I (because no isolated vertex) and thus |V (G)| ≤ 3k and
we are done.

Hence |X ∩ VM | 6= ∅.
Let M∗ the edges of M ′ with an extremity in X ∩ VM , and VM∗ = V (M∗).

Set H = X ∩ VM = X ∩ VM∗ , C = VM∗ ∩ I , R = V (G) \ (C ∪ H).

Prove that it is a crown decomposition and check that it gives a poly-time
algorithm.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 57 / 98

Proof of the crown lemma
Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Proof:

Greedily find a maximal matching M.

If |M| ≥ k + 1, we are done, so |M| ≤ k .

Set VM = V (M) and I = V (G) \ V (M). Note that I is an independent set.

Let GI ,VM
the bipartite graph formed by edges between I and VM .

Compute a maximum matching M ′ and a minimum vertex cover X of GI ,VM
.

|M ′| ≤ k (for otherwise we are done) and by Kőnig’s Theorem |X | = |M ′|.
If X ⊆ I , then X = I (because no isolated vertex) and thus |V (G)| ≤ 3k and
we are done.

Hence |X ∩ VM | 6= ∅.
Let M∗ the edges of M ′ with an extremity in X ∩ VM , and VM∗ = V (M∗).

Set H = X ∩ VM = X ∩ VM∗ , C = VM∗ ∩ I , R = V (G) \ (C ∪ H).

Prove that it is a crown decomposition and check that it gives a poly-time
algorithm.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 57 / 98

Proof of the crown lemma
Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Proof:

Greedily find a maximal matching M.

If |M| ≥ k + 1, we are done, so |M| ≤ k .

Set VM = V (M) and I = V (G) \ V (M). Note that I is an independent set.

Let GI ,VM
the bipartite graph formed by edges between I and VM .

Compute a maximum matching M ′ and a minimum vertex cover X of GI ,VM
.

|M ′| ≤ k (for otherwise we are done) and by Kőnig’s Theorem |X | = |M ′|.
If X ⊆ I , then X = I (because no isolated vertex) and thus |V (G)| ≤ 3k and
we are done.

Hence |X ∩ VM | 6= ∅.

Let M∗ the edges of M ′ with an extremity in X ∩ VM , and VM∗ = V (M∗).

Set H = X ∩ VM = X ∩ VM∗ , C = VM∗ ∩ I , R = V (G) \ (C ∪ H).

Prove that it is a crown decomposition and check that it gives a poly-time
algorithm.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 57 / 98

Proof of the crown lemma
Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Proof:

Greedily find a maximal matching M.

If |M| ≥ k + 1, we are done, so |M| ≤ k .

Set VM = V (M) and I = V (G) \ V (M). Note that I is an independent set.

Let GI ,VM
the bipartite graph formed by edges between I and VM .

Compute a maximum matching M ′ and a minimum vertex cover X of GI ,VM
.

|M ′| ≤ k (for otherwise we are done) and by Kőnig’s Theorem |X | = |M ′|.
If X ⊆ I , then X = I (because no isolated vertex) and thus |V (G)| ≤ 3k and
we are done.

Hence |X ∩ VM | 6= ∅.
Let M∗ the edges of M ′ with an extremity in X ∩ VM , and VM∗ = V (M∗).

Set H = X ∩ VM = X ∩ VM∗ , C = VM∗ ∩ I , R = V (G) \ (C ∪ H).

Prove that it is a crown decomposition and check that it gives a poly-time
algorithm.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 57 / 98

Proof of the crown lemma
Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Proof:

Greedily find a maximal matching M.

If |M| ≥ k + 1, we are done, so |M| ≤ k .

Set VM = V (M) and I = V (G) \ V (M). Note that I is an independent set.

Let GI ,VM
the bipartite graph formed by edges between I and VM .

Compute a maximum matching M ′ and a minimum vertex cover X of GI ,VM
.

|M ′| ≤ k (for otherwise we are done) and by Kőnig’s Theorem |X | = |M ′|.
If X ⊆ I , then X = I (because no isolated vertex) and thus |V (G)| ≤ 3k and
we are done.

Hence |X ∩ VM | 6= ∅.
Let M∗ the edges of M ′ with an extremity in X ∩ VM , and VM∗ = V (M∗).

Set H = X ∩ VM = X ∩ VM∗ , C = VM∗ ∩ I , R = V (G) \ (C ∪ H).

Prove that it is a crown decomposition and check that it gives a poly-time
algorithm.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 57 / 98

Proof of the crown lemma
Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Proof:

Greedily find a maximal matching M.

If |M| ≥ k + 1, we are done, so |M| ≤ k .

Set VM = V (M) and I = V (G) \ V (M). Note that I is an independent set.

Let GI ,VM
the bipartite graph formed by edges between I and VM .

Compute a maximum matching M ′ and a minimum vertex cover X of GI ,VM
.

|M ′| ≤ k (for otherwise we are done) and by Kőnig’s Theorem |X | = |M ′|.
If X ⊆ I , then X = I (because no isolated vertex) and thus |V (G)| ≤ 3k and
we are done.

Hence |X ∩ VM | 6= ∅.
Let M∗ the edges of M ′ with an extremity in X ∩ VM , and VM∗ = V (M∗).

Set H = X ∩ VM = X ∩ VM∗ , C = VM∗ ∩ I , R = V (G) \ (C ∪ H).

Prove that it is a crown decomposition and check that it gives a poly-time
algorithm.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 57 / 98

Proof of the crown lemma
Crown Algorithm: Let G be a graph with no isolated vertex and with at least
3k + 1 vertices. There is a poly-time algorithm that either:

find a matching of size k + 1, or

find a crown decomposition of G .

Proof:

Greedily find a maximal matching M.

If |M| ≥ k + 1, we are done, so |M| ≤ k .

Set VM = V (M) and I = V (G) \ V (M). Note that I is an independent set.

Let GI ,VM
the bipartite graph formed by edges between I and VM .

Compute a maximum matching M ′ and a minimum vertex cover X of GI ,VM
.

|M ′| ≤ k (for otherwise we are done) and by Kőnig’s Theorem |X | = |M ′|.
If X ⊆ I , then X = I (because no isolated vertex) and thus |V (G)| ≤ 3k and
we are done.

Hence |X ∩ VM | 6= ∅.
Let M∗ the edges of M ′ with an extremity in X ∩ VM , and VM∗ = V (M∗).

Set H = X ∩ VM = X ∩ VM∗ , C = VM∗ ∩ I , R = V (G) \ (C ∪ H).

Prove that it is a crown decomposition and check that it gives a poly-time
algorithm.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 57 / 98

Kernels based on linear programming

Theorem: Vertex Cover has a kernel with at most 2k vertices.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 58 / 98

Integer Linear Programming

Many combinatorial problems can be expressed in the language of Integer Linear
Programming (ILP).

In an ILP instance, we are given a set of integer-valued variables, a set of linear
inequalities (called constraints) and a linear cost function.
The goal is to minimize or maximize the value of the cost function respecting the
constraints.

Minimise :
∑n

j=1 cj · xj
Subject to:

∑n
j=1 aij · xj ≤ bi for 1 ≤ i ≤ m

xj ∈ Z for 1 ≤ j ≤ m

The aij , bi and ci are constants, the xi are the variables.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 59 / 98

Encode Vertex Cover as an ILP

Introduce a variable xv ∈ {0, 1} for each v ∈ V (G).
Setting xv = 0 means that xv is not in the solution, while xv = 1 means it is.

Minimise :
∑

v∈V (G) xv
Subject to: xu + xv ≥ 1 for all uv ∈ E (G)

xv ∈ {0, 1} for all v ∈ V (G)

Beautifull, but how is it helpful? ILP is extremely hard to solve.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 60 / 98

Encode Vertex Cover as an ILP

Introduce a variable xv ∈ {0, 1} for each v ∈ V (G).
Setting xv = 0 means that xv is not in the solution, while xv = 1 means it is.

Minimise :
∑

v∈V (G) xv
Subject to: xu + xv ≥ 1 for all uv ∈ E (G)

xv ∈ {0, 1} for all v ∈ V (G)

Beautifull, but how is it helpful? ILP is extremely hard to solve.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 60 / 98

Fractional relaxation

Linear Programming is famously known for being solvable in (weakly) poly-time,
so let us relax our problem. Call it LPVC (G).

Minimise :
∑

v∈V (G) xv
Subject to: xu + xv ≥ 1 for all uv ∈ E (G)

0 ≤ xv ≤ 1 for all v ∈ V (G)

xv = 1
3 is understood as we take one third of the vertex.

A solution to LPVC (G) is a called a fractional vertex cover of G . Its size if
dentoed by VCf (G).

