Robust Password-
Protected Secret Sharing

Michel Abdalla, Mario Cornejo,
Anca Nitulescu, David Pointcheval

Ecole Normale Supérieure, CNRS and INRIA, Paris, France

PPSS: Motivation

éloud provider

ﬁ medical top secret
taxes paychecks

records documents

PPSS: Motivation

éloud provider

taxes medical top secret
records paychecks documents

PPSS: Motivation

éloud provider

¥

medical
records

paychecks

Everyone might have access to the data

top secret
documents

PPSS: Motivation

éloud provider

taxes

medical avehecks top secret
records pay documents

PPSS: Motivation

éloud provider \\

taxes oo paychecks (0 S008
Provider still has access to the data //

PPSS: Motivation

éloud provider

taxes

medical
records

paychecks

top secret
documents

PPSS: Motivation

éloud provider

*)

medical avehecks top secret
records pay documents

taxes

/

PPSS: Motivation

Cloud provider

taxes medical top secret
records paychecks documents

 \We can remember just low-entropy passwords
(and not too many).

« Humans cannot remember large secret keys.

* Provider/authorities might perform an offline
dictionary attack.

PPSS: Motivation

Cloud provider

medical avehecks top secret
records pay documents

 USB Tokens might not be always available.

* Tokens might fall into the wrong hands.

* Large keys give better security.

PPSS: Password-Protected Secret Sharing

ﬂ:loud provider\\

taxes

PPSS: Password-Protected Secret Sharing

ﬁ:loud provider\\

R e User creates a cryptographic key.

taxes

PPSS: Password-Protected Secret Sharing

/ Cloud provider

R » User creates a cryptographic key.

* Encrypts her data using this key.

PPSS: Password-Protected Secret Sharing

Keys store
Cloud provider y

m
m
m

* User creates a cryptographic key.

* Encrypts her data using this key.

* Stores her secret key into n servers
by using her password and some
poublic information.

PPSS: Password-Protected Secret Sharing

Keys store
Cloud provider y

4

taxes

e User creates a cryptographic key.
* Encrypts her data using this key.
* Stores her secret key into n servers
" by using her password and some
oublic information.

o Stores the data into the provider.

PPSS: Password-Protected Secret Sharing

/ R N Keys store
Cloud provider B
= N OB h = 0
!
//
—— * After t + 1 interactions using her

password, the user can recover her
secret key

@

taxes

PPSS: Password-Protected Secret Sharing

Keys store
Cloud provider y

L
n
n

o After t+ 1 interactions using her
password, the user can recover her
secret key

PPSS: Properties

A PPSS scheme defines two steps:

e Initialization: Secret & password are processed

Reconstruction: The user can recover the secret
by interacting with a subset of ¢ 4+ 1 servers.

 Additional properties:

Soundness: Even if the adversary cannot make the user
recover a different secret.

0 Robustness: The recovery is guaranteed if there are
t + 1 non-corrupt servers.

PPSS: Instantiations of PPSS

Messages Client |inter-server

BJSL11

JKK14

JKKX16

PPSS: Instantiations of PPSS

Scheme | Messages inter-server

BJSL11

CLLN14

JKK14

JKKX16

This work

Robust Password-Protected Secret Sharing

Robust Password-Protected Secret Sharing

Robust Password-Protected Secret Sharing

Robust Password-Protected Secret Sharing

PPSS: Secret Sharing Scheme

PPSS: Secret Sharing Scheme

PPSS: Robust Gap Secret Sharing Scheme

How do we implement robustness?

PPSS: Robust Gap Secret Sharing Scheme

Assume a set of valid shares from a Threshold S§S

.., Sn)

(517

PPSS: Robust Gap Secret Sharing Scheme

Fingerprint function: Hash function

PPSS: Robust Gap Secret Sharing Scheme

Generate a prime number N 92k(n—tr)+1 N < 92k(n—tr)+2

(X)—— —

Nz

.y 8n) (01,...,00) S=][_,0; mod N

(517

Q
=

PPSS: Robust Gap Secret Sharing Scheme

Generate a prime number N 92k(n—tr)+1 N < 92k(n—tr)+2

PPSS: Robust Gap Secret Sharing Scheme

How can we decide which are the valid sets of shares
to reconstruct?

