What Makes Fiat-Shamir zkSNARKs (Updatable SRS) Simulation Extractable?

Chaya Ganesh ¹ Hamidreza Khoshakhlagh ² Markulf Kohlweiss ^{3,4} Anca Nitulescu ⁵ Michal Zajac ⁶

¹Indian Institute of Science ²Aarhus University ³University of Edinburgh ⁴10HK ⁵Protocol Labs ⁶Clearmatics

- Motivation what the paper does and why it matters?
- Generalizing previous results to SNARKs
- Glimpse into the main proof for simulation extractability

ARGUMENT SYSTEMS IN THE TRUST MODEL

ARGUMENT SYSTEMS IN THE TRUST MODEL

ARGUMENT SYSTEMS IN THE TRUST MODEL

ARGUMENT SYSTEMS IN THIS WORK Non-Interactive Zero-knowledge Succinct Of knowledge

Is proof of knowledge enough for SNARKs?

Is proof of knowledge enough for SNARKs?

Is proof of knowledge enough for SNARKs?

Example

Two users A and B.

A knows a secret w that allows to transfer money from his accounts (by showing a proof π of knowledge of w). If π is randomizable, B seeing π can produce a valid PoK π' and transfer the funds too (without knowing w).

Chaya Ganesh , Hamidreza Khoshakhlagh , Markulf Kohlweiss , Anca Nitulescu , Michal Zajae

Simulation Extractability (SE)

Simulation Extractability (SE)

SE: for any PPT adversary A, there exists a PPT extractor Ext_A s.t. the following is negligible:

$$\mathsf{Pr}[(\mathsf{x},\pi) \leftarrow \mathcal{A}^{\mathsf{SimO}(\cdot)}(\mathsf{crs}); \mathsf{w} \leftarrow \mathsf{Ext}_{\mathcal{A}} : V(\mathsf{crs},\mathsf{x},\pi) = 1 \land (\mathsf{x},\mathsf{w}) \notin \mathbf{R} \land (\mathsf{x},\pi) \text{ is fresh }]$$

Main result: updatable simulation extractability for a class of RO-based SNARKs (Plonk, Sonic, Marlin)

Main result: updatable simulation extractability for a class of RO-based SNARKs (Plonk, Sonic, Marlin)

How related to snarky signatures?

Main result: updatable simulation extractability for a class of RO-based SNARKs (Plonk, Sonic, Marlin)

How related to snarky signatures?

• A signature of knowledge (SoK) uses an NP statement as the public verification key and signing requires knowledge of the NP witness.

Main result: updatable simulation extractability for a class of RO-based SNARKs (Plonk, Sonic, Marlin)

How related to snarky signatures?

- A signature of knowledge (SoK) uses an NP statement as the public verification key and signing requires knowledge of the NP witness.
- SE NIZK PoK implies SoK (and viceversa)

Main result: updatable simulation extractability for a class of RO-based SNARKs (Plonk, Sonic, Marlin)

How related to snarky signatures?

- A signature of knowledge (SoK) uses an NP statement as the public verification key and signing requires knowledge of the NP witness.
- SE NIZK PoK implies SoK (and viceversa)
- A SoK from SE-SNARK is called Snarky signature.

- Efficient updatable and universal zkSNARKs use random oracle and FS transformation.
- Knowledge soundness of Fiat-Shamir-based constructions rely on forking lemma.
- Forking lemma shows security only for a narrow class of protocols that **requires only a single rewinding** Not a case for any known zkSNARK.

- Efficient updatable and universal zkSNARKs use random oracle and FS transformation.
- Knowledge soundness of Fiat-Shamir-based constructions rely on forking lemma.
- Forking lemma shows security only for a narrow class of protocols that **requires only a single rewinding** Not a case for any known zkSNARK.

Previous results

Faust et al. (Indocrypt 2012) showed that Σ -protocols that have unique-response property are simulation-extractable (after Fiat–Shamir transformation)

- Covers only 3-message protocols
- Witness has to be extractable from 2 transcripts
- Doesn't cover protocols with srs

- Efficient updatable and universal zkSNARKs use random oracle and FS transformation.
- Knowledge soundness of Fiat-Shamir-based constructions rely on forking lemma.
- Forking lemma shows security only for a narrow class of protocols that **requires only a single rewinding** Not a case for any known zkSNARK.

