
Multi-Party
Computation

Constructions & Properties

x
1

x
2

MPC - objectives

Framework for computation between parties who do not
trust each other.

 Examples:
● elections,
● auctions,
● distributed data mining,
● database privacy

Multi-Party
Computation

x
3

x
4

2

f(x
1

, x
2

, x
3

, x
4

) = (y
1

, y
2

 ,y
3

 ,y
4

) = y

x
1

x
2

MPC - objectives

Framework for computation between parties who do not
trust each other.

 Examples:
● elections,
● auctions,
● distributed data mining,
● database privacy

Goals: preserve the privacy of each player's inputs and
guarantee the correctness of the computation.

Multi-Party
Computation

x
3

x
4

3

f(x
1

, x
2

, x
3

, x
4

) = (y
1

, y
2

 ,y
3

 ,y
4

) = y

MPC - objectives

Trusted party:
All of these tasks can be easily computed by a trusted
third party

Security :
- Same guarantees without involving a trusted third party
- Provide an exact problem definition -
○ Adversarial power
○ Network model
○ Meaning of security

- Prove that the protocol is secure - by reduction to an
assumed hard problem

Multi-Party
Computation

f(x
1

, x
2

, x
3

, x
4

) = (y
1

, y
2

 ,y
3

 ,y
4

) = y

4

x
1

x
2

x
3

x
4

MPC - Steps

Preprocessing:
- Independent of x,y
- Typically only depends on size of f
- Uses public key crypto technology (slower)

Online:
- Uses only information theoretic tools
- Runs in order of magn. faster

 Reconstruction:
- The intended parties learn the result of f

Multi-Party
Computation

Preprocessing

Online

Reconstruction

f(x
1

, x
2

, x
3

, x
4

) = (y
1

, y
2

 ,y
3

 ,y
4

) = y

y = f(x)

correlated
randomness

MPC General View
Multi-Party
Computation

f(x
1

, x
2

, x
3

, x
4

)

=

y

Preprocessing

Online

Reconstruction

f(x
1

, x
2

, x
3

, x
4

) = (y
1

, y
2

 ,y
3

 ,y
4

) = y

y = f(x)

Salary s1 = 5 000 z1= 7 400
Mask m = 2 400
 z1 = 2 400 + 5 000

MPC - Example

Exemple : Compute the average salary
without revealing the salary of each
employee.

Here Bob runs a MPC protocol with his
colleagues to learn the average salary.

7

z2 = 10 400

Salary s1 = 5 000 z1= 7 400 Salary 3 000
Mask m = 2 400
 z1 = 2 400 + 5 000 z2 = 7 400 + 3 000

8

MPC - Example

Exemple : Compute the average salary
without revealing the salary of each
employee.

Here Bob runs a MPC protocol with his
colleagues to learn the average salary.

z2 = 10 400 z4 = 18 400

Salary s1 = 5 000 z1= 7 400 Salary 3 000
Mask m = 2 400
 z1 = 2 400 + 5 000 z2 = 7 400 + 3 000

Salary 4 000 Salary 4 000
 z3 = 14 400

z4 =14 400+ 4 000 z3 = 10 400 + 4 000

9

A. Average = z4/4 = 18 400 /4

B. Average = z4/4 – m = 18 400 /4 – 2 400

C. Average = (z4 – s1) /4 = (18 400 – 5 000) /4

D. Average = (z4 – m)/4 = (18 400 – 2 400) /4

MPC - Example

Exemple : Compute the average salary
without revealing the salary of each
employee.

Here Bob runs a MPC protocol with his
colleagues to learn the average salary.

What computation should Bob make in
order to learn the average salary?

A. Average = z4/4 = 18 400 /4

B. Average = z4/4 – m = 18 400 /4 – 2 400

C. Average = (z4 – s1) /4 = (18 400 – 5 000) /4

D. Average = (z4 – m)/4 = (18 400 – 2 400) /4

Solution : D. Sum of salaries = Masked Sum – Random Mask = z4 – m

z2 = 10 400 z4 = 18 400

Salary s1 = 5 000 z1= 7 400 Salary 3 000
Mask m = 2 400
 z1 = 2 400 + 5 000 z2 = 7 400 + 3 000

Salary 4 000 Salary 4 000
 z3 = 14 400

z4 =14 400+ 4 000 z3 = 10 400 + 4 000

10

MPC - Example

Exemple : Compute the average salary
without revealing the salary of each
employee.

