LIP6 ALMASTY Seminar February 17th, 2022.

Malicious securitY for Oblivious Polynomial Evaluation

Joint work of: Malika Izabachène – Cosmian Anca Nitulescu – Protocol Labs David Pointcheval – ENS Paris Paola de Perthuis – ENS/Cosmian Paola de Perthuis

Alice Receiver/Verifier

Secret Evaluation Point

m

Bob Sender/Prover

Secret Polynomial

$$\mathsf{f}(Y) = \sum_{j=0}^{N} \mathsf{f}_{j} Y^{j}$$

Alice Receiver/Verifier

Secret Evaluation Point

m

Alice wants to get the evaluation of Bob's polynomial in her point:

Bob Sender/Prover

Secret Polynomial

$$\mathsf{f}(Y) = \sum_{j=0}^{N} \mathsf{f}_{j} Y^{j}$$

Use case: Private Set Intersection (PSI)

Use-case: PSI

PSI

PSI

Example of PSI

Motivation. In the litterature we found...

We give a construction for compact verification of inner-product computations.

Our method can be extended to SPIR

We are best adapted to the unbalanced setting with a greater sender set size

In the litterature

Using FHE to reduce Communications

$$\begin{array}{l} \textbf{Bob}\\ \textbf{Sender/Prover}\\ \textbf{Secret Polynomial}\\ \textbf{f}(Y) = \sum_{j=0}^{N} \textbf{f}_j Y^j, \textbf{f}_j \in \mathcal{R}_t \end{array}$$

Using FHE to reduce Communications

Using FHE to reduce Communications

$$\mathsf{m} \in \mathcal{R}_t$$

FHE Encryption
 $\mathsf{Enc}(\mathsf{m}) = (\mathsf{c},\mathsf{c}') \in \mathcal{R}_q^2$

+ intermediate powers' ciphertexts

$(\mathsf{u}_i,\mathsf{u}_i')=\mathsf{Enc}(\mathsf{m}^i),\forall i\in [\![0;N]\!]$

Verifiability

2

1

February 17th, 2022.

We will need to prove the computation of scalar products with respect to commited vectors is correct.

Some of these vectors could be private.

Verifiable Inner-Product

for public vectors

Verifiable Inner-Product $\mathsf{A} = (a_0, \ldots, a_N), \mathsf{B} = (b_0, \ldots, b_N) \in \mathbb{Z}_q^{N+1}, c = \langle \mathsf{A}; \mathsf{B} \rangle$

We define:

$$\bar{\mathsf{a}}(Y) = \sum_{j} a_{j} Y^{N-j}, \qquad \qquad \mathsf{b}(Y) = \sum_{j} b_{j} Y^{j} \in \mathbb{Z}_{q}[Y^{N}]$$

The N-degree coefficient of the product of these polynomials is c. The polynomial:

$$\mathsf{d}(Y) = \bar{\mathsf{a}}(Y) \cdot \mathsf{b}(Y) - cY^N \in \mathbb{Z}_q[X]$$

has no term of degree N.

The prover commits a, b, and d into the appropriate subspaces of the space of polynomials with coefficients mod q.

 $Y^{2N\setminus N}$]

Committing a polynomial

1

Linear-Only Encodings

2

3

Compactness sending evaluations in random points

The encoding scheme allows the verification of quadratic relations from the commitments.

Commitment

Twin encodings of the polynomial evaluations in K random secret points, K=1 if q is prime, the second encoding with a secret random scalar specific to the subspace. The scalars are known to the verifier and the prover commits with linear combinations of public encodings of the point monomials.

