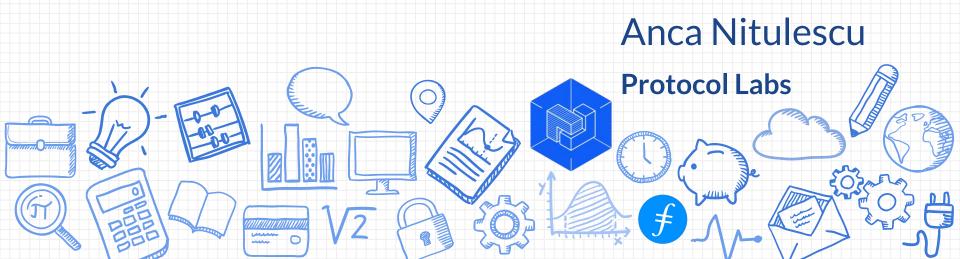
Verifiable Computation over Encrypted Data: SNARKs and more

29 March 2022 - FHE.org



Client:

- × limited storage
- × minimal operating system
- × limited computational power

Server

Cloud Service

x provides storage

Client

2

Client

3

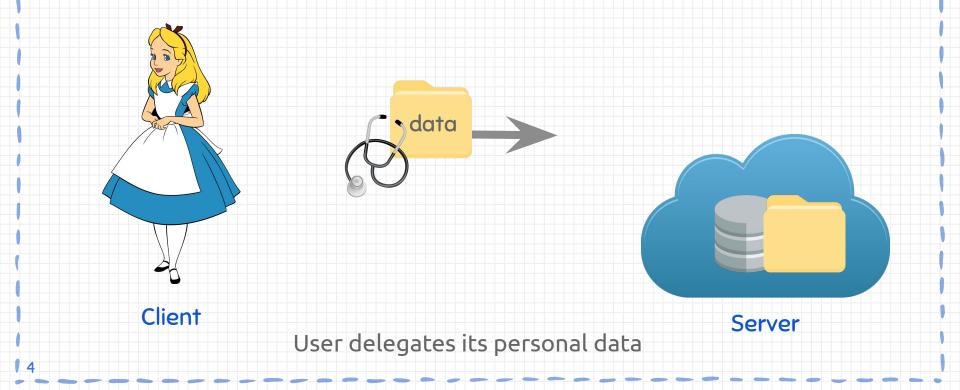
Client:

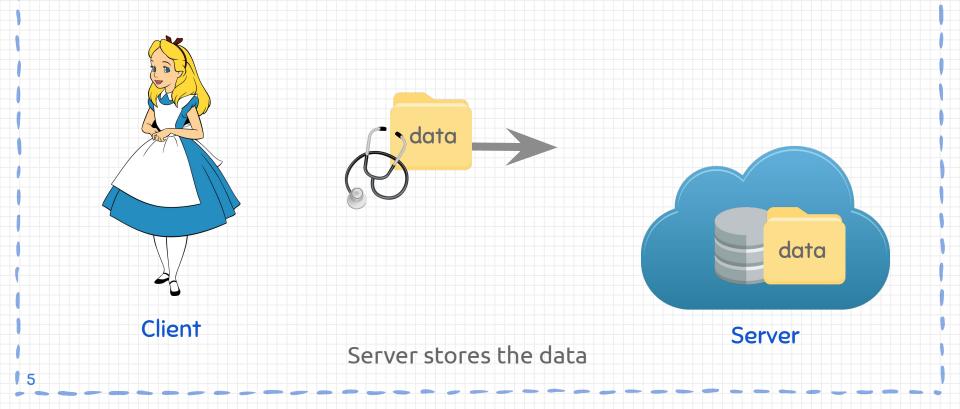
- × limited storage
- × minimal operating system
- × limited computational power

Cloud Service

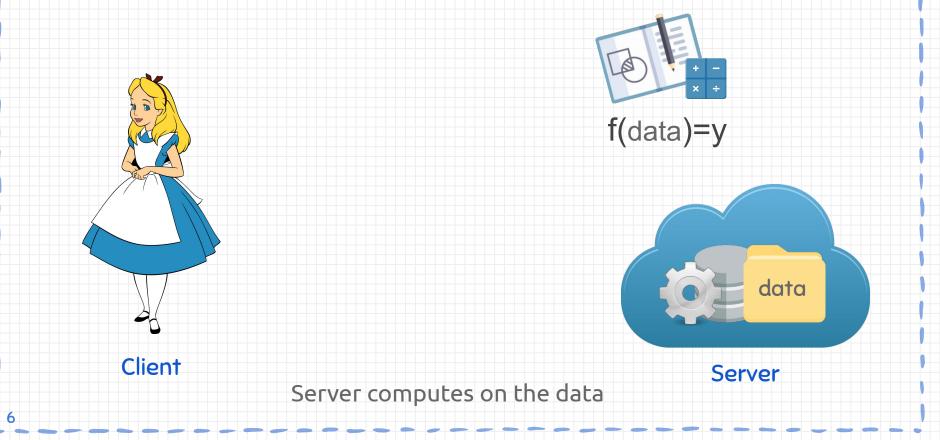
- **X** provides storage
- **x** computing power
- × network
- × software

