
Anca Nitulescu
Protocol Labs

Verifiable Computation over
Encrypted Data: SNARKs and more
29 March 2022 - FHE.org

Storage Delegation

2

Client

Client:

✘ limited storage
✘ minimal operating system
✘ limited computational power

Cloud Service

✘ provides storage

Server

Storage Delegation

3

Client

Client:

✘ limited storage
✘ minimal operating system
✘ limited computational power

Cloud Service

✘ provides storage
✘ computing power
✘ network
✘ software

Server

Storage Delegation

4

Client Server

 data

User delegates its personal data

Storage Delegation

5

Client

 data

Server stores the data
Server

 data

Computation Delegation

6

Client
Server computes on the data

Server

 data

f(data)=y

Computation Delegation

7

Client
User receives results

Server

 data

f(data)=y

f(data)=y

Claims that

Server

What can go wrong? Data is exposed

8

Client

 data

User’s confidential data is exposed

FHE: Solution for Privacy of Inputs

9

Encryption

 data

Ciphertext

Server Client
User encrypts her data

FHE: Solution for Privacy of Inputs

10

Encryption

 data

Ciphertext

Server Client
User encrypts her data

 Homomorphic Encryption

✘ Privacy of inputs

✘ Malleability of data

✘ Privacy of output

[Gen09, BGV12, GSW13, TFHE (CGGI16), CKKS17...]

What can go wrong? Dishonest Server

11

Client Server

f(data)=y

User runs the risk of a corrupted server

What can go wrong? Dishonest Server

12

Client
Server sends incorrect results

Server

f(data)=y’

f(data)=y

What can go wrong? Dishonest Server

13

Client
Server sends incorrect results

Server

f(data)=y’

14

Client Server

Verifiable Computation

SNARK: Solution for integrity of results

f(x)

π

User asks for a proof

15

Client Server

 SNARKs

✘ Proof is succinct

✘ Minimal interaction

✘ Client verifies efficiently

 [GGP10, GGPR13, PHGR13, Gro16, BBC+18...]

Verifiable Computation

SNARK: Solution for integrity of results

Full Solution: Verifiable Computation on Encrypted Data

16

Server

Encryption

 data

Full Solution: Verifiable Computation on Encrypted Data

17

Server

Apply Eval of FHE

Encryption

 data

Full Solution: Verifiable Computation on Encrypted Data

18

Server

Apply Eval of FHE

Verifiable Computation

π

Encryption

 data

Full Solution: Verifiable Computation on Encrypted Data

19

Server

Apply Eval of FHE

Verifiable Computation

Encryption

 data

 result

Full Solution: Verifiable Computation on Encrypted Data

20

Server

Apply Eval of FHE

Verifiable Computation

Encryption

 data

 result

π

Privacy-preserving Verifiable Computation

21

Boosted SNARKs with data privacy for the inputs and outputs

[PKC:FNP20] Boosting Verifiable Computation on Encrypted Data
Dario Fiore, Anca Nitulescu, David Pointcheval

Privacy-preserving Verifiable Computation

22

Boosted SNARKs with data privacy for the inputs and outputs

[PKC:FNP20] Boosting Verifiable Computation on Encrypted Data
Dario Fiore, Anca Nitulescu, David Pointcheval

Short-sighted SNARKs for Private Polynomial Evaluation and PSI

[EP:2021/1291] MyOPE: Malicious securitY for Oblivious Polynomial Evaluation
Malika Izabachène, Anca Nitulescu, Paola de Perthuis, David Pointcheval

https://www.di.ens.fr/~nitulesc/publications.html#lume

Privacy-preserving Verifiable Computation

23

Boosted SNARKs with data privacy for the inputs and outputs

[PKC:FNP20] Boosting Verifiable Computation on Encrypted Data
Dario Fiore, Anca Nitulescu, David Pointcheval

Short-sighted SNARKs for Private Polynomial Evaluation and PSI

[EP:2021/1291] MyOPE: Malicious securitY for Oblivious Polynomial Evaluation
Malika Izabachène, Anca Nitulescu, Paola de Perthuis, David Pointcheval

