
Robust Password-
Protected Secret Sharing

Michel Abdalla, Mario Cornejo,
Anca Niţulescu, David Pointcheval

École Normale Supérieure, CNRS and INRIA, Paris, France

R E S E A R C H
U N I V E R S I T Y

PPSS: Motivation

Cloud provider

taxes
medical
records paychecks

top secret
documents

Cloud provider

taxes medical
records paychecks top secret

documents

PPSS: Motivation

Cloud provider

taxes medical
records paychecks top secret

documents

Everyone might have access to the data

PPSS: Motivation

Cloud provider

taxes medical
records paychecks top secret

documents

PPSS: Motivation

Cloud provider

taxes medical
records paychecks top secret

documents

Provider still has access to the data

PPSS: Motivation

Cloud provider

taxes medical
records paychecks top secret

documents

PPSS: Motivation

Cloud provider

taxes medical
records paychecks top secret

documents

PPSS: Motivation

Cloud provider

taxes medical
records paychecks top secret

documents

• We can remember just low-entropy passwords
(and not too many).

• Humans cannot remember large secret keys.

• Provider/authorities might perform an offline
dictionary attack.

PPSS: Motivation

Cloud provider

taxes medical
records paychecks top secret

documents

• USB Tokens might not be always available.

• Tokens might fall into the wrong hands.

• Large keys give better security.

PPSS: Motivation

PPSS: Password-Protected Secret Sharing

Cloud provider

taxes

PPSS: Password-Protected Secret Sharing

Cloud provider

taxes

• User creates a cryptographic key.

PPSS: Password-Protected Secret Sharing

Cloud provider

• User creates a cryptographic key.

taxes

• Encrypts her data using this key.

PPSS: Password-Protected Secret Sharing

Cloud provider

…

Keys store

• User creates a cryptographic key.
• Encrypts her data using this key.
• Stores her secret key into servers

by using her password and some
public information.

n

taxes

Cloud provider

PPSS: Password-Protected Secret Sharing

• User creates a cryptographic key.taxes

• Encrypts her data using this key.
• Stores her secret key into servers

by using her password and some
public information.

n

…

Keys store

• Stores the data into the provider.

Cloud provider

PPSS: Password-Protected Secret Sharing

…

Keys store

• After interactions using her
password, the user can recover her
secret key

t+ 1

taxes

Cloud provider

PPSS: Password-Protected Secret Sharing

…

Keys store

• After interactions using her
password, the user can recover her
secret key

t+ 1

taxes

Reconstruction: The user can recover the secret
by interacting with a subset of servers.

• A PPSS scheme defines two steps:

PPSS: Properties

• Additional properties:

Initialization: Secret & password are processed

t+ 1

Robustness: The recovery is guaranteed if there are
s non-corrupt servers.t+ 1

Soundness: Even if the adversary cannot make the user
recover a different secret.

PPSS: Instantiations of PPSS

Scheme Messages Client inter-server Robust ZKP

BJSL11 4 PKI PKI No Costly

CLLN14 10 Std PKI No Costly

JKK14 2 CRS None Yes Costly

JKKX16 2 CRS None No No

PPSS: Instantiations of PPSS

Scheme Messages Client inter-server Robust ZKP

BJSL11 4 PKI PKI No Costly

CLLN14 10 Std PKI No Costly

JKK14 2 CRS None Yes Costly

JKKX16 2 CRS None No No

This work 2 CRS None Yes No

Robust Password-Protected Secret Sharing

Robust Gap
 Secret Sharing

OPRF

PPSS

Secret Sharing Scheme

Robust Password-Protected Secret Sharing

Robust Gap
 Secret Sharing

OPRF

PPSS

Secret Sharing Scheme

Robust Password-Protected Secret Sharing

Robust Gap
 Secret Sharing

OPRF

PPSS

Secret Sharing Scheme

Robust Password-Protected Secret Sharing

Robust Gap
 Secret Sharing

OPRF

PPSS

Secret Sharing Scheme

PPSS: Secret Sharing Scheme

Secret

s1

s2

s3

…

sn

PPSS: Secret Sharing Scheme

s1

s2

s3

…

sn

Secret

How do we implement robustness?