Server

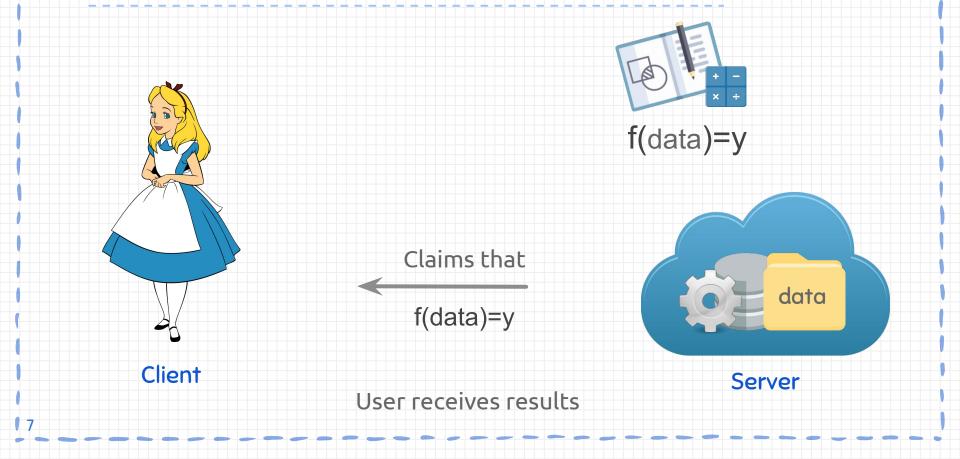


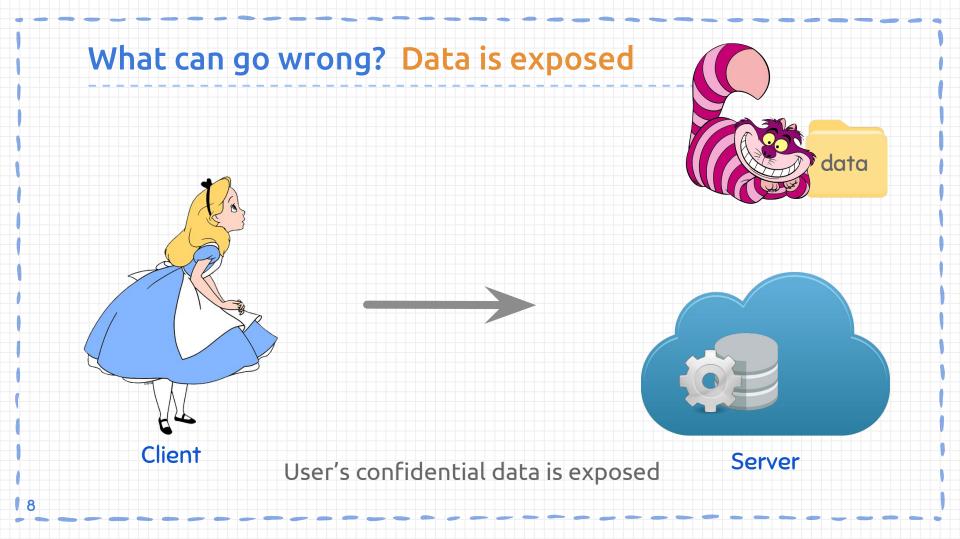


Computation Delegation

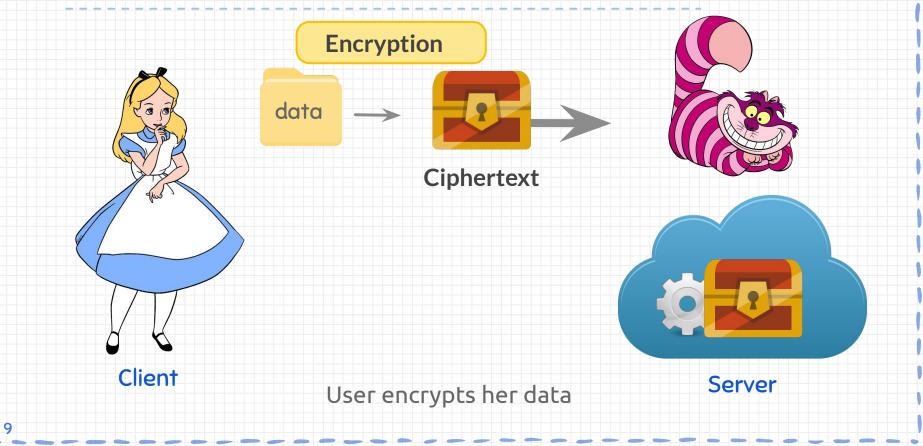


Computation Delegation





FHE: Solution for Privacy of Inputs



FHE: Solution for Privacy of Inputs

Encryption

Homomorphic Encryption

- **×** Privacy of inputs
- ✗ Malleability of data
- **X** Privacy of output

[Gen09, BGV12, GSW13, TFHE (CGGI16), CKKS17...]

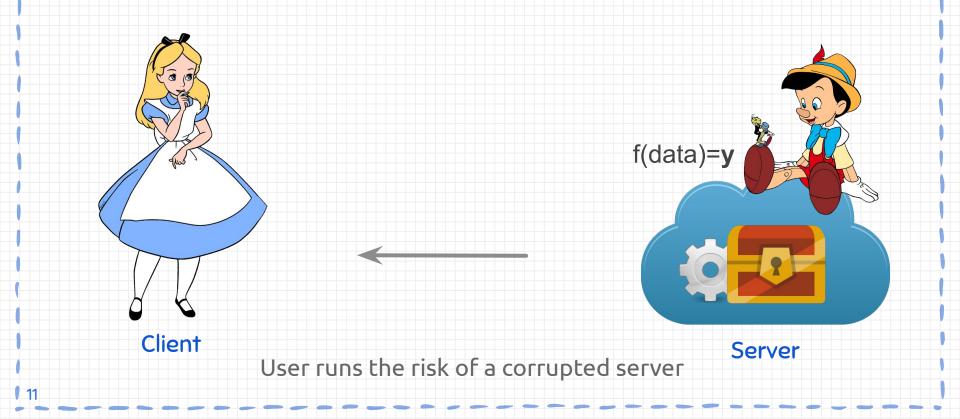
Client

10

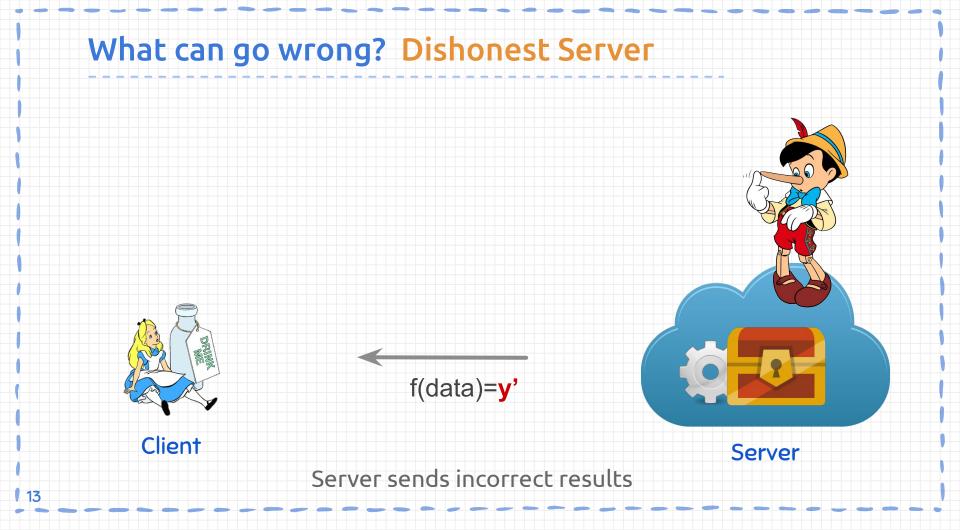
User encrypts her data

Server

What can go wrong? Dishonest Server



What can go wrong? Dishonest Server f(data)=y f(data)=y' Client Server Server sends incorrect results 1 12



SNARK: Solution for integrity of results Verifiable Computation 10 f(x)π Client Server User asks for a proof 1 14