PPSS: Robust Gap Secret Sharing Scheme

PPSS: Robust Gap Secret Sharing Scheme

Given SSinfo = { _ N}

PPSS: Robust Gap Secret Sharing Scheme

Given SSinfo = { _ N}

_ L TNRN

— (<)

PPSS: Robust Gap Secret Sharing Scheme

Given SSinfo = { _ N}

N =

PPSS: Robust Gap Secret Sharing Scheme

Given SSlnfo = { _ N

PPSS: Robust Gap Secret Sharing Scheme

Given SSlnfo = { _ N

PPSS: Robust Gap Secret Sharing Scheme

Given SSlnfo = { _ N

eod([Fl . D)) ~

PPSS: Robust Gap Secret Sharing Scheme

Given SSlnfo = { _ N

ged(fm | L T]~ 1 Correct fingerprint!

PPSS: Robust Gap Secret Sharing Scheme

Given SSlnfo = { _ N

ged(fm | L T]~ 1 Correct fingerprint!
\gcd(-j-)\ ~ k Incorrect fingerprint!

PPSS: Robust Gap Secret Sharing Scheme

Given SSlnfo = { _ N

ged(fm | L T]~ 1 Correct fingerprint!
\gcd(-j-)\ ~ k Incorrect fingerprint!

ged((m], L T]~ 1 Correct fingerprint!

PPSS: Oblivious PRF

pw sk

I

F'(sk, pw)

* [he output is indistinguishable from random

* [he server learns nothing

PPSS: Password-Protected Secret Sharing

PPSS: Initialization

The user interacts with n servers to obliviously evaluate the PRF

(pkl,Skl) (ka,Skg) o (pkn,Skn)

PPSS: Initialization

The user interacts with n servers to obliviously evaluate the PRF

(pkl,Skl) (pk278k2) o (pkn,Skn)

— Fskl (pW)

lﬂ

PW

PPSS: Initialization

The user interacts with n servers to obliviously evaluate the PRF

(pkhSkl) (pk278k2) o (pkn,Skn)

.: Fap, (pw) .: Flsg, (pw)
lﬂ

PW

PPSS: Initialization

The user interacts with n servers to obliviously evaluate the PRF

— =

(pk’l,Skl) (pk273k2) o (pk’n,Skn)

— Fu, (pw) |~ Pt (pw) B P (ow

PW

PPSS: Initialization
Each share is encrypted using the each PRF evaluation

- n
-]

(pkhSkl) (pk275k2) o (pkn,Skn)

.: Fop, (pw)

— Fskl (pW)

a

PwW {ﬂ-k }n {pkk }n

PPSS: Initialization

Each share is encrypted using the each PRF evaluation

[~

D

-
==

(pk1, sk1) (pka, sk)

m

— Fskl (pW)

PPSS: Initialization

Each share is encrypted using the each PRF evaluation

=) =)
(pk1, sk1) (pka, sk)
_ Y, q Y,
.: For, (pw) .: Fyr, (pw)
R = Kl||r

(.,.,.,-) < ShareGen(R)
Lo R

PwW {ﬂ-k }n {pkk }n

PPSS: Initialization
The user computes a commitment

(pkl,Skl) (pk278k2) o (pkn,Skn)

C' = Commit(pw, H(-,

lﬂ

pwW {Wk}n {pkk}n K 7T SSinfo {Uk}n

PPSS: Initialization
The user uploads the encrypted data

(pk1, sk1) (pka2, sk2) o (pkn, skn)
Plnfo Plnfo Plnfo

Pinfo = ({pkktn),

lﬂ

pw {Wk}n {pkk}n K 7 SSlinfo {Uk}n C

PPSS: Password-Protected Secret Sharing

@A Reconstruction phase

PPSS: Reconstruction

The user interacts with the server

(Pk1, ski) (Pk2, ska) o (pkn, skn)
Plnfo Plnfo Plnfo

PPSS: Reconstruction

The user interacts with the server

(pkr,, sky,)
Plnfo

PPSS: Reconstruction

The user interacts with the server

PPSS: Reconstruction

The user interacts with the server

]

