
Boosting Verifiable Computation
on Encrypted Data
Dario Fiore, Anca Nitulescu,
David Pointcheval

PKC 2020

The Bare Necessities of a Cloud User
(In times of Pandemics)

https://www.di.ens.fr/~nitulesc/publications.html#lume
https://www.di.ens.fr/~nitulesc/publications.html#lume

2

Motivational Tale:
The Bare Necessities of a Cloud User

(In times of Pandemics)

Pandemics biometric surveillance systems

3

User delegates its personal data
to a symptom tracking app

Client Server

 data

4

User delegates its symptoms
Server computes diagnosis

Client

Pandemics biometric surveillance systems

Server

 data

f(data)=y

5

Server sends back diagnosis
Client

Pandemics biometric surveillance systems

Server

 data

f(data)=y

y

So many benefits!

6

Client Server

 data

User receives diagnosis
Happy to hear he is healthy

healthy

Untrusted Server

7

Client Server

 datahealthy?

User runs the risk of a corrupted server

Server

What can go wrong? Data can be stolen

8

Client

 data

Confidential data is exposed
 symptoms

Server

What can go wrong? Results can be modified

f(data)≠y

9

Client

 data

y

Results are not guaranteed to be correct
diagnosis

Solution for Privacy of Inputs

10

Data Privacy

 data

Server

Encryption

(Fully) Homomorphic Encryption

11

Data Privacy

 data

Server

Encryption Homomorphic Encryption

✘ Privacy of inputs

✘ Malleability of data

✘ Privacy of output

[Gen09, BV11, BGV12, GSW13, CGGI16, CKKS17...]

Server

Solution for Integrity of the Computation

12

f(x)

π
data

Verifiable Computation

Server

data

13

 zk-SNARKs

✘ Proof is succinct

✘ Minimal interaction

✘ Client verifies efficiently

✘ Server algo remains secret

 [GGP10, GGPR13, PHGR13, Gro16, BBC+18...]

SNARKs = Proof Systems for lazy clients

Verifiable Computation

Full Solution: Verifiable Computation on Encrypted Data

14

Server

Apply Eval of FHE

Computation Integrity

π

Data Privacy

 data

 result

Full Solution: Verifiable Computation on Encrypted Data

15

Server

Apply Eval of HE

Computation Integrity

π

Data Privacy

 data

 result

✘

[GGP10] Non-interactive VC: Outsourcing computation to untrusted workers.
Rosario Gennaro, Craig Gentry, Bryan Parno

✘ Combines garbled circuits and FHE
✘ Non-interactive VC scheme for arbitrary functions
✘ Privacy for inputs and outputs (from Server)

[GKP+13] How to run turing machines on encrypted data.
Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, Nickolai Zeldovich

✘ Uses succinct single-key functional encryption scheme
✘ VC for functions with a single bit of output
✘ privacy of the inputs, but not of the outputs

[FGP14] Efficiently verifiable computation on encrypted data.
Dario Fiore, Rosario Gennaro, Valerio Pastro

✘ Combines FHE and VC
✘ VC for quadratic functions only
✘ privacy of the inputs, but not of the outputs

Apply Eval of FHE

Full Solution: Verifiable Computation on Encrypted Data

16

Server

Computation Integrity

π

Data Privacy

 data

 result

✘

[FGP14] Efficiently verifiable computation on encrypted data.
Dario Fiore, Rosario Gennaro, Valerio Pastro

✘ Combines FHE and homomorphic MAC

✘ Efficient VC for quadratic functions only

✘ Designated Verifier - it requires MAC key

✘ Verifier = Client (has secret key for FHE)

✘ Privacy of the inputs and the outputs (from Server)