We of course have
VCf (G) ≤ VC (G)

and for example, if G is a triangle, VCf (G) = 3
2 < 2 = VC (G).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 61 / 98

Fractional relaxation

Linear Programming is famously known for being solvable in (weakly) poly-time,
so let us relax our problem. Call it LPVC (G).

Minimise :
∑

v∈V (G) xv
Subject to: xu + xv ≥ 1 for all uv ∈ E (G)

0 ≤ xv ≤ 1 for all v ∈ V (G)

xv = 1
3 is understood as we take one third of the vertex.

A solution to LPVC (G) is a called a fractional vertex cover of G . Its size if
dentoed by VCf (G).

We of course have
VCf (G) ≤ VC (G)

and for example, if G is a triangle, VCf (G) = 3
2 < 2 = VC (G).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 61 / 98

Fractional relaxation

Linear Programming is famously known for being solvable in (weakly) poly-time,
so let us relax our problem. Call it LPVC (G).

Minimise :
∑

v∈V (G) xv
Subject to: xu + xv ≥ 1 for all uv ∈ E (G)

0 ≤ xv ≤ 1 for all v ∈ V (G)

xv = 1
3 is understood as we take one third of the vertex.

A solution to LPVC (G) is a called a fractional vertex cover of G . Its size if
dentoed by VCf (G).

We of course have
VCf (G) ≤ VC (G)

and for example, if G is a triangle, VCf (G) = 3
2 < 2 = VC (G).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 61 / 98

Let (xv)v∈V (G) be a minimum fractional vertex cover, i.e. an optimal solution to:

Minimise :
∑

v∈V (G) xv
Subject to: xu + xv ≥ 1 for all uv ∈ E (G)

0 ≤ xv ≤ 1 for all v ∈ V (G)

Partition the vertices with respect to their value as follows:

V0 = {v : xv <
1
2}

V 1
2

= {v : xv = 1
2}

V1 = {v : xv >
1
2}

Key Observations:

V0 is an independent set, and

there is no edge between V0 and V 1
2
.

Theorem (Nemhauser-Trotter, 1975)
There is a minimum vertex cover S of G such that: V1 ⊆ S ⊆ V 1

2
∪ V1

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 62 / 98

Let (xv)v∈V (G) be a minimum fractional vertex cover, i.e. an optimal solution to:

Minimise :
∑

v∈V (G) xv
Subject to: xu + xv ≥ 1 for all uv ∈ E (G)

0 ≤ xv ≤ 1 for all v ∈ V (G)

Partition the vertices with respect to their value as follows:

V0 = {v : xv <
1
2}

V 1
2

= {v : xv = 1
2}

V1 = {v : xv >
1
2}

Key Observations:

V0 is an independent set, and

there is no edge between V0 and V 1
2
.

Theorem (Nemhauser-Trotter, 1975)
There is a minimum vertex cover S of G such that: V1 ⊆ S ⊆ V 1

2
∪ V1

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 62 / 98

Let (xv)v∈V (G) be a minimum fractional vertex cover, i.e. an optimal solution to:

Minimise :
∑

v∈V (G) xv
Subject to: xu + xv ≥ 1 for all uv ∈ E (G)

0 ≤ xv ≤ 1 for all v ∈ V (G)

Partition the vertices with respect to their value as follows:

V0 = {v : xv <
1
2}

V 1
2

= {v : xv = 1
2}

V1 = {v : xv >
1
2}

Key Observations:

V0 is an independent set, and

there is no edge between V0 and V 1
2
.

Theorem (Nemhauser-Trotter, 1975)
There is a minimum vertex cover S of G such that: V1 ⊆ S ⊆ V 1

2
∪ V1

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 62 / 98

Theorem (Nemhauser-Trotter, 1975)
There is a minimum vertex cover S of G such that: V1 ⊆ S ⊆ V 1

2
∪ V1

Proof:
• Let S∗ be a minimum vertex cover of G .
• Set S = V1 ∪ (V 1

2
∩ S∗), and observe that V1 ⊆ S ⊆ V 1

2
∪ V1.

• Since there is no edge between V0 and V 1
2
, S is a VC of G .

• It remains to prove that S is a minimal VC. Assume |S | > |S∗|.
• So

|V0 ∩ S∗| < |V1 \ S∗| (1)

• Set ε = min(|xv − 1
2 | : v ∈ V0 ∪ V1) and define:

yv =

 xv − ε if v ∈ V1 \ S∗
xv + ε if v ∈ V0 ∩ S∗

xv otherwise

• It is easy to check that (yv)v∈V (G) is a fractional vertex cover.
• But by (1),

∑
v∈V (G) yv <

∑
v∈V (G) xv , a contradiction.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 63 / 98

Nemhauser-Trotter’s theorem allows the following reduction rule:

(R3) Given an minimum fractional vertex cover (xv)v∈V (G) and the partition
(V0,V 1

2
,V1):

I if
∑

v∈V (G) xv > k , output NO.

I Otherwise, solve (G [V 1
2
], k − |V1|).

This is a safe rule in the sense that:

• if
∑

v∈V (G) xv > k, then (G , k) is indeed a NO-instance.

• (G [V 1
2
], k − |V1|) is a YES-instance if and only (G , k) is.

Moreover, if (G , k) is a YES-instance, then
|V 1

2
| =

∑
v∈V 1

2

2xv ≤ 2
∑

v∈V (G) xv ≤ 2k.

Theorem: Vertex Cover has a kernel with at most 2k vertices.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 64 / 98

Nemhauser-Trotter’s theorem allows the following reduction rule:

(R3) Given an minimum fractional vertex cover (xv)v∈V (G) and the partition
(V0,V 1

2
,V1):

I if
∑

v∈V (G) xv > k , output NO.

I Otherwise, solve (G [V 1
2
], k − |V1|).

This is a safe rule in the sense that:

• if
∑

v∈V (G) xv > k, then (G , k) is indeed a NO-instance.

• (G [V 1
2
], k − |V1|) is a YES-instance if and only (G , k) is.

Moreover, if (G , k) is a YES-instance, then
|V 1

2
| =

∑
v∈V 1

2

2xv ≤ 2
∑

v∈V (G) xv ≤ 2k .

Theorem: Vertex Cover has a kernel with at most 2k vertices.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 64 / 98

Lemma: An minimum fractional vertex cover with each weight in {0, 1
2 , 1} can be

found in time O(m
√

(n)

Proof: We reduce fractional vertex cover to Vertex Cover in the following
bipartite graph H: take two copies V1 and V2 of V (G) (if u ∈ V (G), there is a
copy u1 of u in V1 and a copy u2 of u in V2.) and if uv ∈ E (G), then
u1v2, v1u2 ∈ E (G).

Find a minimum vertex cover S in H with the Hopcroft-Karp algorithm:
O(m

√
(n).

Define a vector (xv)v∈V (G) as follows:
• if both v1 and v2 are in S , set xv = 1,
• if exactly one of v1 and v2 are in S , set xv = 1

2 ,
• xv = 0 otherwise.

We have:
∑

v∈V (G) xv = |S|
2 .

Since S is a vertex cover of H, at least two of the vertices u1, v1, u2, v2 are in S ,
and thus, for every edge uv , xu + xv ≥ 1. So (xv)v∈V (G) is a fractional vertex
cover G . Let us prove it is minimum.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 65 / 98

Lemma: An minimum fractional vertex cover with each weight in {0, 1
2 , 1} can be

found in time O(m
√

(n)

Proof: We reduce fractional vertex cover to Vertex Cover in the following
bipartite graph H: take two copies V1 and V2 of V (G) (if u ∈ V (G), there is a
copy u1 of u in V1 and a copy u2 of u in V2.) and if uv ∈ E (G), then
u1v2, v1u2 ∈ E (G).
Find a minimum vertex cover S in H with the Hopcroft-Karp algorithm:
O(m

√
(n).

Define a vector (xv)v∈V (G) as follows:
• if both v1 and v2 are in S , set xv = 1,
• if exactly one of v1 and v2 are in S , set xv = 1

2 ,
• xv = 0 otherwise.

We have:
∑

v∈V (G) xv = |S|
2 .

Since S is a vertex cover of H, at least two of the vertices u1, v1, u2, v2 are in S ,
and thus, for every edge uv , xu + xv ≥ 1. So (xv)v∈V (G) is a fractional vertex
cover G . Let us prove it is minimum.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 65 / 98

Lemma: An minimum fractional vertex cover with each weight in {0, 1
2 , 1} can be

found in time O(m
√

(n)

Proof: We reduce fractional vertex cover to Vertex Cover in the following
bipartite graph H: take two copies V1 and V2 of V (G) (if u ∈ V (G), there is a
copy u1 of u in V1 and a copy u2 of u in V2.) and if uv ∈ E (G), then
u1v2, v1u2 ∈ E (G).
Find a minimum vertex cover S in H with the Hopcroft-Karp algorithm:
O(m

√
(n).

