
SNARKPack
Practical SNARK Aggregation

Anca Nitulescu
Protocol Labs

Joint work with 
Nicolas Gailly, Mary Maller



2

SNARKPack

In Brief

log n

 
SNARKs



3

SNARK 

SNARK



4

SNARK 

SNARK

Succinctness 
proof size independent 
of NP witness size



5

SNARK 

SNARK

Succinctness 
proof size independent 
of NP witness size

Non-Interactivity 
no exchange between 
prover and verifier 



6

SNARK 

SNARK

Succinctness 
proof size independent 
of NP witness size

Non-Interactivity 
no exchange between 
prover and verifier 

Argument
soundness holds only 
against computationally 
bounded provers 



7

SNARK 

SNARK

Succinctness 
proof size independent 
of NP witness size

Non-Interactivity 
no exchange between 
prover and verifier 

Argument
soundness holds only 
against computationally 
bounded provers 

Knowledge Soundness
a witness can be efficiently 

extracted from the prover



8

zk-SNARK

Succinctness 
proof size independent 
of NP witness size

Non-Interactivity 
no exchange between 
prover and verifier 

Argument
soundness holds only 
against computationally 
bounded provers 

Zero-Knowledge 
does not leak anything 

about the witness

Knowledge Soundness
a witness can be efficiently 

extracted from the prover

zk-SNARK 



Proof of storage
Block n

Block n+1

Proof of Storage

9

Storage Providers
- onboard storage capacity
- earn block rewards 
- regularly prove the storage

= Provers

Nodes in network
- ensure data is being stored, 

maintained, and secured 
- need to check proofs of space

= Verifiers



Proof of storage
Block n

Block 

Proves 32GB submit on chain

10

Proves 32GB

Proves 32GB

40PiB per day collective storage onboarding limit

10
SNARKs

10
SNARKs

10
SNARKs



Verification
Time

11

Verify many SNARKs
Batch Verification 

Proof Size



Verification
Time

12

Verify many SNARKs
AggregationBatch Verification 

Proof Size Proof Size

Verification
Time



How does it work? 



14

Groth16

Bilinear Groups

SNARK



Groth16

15

QAP

crs

SNARK

s  s2  sd
g  g  g

Bilinear Groups



Groth16

16

QAP

crs

SNARK
A =

 

π B C

s  s2  sd
g  g  g

Bilinear Groups



Groth16

17

QAP

crs

SNARK
A =

 

π B C

e(A, B) =  e(C , D) 

s  s2  sd
g  g  g

Bilinear Groups



18

Many SNARKs

ππππ
BiAi =

 

Ci

Verification (D = gd)Proofs

e(Ai, Bi) = e(Ci , D) 

i=1,n



19

Verification (D = gd)

ππππ
BiAi =

 

Ci

Proofs

i=1,n

e(A1, B1) = e(C1 , D) 

e(A2, B2) = e(C2 , D) 

e(An, Bn) = e(Cn , D) 

… 

Many SNARKs



20

e(A1, B1) = e(C1 , D) 

e(A2, B2) = e(C2 , D) 

e(An, Bn) = e(Cn , D) 

… 

SNARK Batching
Verification 



21

e(A1, B1) = e(C1 , D) 

e(A2, B2) = e(C2 , D) 

e(An, Bn) = e(Cn , D) 

… 

SNARK Batching

r ←$ 

e(A1, B1) = e(C1 , D) 

e(A2, B2) = e(C2 , D) 

e(An, Bn) = e(Cn , D) 

… 

r ✕

r2 ✕

rn ✕

Verification 



22

e(A1, B1) = e(C1 , D) 

e(A2, B2) = e(C2 , D) 

e(An, Bn) = e(Cn , D) 

… 

SNARK Batching

r ←$ 

Verification 

∏
 
e(Ai, Bi)r  = ∏e(Ci, D)r 

i         i

Batch Verification 



23

SNARK Aggregation

∏
 
e(Ai, Bi)r  = ∏e(Ci, D)r 

i         i

Batch Verification 

∏
 
e(Ai, Bir ) = e(∏Ci

r , D) 

⇔

i i

Bilinear Groups



24

SNARK Aggregation
Aggregation

BiAi Ci∏
 
e(Ai, Bi)r  = ∏e(Ci, D)r 

i         i

Batch Verification 

⇔

∏
 
e(Ai, Bir ) = e(∏Ci

r , D) 
i i

i=1,n



ZAB=∏
 
e(Ai , Bir  ) 

25

SNARK Aggregation
Aggregation

BiAi Ci∏
 
e(Ai, Bi)r  = ∏e(Ci, D)r 

i         i

Batch Verification 

⇔

ZC=∏Ci
r i

∏
 
e(Ai, Bir ) = e(∏Ci

r , D) 
i i

i

i=1,n



ZAB=∏
 
e(Ai , Bir  ) 

