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Cloud Service
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Computation Delegation
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Server computes on the data

Server 

  data

f(data)=y



Computation Delegation
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Client 
User receives results

Server 

  data

f(data)=y

f(data)=y

Claims that



Server 

What can go wrong?  Data is exposed
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Client 

  data

User’s confidential data is exposed



FHE: Solution for Privacy of Inputs
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FHE: Solution for Privacy of Inputs
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Encryption

  data

Ciphertext

Server Client 
User encrypts her data

 Homomorphic Encryption

✘ Privacy of inputs

✘ Malleability of data

✘ Privacy of output

[Gen09, BGV12, GSW13, TFHE (CGGI16), CKKS17...]



What can go wrong?  Dishonest Server
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Client Server 

f(data)=y

User runs the risk of a corrupted server



What can go wrong?  Dishonest Server
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Client 
Server sends incorrect results 

Server 

f(data)=y’

f(data)=y



What can go wrong?  Dishonest Server
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Client 
Server sends incorrect results 

Server 

f(data)=y’
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Client Server 

Verifiable Computation  

SNARK: Solution for integrity of results

f(x)

π

User asks for a proof 
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Client Server 

    SNARKs

✘ Proof is succinct

✘ Minimal interaction

✘ Client verifies efficiently

 [GGP10, GGPR13, PHGR13, Gro16, BBC+18...]

Verifiable Computation  

SNARK: Solution for integrity of results



Full Solution: Verifiable Computation on Encrypted Data
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Full Solution: Verifiable Computation on Encrypted Data
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Full Solution: Verifiable Computation on Encrypted Data
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Server 

Apply Eval of FHE 

Verifiable Computation

π

Encryption
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Full Solution: Verifiable Computation on Encrypted Data
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Server 
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Verifiable Computation
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Full Solution: Verifiable Computation on Encrypted Data
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Server 

Apply Eval of FHE 

Verifiable Computation

Encryption

  data

  result
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Privacy-preserving Verifiable Computation
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Boosted SNARKs with data privacy for the inputs and outputs 

[PKC:FNP20] Boosting Verifiable Computation on Encrypted Data
Dario Fiore, Anca Nitulescu, David Pointcheval



Privacy-preserving Verifiable Computation
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Boosted SNARKs with data privacy for the inputs and outputs 

[PKC:FNP20] Boosting Verifiable Computation on Encrypted Data
Dario Fiore, Anca Nitulescu, David Pointcheval

Short-sighted SNARKs for Private Polynomial Evaluation and PSI 

[EP:2021/1291] MyOPE: Malicious securitY for Oblivious Polynomial Evaluation
Malika Izabachène, Anca Nitulescu, Paola de Perthuis, David Pointcheval

https://www.di.ens.fr/~nitulesc/publications.html#lume


Privacy-preserving Verifiable Computation
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Boosted SNARKs with data privacy for the inputs and outputs 

[PKC:FNP20] Boosting Verifiable Computation on Encrypted Data
Dario Fiore, Anca Nitulescu, David Pointcheval

Short-sighted SNARKs for Private Polynomial Evaluation and PSI 

[EP:2021/1291] MyOPE: Malicious securitY for Oblivious Polynomial Evaluation
Malika Izabachène, Anca Nitulescu, Paola de Perthuis, David Pointcheval

SNARKs compatible with FHE ciphertexts based on LWE rings

[EP:2021/322] Rinocchio: SNARKs for Ring Arithmetic   
Chaya Ganesh, Anca Nitulescu, Eduardo Soria-Vazquez 

https://www.di.ens.fr/~nitulesc/publications.html#lume
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Verifier Prover 

  data

Claim 

f(data)= y

Introduction to SNARKs



Setup( λ) → (crs, td)

 Prove( crs, f, x, w ) →  π     R :  f(x, w) = 1 

   Verify( crs, f, x, π ) → 0/1

26

SNARK π

SNARK: Algorithms 
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SNARG: Succinct Non-Interactive ARGument 

SNARG

Succinctness 
proof size independent 
of NP witness size

Non-Interactivity 
no exchange between 
prover and verifier 

ARGument
soundness holds only 
against computationally 
bounded provers 



SNARK: Succinct Non-Interactive ARgument of Knowledge
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SNARK

Succinctness 
proof size independent 
of NP witness size

Non-Interactivity 
no exchange between 
prover and verifier 

ARgument
soundness holds only 
against computationally 
bounded provers 

Knowledge
Soundness

a witness can be efficiently 
extracted from the prover



zk-SNARK: Zero-Knowledge SNARK
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zk-SNARK