Outline

17

C
Option

s

Private VC
Goals

Strategy

Building Blocks The
END

Technical
ChallengesPolynomial Commitments

CaP zk-SNARKs

Publicly Verifiable Computation with Privacy

18

Server Verify Result

π
 data

 result

Encrypt the Data

Compute & Prove

Publicly Verifiable Computation with Privacy

19

Server Verify ResultEncrypt the Data

Compute & Prove

Solution that improves on [FGP14] :

✘ Public verifiable: Client & Verifier do not share keys

✘ Efficiency for higher degree computations (arithmetic circuits)

Idea: Exploit the specificity of FHE ciphertexts

Compactly Commit
to ciphertexts

Prove efficiently
evaluation of circuit
on ciphertexts

crs

zk-SNARK for
verifiable and private

delegation of computation

FHE: Ciphertexts = Polynomials (ring-LWE, [BV11])

21

 P1 P2 P3 P4

P6

+

+

+

 a1 a2 a3 a4

Circuit over ciphertexts / over plaintexts

a6

+

+

 P1 P2 P3 P4

P6

+

+

+ +

Arithmetic Circuit over Polynomials

23

T(x)

+

+

+ + + +

p0 q0 p1 q1 pd qd

s0 s1 sd

... O(d) scalar
additions

H(x) S(x)

F(x) G(x) P(x) Q(x)

 t2d

h0 s0 h0 s1 h1 s0 ... h0 sk… hi sk-i … hd sd

T(x)

+

+

+
H(x) S(x) +

+

t1 t0

...

+ + +

+

tk

+ +

F(x) G(x) P(x) Q(x)

Arithmetic Circuit over Polynomials

24

~ d

2 scalar multiplications
& reductions modulo of deg d

25
T(x)

+

+

+ O(d) scalar
additions

O(d

2) scalar multiplications

~ O(d log d) for large d

H(x) S(x)

F(x) G(x) P(x) Q(x)

Arithmetic Circuit over Polynomials

26
T(x)

+ O(n⋅d)
 scalar additions

&
O(m⋅d⋅log d)
scalar multiplications

 *for polynomials of degree d

n inputs

+

+

F(x) G(x) P(x) Q(x)

+

+
H(x) S(x)m

x gates

n inputs

Challenge: Circuit over Polynomials

Goals: Efficient VC with Privacy

27

Encrypt the Data Compute & Prove Verify Result

+

+

+

F(x) G(x) P(x) Q(x)

F(x),G(x),

P(x),Q(x) T(x)

Solution that:

✘ Compactly commits to the input ciphertexts → hiding from Verifier

✘ Reduces the proof for → efficiency close to cleartext proof for

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

F(k) G(k) P(k) Q(k)

T(k)

+

+

+

evaluate
in k

Compress Circuit over Polynomials
n inputs n inputs

m
x gates

28

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

 f g p q

t

+

+

+
h s

evaluate
in k

f = F(k) p = P(k)
g = G(k) q = Q(k)

Prove Circuit over Scalars & Evaluation in k

&

29

n inputs n inputs

30

Commit & Prove Evaluation

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

 f g p q

t

+

+

+
h s

Z(x,y) V(y)

Building Blocks
Polynomial Commitments

CaP zk-SNARKs

Our Techniques

31

C
Option

s

Private VC
Goals

Strategy

The
END

Technical
Challenges

Input

P(x)

Polynomial Commitments

32

Commit(P)

P(x)

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

Input

P(x)

Polynomial Commitments - hiding inputs

33

Commit(P)

P(x)

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

Server

Multi-Polynomial Commitments

34

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

 F(x) G(x)

T(x)

 P(x) Q(x)

Z(x,y)

Commitments Single bi-variate
Comm

Multi-Polynomial Commitments

35

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

 F(x) G(x)

T(x)

 P(x) Q(x)

Z(x,y)

Commitments Single bi-variate
Comm

Z(x,y) = F(x) + G(x)y + T(x)y2 + P(x)y3 + Q(x)y4

36

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

 f g p q

t

+

+

+
h s

Commit & Prove Evaluation

37

Commit & Prove Evaluation

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

 f g p q

t

+

+

+
h s

Z(x,y) V(y)