Define a vector (xv)v∈V (G) as follows:
• if both v1 and v2 are in S , set xv = 1,
• if exactly one of v1 and v2 are in S , set xv = 1

2 ,
• xv = 0 otherwise.

We have:
∑

v∈V (G) xv = |S|
2 .

Since S is a vertex cover of H, at least two of the vertices u1, v1, u2, v2 are in S ,
and thus, for every edge uv , xu + xv ≥ 1. So (xv)v∈V (G) is a fractional vertex
cover G . Let us prove it is minimum.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 65 / 98

Lemma: An minimum fractional vertex cover with each weight in {0, 1
2 , 1} can be

found in time O(m
√

(n)

Proof: We reduce fractional vertex cover to Vertex Cover in the following
bipartite graph H: take two copies V1 and V2 of V (G) (if u ∈ V (G), there is a
copy u1 of u in V1 and a copy u2 of u in V2.) and if uv ∈ E (G), then
u1v2, v1u2 ∈ E (G).
Find a minimum vertex cover S in H with the Hopcroft-Karp algorithm:
O(m

√
(n).

Define a vector (xv)v∈V (G) as follows:
• if both v1 and v2 are in S , set xv = 1,
• if exactly one of v1 and v2 are in S , set xv = 1

2 ,
• xv = 0 otherwise.

We have:
∑

v∈V (G) xv = |S|
2 .

Since S is a vertex cover of H, at least two of the vertices u1, v1, u2, v2 are in S ,
and thus, for every edge uv , xu + xv ≥ 1. So (xv)v∈V (G) is a fractional vertex
cover G . Let us prove it is minimum.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 65 / 98

Lemma: An minimum fractional vertex cover with each weight in {0, 1
2 , 1} can be

found in time O(m
√

(n)

Proof: We reduce fractional vertex cover to Vertex Cover in the following
bipartite graph H: take two copies V1 and V2 of V (G) (if u ∈ V (G), there is a
copy u1 of u in V1 and a copy u2 of u in V2.) and if uv ∈ E (G), then
u1v2, v1u2 ∈ E (G).
Find a minimum vertex cover S in H with the Hopcroft-Karp algorithm:
O(m

√
(n).

Define a vector (xv)v∈V (G) as follows:
• if both v1 and v2 are in S , set xv = 1,
• if exactly one of v1 and v2 are in S , set xv = 1

2 ,
• xv = 0 otherwise.

We have:
∑

v∈V (G) xv = |S|
2 .

Since S is a vertex cover of H, at least two of the vertices u1, v1, u2, v2 are in S ,
and thus, for every edge uv , xu + xv ≥ 1. So (xv)v∈V (G) is a fractional vertex
cover G . Let us prove it is minimum.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 65 / 98

Let (yv)v∈V (G) be a minimum fractional vertex cover G .
We define a weight on V (H) as follows:
For every v ∈ V (G), w(v1) = w(v2) = yv .
This weight assignment is a fractionnal vertex cover of H, i.e., for every edge u1v2

of H, we have w(u1) + w(v2) ≥ 1. Hence,
∑

v∈V (H) w(v) is at least the size of a
maximum matching M of H.
Now, by Kőnig Theorem, |M| = |S |, so:∑

v∈V (G)

yv =
1

2

∑
v∈V (G)

(w(v1) + w(v2)) =
1

2

∑
v∈V (H)

w(v) ≥ |S |
2

=
∑

v∈V (G)

xv

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 66 / 98

The sunflower Lemma

Theorem: d-hitting set has a kernel with at most d!kd hyperedges and
d!kdd2 vertices.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 67 / 98

The d-hitting set problem

Let V be a finite set. A set system F on V is a collection of subsets of X . We
call F a d-set system if each set has size at most d . A hitting set of F is a set of
vertices that intersects (hits) every set of F .

Problem (d-hitting set problem)

Given: a d-set system F and a an integer k .
Question: does F admits a hitting set of size at most k?.

Note that when d = 2, it is vertex cover!

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 68 / 98

Sunflower

A collection of sets S1, . . .Sk is a k-sunflower if

Si ∩ Sj = S1 ∩ S2 ∩ . . . Sk ∀ i 6= j

The set K = S1 ∩ S2 ∩ . . . Sk is the core of the sun flower and the sets Si \ K are
its petals.

Note that a set of k pairwise disjoint sets is a sunflower with k petals and an
empty core.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 69 / 98

The Sunflower Lemma, or Erdős-Rado Lemma

Lemma [The Sunflower Lemma, or Erdős-Rado Lemma, 1960]
Let F be a d-set system on a set V . If |F| > d!(k − 1)d , then F has a sunflower
with k petals.
Moreover, it can be found in time polynomial in |V |+ |F|+ k.

Proof: We proceed by induction on d . For d = 1 it is trivial. Assume d ≥ 2. Let
M = {S1, . . . ,S`} be a maximal collection of pairwise disjoint sets of F . If ` ≥ k
we are done, we may assume k < `. Set S = S1 ∪ · · · ∪ S` and observe
|S | ≤ d(k − 1). Moreover, every set of F intersects S . Hence, there is u ∈ S that
belongs to at least

d!(k − 1)d

d(k − 1)
= (d − 1)!(k − 1)d−1

sets of F . Construct a (d − 1)-set system by taking all these sets and removing u
from each of them. By induction it has a k-sunflower and thus, puting u back in,
we get a k-sunflower in F .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 70 / 98

The Sunflower Lemma, or Erdős-Rado Lemma

Lemma [The Sunflower Lemma, or Erdős-Rado Lemma, 1960]
Let F be a d-set system on a set V . If |F| > d!(k − 1)d , then F has a sunflower
with k petals.
Moreover, it can be found in time polynomial in |V |+ |F|+ k.

Proof: We proceed by induction on d . For d = 1 it is trivial. Assume d ≥ 2. Let
M = {S1, . . . ,S`} be a maximal collection of pairwise disjoint sets of F . If ` ≥ k
we are done, we may assume k < `. Set S = S1 ∪ · · · ∪ S` and observe
|S | ≤ d(k − 1). Moreover, every set of F intersects S . Hence, there is u ∈ S that
belongs to at least

d!(k − 1)d

d(k − 1)
= (d − 1)!(k − 1)d−1

sets of F . Construct a (d − 1)-set system by taking all these sets and removing u
from each of them. By induction it has a k-sunflower and thus, puting u back in,
we get a k-sunflower in F .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 70 / 98

The Sunflower Conjecture

Sunflower Conjecture (Erdős-Rado, 1960)
Let k ≥ 3. There exists c = c(k) such that every d-set system F with |F| ≥ cd

contains a d-sunflower.

Theorem (Alweiss, Lovett, Wu and Zhang, 2021):
Let k ≥ 3. There exists c such that every d-set system F with
|F| ≥ (ck3 log d log log d)d contains a k-sunflower.

Trendy topic:
Blog of Terry Tao
Polymath10

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 71 / 98

https://terrytao.wordpress.com/2020/07/20/the-sunflower-lemma-via-shannon-entropy/
https://gilkalai.wordpress.com/2015/11/03/polymath10-the-erdos-rado-delta-system-conjecture/

Kernel for d-hitting set

Problem (d-hitting set problem)

Given: a d-set system F and an integer k .
Question: does F admits a hitting set of size at most k?.

Theorem: d-hitting set has a kernel with at most d!kd sets and d!kdd2

vertices.

Crucial Observation: If F has a (k + 1)-sunflower with core K , then every
hitting set of F intersects K .

Reduction rule: Given an instance (V ,F , k), if F has a (k + 1)-sunflower
S = {S1, . . . ,Sk+1} with core K , return (V ′,F ′, k) where:

F ′ = (F \ S) ∪ K and

V ′ = ∪F∈F ′F

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 72 / 98

Kernel for d-hitting set

Problem (d-hitting set problem)

Given: a d-set system F and an integer k .
Question: does F admits a hitting set of size at most k?.

Theorem: d-hitting set has a kernel with at most d!kd sets and d!kdd2

vertices.

Crucial Observation: If F has a (k + 1)-sunflower with core K , then every
hitting set of F intersects K .

Reduction rule: Given an instance (V ,F , k), if F has a (k + 1)-sunflower
S = {S1, . . . ,Sk+1} with core K , return (V ′,F ′, k) where:

F ′ = (F \ S) ∪ K and

V ′ = ∪F∈F ′F

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 72 / 98

Kernel for d-hitting set

Problem (d-hitting set problem)

Given: a d-set system F and an integer k .
Question: does F admits a hitting set of size at most k?.

Theorem: d-hitting set has a kernel with at most d!kd sets and d!kdd2

vertices.

Crucial Observation: If F has a (k + 1)-sunflower with core K , then every
hitting set of F intersects K .