SNARK: Solution for integrity of results

Verifiable Computation

SNARKs

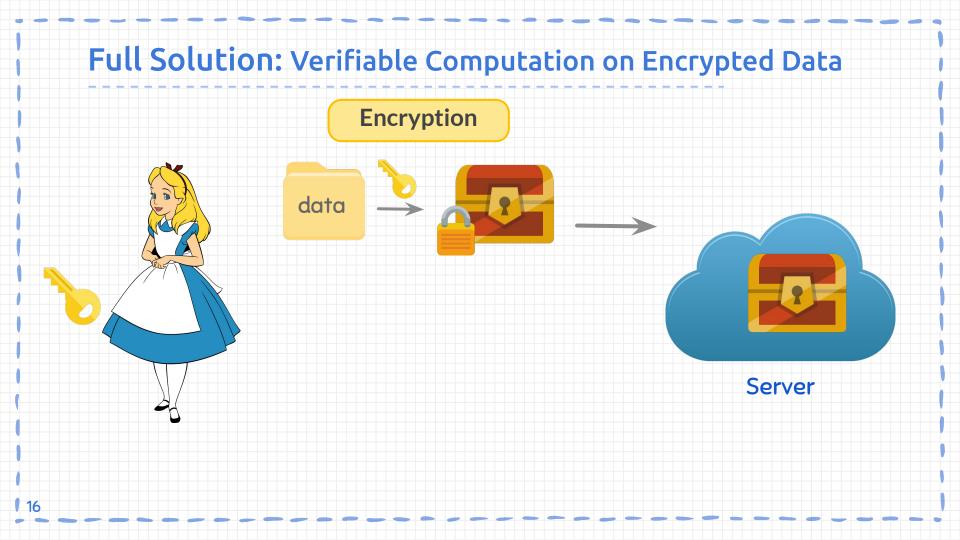
× Proof is succinct

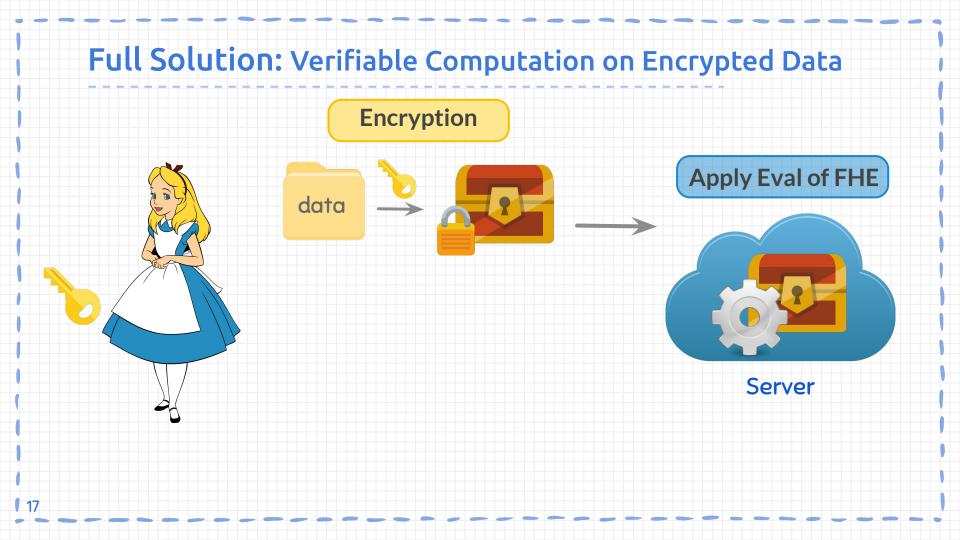
Client

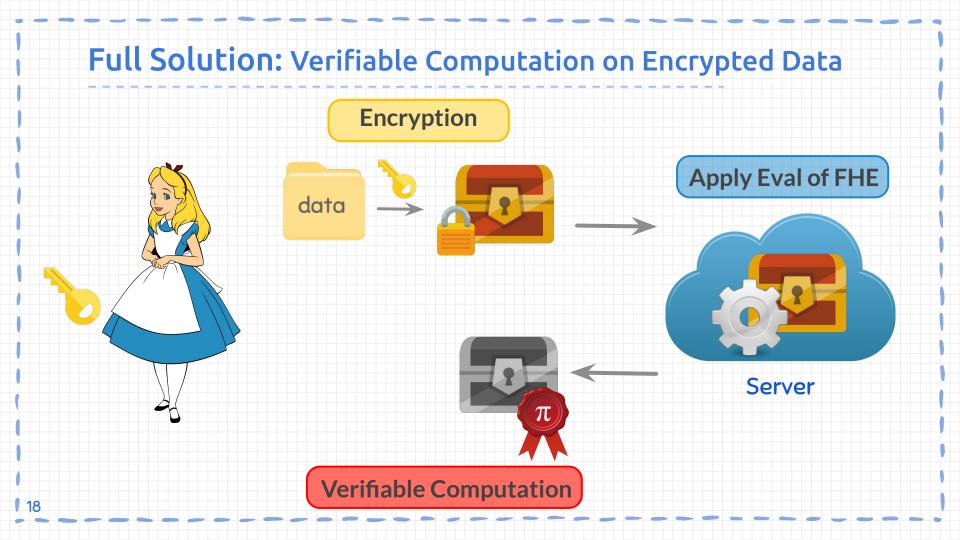
15

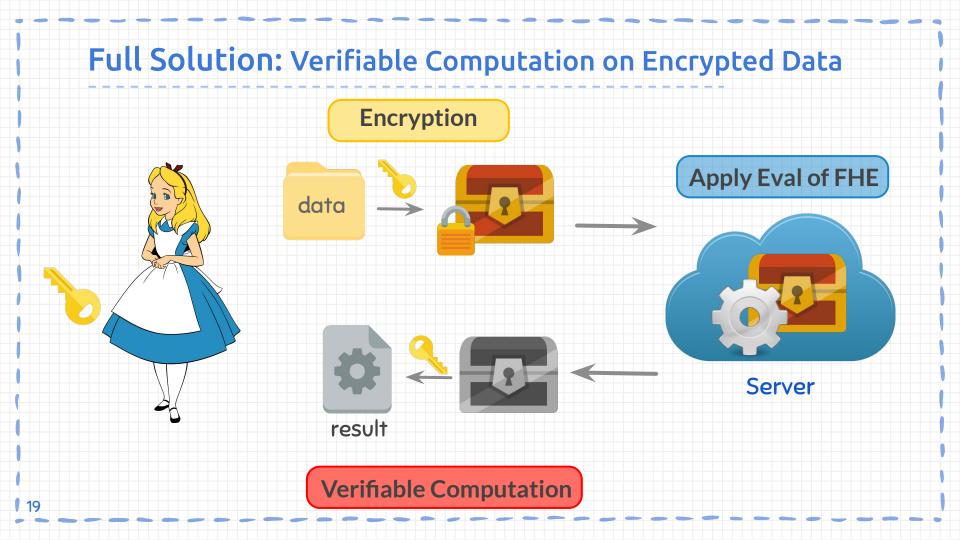
- **X** Minimal interaction
- **X** Client verifies efficiently

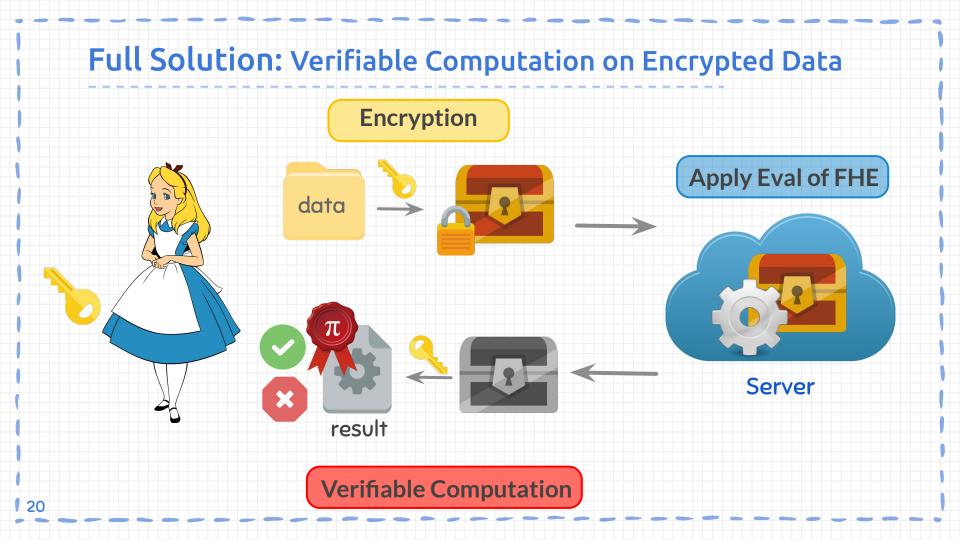
[GGP10, GGPR13, PHGR13, Gro16, BBC+18...]











Privacy-preserving Verifiable Computation

Boosted SNARKs with data privacy for the inputs and outputs [PKC:FNP20] Boosting Verifiable Computation on Encrypted Data Dario Fiore, Anca Nitulescu, David Pointcheval

Privacy-preserving Verifiable Computation

Boosted SNARKs with data privacy for the inputs and outputs [PKC:FNP20] Boosting Verifiable Computation on Encrypted Data Dario Fiore, Anca Nitulescu, David Pointcheval

Short-sighted SNARKs for Private Polynomial Evaluation and PSI

[EP:2021/1291] MyOPE: Malicious securitY for Oblivious Polynomial Evaluation Malika Izabachène, Anca Nitulescu, Paola de Perthuis, David Pointcheval

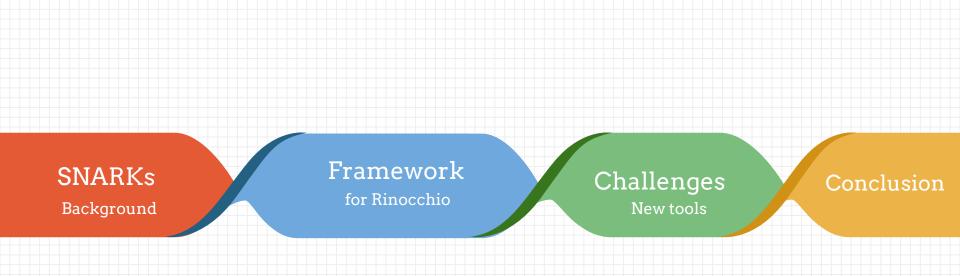
Privacy-preserving Verifiable Computation

Boosted SNARKs with data privacy for the inputs and outputs [PKC:FNP20] Boosting Verifiable Computation on Encrypted Data Dario Fiore, Anca Nitulescu, David Pointcheval

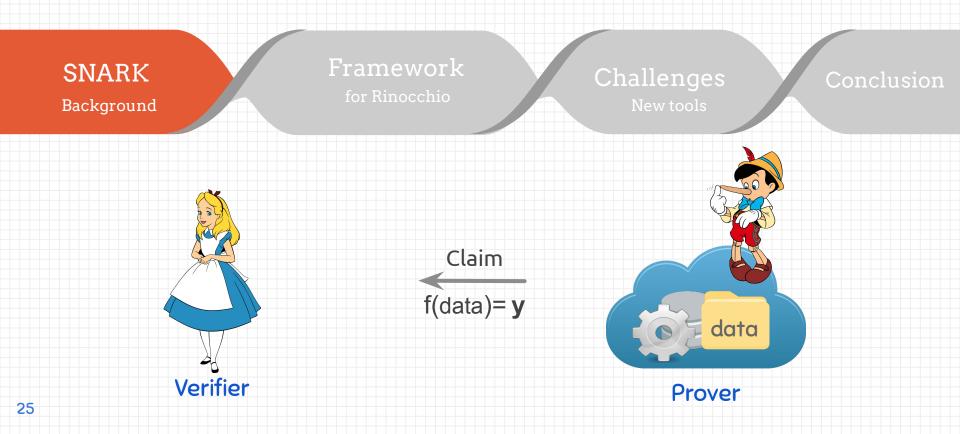
Short-sighted SNARKs for Private Polynomial Evaluation and PSI [EP:2021/1291] MyOPE: Malicious securitY for Oblivious Polynomial Evaluation Malika Izabachène, Anca Nitulescu, Paola de Perthuis, David Pointcheval