Previous results

Faust et al. (Indocrypt 2012) showed that Σ -protocols that have unique-response property are simulation-extractable (after Fiat–Shamir transformation)

- Covers only 3-message protocols
- Witness has to be extractable from 2 transcripts
- Doesn't cover protocols with srs

Here

- Generalized forking lemma to work with wider class of protocols – multi-round, many transcripts to extract witness
- Covering protocols with srs

- Efficient updatable and universal zkSNARKs use random oracle and FS transformation.
- Knowledge soundness of Fiat-Shamir-based constructions rely on forking lemma.
- Forking lemma shows security only for a narrow class of protocols that **requires only a single rewinding** Not a case for any known zkSNARK.

Previous results

Faust et al. (Indocrypt 2012) showed that $\Sigma\text{-}protocols$ that have unique-response property are simulation-extractable (after Fiat–Shamir transformation)

- Covers only 3-message protocols
- Witness has to be extractable from 2 transcripts
- Doesn't cover protocols with srs

Here

- Generalized forking lemma to work with wider class of protocols – multi-round, many transcripts to extract witness
- Covering protocols with srs

Required properties

- *k*-Unique response property
- Generalized forking lemma
- Trapdoor-less simulatability

Σ -protocols and Fiat–Shamir transformation

- **Completeness** Honest verifier accepts proof from an honest prover.
- **Special soundness** Given two transcripts for instance (x, a, b, c) and (x, a, b', c') one can compute witness w.
- Honest verifier zero knowledge The protocol is zero-knowledge if the verifier picks its challenges randomly.

$$P(x = [w]_{1}, w) \qquad V(x = [w]_{1})$$

$$\xrightarrow[r]_{1}}$$

$$\overleftarrow{c = r + bw}$$

V accepts iff $[c]_1 = [r + bw]_1$

Special soundness. From $([r]_1, b, r + bw)$ and $([r]_1, b', r + b'w)$, one computes

$$r + bw - (r + b'w) = (b - b')w$$

 $rac{r + bw - (r + b'w)}{b - b'} = w$

Hence, for $b \neq b'$ one may reveal w.

. . . .

$$P(x,w) \qquad V(x)$$

$$\xrightarrow{a} \\ \mathcal{H}(x,a) \\ \underbrace{c} \\ \mathcal{C}$$

- **Completeness** Honest verifier accepts proof from an honest prover.
- **Special soundness** Given two transcripts for instance (x, a, b, c) and (x, a, b', c') one can compute witness w.
- Honest verifier zero knowledge The protocol is zero-knowledge if the verifier picks its challenges randomly.
- **Public coin** The verifier's challenges are public function of its randomness.

• Get one transcript $(x, a, b = \mathcal{H}(x, a), c)$

- Get one transcript $(x, a, b = \mathcal{H}(x, a), c)$
- **2** Rewind A_{FS} after it sent *a*

- Get one transcript $(x, a, b = \mathcal{H}(x, a), c)$
- **2** Rewind A_{FS} after it sent *a*
- Pick new \mathcal{H} response b' for $\mathcal{H}(x, a)$

- Get one transcript $(x, a, b = \mathcal{H}(x, a), c)$
- **2** Rewind A_{FS} after it sent *a*
- Pick new \mathcal{H} response b' for $\mathcal{H}(x, a)$
- Get another transcript (x, a, b', c')

- Get one transcript $(x, a, b = \mathcal{H}(x, a), c)$
- **2** Rewind A_{FS} after it sent *a*
- Pick new \mathcal{H} response b' for $\mathcal{H}(x, a)$
- Get another transcript (x, a, b', c')

Problem

 $\mathcal A$ has **one shot** to convince the verifier V. If $\mathcal A_{FS}$ does not like V's challenge, it may pick **another** instance x or *a* and try again.

What if the adversary keeps changing the instance so we cannot get 2 transcripts?

- Get one transcript $(x, a, b = \mathcal{H}(x, a), c)$
- **2** Rewind A_{FS} after it sent *a*
- Pick new \mathcal{H} response b' for $\mathcal{H}(x, a)$
- Get another transcript (x, a, b', c')

Problem

 ${\cal A}$ has **one shot** to convince the verifier V. If ${\cal A}_{\rm FS}$ does not like V's challenge, it may pick **another** instance x or *a* and try again.