(pk1, sk1) (pka, sk2)
Plnfo Plnfo

|

.= Fop, (pw) ma|= Fsp, (pW)

a

PW

PPSS: Reconstruction

The user interacts with the server

m
m

(pk1, sk1) (pka, sk2)
Plnfo Plnfo

Fskl (pW) 2| = L5k, (pW)

m

(pkr, skr,)
Plnfo

Fskn (pW)

The user interacts with the server

L
J

|
l*

(pkla Skl)

. Plnfo /

PW

[
[
a0
— o ——

(pk27 SkQ)

. Plnfo y

PPSS: Reconstruction

~

sko (pW)

The user interacts with the server

L
J

|
|*

(pkla Skl)

. Plnfo j

PW

PPSS: Reconstruction

PPSS: Reconstruction

The user interacts with the server

]

.
m

|

(pk1, sk1) (pk2, sk2) . (pkn,, skn)
Plnfo Plnfo Plnfo
.: Fskl (pW) M2 |— L'sks (PW) . — Fskn(pw)

-
d Reconstruct(

PW

PPSS: Reconstruction

The user interacts with the server

]

|

(pk1, sk1) (pk2, sk2) . (pkn,, skn)
Plnfo Plnfo Plnfo
.: Fskl (pW) M2 |— L'sks (PW) . — Fskn(pw)

a Commit(pw, H ({pkk fn) {0k)| [SSINGL K);) = C
pw

PPSS: Proof [Sketch]

We build simulators for each PRFs

Adversary’s probabillity Is bounded by:

PPSS: Proof [Sketch]

We build simulators for each PRFs

Adversary’s probability i1s bounded by:

-

Probability of guessing pw

Pr[PWinC| = #%“ict

PPSS: Proof [Sketch]

We build simulators for each PRFs

Adversary’s probability i1s bounded by:

-

Probability of breaking the
OPRF

Pr[PWinF] = ¢

PPSS: Comparison

* By using our robust threshold secret sharing we
avoid the verifiability requirements for the OPRF.

 We reduce the communication to the half, because of
the simplitication of the OPRF.

 Our communication and computation complexities are
asymptotically equivalent to [JKK14], in real life they
are twice better.

Robust Password-
Protected Secret Sharing

Michel Abdalla, Mario Cornejo,
Anca Nitulescu, David Pointcheval

Ecole Normale Supérieure, CNRS and INRIA, Paris, France

PPSS: Experimental Results

Given SSlnfo = { _ N

PPSS: Experimental Results

Given SSlnfo = { _ N

ged(fm]| T]| =1 Correct fingerprint!

PPSS: Experimental Results

Given SSlnfo = { _ N

ged(fm]| T]| =1 Correct fingerprint!

sod(F .)| =
ecd([F . D)) =

Correct fingerprint!

Correct fingerprint!

PPSS: Experimental Results

| ged =k Incorrect fingerprint!

(=, B
| ged(- | -)=k—1 Incorrect fingerprint!
(= B

| ged =k —2 Incorrect fingerprint!

(a) ged(T", 7;)-bitlength for valid .. (b) ged(T", ;)-bitlength for invalid 7.

0.20F
015fF
ool

0.05)

Bits 0.00F
5 10 15 20 25 30 35 95 100 105 110 115 120 125

Bits

Fig. I: Length in bits of ged(7"”.7;) for a fingerprint of size 128-bits and 32 shares

PPSS: CDH-based PRF (One-More Gap DH)

y pk — gsk
pw sk
o — L~ A
A Hl(pW)a g
B+ A5k
B

C + BY> = H,(pw)
Fsk(pw) — HQ(DW, pk7 C)

PPSS: DDH-based PRF

“(* =
-! pk, {c; = Encpk(a;)} o
x:(xl,xz,...,xg)e{o,l}e sk € Zg

o +— (54
C' < Encpk(a X ag | | a;*)

C

Proof (c, ;)

G

<

> D < Decg (C)
G<4g

<

R« G/