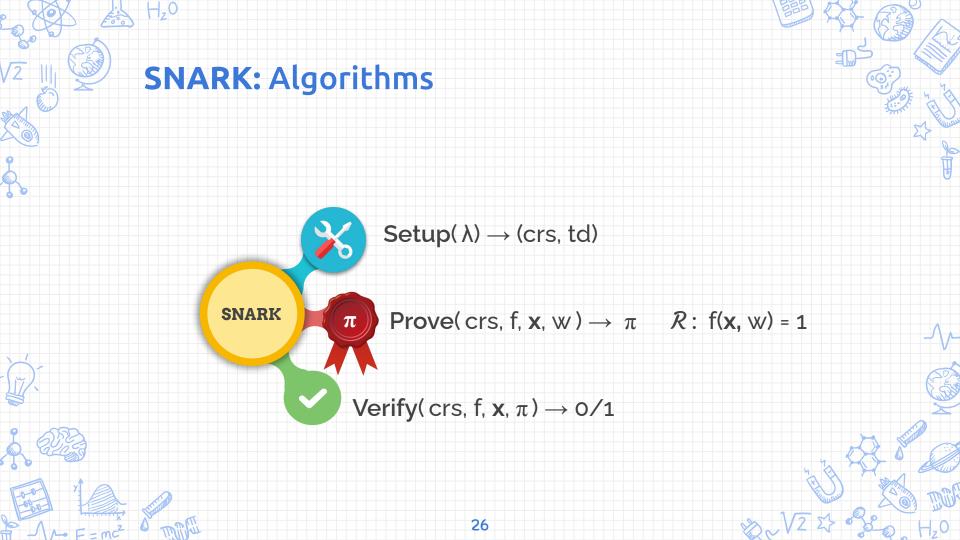
SNARKs compatible with FHE ciphertexts based on LWE rings [EP:2021/322] *Rinocchio: SNARKs for Ring Arithmetic* Chaya Ganesh, **Anca Nitulescu**, Eduardo Soria-Vazquez

