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• We can remember just low-entropy passwords 
(and not too many). 

• Humans cannot remember large secret keys. 

• Provider/authorities might perform an offline 
dictionary attack.
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Cloud provider
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records paychecks top secret 

documents

• USB Tokens might not be always available. 

• Tokens might fall into the wrong hands. 

• Large keys give better security.
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• User creates a cryptographic key.taxes

• Encrypts her data using this key.
• Stores her secret key into    servers 

by using her password and some 
public information.
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Reconstruction: The user can recover the secret 
by interacting with a subset of          servers.

• A PPSS scheme defines two steps:

PPSS: Properties

• Additional properties:

Initialization: Secret & password are processed

t+ 1

Robustness: The recovery is guaranteed if there are          
s       non-corrupt servers.t+ 1

Soundness: Even if the adversary cannot make the user 
recover a different secret.
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How do we implement robustness?
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Fingerprint function: Hash function
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s1

s2

s3

�1

…

sn

�2

�3

�n

Generate a prime number N 22k(n�tr)+1 < N  22k(n�tr)+2

S =

Qn
i=1 �i mod N

⇥ S

(s1, . . . , sn) (�1, . . . ,�n)

Output:

SSInfo = (S, N)

{sk}n = s1 s2 s3 sn…

S N,{ }



How can we decide which are the valid sets of shares 
to reconstruct?
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Given

T

SSInfo = (S, N) S N,{ }
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S 0
=
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PPSS: Oblivious PRF

pw sk

• The output is indistinguishable from random 

• The server learns nothing

F
F (sk, pw)
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pw {⇡k}n

R = K||r

Each share is encrypted using the each PRF evaluation 

(s1, . . . , sn, SSInfo) ShareGen(R)

�k = ⇡k � sk
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PPSS: Initialization

pw {⇡k}n

The user computes a commitment

K r
SSInfo

…(pk1, sk1) (pk2, sk2) (pkn, skn)

{pkk}n {�k}n

C = Commit(pw,H({pkk}n, {�k}n, SSInfo,K); r)



PPSS: Initialization

pw {⇡k}n

The user uploads the encrypted data

C

PInfo PInfo PInfo

…(pk1, sk1) (pk2, sk2) (pkn, skn)

K r
SSInfo

{pkk}n {�k}n

PInfo = ({pkk}n, {�k}n, SSInfo, C)
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PPSS: Reconstruction

…(pk1, sk1) (pk2, sk2) (pkn, skn)

The user interacts with the server

PInfo PInfo PInfo

⇡1 = Fsk1(pw)

pw

⇡2 = Fsk2(pw) ⇡n = Fskn(pw)

Commit(pw,H({pkk}n, {�k}n, SSInfo,K); r)
?
= C
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PPSS: Proof [Sketch]

Adversary’s probability is bounded by: 

We build simulators for each PRFs

Probability of breaking the 
OPRF

Pr[PWinF] = "



PPSS: Comparison

• By using our robust threshold secret sharing we 
avoid the verifiability requirements for the OPRF.

• We reduce the communication to the half, because of 
the simplification of the OPRF.

• Our communication and computation complexities are 
asymptotically equivalent to [JKK14], in real life they 
are twice better. 
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PPSS: Experimental Results

| gcd( , )| ⇡ 1 Incorrect fingerprint! 

| gcd( , )| ⇡ 1 Incorrect fingerprint! 

,| gcd( )| ⇡ 1 Incorrect fingerprint! 

T 00

T 00

T 00

⌧2

⌧2

⌧2

= k

= k � 1

= k � 2



PPSS: CDH-based PRF  (One-More Gap DH)

pw

A

B

↵ Z⇤

A H1(pw)↵

C  B1/↵ = H1(pw)sk

pk = gsk

B  Ask

sk

Fsk(pw) = H2(pw, pk, C)



PPSS: DDH-based  PRF 

x = (x1, x2, . . . , x`) 2 {0, 1}`

pk, {ci = Encpk(ai)}

sk 2 Zs

↵ Gs

C  Encpk(↵⇥ a0
Q

a
i

xi)

C

Proof(↵, xi)
G

D  Decsk(C)

G gD

R G1/↵