What if the adversary keeps changing the instance so we cannot get 2 transcripts?

What is the probability that we obtain two acceptable transcripts (x, a, b, c) and (x, a, b', c')?

- Get one transcript $(x, a, b = \mathcal{H}(x, a), c)$
- **2** Rewind \mathcal{A}_{FS} after it sent *a*
- Pick new \mathcal{H} response b' for $\mathcal{H}(x, a)$
- Get another transcript (x, a, b', c')

Problem

 ${\cal A}$ has **one shot** to convince the verifier V. If ${\cal A}_{\rm FS}$ does not like V's challenge, it may pick **another** instance x or *a* and try again.

What if the adversary keeps changing the instance so we cannot get 2 transcripts?

What is the probability that we obtain two acceptable transcripts (x, a, b, c) and (x, a, b', c')?

Forking lemma

Let acc be a probability that \mathcal{A}_{FS} returns an acceptable proof.

q – upper bound for a number of random oracle queries \mathcal{A}_{FS} may make.

h – random oracle's range size.

$$\mathsf{frk} \geq \mathsf{acc}\left(rac{\mathsf{acc}}{q} - rac{1}{h}
ight).$$

- What if there is more than 3 messages?

- What if more than 2 transcripts are necessary?

Unique response property

We say that an NI protocol has k-unique response property if it is infeasible for a PPT adversary A_{FS} to produce two different transcripts that have the same first k-messages.

Unique response property

We say that an NI protocol has k-unique response property if it is infeasible for a PPT adversary A_{FS} to produce two different transcripts that have the same first k-messages.

- Ψ a (2 μ + 1)-message protocol
- Non-interactive by Fiat-Shamir
- $(a_1, \ldots, a_{\mu+1})$ prover's messages

$$\mathsf{Pr}\begin{bmatrix}\vec{a} = (a_1, \dots, a_{\mu+1}), \vec{a'} = (a'_1, \dots, a'_{\mu+1}), \\ \vec{a} \neq \vec{a'}, a_1, \dots, a_k = a'_1, \dots, a'_k, \\ \mathsf{V}_{\mathsf{FS}}(\mathsf{srs}, \mathsf{x}, \vec{a}) = \mathsf{V}_{\mathsf{FS}}(\mathsf{srs}, \mathsf{x}, \vec{a'}) = 1 \end{bmatrix} \times \vec{a}, \vec{a'} \leftarrow \mathcal{A}^{\mathcal{H}, \mathsf{UpdO}}(1^{\lambda}) \\ \end{bmatrix} \leq \varepsilon_{\mathsf{ur}}(\lambda)$$

Example: 1-ur Schnorr protocol

Transcript for instance $[x]_1$: $([r]_1, b, [r + bx]_1)$ After challenge *b* is sent, $[r + bx]_1$ is **determined**.

We always deal with updatable SRS.

Updatable SRS schemes

- (srs, ρ) ← KGen(R) outputs a SRS srs with correctness proof ρ.
- (srs', ρ') ← Upd(srs, {ρ_j}ⁿ_{j=1}) outputs an updated SRS with a proof of correct update.
- {0,1} ← VerifySRS(srs, {ρ_j}ⁿ_{j=1}) accepts or rejects srs.

We always deal with updatable SRS.

Updatable SRS schemes

- (srs, ρ) ← KGen(R) outputs a SRS srs with correctness proof ρ.
- (srs', ρ') ← Upd(srs, {ρ_j}ⁿ_{j=1}) outputs an updated SRS with a proof of correct update.
- {0,1} ← VerifySRS(srs, {ρ_j}ⁿ_{j=1}) accepts or rejects srs.

We define an SRS update oracle UpdO by which ${\mathcal A}$ updates the SRS.