Reduction rule: Given an instance (V ,F , k), if F has a (k + 1)-sunflower
S = {S1, . . . ,Sk+1} with core K , return (V ′,F ′, k) where:

F ′ = (F \ S) ∪ K and

V ′ = ∪F∈F ′F

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 72 / 98

3 - Color coding

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 73 / 98

k-path problem

Problem (k-path)

Given (G , k), decide if G contains a (simple) path on k vertices as a subgraph.

A long history:

This problem is NP-complete (it is hamiltonian path for k = n).

No trivial FPT algorithm exists.

Monien 1985: k! · nO(1) using representative set.

Bodlaender 1989: k!2k · n0(1), using treewidth.

Alon, Yuster, Zwik, 1994: ((2e)k)m using color coding.

Kneiss, Molle, Richter, Rossmanith, 2006: 4k · nO(1) using color coding.

Koutis 2008: 23k/2 · nO(1), algebraic method.

Williams 2009: 2k · n0(1), algebraic method.

Bjorklund, Husfeldt, Kaski, Koivisto 2010: 1.66knO(1)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 74 / 98

k-path problem

Problem (k-path)

Given (G , k), decide if G contains a (simple) path on k vertices as a subgraph.

A long history:

This problem is NP-complete (it is hamiltonian path for k = n).

No trivial FPT algorithm exists.

Monien 1985: k! · nO(1) using representative set.

Bodlaender 1989: k!2k · n0(1), using treewidth.

Alon, Yuster, Zwik, 1994: ((2e)k)m using color coding.

Kneiss, Molle, Richter, Rossmanith, 2006: 4k · nO(1) using color coding.

Koutis 2008: 23k/2 · nO(1), algebraic method.

Williams 2009: 2k · n0(1), algebraic method.

Bjorklund, Husfeldt, Kaski, Koivisto 2010: 1.66knO(1)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 74 / 98

k-path problem

Problem (k-path)

Given (G , k), decide if G contains a (simple) path on k vertices as a subgraph.

A long history:

This problem is NP-complete (it is hamiltonian path for k = n).

No trivial FPT algorithm exists.

Monien 1985: k! · nO(1) using representative set.

Bodlaender 1989: k!2k · n0(1), using treewidth.

Alon, Yuster, Zwik, 1994: ((2e)k)m using color coding.

Kneiss, Molle, Richter, Rossmanith, 2006: 4k · nO(1) using color coding.

Koutis 2008: 23k/2 · nO(1), algebraic method.

Williams 2009: 2k · n0(1), algebraic method.

Bjorklund, Husfeldt, Kaski, Koivisto 2010: 1.66knO(1)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 74 / 98

k-path problem

Problem (k-path)

Given (G , k), decide if G contains a (simple) path on k vertices as a subgraph.

A long history:

This problem is NP-complete (it is hamiltonian path for k = n).

No trivial FPT algorithm exists.

Monien 1985: k! · nO(1) using representative set.

Bodlaender 1989: k!2k · n0(1), using treewidth.

Alon, Yuster, Zwik, 1994: ((2e)k)m using color coding.

Kneiss, Molle, Richter, Rossmanith, 2006: 4k · nO(1) using color coding.

Koutis 2008: 23k/2 · nO(1), algebraic method.

Williams 2009: 2k · n0(1), algebraic method.

Bjorklund, Husfeldt, Kaski, Koivisto 2010: 1.66knO(1)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 74 / 98

k-path problem

Problem (k-path)

Given (G , k), decide if G contains a (simple) path on k vertices as a subgraph.

A long history:

This problem is NP-complete (it is hamiltonian path for k = n).

No trivial FPT algorithm exists.

Monien 1985: k! · nO(1) using representative set.

Bodlaender 1989: k!2k · n0(1), using treewidth.

Alon, Yuster, Zwik, 1994: ((2e)k)m using color coding.

Kneiss, Molle, Richter, Rossmanith, 2006: 4k · nO(1) using color coding.

Koutis 2008: 23k/2 · nO(1), algebraic method.

Williams 2009: 2k · n0(1), algebraic method.

Bjorklund, Husfeldt, Kaski, Koivisto 2010: 1.66knO(1)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 74 / 98

k-path problem

Problem (k-path)

Given (G , k), decide if G contains a (simple) path on k vertices as a subgraph.

A long history:

This problem is NP-complete (it is hamiltonian path for k = n).

No trivial FPT algorithm exists.

Monien 1985: k! · nO(1) using representative set.

Bodlaender 1989: k!2k · n0(1), using treewidth.

Alon, Yuster, Zwik, 1994: ((2e)k)m using color coding.

Kneiss, Molle, Richter, Rossmanith, 2006: 4k · nO(1) using color coding.

Koutis 2008: 23k/2 · nO(1), algebraic method.

Williams 2009: 2k · n0(1), algebraic method.

Bjorklund, Husfeldt, Kaski, Koivisto 2010: 1.66knO(1)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 74 / 98

k-path problem

Problem (k-path)

Given (G , k), decide if G contains a (simple) path on k vertices as a subgraph.

A long history:

This problem is NP-complete (it is hamiltonian path for k = n).

No trivial FPT algorithm exists.

Monien 1985: k! · nO(1) using representative set.

Bodlaender 1989: k!2k · n0(1), using treewidth.

Alon, Yuster, Zwik, 1994: ((2e)k)m using color coding.

Kneiss, Molle, Richter, Rossmanith, 2006: 4k · nO(1) using color coding.

Koutis 2008: 23k/2 · nO(1), algebraic method.

Williams 2009: 2k · n0(1), algebraic method.

Bjorklund, Husfeldt, Kaski, Koivisto 2010: 1.66knO(1)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 74 / 98

k-path problem

Problem (k-path)

Given (G , k), decide if G contains a (simple) path on k vertices as a subgraph.

A long history:

This problem is NP-complete (it is hamiltonian path for k = n).

No trivial FPT algorithm exists.

Monien 1985: k! · nO(1) using representative set.

Bodlaender 1989: k!2k · n0(1), using treewidth.

Alon, Yuster, Zwik, 1994: ((2e)k)m using color coding.

Kneiss, Molle, Richter, Rossmanith, 2006: 4k · nO(1) using color coding.

Koutis 2008: 23k/2 · nO(1), algebraic method.

Williams 2009: 2k · n0(1), algebraic method.

Bjorklund, Husfeldt, Kaski, Koivisto 2010: 1.66knO(1)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 74 / 98

k-path problem

Problem (k-path)

Given (G , k), decide if G contains a (simple) path on k vertices as a subgraph.

A long history:

This problem is NP-complete (it is hamiltonian path for k = n).

No trivial FPT algorithm exists.

Monien 1985: k! · nO(1) using representative set.

Bodlaender 1989: k!2k · n0(1), using treewidth.

Alon, Yuster, Zwik, 1994: ((2e)k)m using color coding.

Kneiss, Molle, Richter, Rossmanith, 2006: 4k · nO(1) using color coding.

Koutis 2008: 23k/2 · nO(1), algebraic method.

Williams 2009: 2k · n0(1), algebraic method.

Bjorklund, Husfeldt, Kaski, Koivisto 2010: 1.66knO(1)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 74 / 98

Randomized algorithm

A randomized algorithm is an algorithm that employes randomness.

IRL, a guaranteed error probability of 10−100 is as good as a deterministic
algorithm (probability of hardware failure is larger!)

Randomized algorithm can be more efficient and/or conceptually simpler.

It can be the first step towards a deterministic algorithm

I Standard derandomization techniques exist.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 75 / 98

Randomized algorithm

A randomized algorithm is an algorithm that employes randomness.

IRL, a guaranteed error probability of 10−100 is as good as a deterministic
algorithm (probability of hardware failure is larger!)

Randomized algorithm can be more efficient and/or conceptually simpler.

It can be the first step towards a deterministic algorithm

I Standard derandomization techniques exist.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 75 / 98

Randomized algorithm

A randomized algorithm is an algorithm that employes randomness.

IRL, a guaranteed error probability of 10−100 is as good as a deterministic
algorithm (probability of hardware failure is larger!)

Randomized algorithm can be more efficient and/or conceptually simpler.

It can be the first step towards a deterministic algorithm

I Standard derandomization techniques exist.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 75 / 98

Randomized algorithm

A randomized algorithm is an algorithm that employes randomness.

IRL, a guaranteed error probability of 10−100 is as good as a deterministic
algorithm (probability of hardware failure is larger!)

Randomized algorithm can be more efficient and/or conceptually simpler.

It can be the first step towards a deterministic algorithm

I Standard derandomization techniques exist.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 75 / 98

Randomized algorithm

A randomized algorithm is an algorithm that employes randomness.

IRL, a guaranteed error probability of 10−100 is as good as a deterministic
algorithm (probability of hardware failure is larger!)

