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MPC - objectives

Framework for computation between parties who do not 
trust each other.

 Examples: 
● elections, 
● auctions, 
● distributed data mining, 
● database privacy 
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MPC - objectives

Framework for computation between parties who do not 
trust each other.

 Examples: 
● elections, 
● auctions, 
● distributed data mining, 
● database privacy 

Goals: preserve the privacy of each player's inputs and 
guarantee the correctness of the computation. 
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MPC - objectives

Trusted party: 
All of these tasks can be easily computed by a trusted 
third party 

Security :
- Same guarantees without involving a trusted third party
- Provide an exact problem definition -
○ Adversarial power 
○ Network model 
○ Meaning of security 

- Prove that the protocol is secure - by reduction to an 
assumed hard problem 
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MPC - Steps

  

Preprocessing:
- Independent of x,y  
- Typically only depends on size of f 
- Uses public key crypto technology (slower)

Online:
- Uses only information theoretic tools 
- Runs in order of magn. faster

 Reconstruction:
- The intended parties learn the result of f
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MPC General View
Multi-Party
Computation

f(x
1

, x
2

, x
3

, x
4

)
 
=

 
y 

Preprocessing

Online

Reconstruction

f(x
1

, x
2

, x
3

, x
4

) = (y
1

, y
2

 ,y
3

 ,y
4 

) = y

y = f(x)



Salary   s1 = 5 000  z1= 7 400  
Mask   m = 2 400
    z1 = 2 400 + 5 000  

MPC - Example

Exemple : Compute the average salary 
without revealing the salary of each 
employee.

Here Bob runs a MPC protocol with his 
colleagues to learn the average salary.
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z2 = 10 400 
   

Salary   s1 = 5 000  z1= 7 400 Salary 3 000
Mask   m = 2 400
    z1 = 2 400 + 5 000 z2 = 7 400 + 3 000 

8

MPC - Example

Exemple : Compute the average salary 
without revealing the salary of each 
employee.

Here Bob runs a MPC protocol with his 
colleagues to learn the average salary.
 



z2 = 10 400 z4 = 18 400    

Salary   s1 = 5 000  z1= 7 400 Salary 3 000
Mask   m = 2 400
    z1 = 2 400 + 5 000 z2 = 7 400 + 3 000 

Salary 4 000  Salary 4 000
 z3 = 14 400  

z4 =14 400+ 4 000 z3 = 10 400 + 4 000 
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A. Average =  z4/4 =  18 400 /4  

B. Average =  z4/4 – m =  18 400 /4 – 2 400  

C. Average = ( z4 – s1 ) /4 = (18 400 – 5 000 ) /4  

D. Average = ( z4 –  m )/4 = (18 400 – 2 400 ) /4  

 

MPC - Example

Exemple : Compute the average salary 
without revealing the salary of each 
employee.

Here Bob runs a MPC protocol with his 
colleagues to learn the average salary.

What computation should Bob make in 
order to learn the average salary?
 



A. Average =  z4/4 =  18 400 /4  

B. Average =  z4/4 – m =  18 400 /4 – 2 400  

C. Average = ( z4 – s1 ) /4 = (18 400 – 5 000 ) /4  

D. Average = ( z4 –  m )/4 = (18 400 – 2 400 ) /4 

Solution : D. Sum of salaries = Masked Sum – Random Mask =  z4 –  m 

z2 = 10 400 z4 = 18 400    

Salary   s1 = 5 000  z1= 7 400 Salary 3 000
Mask   m = 2 400
    z1 = 2 400 + 5 000 z2 = 7 400 + 3 000 

Salary 4 000  Salary 4 000
 z3 = 14 400  

z4 =14 400+ 4 000 z3 = 10 400 + 4 000 
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MPC - Example

Exemple : Compute the average salary 
without revealing the salary of each 
employee.

Here Bob runs a MPC protocol with his 
colleagues to learn the average salary.

What computation should Bob make in 
order to learn the average salary?
 



   
   

z4 =14 400+ 4 000 z3 = 10 400 + 4 000 

z2 = 10 400 z4 = 18 400    

 z1= 7 400

    z1 = 2 400 + 5 000 z2 = 7 400 + 3 000 
We need to make sure that an adversary 
cannot learn the private data of the 
honest parties.

  
We assume that  communication 
channels  are private and authenticated.

MPC - Security

 Security Model: The adversary is inside the system and corrupts some of the parties 

  
● Semi-honest (passive) –  Corrupted players follow the protocol but try to learn more → private computation

 
   z3 = 14 400
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We need to make sure that an adversary 
cannot learn the private data of the 
honest parties.

  
We assume that  communication 
channels  are private and authenticated.

MPC - Security

 Security Model: The adversary is inside the system and corrupts some of the parties 

  
● Semi-honest (passive) –  Corrupted players follow the protocol but try to learn more → private computation

● Malicious (active) – Corrupted players can collaborate in any way and misbehave arbitrarily → secure computation
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z2 = 10 400  z4 = 7 000    

Salary 4 000  Salary 4 000
   z3 = 14 400

z4 = 3 000 + 4 000  z3 = 3 000 

Salary   s1 = 5 000  z1= 7 400 Salary 3 000
Mask   m = 2 400
    z1 = 2 400 + 5 000 z2 = 7 400 + 3 000 

 z3 = 3 000 



Security is defined by the types of attacks considered: 

Adversary type:

● Semi-honnête (passive)   

● Malicieux (actif)  

Number of corrupted parties t amoung n

● Honest Majority   t < n/2
● Dishonest Majority t ≥ n/2
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MPC - Security



MPC - Real vs. Ideal Paradigm

● Real model: - parties run a real protocol with no trusted help 

● Ideal model: - parties send inputs to a trusted party T 
- T computes the function and sends the outputs
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The adversary should not be able to do more damage in the real model than he is allowed in the ideal model

Semi-honest (passive)   Malicious (active)  

A MPC protocol is secure if any attack on a real protocol can be carried out (or simulated) in the ideal model.