SNARKs compatible with FHE ciphertexts based on LWE rings

[EP:2021/322] Rinocchio: SNARKs for Ring Arithmetic
Chaya Ganesh, Anca Nitulescu, Eduardo Soria-Vazquez

https://www.di.ens.fr/~nitulesc/publications.html#lume

Outline

24

Framework C
Option

s

for Rinocchio
SNARKs
Background New tools

ConclusionChallenges

25

Option
s

Tale 2

C
Option

s

SNARK
Background

Framework
for Rinocchio New tools

ConclusionChallenges

Verifier Prover

 data

Claim

f(data)= y

Introduction to SNARKs

Setup(λ) → (crs, td)

 Prove(crs, f, x, w) → π R : f(x, w) = 1

 Verify(crs, f, x, π) → 0/1

26

SNARK π

SNARK: Algorithms

27

SNARG: Succinct Non-Interactive ARGument

SNARG

Succinctness
proof size independent
of NP witness size

Non-Interactivity
no exchange between
prover and verifier

ARGument
soundness holds only
against computationally
bounded provers

SNARK: Succinct Non-Interactive ARgument of Knowledge

28

SNARK

Succinctness
proof size independent
of NP witness size

Non-Interactivity
no exchange between
prover and verifier

ARgument
soundness holds only
against computationally
bounded provers

Knowledge
Soundness

a witness can be efficiently
extracted from the prover

zk-SNARK: Zero-Knowledge SNARK

29

zk-SNARK

Succinctness
proof size independent
of NP witness size

Non-Interactivity
no exchange between
prover and verifier

Argument
soundness holds only
against computationally
bounded provers

Knowledge
Soundness

a witness can be efficiently
extracted from the prover

Zero-Knowledge
does not leak anything

about the witness

30

[PHGR13]
Pinocchio: Nearly practical

verifiable computation

B. Parno,
J.Howell, C. Gentry,
M. Raykova

[GGPR13]
QSP and succinct NIZKs

without PCPs

R. Gennaro,
C. Gentry, B. Parno, M.
Raykova

N.Bitansky,
A. Chiesa, Y. Ishai, R.
Ostrovsky, O Paneth

[BCI+13] SNARGs via
linear interactive proofs

PKE

[Groth16] On the Size of
Pairing-based

Non-interactive Arguments

J. Groth

cr
s

π

SNARKs: Preprocessing for constant size proofs

Key Steps to Build SNARKs

31

Option
s

Tale 1Tale 1 Tale 2Option
s

C
Option

s

SNARK
Background

SNARK

crs

π

/

Program

Framework
for Rinocchio New tools

ConclusionChallenges

Frameworks for SNARKs

32

SNARK

crs

π

/

Program

33
Verifier Prover

Proving NP statements

f(x)=y
NP statement

34

Computation: Circuit SAT
 x y

f(x)=y

 0/1

NP statement

Claim f(x)=y

Verifier Prover

35

NP witness: Too long!
 x y

f(x)=y

 0/1

NP statement

Claim f(x)=y

Witness for Circuit SAT

Verifier Prover

36
Verifier Prover

Prover solves equivalent problem instead
 x y

 0/1

Circuit SAT
solution

Polynomial problem
Given v(x), t(x).
Find P(x) such that

P(x)t(x) = v(x)
f(x)=y
NP statement

compilation

P(x)

37
Verifier Prover

Prover shows polynomial: too long

Polynomial problem
Given v(x), t(x).
Find P(x) such that

P(x)t(x) = v(x)
P(x) = Σ p

i
xi

Coefficients of solution P(x)

 p
0
, p

1
, p

2
, … p

d

38
Verifier Prover

Prover shows polynomial: too long

Polynomial problem
Given v(x), t(x).
Find P(x) such that

P(x)t(x) = v(x)

Coefficients of solution P(x)

 p
0
, p

1
, p

2
, … p

d

P(x) = Σ p
i
xi

Witness for Circuit SAT

Not Succinct

39
Verifier Prover

Evaluate solution at point s

P(x)

π = P(s)

Polynomial problem
Given v(x), t(x).
Find P(x) such that

P(x)t(x) = v(x)

40
Verifier Prover

Evaluate solution at point s

P(x)

 Enc(s)

cr
s

π = P(s)

Polynomial problem
Given v(x), t(x).
Find P(x) such that

P(x)t(x) = v(x)

41

P(s)π =

P Is this a proof?