26

SNARK Aggregation
Aggregation

BiAi Ci∏
 
e(Ai, Bi)r  = ∏e(Ci, D)r 

i         i

Batch Verification 

⇔

ZC=∏Ci
r i

i

ZAB = e( ZC, D) 

i=1,n



27

SNARK Aggregation
Aggregation

BiAi Ci∏
 
e(Ai, Bi)r  = ∏e(Ci, D)r 

i         i

Batch Verification 

ZC=∏Ci
r 

ZAB=∏
 
e(Ai , Bir  ) 

i

i

ZAB = e( ZC, D) 

⇔
i=1,n



28

Construction 



29

〈A, B〉= ∏
 
e(Ai , Bi)  

Tools: MIPP & TIPP
Proofs for Inner Pairing Products and Applications - Bünz, Maller, Mishra, Tyagi, Vesely 

〈A, b〉= ∏ Ai
bi   Ai∊   , Bi∊    , bi∊

Com(A) Com(B)



30

Tools: MIPP & TIPP

ZC=∏Ci
r 

ZAB=∏
 
e(Ai , Bir  )   

i

i
〈A, B〉= ∏

 
e(Ai , Bi)  

〈A, b〉= ∏ Ai
bi  

Aggregation

Proofs for Inner Pairing Products and Applications - Bünz, Maller, Mishra, Tyagi, Vesely 



31

Tools: MIPP & TIPP

〈A, B〉= ∏
 
e(Ai , Bi)  

〈A, b〉= ∏ Ai
bi  

Aggregation

Proofs for Inner Pairing Products and Applications - Bünz, Maller, Mishra, Tyagi, Vesely 

ZAB=〈A, Br〉

ZC=  〈C, r〉



32

Tools: MIPP & TIPP

〈A, Br〉= ∏
 
e(Ai , Bi

ri ) 
 

〈C, r〉= ∏ Ci
ri  

Aggregation

ZAB=〈A, Br〉

Proofs for Inner Pairing Products and Applications - Bünz, Maller, Mishra, Tyagi, Vesely 

ZC=  〈C, r〉



33

Com(A) Com(B)

Com(C)

ZAB=〈A, Br〉 
 

ZC=〈C, r〉

MIPP & TIPP Strategy 
Proofs for Inner Pairing Products and Applications - Bünz, Maller, Mishra, Tyagi, Vesely 



34

Problem: Trusted  Setup

Com(A) Com(B)

Com(C)

ZAB=〈A, Br〉 
 

ZC=〈C, r〉

Proofs for Inner Pairing Products and Applications - Bünz, Maller, Mishra, Tyagi, Vesely 



35

CRS

Trusted Setup



36

Aggregation 
from existing CRS



Trusted Setup

g   τ2 τd g  g   

h   τ2  τd h   h   
  τ  

  τ 

Groth16: Monomials/ Powers of tau

37

Bilinear Groups



SNARK Aggregation

g    α2 αd g  g   

h   α2  αd h   h   
  α 

  α   β2 βd g  g   

  β2  βd h   
  β 

 β 

h   

g  

h

Filecoin: Powers of Tau Zcash: Powers of Tau

38



39

Commitments
v1 v2 

 ,〈C, v2〉Com(C) =〈C, v1〉

h   α2  αd h   h   
  α   β2  βd h   

  β h   h

 C



40

 〈w1, B〉

 〈w2, B〉

 〈A, v1〉   , 
 〈A, v2〉 

v2=  w2=   β2 βd g  g   
 β g    β2  βd h   

  β h   h

Com(A, B) = A  B

h   α2  αd h   h   
  α 

v1=  w1= 

Commitments
g    α2 αd g  g     α 



Aggregation

BiAi Ci

i=1,n

SNARK Aggregation

41



Aggregation

BiAi Ci

Com(A, B) Com(C)

i=1,n

SNARK Aggregation

42



Aggregation

BiAi Ci

MIPP:〈C,r〉= ∏ Ci
ri  

TIPP: 〈A, Br〉= ∏
 
e(Ai , Bi

ri ) 
 

i=1,n

SNARK Aggregation

log n

Com(A, B) Com(C)

43



Aggregation

BiAi Ci

ZAB=〈A, Br〉TIPP: 〈A, Br〉= ∏
 
e(Ai , Bi

ri ) 
 

i=1,n

SNARK Aggregation

log n

MIPP:〈C,r〉= ∏ Ci
ri  ZC=  〈C, r〉

Com(A, B) Com(C)

44



Aggregation

BiAi Ci

i=1,n

SNARK Aggregation
Verification

log n

ZAB = e( ZC, D) 

MIPP + TIPP

ZAB=〈A, Br〉

ZC=  〈C, r〉

45



Implementation



Library
● Coded in Rust, available at https://github.com/filecoin-project/bellperson 
● Initial code from the arkworks library https://github.com/arkworks-rs/ripp/ 
● Ported & optimized in the bellman framework (bellperson fork) 
● Using BLS12-381 curves from the blst library https://github.com/supranational/blst 
● SRS combined from Filecoin & Zcash “power of taus”

○ Code at https://github.com/nikkolasg/taupipp 
○ Up to 2^19

● Benchmark performed on 32c/64t AMD Raizen Threadripper
● Audited by NCC 

https://github.com/filecoin-project/bellperson
https://github.com/arkworks-rs/ripp/
https://github.com/supranational/blst
https://github.com/nikkolasg/taupipp