PPSS: Robust Gap Secret Sharing Scheme

PPSS: Robust Gap Secret Sharing Scheme

Assume a set of valid shares from a Threshold SSS

s1

s2

s3

…

sn

(s1, . . . , sn)

PPSS: Robust Gap Secret Sharing Scheme

s1

s2

s3

�1

…

sn

�2

�3

�n

Fingerprint function: Hash function

(s1, . . . , sn) (�1, . . . ,�n)

PPSS: Robust Gap Secret Sharing Scheme

s1

s2

s3

�1

…

sn

�2

�3

�n

Generate a prime number N 22k(n�tr)+1 < N 22k(n�tr)+2

S =

Qn
i=1 �i mod N

⇥ S

(s1, . . . , sn) (�1, . . . ,�n)

PPSS: Robust Gap Secret Sharing Scheme

s1

s2

s3

�1

…

sn

�2

�3

�n

Generate a prime number N 22k(n�tr)+1 < N 22k(n�tr)+2

S =

Qn
i=1 �i mod N

⇥ S

(s1, . . . , sn) (�1, . . . ,�n)

Output:

SSInfo = (S, N)

{sk}n = s1 s2 s3 sn…

S N,{ }

How can we decide which are the valid sets of shares
to reconstruct?

PPSS: Robust Gap Secret Sharing Scheme

PPSS: Robust Gap Secret Sharing Scheme

s1

s2

s3

…

sn

Given
SSInfo = (S, N) S N,{ }

PPSS: Robust Gap Secret Sharing Scheme

s1

s2

s3

…

sn

Given
SSInfo = (S, N) S N,{ }

⌧1

⌧2

⌧3

⌧n

PPSS: Robust Gap Secret Sharing Scheme

s1

s2

s3

…

sn

Given
SSInfo = (S, N) S N,{ }

⇥ T

⌧1

⌧2

⌧3

⌧n

PPSS: Robust Gap Secret Sharing Scheme

Given

T

SSInfo = (S, N) S N,{ }

S
� =

PPSS: Robust Gap Secret Sharing Scheme

Given

T

SSInfo = (S, N) S N,{ }

S
� = =

…

�1 �2 �3 �n…

⌧1 ⌧2 ⌧3 ⌧n

PPSS: Robust Gap Secret Sharing Scheme

Given

T

SSInfo = (S, N) S N,{ }

S
� = =

…

�1 �2 �3 �n…

⌧1 ⌧2 ⌧3 ⌧n T 0

S 0
=

PPSS: Robust Gap Secret Sharing Scheme

Given

T

SSInfo = (S, N) S N,{ }

S
� = =

…

�1 �2 �3 �n…

⌧1 ⌧2 ⌧3 ⌧n T 0

S 0
=

| gcd(⌧1 , T 0)| ⇡ 1

PPSS: Robust Gap Secret Sharing Scheme

Given

T

SSInfo = (S, N) S N,{ }

S
� = =

…

�1 �2 �3 �n…

⌧1 ⌧2 ⌧3 ⌧n T 0

S 0
=

| gcd(⌧1 , T 0)| ⇡ 1 Correct fingerprint!

PPSS: Robust Gap Secret Sharing Scheme

Given

T

SSInfo = (S, N) S N,{ }

S
� = =

…

�1 �2 �3 �n…

⌧1 ⌧2 ⌧3 ⌧n T 0

S 0
=

| gcd(⌧1 , T 0)| ⇡ 1

| gcd(, T 0)| ⇡⌧2 k

Correct fingerprint!

Incorrect fingerprint!

PPSS: Robust Gap Secret Sharing Scheme

Given

T

SSInfo = (S, N) S N,{ }

S
� = =

…

�1 �2 �3 �n…

⌧1 ⌧2 ⌧3 ⌧n T 0

S 0
=

| gcd(⌧1 , T 0)| ⇡ 1

| gcd(, T 0)| ⇡⌧2 k

Correct fingerprint!