Verifier Prover

P(x)

π = P(s)

General SNARK framework

Polynomial problem
Given v(x), t(x).
Find P(x) such that

P(x)t(x) = v(x)

42
Verifier Prover

P(x)

π = P(s)

Polynomial problem
Given v(x), t(x).
Find P(x) such that

P(x)t(x) = v(x)
P(s)π =

P t(s) v(s)

Verification in a single point

43
Verifier Prover

= Σ pi

Enc(P(s))Enc(s) Enc(s2) Enc(sd) Enc(si)

P(x)
Encoding:

● linearly homomorphic

Encoding Properties for Verification

44
Verifier Prover

Enc(s) Enc(s2) Enc(sd)

P(x)
Encoding:

● linearly homomorphic
● quadratic root detection
● image verification

P t(s) V

Encoding Properties for Verification

SNARK: Methodology

45

Encodings Secure
under

Knowledge Assumptions

Target Statement
R(y,w)=1

Computational Model
 (Representation)

QAP

crs

Arithmetic Circuit SAT
QAP / SAP

over Field = Zp

PKE Power Knowledge of Exponent
 GGM Generic Group Model

SNARK: Methodology

46

Encodings Secure
under

Knowledge Assumptions

Target Statement
R(y,w)=1

Computational Model
 (Representation)

QAP

Arithmetic Circuit SAT
QAP / SAP

over Field = Zp

PKE Power Knowledge of Exponent
 GGM Generic Group Model

Boolean Circuit SAT

crs

SNARK: Methodology

47

Encodings Secure
under

Knowledge Assumptions

Target Statement
R(y,w)=1

Computational Model
 (Representation)

QSP

Arithmetic Circuit SAT
QAP / SAP

over Field = Zp

PKE Power Knowledge of Exponent
 GGM Generic Group Model

Boolean Circuit SAT
QSP / SSP

over Field = Zp
PKE: Power Knowledge of Exponent

crs

f g p q

t

+

+

+

Circuit over Field vs Circuit over Ring

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

Ring

Difficulty: Circuit over FHE ciphertexts

49

Polynomial
additions

&
Polynomial
multiplications

 *polynomials of degree d

FHE [BV11] based on ring-LWE

Ciphertexts = Polynomials

+
+

T(x)

+

n inputs

F(x) G(x) P(x) Q(x)

+

+
H(x) S(x)

T(x)

+ O(n⋅d)
 scalar additions

&
O(m⋅d⋅log d)
scalar multiplications

 *for polynomials of degree d

n inputs

+

+

F(x) G(x) P(x) Q(x)

+

+
H(x) S(x)m

x gates

n inputs

Challenge: Circuit over Polynomials

SNARK: Methodology

51

Encodings Secure
under

Knowledge Assumptions

Target Statement
R(y,w)=1

Computational Model
 (Representation)

QRP

Arithmetic Circuit SAT
QAP / SAP

over Field = Zp

PKE Power Knowledge of Exponent
 GGM Generic Group Model

Boolean Circuit SAT
QSP / SSP

over Field = Zp
PKE: Power Knowledge of Exponent

General Circuits over Rings QRP over Ring = R Augmented PKE: Power Knowledge of Encoding

crs

[PHGR13]
Pinocchio: Nearly practical

verifiable computation

52

Contribution for short

[GNS21]
Rinocchio

More SNARKs applications

53

Anonymous Credentials Fairness in
 Machine Learning

More SNARKs applications

54

Anonymous Credentials Fairness in
 Machine Learning

Technical Details

55

Option
s

Tale 1Tale 1 Tale 2Option
s

C
Option

s

SNARK
Background

Framework
for Rinocchio New tools

ConclusionChallenges

+

+

+

F(x) G(x) P(x) Q(x)