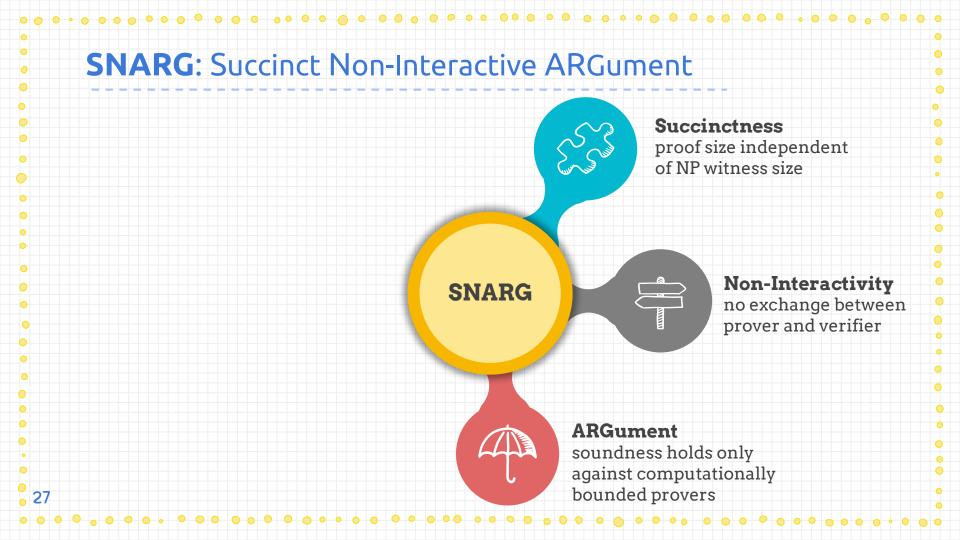
Outline

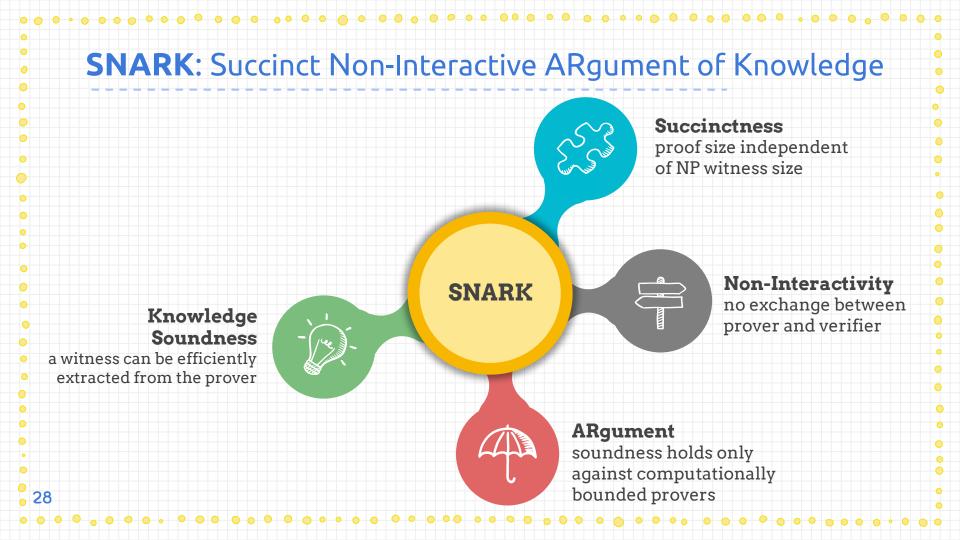


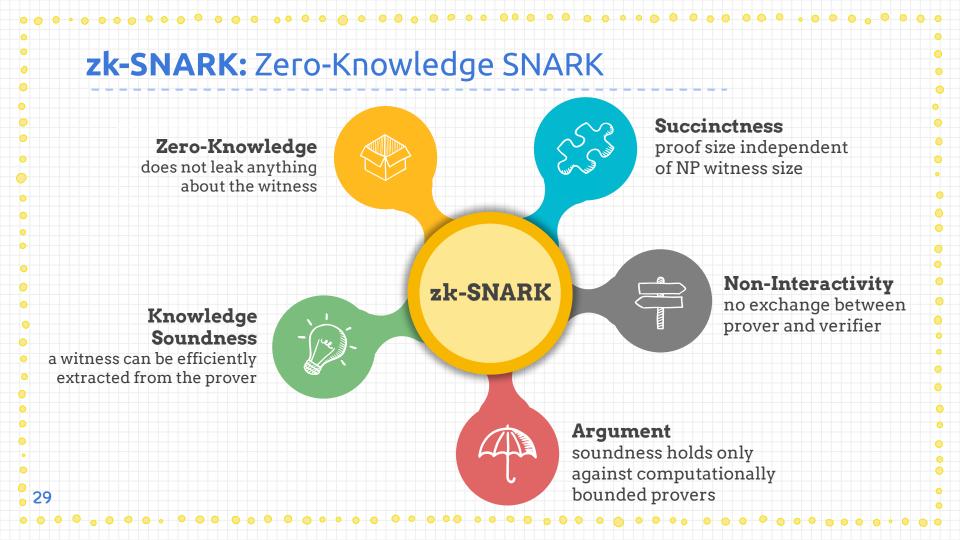
Introduction to SNARKs



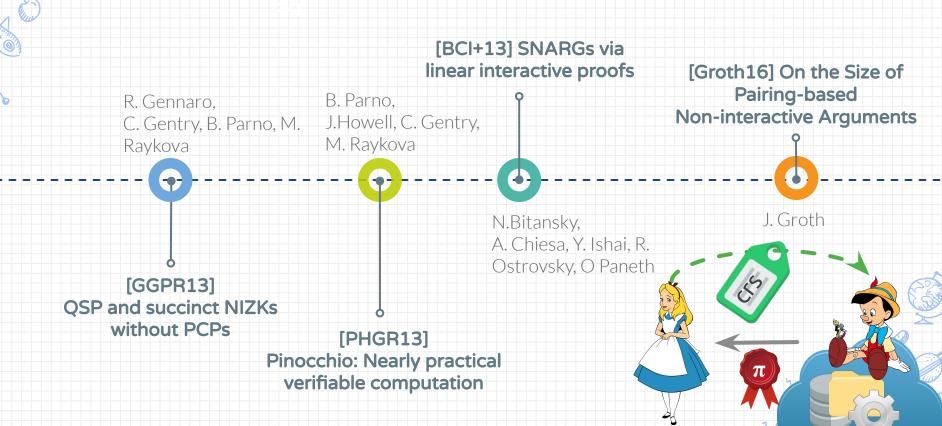




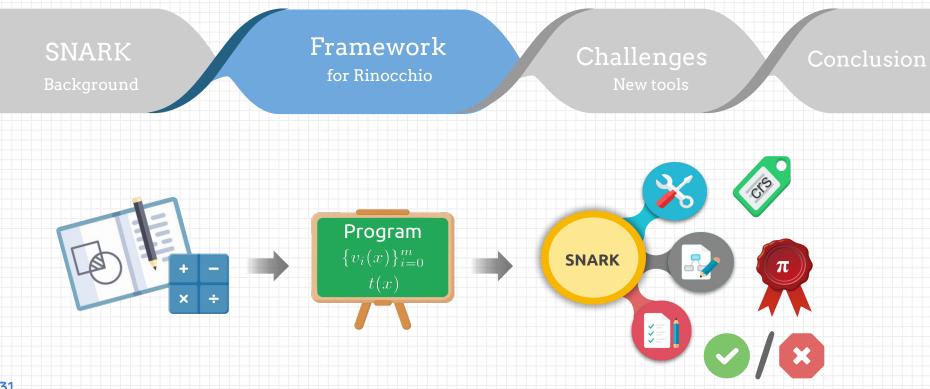




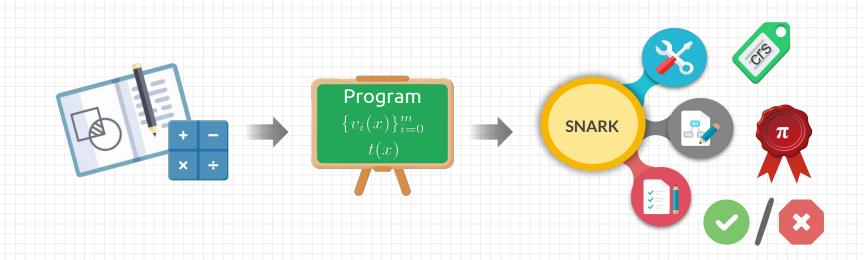
SNARKs: Preprocessing for constant size proofs