Here Bob runs a MPC protocol with his
colleagues to learn the average salary.

What computation should Bob make in
order to learn the average salary?

z4 =14 400+ 4 000 z3 = 10 400 + 4 000

z2 = 10 400 z4 = 18 400

 z1= 7 400

 z1 = 2 400 + 5 000 z2 = 7 400 + 3 000
We need to make sure that an adversary
cannot learn the private data of the
honest parties.

We assume that communication
channels are private and authenticated.

MPC - Security

 Security Model: The adversary is inside the system and corrupts some of the parties

● Semi-honest (passive) – Corrupted players follow the protocol but try to learn more → private computation

 z3 = 14 400

11

We need to make sure that an adversary
cannot learn the private data of the
honest parties.

We assume that communication
channels are private and authenticated.

MPC - Security

 Security Model: The adversary is inside the system and corrupts some of the parties

● Semi-honest (passive) – Corrupted players follow the protocol but try to learn more → private computation

● Malicious (active) – Corrupted players can collaborate in any way and misbehave arbitrarily → secure computation

12

z2 = 10 400 z4 = 7 000

Salary 4 000 Salary 4 000
 z3 = 14 400

z4 = 3 000 + 4 000 z3 = 3 000

Salary s1 = 5 000 z1= 7 400 Salary 3 000
Mask m = 2 400
 z1 = 2 400 + 5 000 z2 = 7 400 + 3 000

 z3 = 3 000

Security is defined by the types of attacks considered:

Adversary type:

● Semi-honnête (passive)

● Malicieux (actif)

Number of corrupted parties t amoung n

● Honest Majority t < n/2
● Dishonest Majority t ≥ n/2

13

MPC - Security

MPC - Real vs. Ideal Paradigm

● Real model: - parties run a real protocol with no trusted help

● Ideal model: - parties send inputs to a trusted party T
- T computes the function and sends the outputs

x
1

x
2

x
3

x
4

f(x
1

, x
2

, x
3

, x
4

)

x
1

x
2

x
3

x
4

f(x
1

, x
2

, x
3

, x
4

)

x
1

x
2

x
3

x
4

f(x
1

, x
2

, x
3

, x
4

)

x
1

x
2

x
3

x
4

f(x
1

, x
2

, x
3

, x
4

)

The adversary should not be able to do more damage in the real model than he is allowed in the ideal model

Semi-honest (passive) Malicious (active)

A MPC protocol is secure if any attack on a real protocol can be carried out (or simulated) in the ideal model.

MPC - Paradigme monde réel ↔ monde idéal

sharing

MPC
from

secret

17

Model of Computation: Represent the function as Arithmetic/Boolean circuit C
Limitting Factor: Number of multiplications

MPC - Arithmetic Circuits

The GMW/BGW* Approach:

● The (public) function being computed is written as a circuit

MPC from Secret Sharing

*[GMW87] Oded Goldreich, Silvio Micali, Avi Wigderson. How to prove all NP- statements in zero-knowledge, and a methodology of cryptographic protocol design.
 [BGW88] M. Ben-Or, S. Goldwasser, A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation.

f (x,y,z)

x

y

z

f (x,y,z)

x

y

z

z = z
1

+

z

2
+ z

3

x = x
1

+

x

2
+ x

3

y = y
1

+

y

2
+ y

3

19

The GMW/BGW* Approach:

● The (public) function being computed is written as a circuit
● Each participant secret-shares their private input

MPC from Secret Sharing

f (x,y,z)

x

y

z

z = z
1

+

z

2
+ z

3

x = x
1

+

x

2
+ x

3

y = y
1

+

y

2
+ y

3

20

x

2

x

3

The GMW/BGW* Approach:

● The (public) function being computed is written as a circuit
● Each participant secret-shares their private input

