Multi Designated Verifier Signatures

Joint work with Ivan Damgård, Helene Haagh, Rebekah Mercer, Claudio Orlandi, Sophia Yakoubov

Characters

- a signer **S** (Snow White)

- a set of multiple verifiers **D** (Dwarfs)
- adversary should not learn the source of the messages

Corrupted verifiers Simulate Cannot link the signature to the signer

MDVS Stronger sociurity notions

Stronger security notions

E.

- Unforgeability
- Consistency
- Source Hiding
- Privacy of Identities

Outline

Security Definitions

Correctness

Any honest signature should verify for every designated verifier

Consistency

S cannot create an inconsistent signature: Accepted by a verifier V_1 and rejected by V_2

Consistency

By correctness, a *honest signature* should be **accepted by all** designated verifiers

Unforgeability

An adversary cannot forge a signature to a honest verifier **Strong:** Even when it corrupts part of the verifiers in **D**

5

Source Hiding

Even corrupted colluding verifiers should not be able to prove the source of the message to outsiders

The verifiers are able to simulate signatures

No outsider can know where a given signature came from.

Unforgeability

A simulated signature is not a forgery It does not convince a honest designated verifier

Inconsistency

Corrupt verifiers can simulate an inconsistent signature: **Rejected** by honest **V** & **Accepted** by corrupted **V'**

PSI: An outsider cannot tell who is the signer Even after seeing prior signatures from those signers

Privacy of Identity

PDI: An outsider cannot tell the set of designated verifiers (for same cardinality)

MDVS comparison

Schemes	PSI	Verification	Simulation	Signature Size
[JSI96]	×	Local	All	<i>©</i> (1)
[NSM05]	~	All	All	$\mathcal{O}(\mathcal{D})$
[LSMP07]	×	Local	All	<i>©</i> (1)
[MW08]	~	All	All	<i>©</i> (1)
[Ver08]	~	All	All	$\mathcal{O}(\mathcal{D})$
[Tia12]	~	Local	One	<i>©</i> (1)
Our FE-MDVS	~	Local	any subset	$\mathcal{O}(\mathcal{C})$
Our PS-MDVS	×	Local	any subset	$\mathcal{O}(\mathcal{D})$

Verify: Local vs All

Local: a single designated verifier can check

All: the designated verifiers need to work together in order to verify

5

MDVS comparison

Schemes	PSI	Verification	Simulation	Signature Size
[JSI96]	×	Local	All	<i>©</i> (1)
[NSM05]	~	All	All	$\mathcal{O}(\mathcal{D})$
[LSMP07]	×	Local	All	<i>©</i> (1)
[MW08]	~	All	All	<i>©</i> (1)
[Ver08]	~	All	All	$\mathcal{O}(\mathcal{D})$
[Tia12]	~	Local	One	<i>©</i> (1)
Our FE-MDVS	~	Local	any subset	$\mathcal{O}(\mathcal{C})$
Our PS-MDVS	×	Local	any subset	$\mathcal{O}(\mathcal{D})$

MDVS comparison

Schemes	PSI	Verification	Simulation	Signature Size
[JSI96]	×	Local	All	<i>©</i> (1)
[NSM05]	~	All	All	$\mathcal{O}(\mathcal{D})$
[LSMP07]	×	Local	All	<i>©</i> (1)
[MW08]	~	All	All	<i>©</i> (1)
[Ver08]	~	All	All	$\mathcal{O}(\mathcal{D})$
[Tia12]	~	Local	One	<i>©</i> (1)
Our FE-MDVS	~	Local	any subset	O(C) optim
Our PS-MDVS	×	Local	any subset	@(D)

FE Construction

Source Hiding Simulation

Source Hiding Simulation

Source Hiding Simulation

Source Hiding

Simulated signature looks like one from signer **S** Verifies under *secret keys* **dk**, of designated verifiers in *C*

Unforgeability

FE-MDVS for short Sign: +pk sk_s +pk Simulate: {sk,] vks Verify: Checks vk, dk.

PSpvs Construction

Provably Simulatable DVS

PSDVS: Sign & Simulate

\$

PSDVS from standard primitives

Scheme 1 from generic tools:

- pseudo-random functions
- non-interactive key exchange (Diffie-Hellman)
- zk-SNARKs: non-interactive zero-knowledge proofs of knowledge.

Scheme 2 with better concrete efficiency:

- based on DDH & strong RSA
- Paillier encryption
- Secure in the random oracle model
- requires a constant number of exponentiations

Thanks.

Any questions?

Credits

Special thanks to all those who made and released these resources for free:

- Presentation template by <u>SlidesCarnival</u>
- Illustrations by <u>Disneyclips</u> and <u>Iconfinder</u>