Verifier Time
● Verifying aggregate proofs 

becomes faster from 32 proofs
● 8192 proofs in 33ms 

○ “ratio” of 0.004 ms per proof 
● Including unserialization 
● Optimizations:

○ Relies heavily on parallelism
○ MIPP/TIPP combined
○ Batching for pairing checks



Proof size
● Use compression of target 

group points
○ based on Torus 

compression
○ credits - RELIC library 

implementation

● Turnover at 128 proofs
○ 23kB for aggregated
○ 24kB for “all proofs”

* 



Aggregation Time
● 8.7s for 8 192 proofs
● Relies heavily on 

parallelism

● 217 proofs in ~2mn



Application: Filecoin



Allows for 2000 X more proofs of storage on chain

Sector 32 GB
(10 SNARKs)

Sector 32 GB
(10 SNARKs)

Sector 32 GB
(10 SNARKs)

Sector 32 GB
(10 SNARKs)

Block n

Block n+1

52

Proof of storage



Sector 32 GB
(10 SNARKs)

Sector 32 GB
(10 SNARKs)

Sector 32 GB
(10 SNARKs)

Sector 32 GB
(10 SNARKs)

Aggregated Proof

Block n

Block n+1

53

Proof of storage
Allows for 2000 X more proofs of storage on chain



Sector 32 GB
(10 SNARKs)

Sector 32 GB
(10 SNARKs)

Sector 32 GB
(10 SNARKs)

Sector 32 GB
(10 SNARKs)

Aggregated Proof

Block n

Block n+1

54

Proof of storage
Allows for 2000 X more proofs of storage on chain



Sector 32 GB
(10 SNARKs)

Sector 32 GB
(10 SNARKs)

Sector 32 GB
(10 SNARKs)

Sector 32 GB
(10 SNARKs)

Aggregated Proof

Block n

Block n+1

55

Proof of storage

Aggregated Proof

Aggregated Proof

Allows for 2000 X more proofs of storage on chain



Valid proofs (20 ms)

Verification time

Aggregated Proof 
(~2000 SNARKs)

In practice, up to x 200 more Sectors on chain (~x 2000 SNARKs)

Aggregated Proof 
(~2000 SNARKs)

Aggregated Proof 
(~2000 SNARKs)

56

Verify aggregated SNARKs

Valid proofs (20 ms)

Valid proofs (20 ms)



● Trusted Setup: Main feature is to rely on existing Groth16 CRS - at the 
cost of slightly more expensive commitment scheme 

● Transparent Aggregation:  What about Aggregating SNARKs without a 
trusted setup?

● Optimisations: Better Curves, Better Commitments, New Inner Pairing 
Proofs

● Extension: Could we extend this scheme to other pairing-based 
primitives ? Currently only supports Groth16

57

Conclusion & Questions



58

Thanks!

eprint.iacr.org/2021/529

https://eprint.iacr.org/2021/529.pdf


Credits

59

Special thanks to all those who made and 
released these resources for free:
● Presentation template by SlidesCarnival
● Illustrations by Iconfinder

http://www.slidescarnival.com/
http://www.iconfinder.com


60

Motivation. SNARKs are becoming very popular in real-world applications such as delegated computation or blockchain 
systems: An example of early practical use case, Zerocash showed how that we can deploy zk-SNARKs in distributed ledgers 
to achieve payment systems with strong privacy guarantees. More recent zk-SNARK use cases are in Ethereum smart 
contracts for boosting scalability and privacy. Another example of SNARK application is the Filecoin System that implements 
a decentralized storage solution for the internet. To date, the Filecoin Network is the largest SNARK system in production, 
producing and verifying over 5 million SNARKs on a daily basis.
Due to their rapid and massive adoption, the SNARKs schemes used today start facing new challenges: the generation of 
trusted setups requires complicated ceremonies, proving large statements has significant overhead, verifying multiple 
proofs is expensive even with batching, so many blockchain systems have therefore scalability issues.
 

eprint.iacr.org/2021/529

Contribution. In this work, we look into reducing proof size and verifier time for SNARKs even further in order to meet these significant 
scalability requirements.  
We design SnarkPack, an argument that allows to aggregate n Groth16 zk-SNARKs with a O(log n) proof size and verifier time. Our scheme 
is based on a trusted setup that can be constructed from two different ceremonies (e.g. the so-called ”powers of tau” for Zcash [zca18] and 
Filecoin [Fil20]). Being able to rely on the security of well-known trusted setups for which the ceremonies have been largely publicly 
advertised is a great advantage in practice and makes SnarkPack immediately useful in real-world applications and an easy update to 
systems already relying on such trusted setups. 

We chose to focus on Groth16 proofs and tailor optimisations for this case, since it is the most popular scheme among practitioners. 
Therefore, SnarkPack is the first real-world aggregation system that can be used in blockchains applications to reduce the on-chain work by 
employing verifiable outsourcing to process a large number of proofs off-chain. This applies broadly to any system that needs to delegate 
batches of state updates to an untrusted server. SnarkPack is already deployed on the live Filecoin Network. 

https://eprint.iacr.org/2021/529.pdf