Randomized algorithm can be more efficient and/or conceptually simpler.

It can be the first step towards a deterministic algorithm

I Standard derandomization techniques exist.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 75 / 98

Monte-carlo algorithm

A typical situation in randomized algorithm is the so-called Monte-Carlo algorithm
with one-sided error:

NO instance: always output NO.

YES instance: output YES with probability p (and NO with probability
1− p).

The time complexity is deterministic, and depends on p.

Question: Are we happy with a probability p = 1
10 ?

Answer: Yes! because of Probability Amplification:
Repeat the algorithm 100 times and output YES if there was at least one YES.
Then:

Pr [error] ≤ 9

10100

Morality: any constant probability is ok.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 76 / 98

Monte-carlo algorithm

A typical situation in randomized algorithm is the so-called Monte-Carlo algorithm
with one-sided error:

NO instance: always output NO.

YES instance: output YES with probability p (and NO with probability
1− p).

The time complexity is deterministic, and depends on p.

Question: Are we happy with a probability p = 1
10 ?

Answer: Yes! because of Probability Amplification:
Repeat the algorithm 100 times and output YES if there was at least one YES.
Then:

Pr [error] ≤ 9

10100

Morality: any constant probability is ok.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 76 / 98

Monte-carlo algorithm

A typical situation in randomized algorithm is the so-called Monte-Carlo algorithm
with one-sided error:

NO instance: always output NO.

YES instance: output YES with probability p (and NO with probability
1− p).

The time complexity is deterministic, and depends on p.

Question: Are we happy with a probability p = 1
10 ?

Answer: Yes! because of Probability Amplification:
Repeat the algorithm 100 times and output YES if there was at least one YES.
Then:

Pr [error] ≤ 9

10100

Morality: any constant probability is ok.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 76 / 98

Monte-carlo algorithm

A typical situation in randomized algorithm is the so-called Monte-Carlo algorithm
with one-sided error:

NO instance: always output NO.

YES instance: output YES with probability p (and NO with probability
1− p).

The time complexity is deterministic, and depends on p.

Question: Are we happy with a probability p = 1
10 ?

Answer: Yes! because of Probability Amplification:
Repeat the algorithm 100 times and output YES if there was at least one YES.
Then:

Pr [error] ≤ 9

10100

Morality: any constant probability is ok.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 76 / 98

Figure by Daniel Marx

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 77 / 98

Color coding

Surprising idea: transform the problem into the following:

Assume the vertices are colored randomly with {1, . . . , k}
Problem: find a path colored 1− 2− · · · − k .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 78 / 98

Color coding

Surprising idea: transform the problem into the following:

Assume the vertices are colored randomly with {1, . . . , k}
Problem: find a path colored 1− 2− · · · − k .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 78 / 98

Color coding

Surprising idea: transform the problem into the following:

Assume the vertices are colored randomly with {1, . . . , k}
Problem: find a path colored 1− 2− · · · − k .

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 78 / 98

Color coding

Assign color from [k] to the vertices of G uniformly and independently at
random.

Output YES if there is a path colored 1− 2− · · · − k, and NO otherwise.

If G has a k-path, the probability that this k-path is colored 1-2-. . . -k is
1/kk .

So if G is a YES instance, the algo output YES with probability at least 1/kk

And if it is a NO instance, the algorithm output NO.

This looks very bad, but since k is considered as a constant maybe it is not
that bad!

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 79 / 98

Color coding

Assign color from [k] to the vertices of G uniformly and independently at
random.

Output YES if there is a path colored 1− 2− · · · − k , and NO otherwise.

If G has a k-path, the probability that this k-path is colored 1-2-. . . -k is
1/kk .

So if G is a YES instance, the algo output YES with probability at least 1/kk

And if it is a NO instance, the algorithm output NO.

This looks very bad, but since k is considered as a constant maybe it is not
that bad!

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 79 / 98

Color coding

Assign color from [k] to the vertices of G uniformly and independently at
random.

Output YES if there is a path colored 1− 2− · · · − k , and NO otherwise.

If G has a k-path, the probability that this k-path is colored 1-2-. . . -k is
1/kk .

So if G is a YES instance, the algo output YES with probability at least 1/kk

And if it is a NO instance, the algorithm output NO.

This looks very bad, but since k is considered as a constant maybe it is not
that bad!

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 79 / 98

Color coding

Assign color from [k] to the vertices of G uniformly and independently at
random.

Output YES if there is a path colored 1− 2− · · · − k , and NO otherwise.

If G has a k-path, the probability that this k-path is colored 1-2-. . . -k is
1/kk .

So if G is a YES instance, the algo output YES with probability at least 1/kk

And if it is a NO instance, the algorithm output NO.

This looks very bad, but since k is considered as a constant maybe it is not
that bad!

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 79 / 98

Color coding

Assign color from [k] to the vertices of G uniformly and independently at
random.

Output YES if there is a path colored 1− 2− · · · − k , and NO otherwise.

If G has a k-path, the probability that this k-path is colored 1-2-. . . -k is
1/kk .

So if G is a YES instance, the algo output YES with probability at least 1/kk

And if it is a NO instance, the algorithm output NO.

This looks very bad, but since k is considered as a constant maybe it is not
that bad!

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 79 / 98

Color coding

Assign color from [k] to the vertices of G uniformly and independently at
random.

Output YES if there is a path colored 1− 2− · · · − k , and NO otherwise.

If G has a k-path, the probability that this k-path is colored 1-2-. . . -k is
1/kk .

So if G is a YES instance, the algo output YES with probability at least 1/kk

And if it is a NO instance, the algorithm output NO.

This looks very bad, but since k is considered as a constant maybe it is not
that bad!

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 79 / 98

Brillant idea: do it a lot of times

Useful fact
If the probability of success of a (Monte-Carlo) algorithm is at least p, then the
probability that, given a YES-instance, the algorithm return NO 1/p times in a
row is at most:

(1− p)1/p < (e−p)1/p = 1/e ≈ 0.38

Thus if p ≥ 1
kk , then after kk repetitions error probability is at most 1/e:(

1− 1

kk

)k
<

1

e

Hence, by trying 100 · kk random colorings, the probability of a wrong answer is at
most 1/e100.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 80 / 98

Brillant idea: do it a lot of times

Useful fact
If the probability of success of a (Monte-Carlo) algorithm is at least p, then the
probability that, given a YES-instance, the algorithm return NO 1/p times in a
row is at most:

(1− p)1/p < (e−p)1/p = 1/e ≈ 0.38

Thus if p ≥ 1
kk , then after kk repetitions error probability is at most 1/e:(

1− 1

kk

)k
<

1

e

Hence, by trying 100 · kk random colorings, the probability of a wrong answer is at
most 1/e100.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 80 / 98

Find a 1− 2− · · · − k colored path

Figure by Daniel Marx

Let Vi be the set of vertices colored i (color class)

Delete edge linking non-consecutive color classes.

Orient the edges toward the larger class

Check if there is a path from color class 1 to color class k: this can be done
in linear time with BFS.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 81 / 98

Find a 1− 2− · · · − k colored path

Figure by Daniel Marx

Let Vi be the set of vertices colored i (color class)

Delete edge linking non-consecutive color classes.

Orient the edges toward the larger class

Check if there is a path from color class 1 to color class k: this can be done
in linear time with BFS.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 81 / 98

Find a 1− 2− · · · − k colored path

Figure by Daniel Marx

Let Vi be the set of vertices colored i (color class)

Delete edge linking non-consecutive color classes.

Orient the edges toward the larger class

Check if there is a path from color class 1 to color class k: this can be done
in linear time with BFS.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 81 / 98

Find a 1− 2− · · · − k colored path

Figure by Daniel Marx

Let Vi be the set of vertices colored i (color class)

Delete edge linking non-consecutive color classes.

Orient the edges toward the larger class

Check if there is a path from color class 1 to color class k: this can be done
in linear time with BFS.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 81 / 98

Find a 1− 2− · · · − k colored path

Figure by Daniel Marx

Let Vi be the set of vertices colored i (color class)

Delete edge linking non-consecutive color classes.

Orient the edges toward the larger class

Check if there is a path from color class 1 to color class k: this can be done
in linear time with BFS.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 81 / 98

Figure by Daniel Marx

Complexity: O(c · kk · (n + m)).
Probability of sucess: 1/ec

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 82 / 98

Improved color coding

• Assign colors from [k] to the vertices uniformly and independantly at random.

• Output YES if there is a colorfull k-path.

I If there is no k-path, no colorfull path exist, and the algo output NO.

I If there is a k-path, probability that it is colorfull is

k!

kk
>

(k
e)k

kk
= e−k

• Repeat the algorithm 100ek times decrease the error probability to e−100.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 83 / 98

Improved color coding

• Assign colors from [k] to the vertices uniformly and independantly at random.