 $\mathsf{E}(\mathsf{u}(s_k)) = \sum_j u_j \mathsf{E}(s_k^j)$

Proof

The prover provides evaluations of the polynomial in M random points, M=1 if q is prime, and proves they are consistent with the commitments of the polynomial using v_m defined with:

 $\mathsf{u}(Y) - \mathsf{u}(y_m)$

providing encodings of evaluations of the v_m in all the K secret points.

$$\mathsf{E}(r \cdot \mathsf{u}(s_k)) = \sum_j u_j \mathsf{E}(rs_k^j)$$

$$= (Y - y_m) \cdot \mathsf{v}_m(Y)$$

Schwartz-Zippel Lemma

if q is a prime, $\mathbf{p} \in \mathbb{Z}_q[Y^N]$ a non-zero polynomial of degree at most N,

then for a random $s \in \mathbb{Z}_q$, and $e \in \mathbb{Z}_q$, the probability that p(s) = e is bounded by:

$$\mathbb{P}(\mathsf{p}(s) = e) \le \frac{N}{q}$$

More generally, if q is a product of ℓ primes factors greater than $p \in \mathbb{Z}$, then:

$$\mathbb{P}(\mathsf{p}(s) = e) \le \frac{N\ell}{p}$$

This gives the necessary number of repetitions, which become more than 1 in the RNS compatible setting

Committing a polynomial

1

Linear-Only Encodings

2

3

Compactness sending evaluations in random points

The encoding scheme allows the verification of quadratic relations from the commitments.

Commitment

Twin encodings of the polynomial evaluations in K random secret points, K=1 if q is prime, the second encoding with a secret random scalar specific to the subspace. The scalars are known to the verifier and the prover commits with linear combinations of public encodings of the point monomials.

 $\mathsf{E}(\mathsf{u}(s_k)) = \sum_j u_j \mathsf{E}(s_k^j)$

Proof

The prover provides evaluations of the polynomial in M random points, M=1 if q is prime, and proves they are consistent with the commitments of the polynomial using v_m defined with:

 $\mathsf{u}(Y) - \mathsf{u}(y_m)$

providing encodings of evaluations of the v_m in all the K secret points.

$$\mathsf{E}(r \cdot \mathsf{u}(s_k)) = \sum_j u_j \mathsf{E}(rs_k^j)$$

$$= (Y - y_m) \cdot \mathsf{v}_m(Y)$$

Verifiable Inner-Product $\mathsf{A} = (a_0, \ldots, a_N), \mathsf{B} = (b_0, \ldots, b_N) \in \mathbb{Z}_q^{N+1}, c = \langle \mathsf{A}; \mathsf{B} \rangle$

We define:

$$\bar{\mathsf{a}}(Y) = \sum_{j} a_{j} Y^{N-j}, \qquad \qquad \mathsf{b}(Y) = \sum_{j} b_{j} Y^{j} \in \mathbb{Z}_{q}[Y^{N}]$$

The N-degree coefficient of the product of these polynomials is c. The polynomial:

$$\mathsf{d}(Y) = \bar{\mathsf{a}}(Y) \cdot \mathsf{b}(Y) - cY^N \in \mathbb{Z}_q[X]$$

has no term of degree N.

The prover commits a, b, and d into the appropriate subspaces of the space of polynomials with coefficients mod q.

The relation between a, b, d, and c is proven using a quadratic check.

 $Y^{2N\setminus N}$]

Verifiable Inner-Product

with a private vector we use hiding commitments

In our protocol we grant privacy with FHE ciphertexts

We need to perform scalar products with vectors whose coefficients are polynomials.

Verifiable Inner-Product

between vectors whose terms are polynomials

Verifiable Inner-Product

We use commitments of bivariate polynomials between vectors whose terms are polynomials

We use

commitments

of bivariate

polynomials

Verifiable Inner-Product

between vectors whose terms are polynomials

We also commit the vectors where the terms are evaluated in a random point

Verifiable Inner-Product

Verifiable Inner-Product

Feb. 17th, 22.

We prove the innerproduct relation on the univariate polynomials

Back to Oblivious Polynomial Evaluation

$$\mathsf{m} \in \mathcal{R}_t$$
FHE Encryption
$$\mathsf{Enc}(\mathsf{m}) = (\mathsf{c},\mathsf{c}') \in \mathcal{R}_q^2$$

+ intermediate powers' ciphertexts

$(\mathsf{u}_i,\mathsf{u}_i') = \mathsf{Enc}(\mathsf{m}^i), \forall i \in \llbracket 0;N \rrbracket$

Are the (uj,uj')'s correct?