Incorrect fingerprint!

| gcd(T 0)| ⇡ 1 Correct fingerprint! ⌧3 ,

PPSS: Oblivious PRF

pw sk

• The output is indistinguishable from random

• The server learns nothing

F
F (sk, pw)

PPSS: Password-Protected Secret Sharing

Initialization phase

PPSS: Initialization
The user interacts with servers to obliviously evaluate the PRFn

…(pk1, sk1) (pk2, sk2) (pkn, skn)

PPSS: Initialization

pw

…(pk1, sk1) (pk2, sk2) (pkn, skn)

⇡1 = Fsk1(pw)

The user interacts with servers to obliviously evaluate the PRFn

PPSS: Initialization

pw

…(pk1, sk1) (pk2, sk2) (pkn, skn)

⇡1 = Fsk1(pw) ⇡2 = Fsk2(pw)

The user interacts with servers to obliviously evaluate the PRFn

PPSS: Initialization

pw

…(pk1, sk1) (pk2, sk2) (pkn, skn)

⇡n = Fskn(pw)⇡1 = Fsk1(pw) ⇡2 = Fsk2(pw)

The user interacts with servers to obliviously evaluate the PRFn

PPSS: Initialization

pw {⇡k}n

R = K||r

Each share is encrypted using the each PRF evaluation

…(pk1, sk1) (pk2, sk2) (pkn, skn)

⇡n = Fskn(pw)⇡1 = Fsk1(pw) ⇡2 = Fsk2(pw)

{pkk}n

PPSS: Initialization

pw {⇡k}n

R = K||r

Each share is encrypted using the each PRF evaluation

(s1, . . . , sn, SSInfo) ShareGen(R)

…(pk1, sk1) (pk2, sk2) (pkn, skn)

⇡n = Fskn(pw)⇡1 = Fsk1(pw) ⇡2 = Fsk2(pw)

{pkk}n

PPSS: Initialization

pw {⇡k}n

R = K||r

Each share is encrypted using the each PRF evaluation

(s1, . . . , sn, SSInfo) ShareGen(R)

�k = ⇡k � sk

…(pk1, sk1) (pk2, sk2) (pkn, skn)

⇡n = Fskn(pw)⇡1 = Fsk1(pw) ⇡2 = Fsk2(pw)

{pkk}n

PPSS: Initialization

pw {⇡k}n

The user computes a commitment

K r
SSInfo

…(pk1, sk1) (pk2, sk2) (pkn, skn)

{pkk}n {�k}n

C = Commit(pw,H({pkk}n, {�k}n, SSInfo,K); r)

PPSS: Initialization

pw {⇡k}n

The user uploads the encrypted data

C

PInfo PInfo PInfo

…(pk1, sk1) (pk2, sk2) (pkn, skn)

K r
SSInfo

{pkk}n {�k}n

PInfo = ({pkk}n, {�k}n, SSInfo, C)

PPSS: Password-Protected Secret Sharing

Reconstruction phase

PPSS: Reconstruction

The user interacts with the server

⇡1 = Fsk1(pw)

pw

PInfo

…(pk1, sk1) (pk2, sk2) (pkn, skn)

PInfo PInfo PInfo

PPSS: Reconstruction

…(pk1, sk1) (pk2, sk2) (pkn, skn)

The user interacts with the server

PInfo PInfo PInfo

⇡1 = Fsk1(pw)

pw

PInfo

⇡2 = Fsk2(pw)

PPSS: Reconstruction

…(pk1, sk1) (pk2, sk2) (pkn, skn)

The user interacts with the server

PInfo PInfo PInfo

⇡1 = Fsk1(pw)

pw

PInfo

⇡2 = Fsk2(pw) ⇡n = Fskn(pw)

PPSS: Reconstruction

…(pk1, sk1) (pk2, sk2) (pkn, skn)

The user interacts with the server

PInfo PInfo PInfo

⇡1 = Fsk1(pw)

pw

⇡2 = Fsk2(pw) ⇡n = Fskn(pw)

�1 � ⇡1 = s1

PPSS: Reconstruction

…(pk1, sk1) (pk2, sk2) (pkn, skn)

The user interacts with the server

PInfo PInfo PInfo

⇡1 = Fsk1(pw)

pw

⇡2 = Fsk2(pw) ⇡n = Fskn(pw)

�1 � ⇡1 = s1

�2 � ⇡2 = s2

PPSS: Reconstruction

…(pk1, sk1) (pk2, sk2) (pkn, skn)

The user interacts with the server

PInfo PInfo PInfo

⇡1 = Fsk1(pw)

pw

⇡2 = Fsk2(pw) ⇡n = Fskn(pw)