• Output YES if there is a colorfull k-path.

I If there is no k-path, no colorfull path exist, and the algo output NO.

I If there is a k-path, probability that it is colorfull is

k!

kk
>

(k
e)k

kk
= e−k

• Repeat the algorithm 100ek times decrease the error probability to e−100.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 83 / 98

Improved color coding

So replacing the problem ”Find a k-path colored 1− 2− · · · − k?” by ”Is there a
k-path coloured with k colours?” allowed us to go from probability of sucess of
1/kk to 1/ek .

Recall that this means that we need to solve the problem ek times instead of kk .

But how hard is it to solve colorfull path problem?

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 84 / 98

Find a colorfullpath with dynamic programming

Subproblem: For each vertex v and each set of color C ⊆ [k], define:

D(v ,C) to be YES if there is a path ending at v and using each color of C .

Denote by χ : V → [k] the random coloring.

D(v ,C) is YES if and only if χ(v) ∈ C and there is an edge uv for which
D(u,C \ χ(v)) is YES.

Now, we can solve this DP in time 2k · |E |

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 85 / 98

Find a colorfullpath with dynamic programming

Subproblem: For each vertex v and each set of color C ⊆ [k], define:

D(v ,C) to be YES if there is a path ending at v and using each color of C .

Denote by χ : V → [k] the random coloring.

D(v ,C) is YES if and only if χ(v) ∈ C and there is an edge uv for which
D(u,C \ χ(v)) is YES.

Now, we can solve this DP in time 2k · |E |

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 85 / 98

Find a colorfullpath with dynamic programming

Subproblem: For each vertex v and each set of color C ⊆ [k], define:

D(v ,C) to be YES if there is a path ending at v and using each color of C .

Denote by χ : V → [k] the random coloring.

D(v ,C) is YES if and only if χ(v) ∈ C and there is an edge uv for which
D(u,C \ χ(v)) is YES.

Now, we can solve this DP in time 2k · |E |

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 85 / 98

Recap

The algorithm: Repeat ek times:

1 Sample a coloring c : V ← {1, . . . , k}
2 Check if G contains a colorfull k-path in time O(2k) · |E | and return YES if it

does.

If no colorfull k-path was found, return NO.

Analysis:

If no solution, the answer is correct,

If there is a solution (u1u2 . . . uk),

Pr(single try sucess) ≥ k!

kk
'

(k
e)k

kk
=

1

ek

Pr [error] = Pr [ek single failures] ≤
(
1− 1

ek
)ek ≤ 1

e
<

1

2

Total running time: O((2e)k · |E |).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 86 / 98

Recap

The algorithm: Repeat ek times:

1 Sample a coloring c : V ← {1, . . . , k}
2 Check if G contains a colorfull k-path in time O(2k) · |E | and return YES if it

does.

If no colorfull k-path was found, return NO.

Analysis:

If no solution, the answer is correct,

If there is a solution (u1u2 . . . uk),

Pr(single try sucess) ≥ k!

kk
'

(k
e)k

kk
=

1

ek

Pr [error] = Pr [ek single failures] ≤
(
1− 1

ek
)ek ≤ 1

e
<

1

2

Total running time: O((2e)k · |E |).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 86 / 98

Recap

The algorithm: Repeat ek times:

1 Sample a coloring c : V ← {1, . . . , k}
2 Check if G contains a colorfull k-path in time O(2k) · |E | and return YES if it

does.

If no colorfull k-path was found, return NO.

Analysis:

If no solution, the answer is correct,

If there is a solution (u1u2 . . . uk),

Pr(single try sucess) ≥ k!

kk
'

(k
e)k

kk
=

1

ek

Pr [error] = Pr [ek single failures] ≤
(
1− 1

ek
)ek ≤ 1

e
<

1

2

Total running time: O((2e)k · |E |).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 86 / 98

Recap

The algorithm: Repeat ek times:

1 Sample a coloring c : V ← {1, . . . , k}
2 Check if G contains a colorfull k-path in time O(2k) · |E | and return YES if it

does.

If no colorfull k-path was found, return NO.

Analysis:

If no solution, the answer is correct,

If there is a solution (u1u2 . . . uk),

Pr(single try sucess) ≥ k!

kk
'

(k
e)k

kk
=

1

ek

Pr [error] = Pr [ek single failures] ≤
(
1− 1

ek
)ek ≤ 1

e
<

1

2

Total running time: O((2e)k · |E |).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 86 / 98

Recap

The algorithm: Repeat ek times:

1 Sample a coloring c : V ← {1, . . . , k}
2 Check if G contains a colorfull k-path in time O(2k) · |E | and return YES if it

does.

If no colorfull k-path was found, return NO.

Analysis:

If no solution, the answer is correct,

If there is a solution (u1u2 . . . uk),

Pr(single try sucess) ≥ k!

kk
'

(k
e)k

kk
=

1

ek

Pr [error] = Pr [ek single failures] ≤
(
1− 1

ek
)ek ≤ 1

e
<

1

2

Total running time: O((2e)k · |E |).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 86 / 98

Figure by Daniel Marx

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 87 / 98

Derandomization

Definition:
A family H of functions [n]→ [k] is a k-perfect family of hash functions if for
every S ⊆ [n] with |S | = k, there is an h ∈ H such that h(x) 6= h(y) for any
x , y ∈ S , x 6= y

Theorem: There is a k-perfect family of functions [n]→ [k] having size
2O(k) log n (and can be constructed in time polynomial in the size of the family).

Instead of trying O(ek) random colorings, we go through a k-perfect family H of
functions V (G)→ [k]. If there is a solution S

⇒ The vertices of S are colorful for at least one h ∈ H
⇒ Algorithm outputs “YES”.

⇒ k-Path can be solved in deterministic time 2O(k) · nO(1)

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 88 / 98

Figure by Daniel Marx

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 89 / 98

4 - Iterative Compression

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 90 / 98

Iterative compression

General technique used for graph modification problems: Find a set S of k
vertices/edges such that G \ S has a particular property.

We’ll do it for Feedback Vertex Set:

Goal: find a set S of at most k vertices such that G \ S is a forest.

Running time: 5k · nO(1).

Recall that we have seen an algorithm runing in (3k)knO(1) using the branching
method.

Best known algorithm: 2.7k · nO(1), Li and Nederlof, 2020.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 91 / 98

Iterative compression

General technique used for graph modification problems: Find a set S of k
vertices/edges such that G \ S has a particular property.

We’ll do it for Feedback Vertex Set:

Goal: find a set S of at most k vertices such that G \ S is a forest.

Running time: 5k · nO(1).

Recall that we have seen an algorithm runing in (3k)knO(1) using the branching
method.

Best known algorithm: 2.7k · nO(1), Li and Nederlof, 2020.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 91 / 98

General idea of iterative compression

Main idea: introduce vertices one by one and maintain a solution

Order the vertices: v1, v2, . . . , vn.

Set Gi = G [{v1, v2, . . . , vi}].
Oberve that if G is a YES-instance, then each Gi is a YES-instance.

We are going to compute a solution Si for each Gi .

Assume we have a solution Si−1 for Gi−1 (i.e. Gi−1 \ Si−1 is a forest).

Key: Si−1 ∪ {vi} is a solution for Gi but potentially of size k + 1.

So we can focus on the following problem:

Problem (FVS Compression)

Input: (G , k) and a vertex set S with |S | ≤ k + 1 and G \ S is a forest.
Output: A FVS of size at most k (if it exists).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 92 / 98

General idea of iterative compression

Main idea: introduce vertices one by one and maintain a solution

Order the vertices: v1, v2, . . . , vn.

Set Gi = G [{v1, v2, . . . , vi}].

Oberve that if G is a YES-instance, then each Gi is a YES-instance.

We are going to compute a solution Si for each Gi .

Assume we have a solution Si−1 for Gi−1 (i.e. Gi−1 \ Si−1 is a forest).

Key: Si−1 ∪ {vi} is a solution for Gi but potentially of size k + 1.

So we can focus on the following problem:

Problem (FVS Compression)

Input: (G , k) and a vertex set S with |S | ≤ k + 1 and G \ S is a forest.
Output: A FVS of size at most k (if it exists).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 92 / 98

General idea of iterative compression

Main idea: introduce vertices one by one and maintain a solution

Order the vertices: v1, v2, . . . , vn.

Set Gi = G [{v1, v2, . . . , vi}].
Oberve that if G is a YES-instance, then each Gi is a YES-instance.

We are going to compute a solution Si for each Gi .

Assume we have a solution Si−1 for Gi−1 (i.e. Gi−1 \ Si−1 is a forest).

Key: Si−1 ∪ {vi} is a solution for Gi but potentially of size k + 1.