Succinctness 
proof size independent 
of NP witness size

Non-Interactivity 
no exchange between 
prover and verifier 

Argument
soundness holds only 
against computationally 
bounded provers 

Knowledge
Soundness

a witness can be efficiently 
extracted from the prover

Zero-Knowledge 
does not leak anything 

about the witness
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[PHGR13] 
Pinocchio: Nearly practical 

verifiable computation

B. Parno, 
J.Howell, C. Gentry, 
M. Raykova

[GGPR13] 
QSP and succinct NIZKs 

without PCPs

R. Gennaro, 
C. Gentry, B. Parno, M. 
Raykova

N.Bitansky, 
A. Chiesa, Y. Ishai, R. 
Ostrovsky, O Paneth

[BCI+13] SNARGs via 
linear interactive proofs

PKE

[Groth16] On the Size of 
Pairing-based 

Non-interactive Arguments

J. Groth

cr
s

π

SNARKs: Preprocessing for constant size proofs 



Key Steps to Build SNARKs 
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Frameworks for SNARKs 
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SNARK

crs

π

/  

Program
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Verifier Prover

Proving NP statements

f(x)=y
NP statement
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Computation: Circuit SAT
   x    y

f(x)=y

   0/1

NP statement

Claim f(x)=y

Verifier Prover
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NP witness: Too long!
   x    y

f(x)=y

   0/1

NP statement

Claim f(x)=y

Witness for Circuit SAT

Verifier Prover
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Verifier Prover

Prover solves equivalent problem instead
   x    y

   0/1

Circuit SAT
solution

Polynomial problem
Given v(x), t(x).
Find P(x) such that

P(x)t(x) = v(x)
f(x)=y
NP statement

compilation

P(x)
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Verifier Prover

Prover shows polynomial: too long

Polynomial problem
Given v(x), t(x).
Find P(x) such that

P(x)t(x) = v(x)
P(x) = Σ p

i
xi

Coefficients of solution P(x)

    p
0
, p

1
, p

2
, … p

d
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Verifier Prover

Prover shows polynomial: too long

Polynomial problem
Given v(x), t(x).
Find P(x) such that

P(x)t(x) = v(x)

Coefficients of solution P(x)

    p
0
, p

1
, p

2
, … p

d

P(x) = Σ p
i
xi

Witness for Circuit SAT

Not Succinct
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Verifier Prover

Evaluate solution at point s

P(x)

π  = P(s)

Polynomial problem
Given v(x), t(x).
Find P(x) such that

P(x)t(x) = v(x)
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Verifier Prover

Evaluate solution at point s

P(x)

 Enc(s)

cr
s

π  =  P(s)

Polynomial problem
Given v(x), t(x).
Find P(x) such that

P(x)t(x) = v(x)
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P(s)π  =

 

P  Is this a proof? 

Verifier Prover

P(x)

π  =  P(s)

General SNARK framework

Polynomial problem
Given v(x), t(x).
Find P(x) such that

P(x)t(x) = v(x)
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Verifier Prover

P(x)

π  =  P(s)

Polynomial problem
Given v(x), t(x).
Find P(x) such that

P(x)t(x) = v(x)
P(s)π  =

 

P t(s) v(s)

Verification in a single point
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Verifier Prover

= Σ pi

Enc(P(s))Enc(s) Enc(s2) Enc(sd) Enc(si) 

P(x) 
Encoding:

● linearly homomorphic

Encoding Properties for Verification
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Verifier Prover

Enc(s) Enc(s2) Enc(sd) 

P(x) 
Encoding:

● linearly homomorphic
● quadratic root detection
● image verification

P t(s) V

Encoding Properties for Verification



SNARK: Methodology
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Encodings Secure
under 

Knowledge Assumptions

Target Statement
R(y,w)=1

Computational Model
     (Representation)       

QAP

crs

Arithmetic Circuit SAT 
QAP / SAP 

over Field = Zp

PKE Power Knowledge of Exponent
 GGM Generic Group Model



SNARK: Methodology
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Encodings Secure
under 

Knowledge Assumptions

Target Statement
R(y,w)=1

Computational Model
     (Representation)       

QAP

Arithmetic Circuit SAT 
QAP / SAP 

over Field = Zp

PKE Power Knowledge of Exponent
 GGM Generic Group Model

Boolean Circuit SAT
   

crs



SNARK: Methodology
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Encodings Secure
under 

Knowledge Assumptions

Target Statement
R(y,w)=1

Computational Model
     (Representation)       

QSP

Arithmetic Circuit SAT 
QAP / SAP 

over Field = Zp

PKE Power Knowledge of Exponent
 GGM Generic Group Model

Boolean Circuit SAT
QSP / SSP

over Field = Zp
PKE: Power Knowledge of Exponent

crs



f g   p    q

t

+

+

+

Circuit over Field vs Circuit over Ring

F(x)   G(x)   P(x)  Q(x) 

T(x) 

+

+

+
H(x)       S(x) 