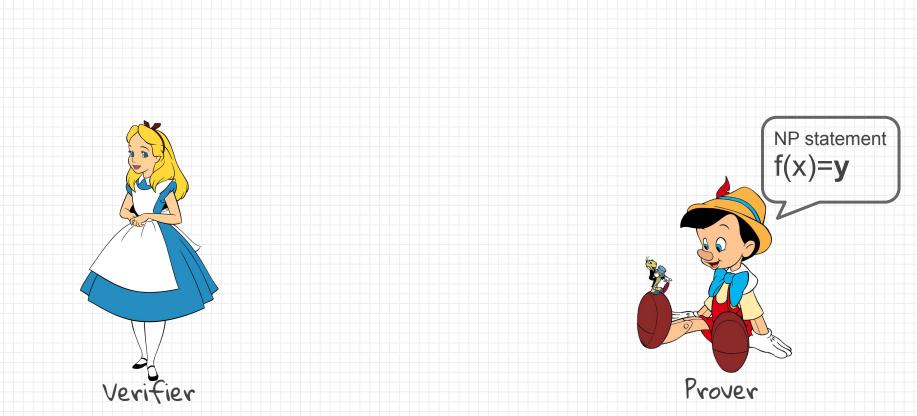
Key Steps to Build SNARKs



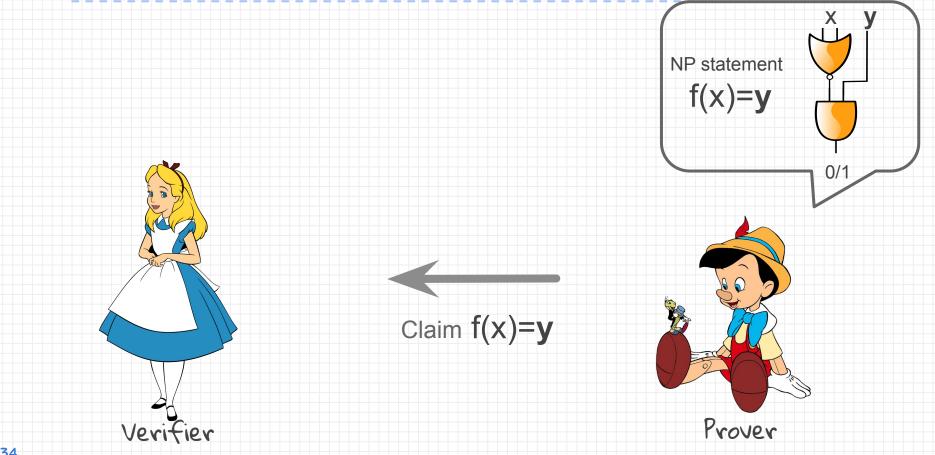
Frameworks for SNARKs



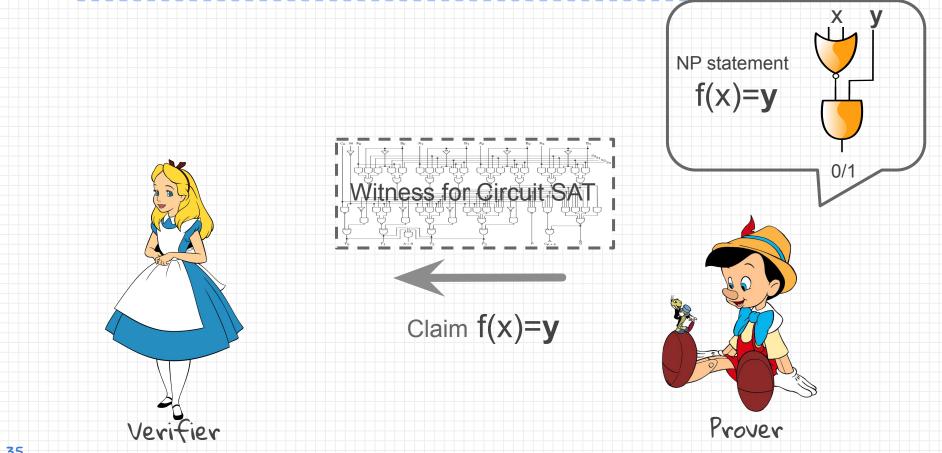
Proving NP statements



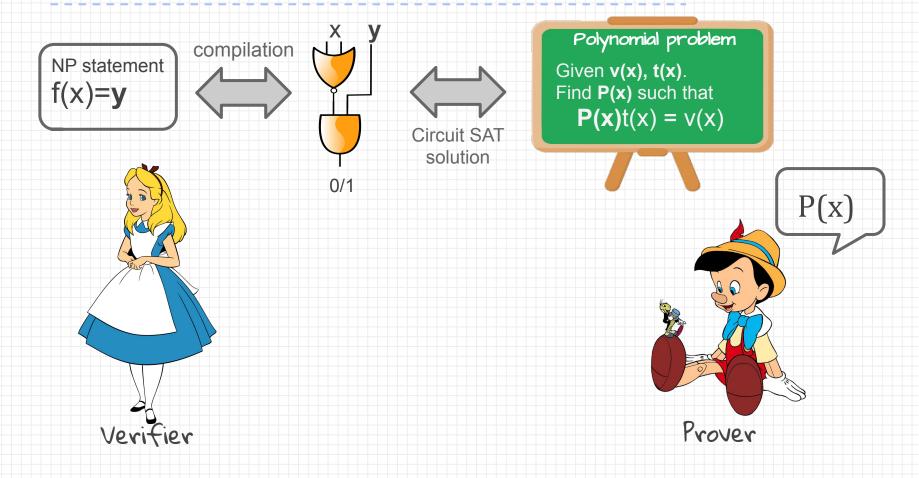
Computation: Circuit SAT



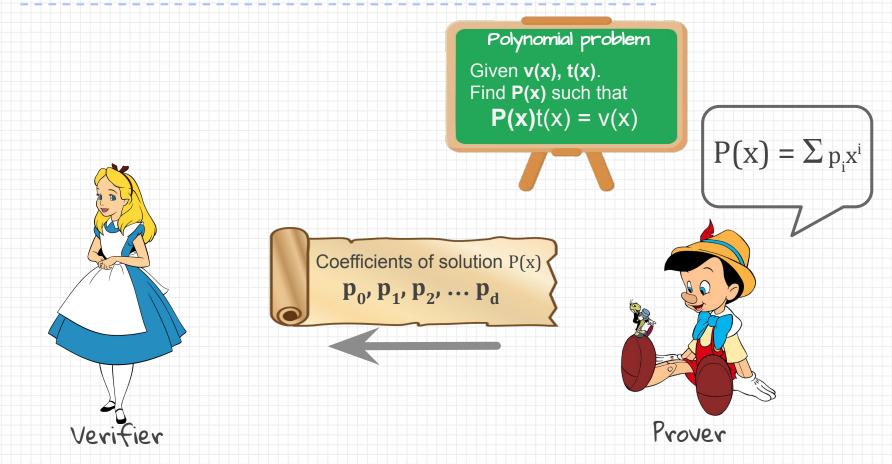
NP witness: Too long!



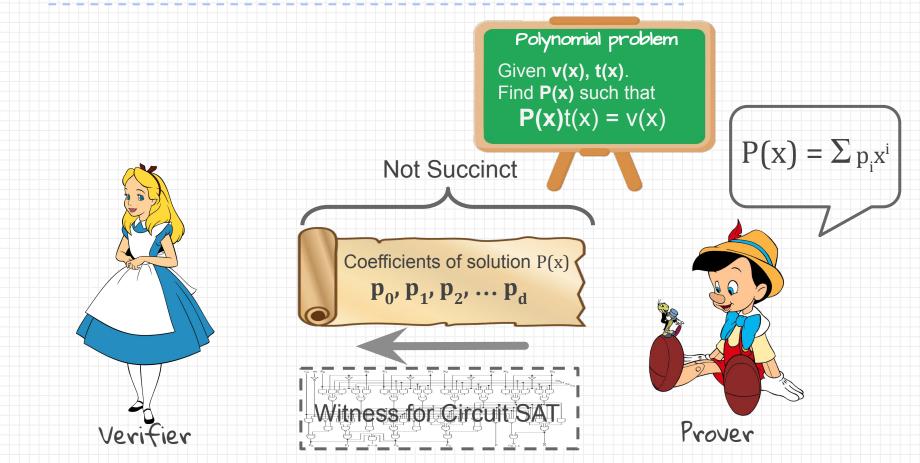
Prover solves equivalent problem instead