56

Polynomial problem

QRP
Ring Representation

for Circuit SAT

Encoding
Scheme

over Rings

Main Ingredients for Rinocchio

Example: Solution for equation Ax2 + C = 0

z2

+

+
+ z1

+
1

out

System:

z1= A・x
z2= z1・x
out = (C + z2)・1

 C x A

Example: Solution for equation Ax2 + C = 0

z2

+

+
+ z1

+
1

out

System:

z1= A・x
z2= z1・x
out = (C + z2)・1

a =(1, x, z1, z2, out)T

 C x A

59

R1CS for vector a =(1,A, C, x, z1, z2, out)

。 = V

a W

a Y

a

a =(1, x, z1, z2, out)T

(A, 0, 0, 0, 0)⋅a
 (0, 1, 0, 0, 0)⋅a = (0, 0, 1, 0, 0)⋅a

(0, 0, 1, 0, 0)⋅a
 (0, 1, 0, 0, 0)⋅a = (0, 0, 0, 1, 0)⋅a

(C, 0, 0, 1, 0)⋅a
 (1, 0, 0, 0, 0)⋅a = (0, 0, 0, 0, 1)⋅a

 。

 。

 。

z1= A・x
 System: z2= z1・x

out = (C + z2)・1

a =(1, x, z1, z2, out)T

60

R1CS for vector a =(1,A, C, x, z1, z2, out)

。 = V

a W

a Y

a

z1= A・x
 System: z2= z1・x

out = (C + z2)・1

a =(1, x, z1, z2, out)T
=

m

d

61

Proving a Solution for Equation Ax2 + C = 0

。 = V

a W

a Y

a

z1= A・x
 System: z2= z1・x

out = (C + z2)・1

 a =(1, x, z1, z2, out)T
=

m

d

62

Proving a Solution for Equation Ax2 + C = 0

。 = V

a W

a Y

a

=

m

d

Given

Find
s.t.

and

63

Polynomial Equation with Coefficients in a Ring

Necessary property over Rings for Ideals

Isomorphism for QRP soundness ⇔ Ideals are co-prime:

Necessary property over Rings for Ideals

Isomorphism for QRP soundness ⇔ Ideals are co-prime:

64

Polynomial Equation with Coefficients in a Ring

Exceptional Sets: to the rescue!

65

66

Exceptional Sets

Exceptional Sets

67

Schwartz-Zippel Lemma over Rings

68

69

Polynomial problem

Encodings

Properties
Assumptions

70

Extractable Linear-Only [BISW17]

p1 p2 pd

E(P)
pi Σ

E(P)

=
E(mi)

E(αP)
E(m1) E(m2) E(md)

E(αm1) E(αm2) E(αmd)

71

gs s2 sd g g

DLog Group

Encodings over Fields

DLog vs General Encoding

72

gs s2 sd g g Epk(s) Epk(s
2) Epk(s

d)

DLog Group Encode:

Decode:

Quadratic root detection public

?

?

Quadratic Root Detection - Pairings

Publicly Verifiable vs Designated Verifiable

Encode:

Decode:

Quadratic root detection public

?

?

Quadratic root detection needs sk

E(p(s)) E(h(s))

?

75

Encoding Instantiation for LWE Rings

Advantages & Future directions:
✘ Supports “somewhat homomorphic” variants of BGV [BGV12] and FV [FV12]

✘ Allows for significantly better choices for RLWE parameters

✘ First SNARK to support rings with q ≠ prime → more expressive FHE

✘ We enable new FHE operations → new circuits for plaintext packing, modulo switching

✘ :(We are only designated-verifier, we don’t support Bootstrapping operations

TFHE

76

Encoding Instantiation for LWE Rings

Possible parameters:

TFHE

Performance Evaluation:

✘ # levels L for BGV [BGV12] and FV [FV12]

✘ TFHE performance for such plaintexts?