Ring



Difficulty: Circuit over FHE ciphertexts
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Polynomial 
additions

& 
Polynomial 
multiplications

  *polynomials of degree d

FHE [BV11] based on ring-LWE

Ciphertexts = Polynomials 

+
+

T(x)

+

n inputs 

F(x)   G(x)    P(x) Q(x) 

+

+
H(x)      S(x)



T(x)

+ O(n⋅d ) 
 scalar additions

& 
O(m⋅d⋅log d ) 
scalar multiplications

  *for polynomials of degree d

n inputs 

+

+

F(x)   G(x)    P(x) Q(x) 

+

+
H(x)      S(x)m

x gates

n inputs 

Challenge: Circuit over Polynomials



SNARK: Methodology
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Encodings Secure
under 

Knowledge Assumptions

Target Statement
R(y,w)=1

Computational Model
     (Representation)       

QRP

Arithmetic Circuit SAT 
QAP / SAP 

over Field = Zp

PKE Power Knowledge of Exponent
 GGM Generic Group Model

Boolean Circuit SAT
QSP / SSP

over Field = Zp
PKE: Power Knowledge of Exponent

General Circuits over Rings QRP over Ring = R Augmented PKE: Power Knowledge of Encoding

crs



[PHGR13] 
Pinocchio: Nearly practical 

verifiable computation

52

Contribution for short

[GNS21] 
Rinocchio



More SNARKs applications
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Anonymous Credentials       Fairness in 
        Machine Learning



More SNARKs applications
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Anonymous Credentials       Fairness in 
        Machine Learning



Technical Details
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+

+

+

F(x) G(x) P(x) Q(x) 
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Polynomial problem

QRP
Ring Representation

for Circuit SAT

Encoding
Scheme

over Rings
 

Main Ingredients for Rinocchio



Example: Solution for equation Ax2 + C = 0

z2

+

+
+  z1 

+
1

out

System:

z1= A・x
z2= z1・x
out = (C + z2)・1
  
 

   C             x  A        



Example: Solution for equation Ax2 + C = 0

z2

+

+
+  z1 

+
1

out

System:

z1= A・x
z2= z1・x
out = (C + z2)・1
 
a =(1, x, z1, z2, out)T

 

   C             x  A        
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R1CS for vector a =(1,A, C, x, z1, z2, out)

  

。 = V  

a W  

a Y  

a

a =(1, x, z1, z2, out)T

(A, 0, 0, 0, 0)⋅a  
  (0, 1, 0, 0, 0)⋅a  = (0, 0, 1, 0, 0)⋅a

(0, 0, 1, 0, 0)⋅a  
   (0, 1, 0, 0, 0)⋅a  = (0, 0, 0, 1, 0)⋅a

(C, 0, 0, 1, 0)⋅a  
   (1, 0, 0, 0, 0)⋅a  = (0, 0, 0, 0, 1)⋅a

  。

  。

  。

z1= A・x
     System:  z2= z1・x

out = (C + z2)・1
 

a =(1, x, z1, z2, out)T
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R1CS for vector a =(1,A, C, x, z1, z2, out)

  

。 = V  

a W  

a Y  

a

z1= A・x
     System:  z2= z1・x

out = (C + z2)・1
 

a =(1, x, z1, z2, out)T
= 

m

d
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Proving a Solution for Equation Ax2 + C = 0

  

。 = V  

a W  

a Y  

a

z1= A・x
     System:  z2= z1・x

out = (C + z2)・1
 

  a =(1, x, z1, z2, out)T
= 

m

d
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Proving a Solution for Equation Ax2 + C = 0

  

。 = V  

a W  

a Y  

a

= 

m

d

Given

Find 
s.t.

    

and
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Polynomial Equation with Coefficients in a Ring

Necessary property over Rings for Ideals

Isomorphism for QRP soundness  ⇔  Ideals     are co-prime:



Necessary property over Rings for Ideals

Isomorphism for QRP soundness  ⇔  Ideals     are co-prime:
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Polynomial Equation with Coefficients in a Ring



Exceptional Sets: to the rescue!

65
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Exceptional Sets



Exceptional Sets

67



Schwartz-Zippel Lemma over Rings

68
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Polynomial problem

Encodings

Properties
Assumptions 
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Extractable Linear-Only [BISW17]

p1 p2 pd 

E(P)
pi Σ

E(P)

= 
E(mi)

E(αP)
E(m1) E(m2) E(md)

E(αm1) E(αm2) E(αmd)
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gs s2 sd g   g   

DLog Group 

Encodings over Fields



DLog     vs General Encoding 
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gs s2 sd g   g   Epk(s) Epk(s
2) Epk(s

d)

DLog Group Encode:

Decode: 



Quadratic root detection public

? 

?