�1 � ⇡1 = s1

�2 � ⇡2 = s2
�3 � ⇡3 = s3

PPSS: Reconstruction

…(pk1, sk1) (pk2, sk2) (pkn, skn)

The user interacts with the server

PInfo PInfo PInfo

⇡1 = Fsk1(pw)

pw

⇡2 = Fsk2(pw) ⇡n = Fskn(pw)

�1 � ⇡1 = s1

�2 � ⇡2 = s2
�3 � ⇡3 = s3

�n � ⇡n = sn

PPSS: Reconstruction

…(pk1, sk1) (pk2, sk2) (pkn, skn)

The user interacts with the server

PInfo PInfo PInfo

⇡1 = Fsk1(pw)

pw

⇡2 = Fsk2(pw) ⇡n = Fskn(pw)

�1 � ⇡1 = s1

�2 � ⇡2 = s2
�3 � ⇡3 = s3

�n � ⇡n = sn

Reconstruct()
?
= R = K||r

PPSS: Reconstruction

…(pk1, sk1) (pk2, sk2) (pkn, skn)

The user interacts with the server

PInfo PInfo PInfo

⇡1 = Fsk1(pw)

pw

⇡2 = Fsk2(pw) ⇡n = Fskn(pw)

Commit(pw,H({pkk}n, {�k}n, SSInfo,K); r)
?
= C

PPSS: Proof [Sketch]

Adversary’s probability is bounded by:

We build simulators for each PRFs

PPSS: Proof [Sketch]

Adversary’s probability is bounded by:

We build simulators for each PRFs

Probability of guessing pw

Pr[PWinC] = qu
#Dict

PPSS: Proof [Sketch]

Adversary’s probability is bounded by:

We build simulators for each PRFs

Probability of breaking the
OPRF

Pr[PWinF] = "

PPSS: Comparison

• By using our robust threshold secret sharing we
avoid the verifiability requirements for the OPRF.

• We reduce the communication to the half, because of
the simplification of the OPRF.

• Our communication and computation complexities are
asymptotically equivalent to [JKK14], in real life they
are twice better.

Robust Password-
Protected Secret Sharing

Michel Abdalla, Mario Cornejo,
Anca Niţulescu, David Pointcheval

École Normale Supérieure, CNRS and INRIA, Paris, France

R E S E A R C H
U N I V E R S I T Y

PPSS: Experimental Results

Given

T

SSInfo = (S, N) S N,{ }

S
� = =

…

�1 �2 �3 �n…

⌧1 ⌧2 ⌧3 ⌧n T 0

S 0
=

PPSS: Experimental Results

Given

T

SSInfo = (S, N) S N,{ }

S
� = =

…

�3 �n…

⌧1 ⌧2 ⌧3 ⌧n
=

| gcd(⌧1 ,)| ⇡ 1 Correct fingerprint! = 1

T 00

S 00

T 00

�2�1

T 00

S 00

PPSS: Experimental Results

Given

T

SSInfo = (S, N) S N,{ }

S
� = =

…

�2 �3 �n…

⌧1 ⌧2 ⌧3 ⌧n
=

| gcd(⌧1 ,)| ⇡ 1 Correct fingerprint! = 1

| gcd(⌧1 ,)| ⇡ 1 Correct fingerprint! = 2

| gcd(⌧1 ,)| ⇡ 1 Correct fingerprint! = 3

T 00

T 00

T 00

�1

PPSS: Experimental Results

| gcd(,)| ⇡ 1 Incorrect fingerprint!

| gcd(,)| ⇡ 1 Incorrect fingerprint!

,| gcd()| ⇡ 1 Incorrect fingerprint!

T 00

T 00

T 00

⌧2

⌧2

⌧2

= k

= k � 1

= k � 2

PPSS: CDH-based PRF (One-More Gap DH)

pw

A

B

↵ Z⇤

A H1(pw)↵

C B1/↵ = H1(pw)sk

pk = gsk

B Ask

sk

Fsk(pw) = H2(pw, pk, C)

PPSS: DDH-based PRF

x = (x1, x2, . . . , x`) 2 {0, 1}`

pk, {ci = Encpk(ai)}

sk 2 Zs

↵ Gs

C Encpk(↵⇥ a0
Q

a
i

xi)

C

Proof(↵, xi)
G

D Decsk(C)

G gD

R G1/↵