77

Compactly Commit
to Polynomials

ZK Proof for evaluation
in random point k

crs

σ

CaP zk-SNARK
for arithmetic circuit

over scalars

+

++

+

+

Verifiable
Computation

with
Privacy

π

VC

[PKC:FNP20] SNARK approach

+

https://www.di.ens.fr/~nitulesc/publications.html#lume
https://www.di.ens.fr/~nitulesc/publications.html#lume

78

Proof of Many Evaluations

Z(x,y)

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

 f g p q

t

+

+

+
h s

V(y)

Z(k,y) = V(y) σ

Proof of Many Evaluations

Z(x,y)

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

 f g p q

+

+

+
h s

V(y)

Z(k,y) = V(y) σ

79 t

Z(x,y)

Proof of Arithmetic Circuit over Scalars

F(x) G(x) P(x) Q(x)

T(x)

+

+

+
H(x) S(x)

 f g p q

t

+

+

+
h s

SNARK

V(y)

80

π

Z(k,y) = V(y) σ

FHE Arithmetics: tailored SNARKs

[FVP20] Boosting Verifiable Computation on Encrypted Data
Dario Fiore, Anca Nitulescu, David Pointcheval

✘ Only supports rings of polynomials for q prime → inefficient FHE

✘ Does not support operations for bootstrapping, rescaling etc. in FHE

✘ Modular - Commit&Proof Composition

✘ Publicly Verifiable, anyone can verify without key

✘ Zero-Knowledge for inputs and computation

More specific FHE computations: MyOPE

[INPP21] Malicious securitY for Oblivious Polynomial Evaluation
Malika Izabachène, Anca Nitulescu, Paola de Perthuis, David Pointcheval

✘ SNARK for Inner-Product over ciphertexts: adds security against malicious parties

✘ Reduce communication in 2PC with FHE

✘ Applications to PSI

Receiver: point a Sender: P(X)= p
i
xi

Sends C(ai) for some i Computes Eval p=P(a):

 C(p) = <C(ai), p
i
>

Receives C(p) and π Proves eval π

83

Option
s

Tale 1Tale 1 Tale 2Option
s

C
Option

s

SNARK
Background

Framework
for Rinocchio New tools

ConclusionChallenges

Conclusions

Conclusions

Rinocchio: SNARKs for Ring Arithmetics
✘ Circuit-SAT for arithmetic circuits over commutative rings: Quadratic Ring Programs (QRP)

✘ Better fits FHE schemes arithmetics even for q not prime

✘ Supports sub-circuits for special operations in FHE: modulo switching

✘ Designated Verifier only

✘ Can be turned Zero-Knowledge using Context Hiding techniques

Quadratic Programs and SNARKs over fields
✘ Lots of implementations, but they fall short in one aspect

✘ Emulating ring arithmetic on SNARKs is expensive and unfriendly to applications

✘ Today’s cost: Compilation to circuits over fields, costly preprocessing

Conclusions

Rinocchio: SNARKs for Ring Arithmetics
✘ Circuit-SAT for arithmetic circuits over commutative rings: Quadratic Ring Programs (QRP)

✘ Better fits FHE schemes arithmetics even for q not prime

✘ Supports sub-circuits for special operations in FHE: modulo switching

✘ Designated Verifier only

✘ Can be turned Zero-Knowledge using Context Hiding techniques

Quadratic Programs and SNARKs over fields
✘ Lots of implementations, but they fall short in one aspect

✘ Emulating ring arithmetic on SNARKs is expensive and unfriendly to applications

✘ Today’s cost: Compilation to circuits over fields, costly prepocessing

Open Questions
✘ Other Encodings over rings → publicly verifiable

✘ More efficient instantiations: Security assumptions over rings: L-O extractable vs PKE

THANK YOU

eprint.iacr.org/2021/322

Credits

87

Special thanks to all those who made and released these resources
for free:

✘ Presentation template by SlidesCarnival
✘ Illustrations by Disneyclips, Iconfinder and Flaticon

http://www.slidescarnival.com/
http://www.disneyclips.com
http://www.iconfinder.com
https://www.flaticon.com/