38

Many Evaluations = Partial Evaluation

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

 f g p q

t

+

+

+
h s

Z(x,y) V(y)

Z(x,y) = F(x) + G(x)y + P(x)y2 + Q(x)y3

V(y) = f + g y + p y
2 + q y

3

39

Many Evaluations = Partial Evaluation

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

 f g p q

t

+

+

+
h s

Z(x,y) V(y)

Z(x,y) = F(x) + G(x)y + P(x)y2 + Q(x)y3

Z(k,y) = F(k) + G(k)y + P(k)y2 + Q(k)y3

V(y) = f + g y + p y
2 + q y

3=

40

Proof of Many Evaluations

Z(x,y)

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

 f g p q

t

+

+

+
h s

V(y)

Z(k,y) = V(y) σ

Z(k,y) = V(y)

Z(x,y)

41

Proof of Many Evaluations

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

 f g p q

t

+

+

+
h s

π

CaP SNARK

V(y)

σ

42

Reuse the same commitment

 f g p q

t

+

+

+
h s

[CFQ19] Modular
Commit-and-Prove
(LegoSNARK)

π

CaP SNARK

Z(x,y) V(y)

σ Z(k,y) = V(y)

Σ - Protocols & Fiat-Shamir Heuristic

43

CaP zk-SNARK
for Multi-Polynomial

Evaluation

Interactive
Proof

Random Oracle
Model

P: Commits to polynomials P: Commits to polynomials ✘ based on the SDH and PKE assumptions

V: Sends random point P: Queries point to RO ✘ non-interactive and zero-knowledge

P: Prove the evaluation P: Prove the evaluation ✘ evaluations are committed (never opened)

σ Z(k,y) = V(y)

44

Reuse the same commitment

 f g p q

t

+

+

+
h s

[CFQ19] Modular
Commit-and-Prove
(LegoSNARK)

π

CaP SNARK

Z(x,y) V(y)

σ Z(k,y) = V(y)

CaP zk-SNARK for Arithmetic Circuits

45

Lego-SNARK
 “lifting” tool

zk-SNARK Pre-Processing

Groth 16
CRS for QAP

Quadratic Arithmetic Programs LegoGro16

UAC - GKMMM 18
Universal, circuit-independent,

updatable CRS LegoUAC

π CaP SNARK
[CFQ19]

Review of Contributions

46

C
Option

s

Private VC
Goals

Strategy

The
END

Technical
Challenges

Building Blocks
Polynomial Commitments

CaP zk-SNARKs

zk-SNARK for polynomial ring computations

47

Encrypt the Data Compute & Prove Verify Result

F(k) G(k) P(k) Q(k)

F(x),G(x),

P(x),Q(x) T(x)

✘ CaP-SNARK for simultaneous evaluation of many committed polynomials
(based on the SDH and PKE assumptions in the RO Model)

✘ ZK: randomisation of ciphertexts

 &

commited results of evaluation

+

+

+

T(k)

48

Compactly Commit
to Polynomials

ZK Proof for evaluation
in random point k

crs

Z(k,y) Z’(y)

σ

CaP zk-SNARK
for arithmetic circuit

over scalars

+

+

++

+

+

Verifiable
Computation

with
Privacy

π

VC

Review of contributions

https://www.di.ens.fr/~nitulesc/publications.html#lume
https://www.di.ens.fr/~nitulesc/publications.html#lume

Thank you!

eprint.iacr.org/2020/132

Credits

50

Special thanks to all those who made and released these resources
for free:

✘ Presentation template by SlidesCarnival
✘ Illustrations by Disneyclips, Iconfinder and Flaticon

http://www.slidescarnival.com/
http://www.disneyclips.com
http://www.iconfinder.com
https://www.flaticon.com/