Quadratic Root Detection - Pairings  



Publicly Verifiable      vs Designated Verifiable  

Encode:

Decode: 

Quadratic root detection public

? 

?

Quadratic root detection needs sk

E(p(s)) E(h(s))

?
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Encoding Instantiation for LWE Rings 

Advantages & Future directions:
✘ Supports “somewhat homomorphic” variants of  BGV [BGV12] and FV [FV12]

✘ Allows for significantly better choices for RLWE parameters

✘ First SNARK to support rings with q ≠ prime → more expressive FHE

✘ We enable new FHE operations → new circuits for plaintext packing, modulo switching 

✘ :( We are only designated-verifier, we don’t support Bootstrapping operations

TFHE
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Encoding Instantiation for LWE Rings 

Possible parameters:  

TFHE

Performance Evaluation:

✘ # levels L for BGV [BGV12] and FV [FV12]

✘ TFHE performance for such plaintexts?
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Compactly Commit 
to Polynomials

ZK Proof for evaluation 
in random point k 

crs

σ

CaP zk-SNARK
for arithmetic circuit 

over scalars

+

++

+

+

Verifiable 
Computation

with 
Privacy

π

VC

[PKC:FNP20]  SNARK approach

+

https://www.di.ens.fr/~nitulesc/publications.html#lume
https://www.di.ens.fr/~nitulesc/publications.html#lume
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Proof of Many Evaluations 

Z(x,y)

F(x)   G(x)    P(x) Q(x) 

T(x)

+

+

+
H(x)      S(x)

 f        g    p      q  

t

+

+

+
h      s

V(y)

Z(k,y) = V(y) σ



Proof of Many Evaluations 

Z(x,y)

F(x)   G(x)    P(x) Q(x) 

T(x)

+

+

+
H(x)      S(x)

 f        g    p      q  

+

+

+
h      s

V(y)

Z(k,y) = V(y) σ

79 t



Z(x,y)

Proof of Arithmetic Circuit over Scalars

F(x)   G(x)    P(x) Q(x) 

T(x)

+

+

+
H(x)      S(x)

 f        g    p      q  

t

+

+

+
h      s

SNARK 

V(y)
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π

Z(k,y) = V(y) σ



FHE Arithmetics: tailored SNARKs

[FVP20] Boosting Verifiable Computation on Encrypted Data
Dario Fiore, Anca Nitulescu, David Pointcheval

✘ Only supports rings of polynomials        for q prime → inefficient FHE 

✘ Does not support operations for bootstrapping, rescaling etc. in FHE

✘ Modular - Commit&Proof Composition

✘ Publicly Verifiable, anyone can verify without key

✘ Zero-Knowledge for inputs and computation



More specific FHE computations: MyOPE

[INPP21] Malicious securitY for Oblivious Polynomial Evaluation
Malika Izabachène, Anca Nitulescu, Paola de Perthuis,  David Pointcheval

✘ SNARK for Inner-Product over ciphertexts: adds security against malicious parties

✘ Reduce communication in 2PC with FHE

✘ Applications to PSI 

Receiver: point a Sender:   P(X)= p
i
xi

Sends C(ai) for some i Computes Eval p=P(a):

    C(p) = <C(ai), p
i
>

Receives C(p) and  π         Proves eval  π  
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Conclusions

Rinocchio: SNARKs for Ring Arithmetics
✘ Circuit-SAT for arithmetic circuits over commutative rings: Quadratic Ring Programs (QRP)

✘ Better fits FHE schemes arithmetics even for q not prime

✘ Supports sub-circuits for special operations in FHE: modulo switching 

✘ Designated Verifier only

✘ Can be turned Zero-Knowledge using Context Hiding techniques

Quadratic Programs and SNARKs over fields 
✘ Lots of implementations, but they fall short in one aspect

✘ Emulating ring arithmetic on SNARKs is expensive and unfriendly to applications

✘ Today’s cost: Compilation to circuits over fields, costly preprocessing



Conclusions

Rinocchio: SNARKs for Ring Arithmetics
✘ Circuit-SAT for arithmetic circuits over commutative rings: Quadratic Ring Programs (QRP)

✘ Better fits FHE schemes arithmetics even for q not prime

✘ Supports sub-circuits for special operations in FHE: modulo switching 

✘ Designated Verifier only

✘ Can be turned Zero-Knowledge using Context Hiding techniques

Quadratic Programs and SNARKs over fields 
✘ Lots of implementations, but they fall short in one aspect

✘ Emulating ring arithmetic on SNARKs is expensive and unfriendly to applications

✘ Today’s cost: Compilation to circuits over fields, costly prepocessing

Open Questions
✘ Other Encodings over rings → publicly verifiable

✘ More efficient instantiations: Security assumptions over rings:  L-O extractable vs PKE



THANK YOU 

eprint.iacr.org/2021/322
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