UpdO(intent, srs_n, $\{\rho_i\}_{i=1}^n$) if srs $\neq \perp$: return \perp if (intent = setup) : $(srs', \rho') \leftarrow KGen(\mathbf{R}); Q_{srs} \leftarrow Q_{srs} \cup \{(srs', \rho')\}$ **return** (srs', ρ') if (intent = update): if VerifySRS(srs_n, $\{\rho_i\}_{i=1}^n$) = 0 : return \perp $(srs', \rho') \leftarrow Upd(srs_n, \{\rho_i\}_{i=1}^n); Q_{srs} \leftarrow Q_{srs} \cup \{(srs', \rho')\}$ **return** (srs', ρ') if (intent = final): $b \leftarrow \text{VerifySRS}(\text{srs}_n, \{\rho_i\}_{i=1}^n)$ if $(b = 0) \vee Q_{srs} \cap \{\rho_i\}_i = \emptyset$: return \perp srs \leftarrow srs_n; **return** srs else return

Problem 2 - generalizing forking lemma

Tree of accepting transcript

Prover's messages: a, b_i, c_j Verifier's challenges α_k, β_l

We call such a tree a (2,3)-tree of acceptable transcripts

Used to generalize **special soundness** to (2,3)-special sound protocol – i.e. we can get a witness from a tree of **acceptable** transcripts as above

Problem 2 - generalizing forking lemma

Prover's messages: a, b_i, c_j Verifier's challenges α_k, β_l

We call such a tree a (2, 3)-tree of acceptable transcripts

Used to generalize **special soundness** to (2, 3)-special sound protocol – i.e. we can get a witness from a tree of **acceptable** transcripts as above

Ex: (1, 1, 1, 5, 1)-tree of acceptable transcripts

Forking lemma states that probability of getting 2 acceptable transcripts (x, a, b, c), (x, a, b', c') is at least

$$\mathsf{frk} \geq \mathsf{acc}\left(rac{\mathsf{acc}}{q} - rac{1}{h}
ight).$$

acc: the probability \mathcal{A}_{FS} returns an acceptable proof. q: upper bound on the number of RO queries \mathcal{A}_{FS} makes. h: random oracle's range size.

Forking lemma states that probability of getting 2 acceptable transcripts (x, a, b, c), (x, a, b', c') is at least

$$\mathsf{frk} \geq \mathsf{acc}\left(rac{\mathsf{acc}}{q} - rac{1}{h}
ight).$$

acc: the probability \mathcal{A}_{FS} returns an acceptable proof. q: upper bound on the number of RO queries \mathcal{A}_{FS} makes. h: random oracle's range size.

Generalized forking lemma

Let Ψ be a (2 μ + 1)-message (interactive) protocol.

Assume that the witness can be extracted from a $(1, ..., n_k = m, ..., 1)$ -tree of acceptable transcript. Then,

$$\mathsf{frk} \geq rac{\mathsf{acc}^m}{q^{m-1}} - \mathsf{acc} \cdot \left(1 - rac{h!}{(h-m)! \cdot h^m}
ight).$$

Forking lemma states that probability of getting 2 acceptable transcripts (x, a, b, c), (x, a, b', c') is at least

$$\mathsf{frk} \geq \mathsf{acc}\left(rac{\mathsf{acc}}{q} - rac{1}{h}
ight).$$

acc: the probability \mathcal{A}_{FS} returns an acceptable proof. q: upper bound on the number of RO queries \mathcal{A}_{FS} makes. h: random oracle's range size.

Generalized forking lemma

Let Ψ be a (2 μ + 1)-message (interactive) protocol.

Assume that the witness can be extracted from a $(1, ..., n_k = m, ..., 1)$ -tree of acceptable transcript. Then,

$$\mathsf{frk} \geq rac{\mathsf{acc}^m}{q^{m-1}} - \mathsf{acc} \cdot \left(1 - rac{h!}{(h-m)! \cdot h^m}
ight).$$

What is m?

- e.g., 3*n* for Plonk, where n is the number of circuit constraints.
- \rightarrow exponential loss when the number of constraints is non-constant : (

Forking lemma states that probability of getting 2 acceptable transcripts (x, a, b, c), (x, a, b', c') is at least

$$\mathsf{frk} \geq \mathsf{acc}\left(rac{\mathsf{acc}}{q} - rac{1}{h}
ight).$$

acc: the probability \mathcal{A}_{FS} returns an acceptable proof. q: upper bound on the number of RO queries \mathcal{A}_{FS} makes. h: random oracle's range size.

Alternative approach

Use a tighter forking lemma e.g., recent result by Attema et al 2021/1377 (work in progress).

Generalized forking lemma

Let Ψ be a (2 μ + 1)-message (interactive) protocol.