MPC - Paradigme monde réel  ↔  monde idéal 



sharing

MPC 
from

secret
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Model of Computation:  Represent the function as Arithmetic/Boolean circuit C 
Limitting Factor: Number of multiplications

MPC - Arithmetic Circuits



The GMW/BGW* Approach: 

● The (public) function being computed is written as a circuit 

MPC from Secret Sharing

*[GMW87] Oded Goldreich, Silvio Micali, Avi Wigderson. How to prove all NP- statements in zero-knowledge, and a methodology of cryptographic protocol design.
  [BGW88 ] M. Ben-Or, S. Goldwasser, A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation.
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The GMW/BGW* Approach: 

● The (public) function being computed is written as a circuit 
● Each participant secret-shares their private input 

MPC from Secret Sharing
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The GMW/BGW* Approach: 

● The (public) function being computed is written as a circuit 
● Each participant secret-shares their private input  

MPC from Secret Sharing
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The GMW/BGW* Approach: 

● The (public) function being computed is written as a circuit 
● Each participant secret-shares their private input  

MPC from Secret Sharing
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The GMW/BGW* Approach: 

● The (public) function being computed is written as a circuit 
● Each participant secret-shares their private input  

MPC from Secret Sharing
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The GMW/BGW* Approach: 

● The (public) function being computed is written as a circuit 
● Each participant secret-shares their private input 
● The circuit is evaluated gate-by-gate on the shares (this requires communication between participants) 
 

MPC from Secret Sharing
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The GMW/BGW* Approach: 

● The (public) function being computed is written as a circuit 
● Each participant secret-shares their private input 
● The circuit is evaluated gate-by-gate on the shares (this requires communication between participants) 
 

MPC from Secret Sharing
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The GMW/BGW* Approach: 

● The (public) function being computed is written as a circuit 
● Each participant secret-shares their private input 
● The circuit is evaluated gate-by-gate on the shares (this requires communication between participants) 
● Addition is possible without interaction → S
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The GMW/BGW* Approach: 

● The (public) function being computed is written as a circuit 
● Each participant secret-shares their private input 
● The circuit is evaluated gate-by-gate on the shares  
● Addition is possible without interaction → S
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The GMW/BGW* Approach: 

● The (public) function being computed is written as a circuit 
● Each participant secret-shares their private input 
● The circuit is evaluated gate-by-gate on the shares (this requires communication between participants) 
● Answer is reconstructed from final shares

MPC from Secret Sharing
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R1 = f (x1, y1, z1)
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The GMW/BGW* Approach: 

● The (public) function being computed is written as a circuit 
● Each participant secret-shares their private input 
● The circuit is evaluated gate-by-gate on the shares (this requires communication between participants) 
● Answer is reconstructed from final shares

MPC from Secret Sharing



R = f (x, y , z)

R1

R3 = f (x3, y3, z3)

R2 = f (x2, y2, z2)

R1 = f (x1, y1, z1)

R3

R = R
1 

+ R
2 

+ R
3

29

The GMW/BGW* Approach: 

● The (public) function being computed is written as a circuit 
● Each participant secret-shares their private input 
● The circuit is evaluated gate-by-gate on the shares (this requires communication between participants) 
● Answer is reconstructed from final shares

MPC from Secret Sharing
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Model of Computation:  Represent the function as Arithmetic/Boolean circuit C 
Limitting Factor: Circuit Depth

MPC - Boolean Circuits

 Depth 3
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2PC - Yao Garbling Circuit 1982

[Yao82] A. Yao, Protocols for secure computations. In Proceedings of FOCS (1982)
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2PC - Yao Garbling Circuit

step 1 - Truth table for each logic gate



34

2PC - Yao Garbling Circuit

Step 2 - Generate 2 secret keys for each possible input (one for 0 and another one for 1)



35

Yao Garbling Circuit

Step 3 - Rewrite the Truth Table by replacing 0/1 with their corresponding keys
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Yao Garbling Circuit

Step 4 - Encrypt with both keys the output of each gate
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Yao Garbling Circuit

Step 5 - Send this version of the circuit to the Evaluator  
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Yao Garbling Circuit - Evaluation

Step 1 - Use the known keys for your inputs to decrypt each gate value
example - inputs (1, 0, 0, 1)



39

Yao Garbling Circuit - Evaluation

Step 2 - Continue the process for following gates
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Yao Garbling Circuit - Evaluation

Step 2 - Continue the process for following gates
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Yao Garbling Circuit - Evaluation

Step 2 - Continue the process for following gates
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Yao Garbling Circuit - Evaluation

Step 2 - Continue the process for following gates
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Yao Garbling Circuit - Evaluation

Step 4 - Obtain the expected result
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