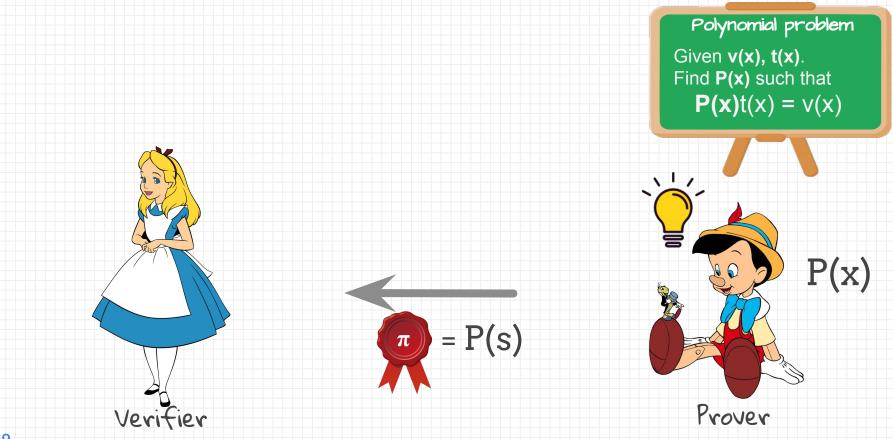
Prover shows polynomial: too long



Prover shows polynomial: too long



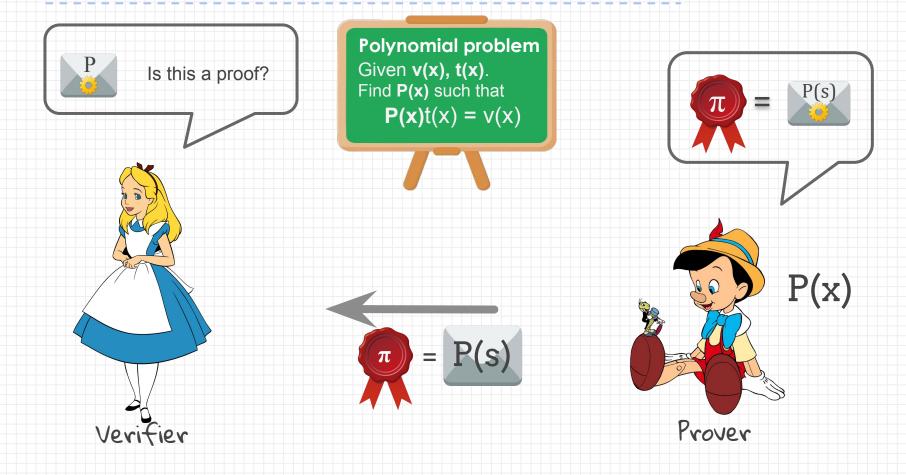
Evaluate solution at point s



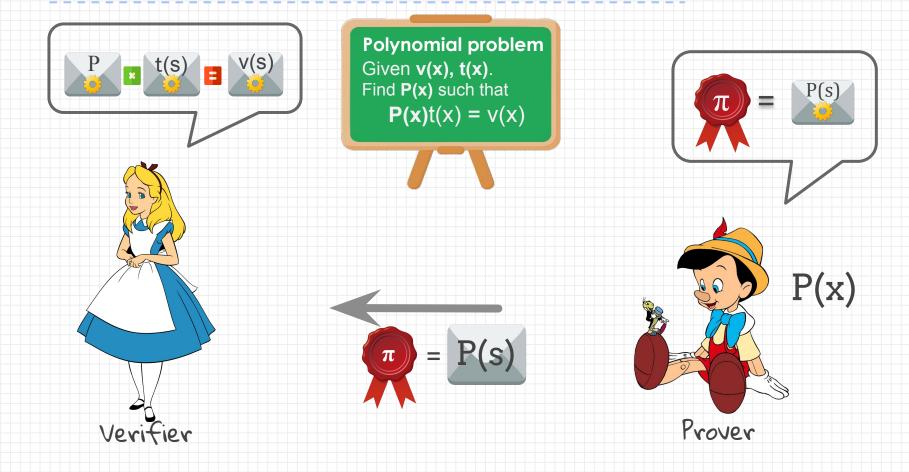
Evaluate solution at point s



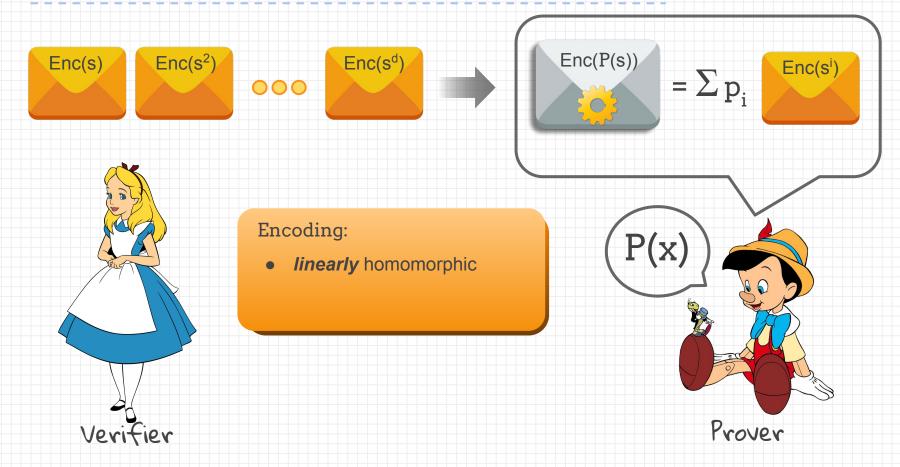
General SNARK framework



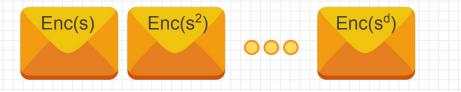
Verification in a single point

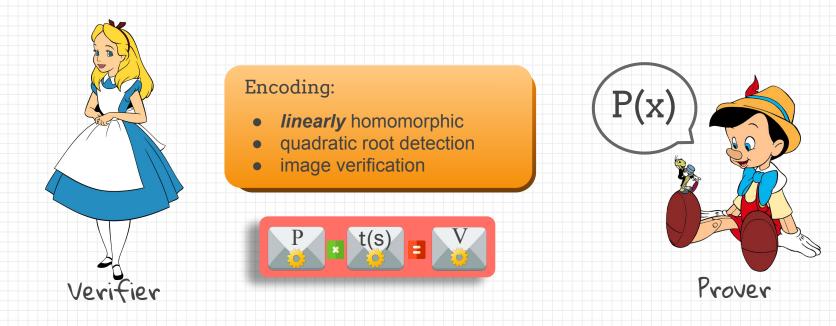


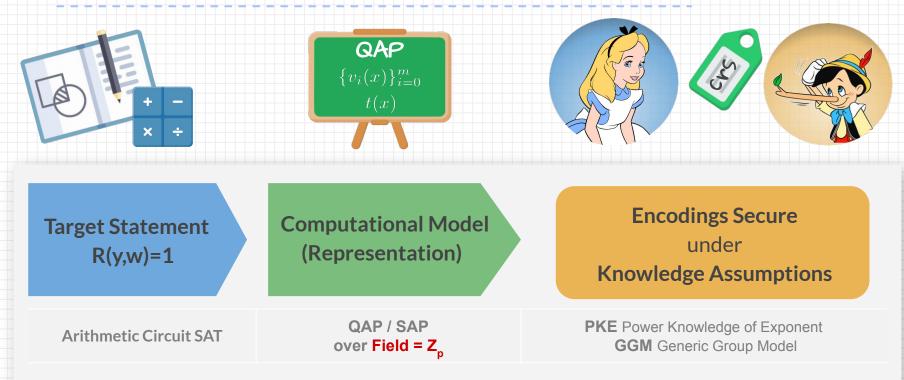
Encoding Properties for Verification

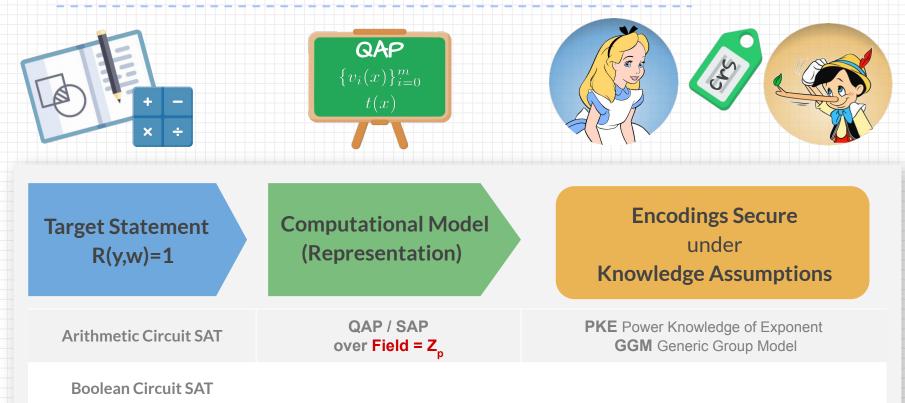