Assume that the witness can be extracted from a $(1, ..., n_k = m, ..., 1)$ -tree of acceptable transcript. Then,

$$\mathsf{frk} \geq rac{\mathsf{acc}^m}{q^{m-1}} - \mathsf{acc} \cdot \left(1 - rac{h!}{(h-m)! \cdot h^m}
ight).$$

What is *m*?

- e.g., 3*n* for Plonk, where n is the number of circuit constraints.
- \rightarrow exponential loss when the number of constraints is non-constant : (

Zero-Knowledge in Programmable Random Oracle

 $Sim = (Sim_1, Sim_2)$ is stateful and runs in two modes:

Mode 1. $(h, st') \leftarrow Sim(1, st, srs, q)$ that answers random oracle calls to \mathcal{H} on q (notation: $h \leftarrow Sim_1(srs, q))$.

Mode 2. $(\pi, st') \leftarrow Sim(2, st, srs, x)$ that simulates the argument for x (notation: $\pi \leftarrow Sim_2(srs, x)$).

Zero-Knowledge in Programmable Random Oracle

 $Sim = (Sim_1, Sim_2)$ is stateful and runs in two modes:

Mode 1. $(h, st') \leftarrow Sim(1, st, srs, q)$ that answers random oracle calls to \mathcal{H} on q (notation: $h \leftarrow Sim_1(srs, q))$.

Mode 2. $(\pi, st') \leftarrow Sim(2, st, srs, x)$ that simulates the argument for x (notation: $\pi \leftarrow Sim_2(srs, x)$).

Trapdoor-Less Simulatable Proof System

Let $\Psi = (KGen, P, V, Sim)$ be the Fiat–Shamir variant of a $(2\mu + 1)$ -message proof system, and \mathcal{H} be the random oracle.

 Ψ is trapdoor-less simulatable if for any adversary \mathcal{A} ,

$$\mathsf{Pr}\left[\mathcal{A}^{\mathsf{UpdO},\mathcal{H},\mathsf{P}}(1^{\lambda})\right]\approx\mathsf{Pr}\left[\mathcal{A}^{\mathsf{UpdO},\mathsf{Sim}_{1},\mathsf{Sim}_{2}}(1^{\lambda})\right]$$

Zero-Knowledge in Programmable Random Oracle

 $Sim = (Sim_1, Sim_2)$ is stateful and runs in two modes:

Mode 1. $(h, st') \leftarrow Sim(1, st, srs, q)$ that answers random oracle calls to \mathcal{H} on q (notation: $h \leftarrow Sim_1(srs, q)$).

Mode 2. $(\pi, st') \leftarrow Sim(2, st, srs, x)$ that simulates the argument for x (notation: $\pi \leftarrow Sim_2(srs, x)$).

Trapdoor-Less Simulatable Proof System

Let $\Psi = (KGen, P, V, Sim)$ be the Fiat–Shamir variant of a $(2\mu + 1)$ -message proof system, and \mathcal{H} be the random oracle.

 Ψ is trapdoor-less simulatable if for any adversary \mathcal{A} ,

$$\mathsf{Pr}\left[\mathcal{A}^{\mathsf{UpdO},\mathcal{H},\mathsf{P}}(1^{\lambda})\right]\approx\mathsf{Pr}\left[\mathcal{A}^{\mathsf{UpdO},\mathsf{Sim}_{1},\mathsf{Sim}_{2}}(1^{\lambda})\right]$$

We show Plonk, Sonic and Marlin are TLS.

Definition (Simulation-extractable NIZK)

A NIZK proof system $\Psi = (KGen, P, V, Sim)$ is updatable simulation-extractable with respect to Sim = (Sim₁, Sim₂) with extraction error ν if for any PPT adversary \mathcal{A} that is given oracle access to an SRS update oracle UpdO and Sim and that produces an accepting proof for Ψ with probability acc, where

$$\mathsf{acc} = \mathsf{Pr}egin{bmatrix} \mathsf{V}(\mathsf{srs},\mathsf{x}_\mathcal{A},\pi_\mathcal{A}) = 1 & \mathsf{r} \leftarrow \$ \, \mathsf{R}(\mathcal{A}) \ \land (\mathsf{x}_\mathcal{A},\pi_\mathcal{A})
ot\in \mathcal{Q} & (\mathsf{x}_\mathcal{A},\pi_\mathcal{A}) \leftarrow \mathcal{A}^{\mathsf{UpdO},\mathsf{Sim}}(1^\lambda;r) \end{bmatrix}$$