Alice picks a random element n, and asks for: $\langle (\mathsf{n}^0, \ldots, \mathsf{n}^N); (\mathsf{u}_0, \ldots, \mathsf{u}_N) \rangle$ $\langle (\mathsf{n}^0, \ldots, \mathsf{n}^N); (\mathsf{u}'_0, \ldots, \mathsf{u}'_N) \rangle$

She checks the following decryption once the inner products are proven:

$$\mathsf{Dec}(\sum_{j} \mathsf{n}^{j}(\mathsf{u}_{j},\mathsf{u}_{j}')) = \sum_{j} \mathsf{n}^{j}\mathsf{m}^{j}$$

Are the (uj,uj')'s correct?

Alice picks a random element n, and asks for: $\langle (\mathbf{n}^0, \dots, \mathbf{n}^N); (\mathbf{u}_0, \dots, \mathbf{u}_N) \rangle$ $\langle (\mathbf{n}^0, \dots, \mathbf{n}^N); (\mathbf{u}'_0, \dots, \mathbf{u}'_N) \rangle$

She checks the following decryption once the inner products are proven:

$$\mathsf{Dec}(\sum_{j} \mathsf{n}^{j}(\mathsf{u}_{j},\mathsf{u}_{j}')) = \sum_{j} \mathsf{n}^{j}\mathsf{m}^{j}$$

Then the OPE inner-product is proven

The polynomial evaluation ciphertext is given by the inner-products of the (uj)j, (u'j)j vectors with the vector of coefficients of f.

She will see the noise in the ciphertexts when she decrypts

What if Alice learnt from Bob's noise?

That noise carries information about Bob's polynomial, f, which was used in the linear Combinations of public ciphertexts of powers of m

Noise flooding for security against an honest-but-curious Alice

 $(\tilde{\mathsf{d}} = \sum_{j} \mathsf{u}_{j} \cdot \mathsf{f}_{j} + \mathsf{z})$

 $\mathsf{Dec}(\tilde{\mathsf{d}}, \tilde{\mathsf{d}}') = \sum_{j=0}^{N} \mathsf{f}_{j} \mathsf{m}^{j}$

$$\mathsf{z}^* - \mathsf{q}^* \cdot \mathsf{r}, \widetilde{\mathsf{d}}')$$

Noise flooding

to protect Bob's privacy against an honest-but-curious Alice.

 $(\tilde{\mathbf{d}} = \sum_{j} \mathbf{u}_{j} \cdot \mathbf{f}_{j} + \mathbf{z}^{*} - \mathbf{q}^{*} \cdot \mathbf{r}, \tilde{\mathbf{d}}')$ Additional noise

How can we be sure Bob adds noise and not something else?

We should prove the norm of the added noise polynomials is small.

How can we be

That is just another innerproduct proof, with a secret committed result and a range proof to make sure it is small enough

ו we be b adds nd not

hing

?

We should prove the norm of the added noise polynomials is small.

If a malicious Alice sent incorrect intermediate ciphertexts?

We provide an informal construction, its formal proof would have a high cost

lf a m incor

relationships between powers of the message enables the calculation of a ciphertext which is supposedly of zero with quadratic operations between the intermediate ciphertexts. Alice can prove it is a ciphertext of zero.

We provide an informal construction, its formal proof would have a high cost

Conclusion

Sub-linear communications in $\tilde{\mathcal{O}}(N^{2/d})$

2

Security against malicious Bob (+informal construction against a malicious Alice)

3

We provide guidelines to use MyOPE with RNS optimisations for FHE and the SEAL library

Small proof sizes in $\tilde{\mathcal{O}}(1)$

Compact proofs of inner-products are of

Extension to Symmetric Private Information

Straightforward adaptation to dynamic

N on 30 bits, n on 14 bits, q on less than 512 bits, t=3 => FHE ciphertexts are less than 200MB, the proof on less than 100KB, for 128 bits of security. MyOPE @ALMASTY Seminar Feb. 17th, 22.

Thank you!

Paola de Perthuis

