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 \We can remember just low-entropy passwords
(and not too many).

« Humans cannot remember large secret keys.

* Provider/authorities might perform an offline
dictionary attack.
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 USB Tokens might not be always available.

* Tokens might fall into the wrong hands.

* Large keys give better security.
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e User creates a cryptographic key.
* Encrypts her data using this key.
* Stores her secret key into n servers
" by using her password and some
oublic information.

o Stores the data into the provider.
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PPSS: Properties

A PPSS scheme defines two steps:

e Initialization: Secret & password are processed

Reconstruction: The user can recover the secret
by interacting with a subset of ¢ 4+ 1 servers.

 Additional properties:

Soundness: Even if the adversary cannot make the user
recover a different secret.

0 Robustness: The recovery is guaranteed if there are
t + 1 non-corrupt servers.




PPSS: Instantiations of PPSS

Messages Client |inter-server

BJSL11

JKK14

JKKX16




PPSS: Instantiations of PPSS

Scheme | Messages inter-server

BJSL11

CLLN14

JKK14

JKKX16

This work




Robust Password-Protected Secret Sharing




Robust Password-Protected Secret Sharing




Robust Password-Protected Secret Sharing




Robust Password-Protected Secret Sharing




PPSS: Secret Sharing Scheme




PPSS: Secret Sharing Scheme




PPSS: Robust Gap Secret Sharing Scheme

How do we implement robustness?
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Fingerprint function: Hash function
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PPSS: Robust Gap Secret Sharing Scheme

How can we decide which are the valid sets of shares
to reconstruct?



PPSS: Robust Gap Secret Sharing Scheme




PPSS: Robust Gap Secret Sharing Scheme

Given SSinfo = { _ N}




PPSS: Robust Gap Secret Sharing Scheme

Given SSinfo = { _ N}

_ L TNRN

— (<)




PPSS: Robust Gap Secret Sharing Scheme

Given SSinfo = { _ N}

N =



PPSS: Robust Gap Secret Sharing Scheme

Given SSlnfo = { _ N




PPSS: Robust Gap Secret Sharing Scheme

Given SSlnfo = { _ N




PPSS: Robust Gap Secret Sharing Scheme

Given SSlnfo = { _ N

eod([Fl . D)) ~




PPSS: Robust Gap Secret Sharing Scheme

Given SSlnfo = { _ N

ged(fm | L T ]~ 1 Correct fingerprint!




PPSS: Robust Gap Secret Sharing Scheme

Given SSlnfo = { _ N

ged(fm | L T ]~ 1 Correct fingerprint!
\gcd(-j-)\ ~ k Incorrect fingerprint!




PPSS: Robust Gap Secret Sharing Scheme

Given SSlnfo = { _ N

ged(fm | L T ]~ 1 Correct fingerprint!
\gcd(-j-)\ ~ k Incorrect fingerprint!

ged((m], L T ]~ 1 Correct fingerprint!




PPSS: Oblivious PRF
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* [he output is indistinguishable from random

* [he server learns nothing
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Each share is encrypted using the each PRF evaluation
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PPSS: Initialization
The user computes a commitment
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PPSS: Initialization
The user uploads the encrypted data
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The user interacts with the server
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The user interacts with the server
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PPSS: Reconstruction

The user interacts with the server

]

|

(pk1, sk1) (pk2, sk2) . (pkn,, skn)
Plnfo Plnfo Plnfo
.: Fskl (pW) M2 |— L'sks (PW) . — Fskn(pw)

a Commit(pw, H ({pkk fn) {0k )| [SSINGL K ); ) = C
pw



PPSS: Proof [Sketch]

We build simulators for each PRFs

Adversary’s probabillity Is bounded by:




PPSS: Proof [Sketch]

We build simulators for each PRFs

Adversary’s probability i1s bounded by:

-

Probability of guessing pw

Pr[PWinC| = #%“ict




PPSS: Proof [Sketch]

We build simulators for each PRFs

Adversary’s probability i1s bounded by:

-

Probability of breaking the
OPRF

Pr[PWinF] = ¢



PPSS: Comparison

* By using our robust threshold secret sharing we
avoid the verifiability requirements for the OPRF.

 We reduce the communication to the half, because of
the simplitication of the OPRF.

 Our communication and computation complexities are
asymptotically equivalent to [JKK14], in real life they
are twice better.
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| ged =k Incorrect fingerprint!
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Fig. I: Length in bits of ged(7"”.7;) for a fingerprint of size 128-bits and 32 shares



PPSS: CDH-based PRF (One-More Gap DH)
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PPSS: DDH-based PRF

“(* =
-! pk, {c; = Encpk(a;)} o
x:(xl,xz,...,xg)e{o,l}e sk € Zg

o +— (54
C' < Encpk(a X ag | | a;*)

C

Proof (c, ;)

G

<

> D < Decg (C)
G<4g

<

R« G/