there exists an extractor Ext_{se} such that

$$\mathsf{ext} = \mathsf{Pr} \begin{bmatrix} \mathsf{V}(\mathsf{srs}, \mathsf{x}_{\mathcal{A}}, \pi_{\mathcal{A}}) = 1 \\ \land (\mathsf{x}_{\mathcal{A}}, \pi_{\mathcal{A}}) \notin \mathcal{Q} \\ \land \mathsf{R}(\mathsf{x}_{\mathcal{A}}, \mathsf{w}_{\mathcal{A}}) = 1 \end{bmatrix} r \xleftarrow{\hspace{0.5mm}} \mathsf{R}(\mathcal{A}), (\mathsf{x}_{\mathcal{A}}, \pi_{\mathcal{A}}) \leftarrow \mathcal{A}^{\mathsf{UpdO},\mathsf{Sim}}(1^{\lambda}; r) \\ \mathsf{w}_{\mathcal{A}} \leftarrow \mathsf{Ext}_{\mathsf{se}}(\mathsf{srs}, \mathcal{A}, r, \mathsf{x}_{\mathcal{A}}, \pi_{\mathcal{A}}, \mathcal{Q}, \mathcal{Q}_{\mathcal{H}}) \end{bmatrix} \geq \frac{1}{\mathsf{poly}(\lambda)} (\mathsf{acc} - \nu)^d - \varepsilon(\lambda)$$

for some polynomial poly(λ), constant d and negligible $\varepsilon(\lambda)$ whenever acc $\geq \nu$. - srs is the finalized SRS

- Q contains all (x, π) pairs where x is an instance queried to Sim₂ by A and π is the simulator's answer.
- $Q_{\mathcal{H}}$ contains all \mathcal{A} 's queries to Sim₁ and the (simulated) random oracle's answers.

Theorem (Simulation-extractable multi-message protocols)

Let $\Psi = (\mathsf{KGen}, \mathsf{P}, \mathsf{V}, \mathsf{Sim})$ be an interactive $(2\mu + 1)$ -message proof system for $\mathcal{R}(1^{\lambda})$ that is

- zero-knowledge with trapdoor-less simulatability,
- has k-ur property with security loss $\varepsilon_{ur}(\lambda)$, and
- is $(1, \ldots, n_k = m, \ldots, 1)$ -special sound, all in the updatable setting.

Theorem (Simulation-extractable multi-message protocols)

Let $\Psi = (\mathsf{KGen}, \mathsf{P}, \mathsf{V}, \mathsf{Sim})$ be an interactive $(2\mu + 1)$ -message proof system for $\mathcal{R}(1^{\lambda})$ that is

- zero-knowledge with trapdoor-less simulatability,
- has k-ur property with security loss $\varepsilon_{ur}(\lambda)$, and
- is $(1, \ldots, n_k = m, \ldots, 1)$ -special sound, all in the updatable setting.

Let $\mathcal{H} \colon \{0,1\}^* \to \{0,1\}^{\lambda}$ be a random oracle.

Theorem (Simulation-extractable multi-message protocols)

Let $\Psi = (\mathsf{KGen}, \mathsf{P}, \mathsf{V}, \mathsf{Sim})$ be an interactive $(2\mu + 1)$ -message proof system for $\mathcal{R}(1^{\lambda})$ that is

- zero-knowledge with trapdoor-less simulatability,
- has k-ur property with security loss $\varepsilon_{ur}(\lambda)$, and
- is $(1, \ldots, n_k = m, \ldots, 1)$ -special sound, all in the updatable setting.

Let $\mathcal{H} \colon \{0,1\}^* \to \{0,1\}^{\lambda}$ be a random oracle.

Then Ψ_{FS} is simulation-extractable with extraction error $\varepsilon_{ur}(\lambda)$ against PPT adversaries that makes up to q random oracle queries and returns an acceptable proof with probability at least acc. The extraction probability ext is at least ext $\geq \frac{1}{q^{m-1}}(\operatorname{acc} - \varepsilon_{ur}(\lambda))^m - \varepsilon(\lambda)$, for some negligible $\varepsilon(\lambda)$.