MPC from Secret Sharing

f (x,y,z)

x

y

z

z = z
1

+

z

2
+ z

3

x = x
1

+

x

2
+ x

3

y = y
1

+

y

2
+ y

3

21

x

3

x

2

y

3

y

1

The GMW/BGW* Approach:

● The (public) function being computed is written as a circuit
● Each participant secret-shares their private input

MPC from Secret Sharing

f (x,y,z)

x

y

z
x

3
y

3
z

3

z = z
1

+

z

2
+ z

3

x = x
1

+

x

2
+ x

3

x
1

y
1

x
2

y
2

y = y
1

+

y

2
+ y

3

22

z

1

z

2

The GMW/BGW* Approach:

● The (public) function being computed is written as a circuit
● Each participant secret-shares their private input

MPC from Secret Sharing

f (x,y,z)

x

y

z
x

3
y

3
z

3

z

x

x
1

y
1

z
1

x
2

y
2

z
2

y

23

The GMW/BGW* Approach:

● The (public) function being computed is written as a circuit
● Each participant secret-shares their private input
● The circuit is evaluated gate-by-gate on the shares (this requires communication between participants)

MPC from Secret Sharing

f (x,y,z)

x

y

z
x

3
y

3
z

3

x
1

y
1

z
1

x
2

y
2

z
2

24

The GMW/BGW* Approach:

● The (public) function being computed is written as a circuit
● Each participant secret-shares their private input
● The circuit is evaluated gate-by-gate on the shares (this requires communication between participants)

MPC from Secret Sharing

f (x,y,z)

x
3

y
3

z
3

S
3

 = x
3

+

y

3
+

z

3

S
1

 = x
1

+

y

1
+

z

1

x
1

y
1

z
1

x
2

y
2

z
2

S
2

 = x
2

+

y

2
+

z

2

25

x
1

+

x

2
+ x

3
 = x

y
1

+

y

2
+ y

3
 = y

z
1

+

z

2
+ z

3
 = z

The GMW/BGW* Approach:

● The (public) function being computed is written as a circuit
● Each participant secret-shares their private input
● The circuit is evaluated gate-by-gate on the shares (this requires communication between participants)
● Addition is possible without interaction → S

i
 = x

i
+

y

i
+

z

i

MPC from Secret Sharing

f (x,y,z)

x
3

y
3

z
3

S
3

 = x
3

+

y

3
+

z

3

S
1

 = x
1

+

y

1
+

z

1

x
1

y
1

z
1

x
2

y
2

z
2

S
2

 = x
2

+

y

2
+

z

2

26

S
1

 = x
1

+

y

1
+

z

1

S
2

 = x
2

+

y

2
+

z

2

S
3

 = x
3

+

y

3
+

z

3

+
S

1
+

S

2
+

S

3
 = x

 + y

 +

 z

x
1

+

x

2
+ x

3
 = x

y
1

+

y

2
+ y

3
 = y

z
1

+

z

2
+ z

3
 = z

The GMW/BGW* Approach:

● The (public) function being computed is written as a circuit
● Each participant secret-shares their private input
● The circuit is evaluated gate-by-gate on the shares
● Addition is possible without interaction → S

i
 = x

i
+

y

i
+

z

i
→ S = x + y + z = S

1
+

S

2
+

S

3

MPC from Secret Sharing

f (x,y,z)

x

y

z
x

3
y

3
z

3

x
1

y
1

z
1

x
2

y
2

z
2

27

a
3

a
1

a
2

The GMW/BGW* Approach:

● The (public) function being computed is written as a circuit
● Each participant secret-shares their private input
● The circuit is evaluated gate-by-gate on the shares (this requires communication between participants)
● Answer is reconstructed from final shares

MPC from Secret Sharing

x
3

y
3

z
3

x
1

y
1

z
1

x
2

y
2

z
2

R3 = f (x3, y3, z3)

R2 = f (x2, y2, z2)

R1 = f (x1, y1, z1)

28

The GMW/BGW* Approach:

● The (public) function being computed is written as a circuit
● Each participant secret-shares their private input
● The circuit is evaluated gate-by-gate on the shares (this requires communication between participants)
● Answer is reconstructed from final shares