So we can focus on the following problem:

Problem (FVS Compression)

Input: (G , k) and a vertex set S with |S | ≤ k + 1 and G \ S is a forest.
Output: A FVS of size at most k (if it exists).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 92 / 98

General idea of iterative compression

Main idea: introduce vertices one by one and maintain a solution

Order the vertices: v1, v2, . . . , vn.

Set Gi = G [{v1, v2, . . . , vi}].
Oberve that if G is a YES-instance, then each Gi is a YES-instance.

We are going to compute a solution Si for each Gi .

Assume we have a solution Si−1 for Gi−1 (i.e. Gi−1 \ Si−1 is a forest).

Key: Si−1 ∪ {vi} is a solution for Gi but potentially of size k + 1.

So we can focus on the following problem:

Problem (FVS Compression)

Input: (G , k) and a vertex set S with |S | ≤ k + 1 and G \ S is a forest.
Output: A FVS of size at most k (if it exists).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 92 / 98

General idea of iterative compression

Main idea: introduce vertices one by one and maintain a solution

Order the vertices: v1, v2, . . . , vn.

Set Gi = G [{v1, v2, . . . , vi}].
Oberve that if G is a YES-instance, then each Gi is a YES-instance.

We are going to compute a solution Si for each Gi .

Assume we have a solution Si−1 for Gi−1 (i.e. Gi−1 \ Si−1 is a forest).

Key: Si−1 ∪ {vi} is a solution for Gi but potentially of size k + 1.

So we can focus on the following problem:

Problem (FVS Compression)

Input: (G , k) and a vertex set S with |S | ≤ k + 1 and G \ S is a forest.
Output: A FVS of size at most k (if it exists).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 92 / 98

General idea of iterative compression

Main idea: introduce vertices one by one and maintain a solution

Order the vertices: v1, v2, . . . , vn.

Set Gi = G [{v1, v2, . . . , vi}].
Oberve that if G is a YES-instance, then each Gi is a YES-instance.

We are going to compute a solution Si for each Gi .

Assume we have a solution Si−1 for Gi−1 (i.e. Gi−1 \ Si−1 is a forest).

Key: Si−1 ∪ {vi} is a solution for Gi but potentially of size k + 1.

So we can focus on the following problem:

Problem (FVS Compression)

Input: (G , k) and a vertex set S with |S | ≤ k + 1 and G \ S is a forest.
Output: A FVS of size at most k (if it exists).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 92 / 98

General idea of iterative compression

Main idea: introduce vertices one by one and maintain a solution

Order the vertices: v1, v2, . . . , vn.

Set Gi = G [{v1, v2, . . . , vi}].
Oberve that if G is a YES-instance, then each Gi is a YES-instance.

We are going to compute a solution Si for each Gi .

Assume we have a solution Si−1 for Gi−1 (i.e. Gi−1 \ Si−1 is a forest).

Key: Si−1 ∪ {vi} is a solution for Gi but potentially of size k + 1.

So we can focus on the following problem:

Problem (FVS Compression)

Input: (G , k) and a vertex set S with |S | ≤ k + 1 and G \ S is a forest.
Output: A FVS of size at most k (if it exists).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 92 / 98

General idea of iterative compression

Main idea: introduce vertices one by one and maintain a solution

Order the vertices: v1, v2, . . . , vn.

Set Gi = G [{v1, v2, . . . , vi}].
Oberve that if G is a YES-instance, then each Gi is a YES-instance.

We are going to compute a solution Si for each Gi .

Assume we have a solution Si−1 for Gi−1 (i.e. Gi−1 \ Si−1 is a forest).

Key: Si−1 ∪ {vi} is a solution for Gi but potentially of size k + 1.

So we can focus on the following problem:

Problem (FVS Compression)

Input: (G , k) and a vertex set S with |S | ≤ k + 1 and G \ S is a forest.
Output: A FVS of size at most k (if it exists).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 92 / 98

Problem (FVS Compression)

Input: (G , k) and a vertex set S with |S | ≤ k + 1 and G \ S is a forest.
Output: A FVS of size at most k .

Observation: if we can solve FVS Compression in time f (k) · nc , then we can
solve FVS in time f (k) · nc+1.

So we can assume that we have a FVS of size k + 1 essentially for free

This FVS of size k + 1 gives us a lot of structure that will help us to find a smaller
FVS.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 93 / 98

Solve FVS compression with Branching

Branching: ‘guess’ a set XS ⊆ S (2k+1 choices) that goes into the solution X .

Delete XS from G .

Set W = S − XS and ` = |W | = k + 1− |XS |
It remains to solve the following:

Problem (Disjoint FVS)

Input: G , W ⊆ V (G) such that G \W is a forest.
Output: a FVS X such that |X | ≤ |W | − 1 and X ∩W = ∅.
Parameter: |W | = `.

f (`) · nc for Disjoint FVS

⇓∑k
`=0

(
k+1
`

)
f (`) · nc = f̂ (k) · nc for FVS compression

⇓
f̂ (k) · nc+1 for FVS

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 94 / 98

Solve FVS compression with Branching

Branching: ‘guess’ a set XS ⊆ S (2k+1 choices) that goes into the solution X .

Delete XS from G .

Set W = S − XS and ` = |W | = k + 1− |XS |
It remains to solve the following:

Problem (Disjoint FVS)

Input: G , W ⊆ V (G) such that G \W is a forest.
Output: a FVS X such that |X | ≤ |W | − 1 and X ∩W = ∅.
Parameter: |W | = `.

f (`) · nc for Disjoint FVS

⇓∑k
`=0

(
k+1
`

)
f (`) · nc = f̂ (k) · nc for FVS compression

⇓
f̂ (k) · nc+1 for FVS

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 94 / 98

Solve FVS compression with Branching

Branching: ‘guess’ a set XS ⊆ S (2k+1 choices) that goes into the solution X .

Delete XS from G .

Set W = S − XS and ` = |W | = k + 1− |XS |
It remains to solve the following:

Problem (Disjoint FVS)

Input: G , W ⊆ V (G) such that G \W is a forest.
Output: a FVS X such that |X | ≤ |W | − 1 and X ∩W = ∅.
Parameter: |W | = `.

f (`) · nc for Disjoint FVS

⇓∑k
`=0

(
k+1
`

)
f (`) · nc = f̂ (k) · nc for FVS compression

⇓
f̂ (k) · nc+1 for FVS

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 94 / 98

Solve FVS compression with Branching

Branching: ‘guess’ a set XS ⊆ S (2k+1 choices) that goes into the solution X .

Delete XS from G .

Set W = S − XS and ` = |W | = k + 1− |XS |
It remains to solve the following:

Problem (Disjoint FVS)

Input: G , W ⊆ V (G) such that G \W is a forest.
Output: a FVS X such that |X | ≤ |W | − 1 and X ∩W = ∅.
Parameter: |W | = `.

f (`) · nc for Disjoint FVS

⇓∑k
`=0

(
k+1
`

)
f (`) · nc = f̂ (k) · nc for FVS compression

⇓
f̂ (k) · nc+1 for FVS

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 94 / 98

Disjoint FVS

f (`) · nc for Disjoint FVS

⇓∑k
`=0

(
k+1
`

)
f (`) · nc = f̂ (k) · nc for FVS compression

⇓
f̂ (k) · nc+1 for FVS

Computation: If f (`) = c`, then
∑k

`=0

(
k+1
`

)
f (`) = (c + 1)k+1

Goal: Disjoint FVS in 4` · n0(1) (⇒ 5k · n0(1) for FVS compression
⇒ 5k+1 · n0(1) for FVS).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 95 / 98

Disjoint FVS

f (`) · nc for Disjoint FVS

⇓∑k
`=0

(
k+1
`

)
f (`) · nc = f̂ (k) · nc for FVS compression

⇓
f̂ (k) · nc+1 for FVS

Computation: If f (`) = c`, then
∑k

`=0

(
k+1
`

)
f (`) = (c + 1)k+1

Goal: Disjoint FVS in 4` · n0(1) (⇒ 5k · n0(1) for FVS compression
⇒ 5k+1 · n0(1) for FVS).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 95 / 98

Disjoint FVS

f (`) · nc for Disjoint FVS

⇓∑k
`=0

(
k+1
`

)
f (`) · nc = f̂ (k) · nc for FVS compression

⇓
f̂ (k) · nc+1 for FVS

Computation: If f (`) = c`, then
∑k

`=0

(
k+1
`

)
f (`) = (c + 1)k+1

Goal: Disjoint FVS in 4` · n0(1) (⇒ 5k · n0(1) for FVS compression
⇒ 5k+1 · n0(1) for FVS).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 95 / 98

Solving Disjoint FVS

Input: G , W ⊆ V (G), |W | = `, G −W = F is a forest.
Goal: Find a FVS disjoint from W of size at most `− 1.