Game hops – starting from simulation-extractability game. Define games and show that probability they abort is negligible

Game hops – starting from simulation-extractability game. Define games and show that probability they abort is negligible

Game 0

Simulation extractability game: A has access to oracles (UpdO, Sim) and eventually outputs (x_A, π_A) Game aborts if extractor Ext_A fails to extract the corresponding witness.

Game hops – starting from simulation-extractability game. Define games and show that probability they abort is negligible

Game 0

Simulation extractability game: \mathcal{A} has access to oracles (UpdO, Sim) and eventually outputs (x_A, $\pi_{\mathcal{A}}$) Game aborts if extractor Ext_A fails to extract the corresponding witness.

Game 1

The game is identical to Game 0, except it additionally aborts if the adversary outputs proof π that matches at first k places with some simulated proof, i.e.

$$(\mathsf{x}_{\mathcal{A}}, \pi[1..k]) = (\mathsf{x}_{\mathcal{A}}, \pi_{\mathsf{Sim}}[1..k])$$

If Game 1 aborts with non-negligible probability then ${\mathcal A}$ may be used to break k-ur property of $\Psi.$

Game 2

This game is identical to Game 1, except it additionally aborts if the extractor Ext fails to build a tree of accepting transcripts T.

Probability of that event is bounded by generalized forking lemma.

Game 2

This game is identical to Game 1, except it additionally aborts if the extractor Ext fails to build a tree of accepting transcripts T.

Probability of that event is bounded by generalized forking lemma.

Game 3

This game is identical to Game 2, except it additionally aborts if extractor Ext_T fails to extract the witness from a tree of acceptable transcripts.

From the $(1, ..., n_k = m, ..., 1)$ -special soundness definition – it is impossible for the adversary to make this game abort.

Thank you!

Question?

Lemma (General forking lemma)

Fix $q \in \mathbb{Z}$ and a set H of size h > 2. Let \mathcal{Z} be a PPT algorithm that on input y, h_1, \ldots, h_q returns (i, s), where $i \in [0 .. q]$ and s is called a side output. Denote by IG a randomised instance generator. We denote by acc the probability

$$\Pr[i > 0 \mid y \leftarrow \mathsf{IG}; h_1, \ldots, h_q \leftarrow H; (i, s) \leftarrow \mathcal{Z}(y, h_1, \ldots, h_q)].$$

Let $F_{\mathcal{Z}}(y)$ denote the algorithm described in Fig. 1, then the probability frk defined as $frk := \Pr[b = 1 | y \leftarrow IG; (b, s, s') \leftarrow F_{\mathcal{Z}}(y)]$ holds

$$\mathsf{frk} \geq \mathsf{acc}\left(rac{\mathsf{acc}}{q} - rac{1}{h}
ight) \,.$$

$$F_{\mathcal{Z}}(y)$$

$$\begin{array}{l} \rho \leftarrow \$ \, \mathsf{R}(\mathcal{Z}) \\ h_1, \dots, h_q \leftarrow \$ \, H \\ (i, s) \leftarrow \mathcal{Z}(y, h_1, \dots, h_q; \rho) \\ \mathbf{if} \ i = 0 \ \mathbf{return} \ (0, \bot, \bot) \\ h'_i, \dots, h'_q \leftarrow \$ \, H \\ (i', s') \leftarrow \mathcal{Z}(y, h_1, \dots, h_{i-1}, h'_i, \dots, h'_q; \rho) \\ \mathbf{if} \ (i = i') \land (h_i \neq h'_i) \ \mathbf{return} \ (1, s, s') \\ \mathbf{else \ return} \ (0, \bot, \bot) \end{array}$$

Figure: Forking algorithm $F_{\mathcal{Z}}$

Let Ψ_{FS} be a Fiat–Shamir transformed $\Sigma\text{-}protocol~\Psi.$ Then Ψ_{FS} is simulation-extractable

Caveats

The protocol Ψ has to have **unique response property** Simulation extractability depends on the probability acc

Unique response property

 Ψ has unique response property if no PPT adversary \mathcal{A} can come up with two acceptable transcripts (x, a, b, c) and (x, a, b, c').