MPC from Secret Sharing

R = f (x, y , z)

R1

R3 = f (x3, y3, z3)

R2 = f (x2, y2, z2)

R1 = f (x1, y1, z1)

R3

R = R
1

+ R
2

+ R
3

29

The GMW/BGW* Approach:

● The (public) function being computed is written as a circuit
● Each participant secret-shares their private input
● The circuit is evaluated gate-by-gate on the shares (this requires communication between participants)
● Answer is reconstructed from final shares

MPC from Secret Sharing

Yao Garbling
Circuits

31

Model of Computation: Represent the function as Arithmetic/Boolean circuit C
Limitting Factor: Circuit Depth

MPC - Boolean Circuits

 Depth 3

32

2PC - Yao Garbling Circuit 1982

[Yao82] A. Yao, Protocols for secure computations. In Proceedings of FOCS (1982)

33

2PC - Yao Garbling Circuit

step 1 - Truth table for each logic gate

34

2PC - Yao Garbling Circuit

Step 2 - Generate 2 secret keys for each possible input (one for 0 and another one for 1)

35

Yao Garbling Circuit

Step 3 - Rewrite the Truth Table by replacing 0/1 with their corresponding keys

36

Yao Garbling Circuit

Step 4 - Encrypt with both keys the output of each gate

37

Yao Garbling Circuit

Step 5 - Send this version of the circuit to the Evaluator

38

Yao Garbling Circuit - Evaluation

Step 1 - Use the known keys for your inputs to decrypt each gate value
example - inputs (1, 0, 0, 1)

39

Yao Garbling Circuit - Evaluation

Step 2 - Continue the process for following gates

40

Yao Garbling Circuit - Evaluation

Step 2 - Continue the process for following gates

41

Yao Garbling Circuit - Evaluation

Step 2 - Continue the process for following gates

42

Yao Garbling Circuit - Evaluation

Step 2 - Continue the process for following gates

43

Yao Garbling Circuit - Evaluation

Step 4 - Obtain the expected result

Bibliography
[AOR+19] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P. Smart, Tim Wood. Zaphod: Efficiently Combining LSSS
and Garbled Circuits in SCALE. In Workshop on Encrypted Computing and Applied Homomorphic Cryptography 2019, 2019.
[BDOZ11] Rikke Bendlin, Ivan Damgaard, Claudio Orlandi, Sarah Zakarias. BDOZ: Semi-homomorphic encryption and multiparty
computation. In Advances in Cryptology – EUROCRYPT 2011, 2011, Springer.
[BGW88]M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed
Computation. In the 20th STOC, pages 1–10, 1988.
[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols. In 22nd ACM STOC, 1990.
[DPSZ12] Ivan Damgaard, Valerio Pastro, Nigel P. Smart, Sarah Zakarias. SPDZ: Multiparty computation from somewhat
homomorphic encryption. In Advances in Cryptology – CRYPTO 2012, Springer.
[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP- statements in zero-knowledge, and a
methodology of cryptographic protocol design. In CRYPTO’86, volume 263 of LNCS, pages 171–185. Springer.
[KRS18] M. Keller, D. Rotaru, N. Smart, and T. Wood, Reducing Communication Channels in MPC. In Security and Cryptography for
Networks 11, pp. 181-199, 2018.
[LPSY19] Y. Lindell, B. Pinkas, N. Smart, A. Yanai. Efficient Constant Round Multi-Party Computation Combining BMR and SPDZ. In
Journal of Cryptology 32, 2019.
[NNOB12] Jesper Nielsen, Peter Nordholt, Claudio Orlandi, Sai S. Burra. TinyOT: A new approach to practical active-secure
two-party computation. In CRYPTO 2012, Lecture Notes in Computer Science, pages 681–700, 2012, Springer
[RT19] D. Rotaru, T. Wood, MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security. In INDOCRYPT 2019,
Lecture Notes in Computer Science, Springer-Verlag, 2019
[Yao82] A. Yao, Protocols for secure computations. In Proceedings of FOCS (1982)