Idea: look at leaves of F and how they interact with W .

Let u be a leaf of F
Case 1: u has no neighbor in W : delete u (it does not participate in any cycle).
Case 2: u has a unique neighbor in W : delete u and add en edge between the two
neighbors of u.
Case 3: u has at least 2 neighbors in W :

if there exists w1,w2 ∈ N(u) ∩W such that w1 and w2 are in the same
connected component of W , then u must be in the solution. So we may
delete u, and solve Disjoint FVS on (G \ u, `− 1)

otherwise, branch on u:
I u is in the solution, solve (G − u, `− 1), or
I u is not in the solution, add u into W .

Then the number of connected components of W decreseases, which make us
happy.
Also observe that at the beginning, W has at most ` connected components.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 96 / 98

Solving Disjoint FVS

Input: G , W ⊆ V (G), |W | = `, G −W = F is a forest.
Goal: Find a FVS disjoint from W of size at most `− 1.

Idea: look at leaves of F and how they interact with W .

Let u be a leaf of F
Case 1: u has no neighbor in W : delete u (it does not participate in any cycle).
Case 2: u has a unique neighbor in W : delete u and add en edge between the two
neighbors of u.
Case 3: u has at least 2 neighbors in W :

if there exists w1,w2 ∈ N(u) ∩W such that w1 and w2 are in the same
connected component of W , then u must be in the solution. So we may
delete u, and solve Disjoint FVS on (G \ u, `− 1)

otherwise, branch on u:
I u is in the solution, solve (G − u, `− 1), or
I u is not in the solution, add u into W .

Then the number of connected components of W decreseases, which make us
happy.
Also observe that at the beginning, W has at most ` connected components.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 96 / 98

Solving Disjoint FVS

Input: G , W ⊆ V (G), |W | = `, G −W = F is a forest.
Goal: Find a FVS disjoint from W of size at most `− 1.

Idea: look at leaves of F and how they interact with W .

Let u be a leaf of F

Case 1: u has no neighbor in W : delete u (it does not participate in any cycle).
Case 2: u has a unique neighbor in W : delete u and add en edge between the two
neighbors of u.
Case 3: u has at least 2 neighbors in W :

if there exists w1,w2 ∈ N(u) ∩W such that w1 and w2 are in the same
connected component of W , then u must be in the solution. So we may
delete u, and solve Disjoint FVS on (G \ u, `− 1)

otherwise, branch on u:
I u is in the solution, solve (G − u, `− 1), or
I u is not in the solution, add u into W .

Then the number of connected components of W decreseases, which make us
happy.
Also observe that at the beginning, W has at most ` connected components.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 96 / 98

Solving Disjoint FVS

Input: G , W ⊆ V (G), |W | = `, G −W = F is a forest.
Goal: Find a FVS disjoint from W of size at most `− 1.

Idea: look at leaves of F and how they interact with W .

Let u be a leaf of F
Case 1: u has no neighbor in W : delete u (it does not participate in any cycle).

Case 2: u has a unique neighbor in W : delete u and add en edge between the two
neighbors of u.
Case 3: u has at least 2 neighbors in W :

if there exists w1,w2 ∈ N(u) ∩W such that w1 and w2 are in the same
connected component of W , then u must be in the solution. So we may
delete u, and solve Disjoint FVS on (G \ u, `− 1)

otherwise, branch on u:
I u is in the solution, solve (G − u, `− 1), or
I u is not in the solution, add u into W .

Then the number of connected components of W decreseases, which make us
happy.
Also observe that at the beginning, W has at most ` connected components.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 96 / 98

Solving Disjoint FVS

Input: G , W ⊆ V (G), |W | = `, G −W = F is a forest.
Goal: Find a FVS disjoint from W of size at most `− 1.

Idea: look at leaves of F and how they interact with W .

Let u be a leaf of F
Case 1: u has no neighbor in W : delete u (it does not participate in any cycle).
Case 2: u has a unique neighbor in W : delete u and add en edge between the two
neighbors of u.

Case 3: u has at least 2 neighbors in W :

if there exists w1,w2 ∈ N(u) ∩W such that w1 and w2 are in the same
connected component of W , then u must be in the solution. So we may
delete u, and solve Disjoint FVS on (G \ u, `− 1)

otherwise, branch on u:
I u is in the solution, solve (G − u, `− 1), or
I u is not in the solution, add u into W .

Then the number of connected components of W decreseases, which make us
happy.
Also observe that at the beginning, W has at most ` connected components.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 96 / 98

Solving Disjoint FVS

Input: G , W ⊆ V (G), |W | = `, G −W = F is a forest.
Goal: Find a FVS disjoint from W of size at most `− 1.

Idea: look at leaves of F and how they interact with W .

Let u be a leaf of F
Case 1: u has no neighbor in W : delete u (it does not participate in any cycle).
Case 2: u has a unique neighbor in W : delete u and add en edge between the two
neighbors of u.
Case 3: u has at least 2 neighbors in W :

if there exists w1,w2 ∈ N(u) ∩W such that w1 and w2 are in the same
connected component of W , then u must be in the solution. So we may
delete u, and solve Disjoint FVS on (G \ u, `− 1)

otherwise, branch on u:
I u is in the solution, solve (G − u, `− 1), or
I u is not in the solution, add u into W .

Then the number of connected components of W decreseases, which make us
happy.
Also observe that at the beginning, W has at most ` connected components.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 96 / 98

Solving Disjoint FVS

Input: G , W ⊆ V (G), |W | = `, G −W = F is a forest.
Goal: Find a FVS disjoint from W of size at most `− 1.

Idea: look at leaves of F and how they interact with W .

Let u be a leaf of F
Case 1: u has no neighbor in W : delete u (it does not participate in any cycle).
Case 2: u has a unique neighbor in W : delete u and add en edge between the two
neighbors of u.
Case 3: u has at least 2 neighbors in W :

if there exists w1,w2 ∈ N(u) ∩W such that w1 and w2 are in the same
connected component of W , then u must be in the solution. So we may
delete u, and solve Disjoint FVS on (G \ u, `− 1)

otherwise, branch on u:
I u is in the solution, solve (G − u, `− 1), or
I u is not in the solution, add u into W .

Then the number of connected components of W decreseases, which make us
happy.
Also observe that at the beginning, W has at most ` connected components.

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 96 / 98

Solving Disjoint FVS

Branch on u:

u is in the solution, solve (G − u, `− 1), or

u is not in the solution, add u into W .
Then the number of connected components of W decreseases by 1.

Formally: for an instance I = (G ,W , `), define a potential function

µ(I) = ` + number of connected components of G [W]

At the beginning: µ(I) ≤ 2`.
In each branch, µ decreases strictly in both branches,
So the tree has depth at most 2`, and thus has at most 22` = 4` vertices.
So the running time is 4` · nO(1).

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 97 / 98

Recap

Generic: Problem ⇒ Problem Compression ⇒ Disjoint Problem.

Let C be a class of graphs. The C-vertex deletion problem is:
Input: A graph G and an integer k.
Question: is there S ⊆ V (G) such that G \ S ∈ C.

If C = {edgeless graphs} ⇒ Vertex Cover
If C = {forest graphs} ⇒ Feedback Vertex Set

Disjoint C-vertex deletion in FPT time ⇒
C-vertex deletion Compression in FPT time ⇒
C-vertex deletion in FPT time

If we are only interested to know if the problem is FPT or not, this is for free!

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 98 / 98

Recap

Generic: Problem ⇒ Problem Compression ⇒ Disjoint Problem.

Let C be a class of graphs. The C-vertex deletion problem is:
Input: A graph G and an integer k .
Question: is there S ⊆ V (G) such that G \ S ∈ C.

If C = {edgeless graphs} ⇒ Vertex Cover
If C = {forest graphs} ⇒ Feedback Vertex Set

Disjoint C-vertex deletion in FPT time ⇒
C-vertex deletion Compression in FPT time ⇒
C-vertex deletion in FPT time

If we are only interested to know if the problem is FPT or not, this is for free!

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 98 / 98

Recap

Generic: Problem ⇒ Problem Compression ⇒ Disjoint Problem.

Let C be a class of graphs. The C-vertex deletion problem is:
Input: A graph G and an integer k .
Question: is there S ⊆ V (G) such that G \ S ∈ C.

If C = {edgeless graphs} ⇒ Vertex Cover
If C = {forest graphs} ⇒ Feedback Vertex Set

Disjoint C-vertex deletion in FPT time ⇒
C-vertex deletion Compression in FPT time ⇒
C-vertex deletion in FPT time

If we are only interested to know if the problem is FPT or not, this is for free!

Pierre Aboulker - pierreaboulker@gmail.com Parametrized Complexity and Graph Minor Theory 98 / 98

	Branching Method
	Kernelization
	Color coding
	Iterative Compression