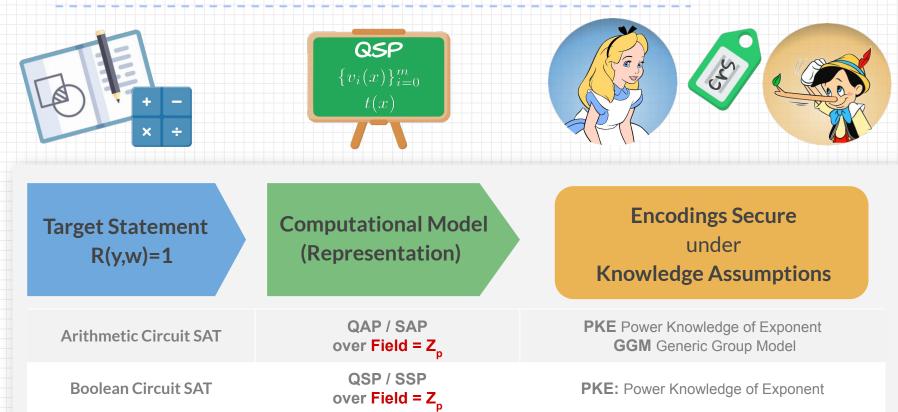
Encoding Properties for Verification

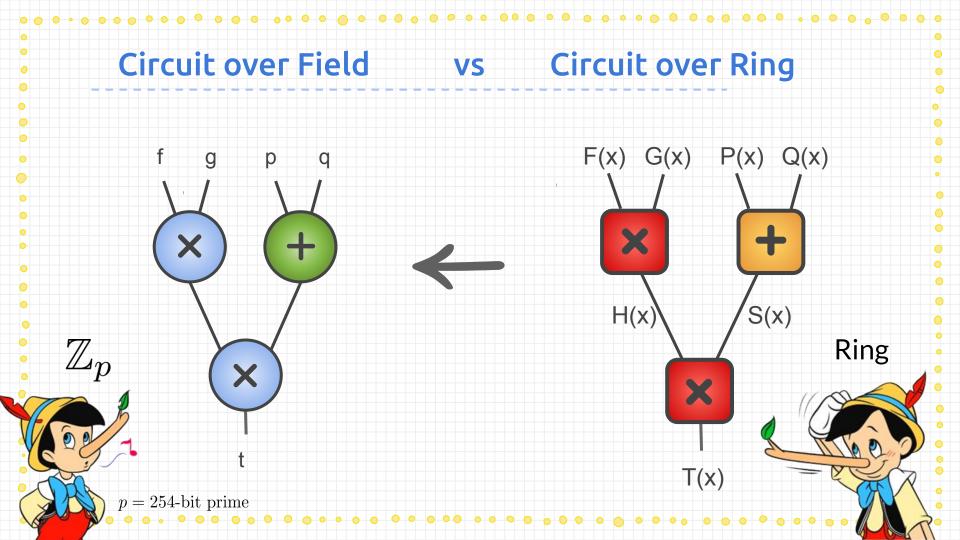


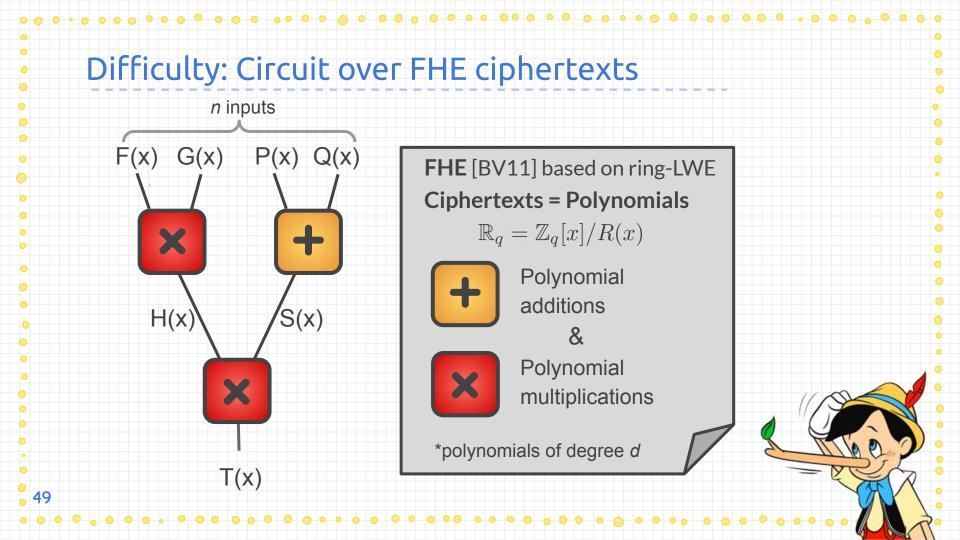


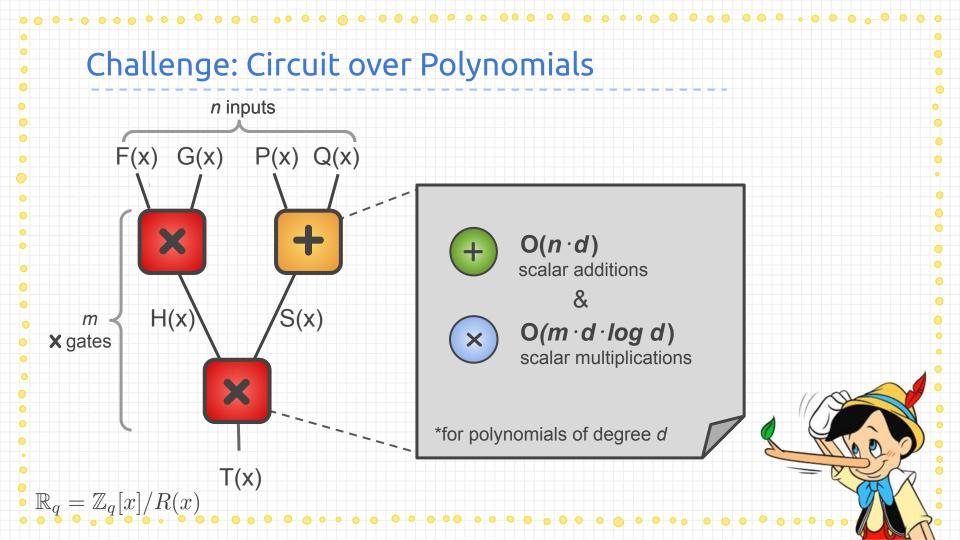


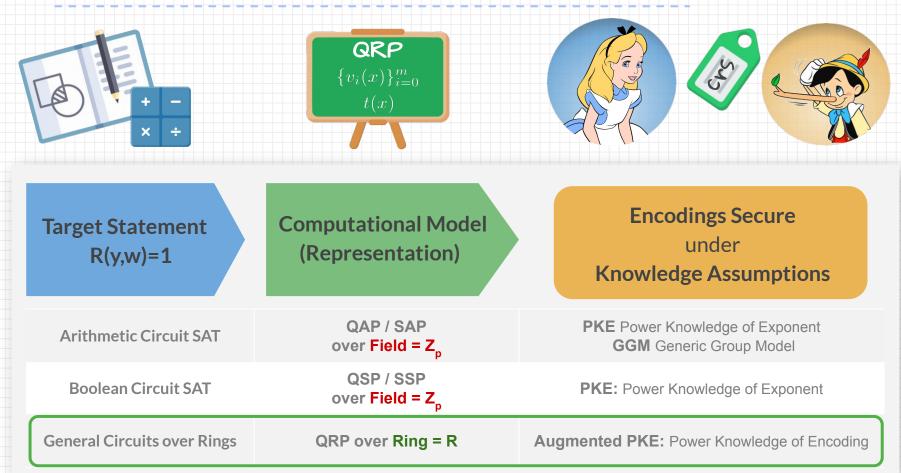


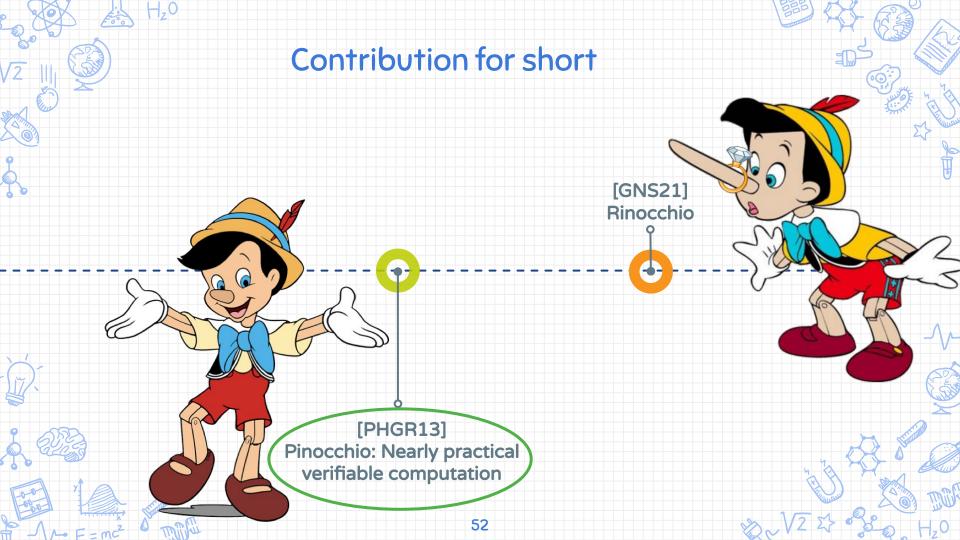




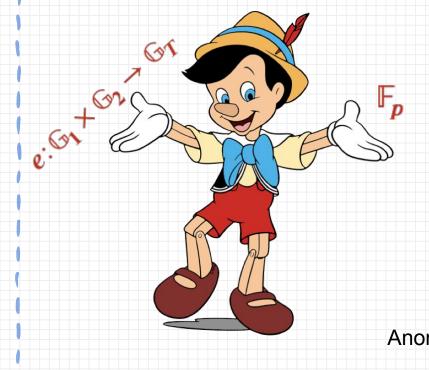








More SNARKs applications



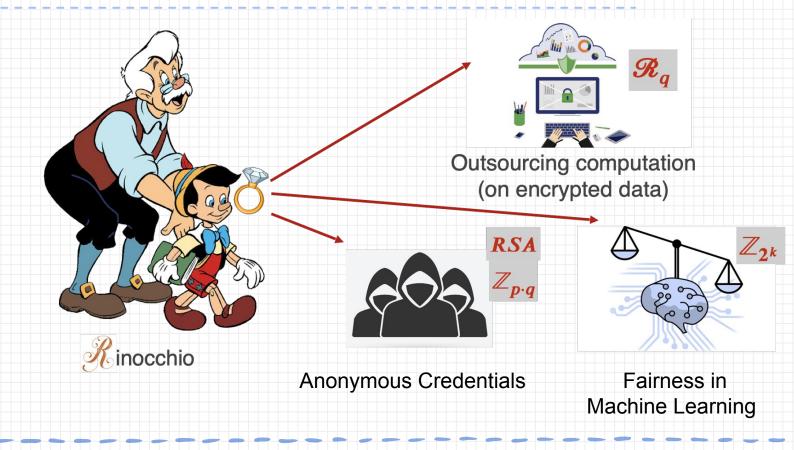
53

Outsourcing computation (on encrypted data)

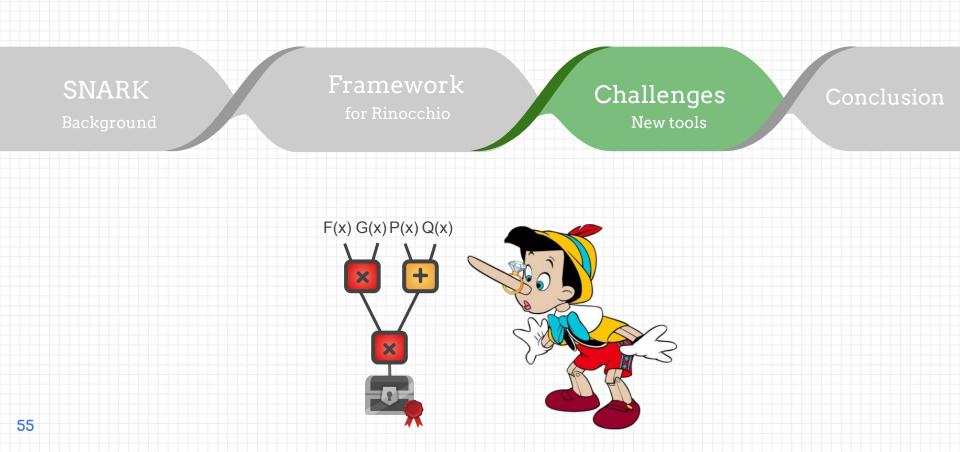
Anonymous Credentials

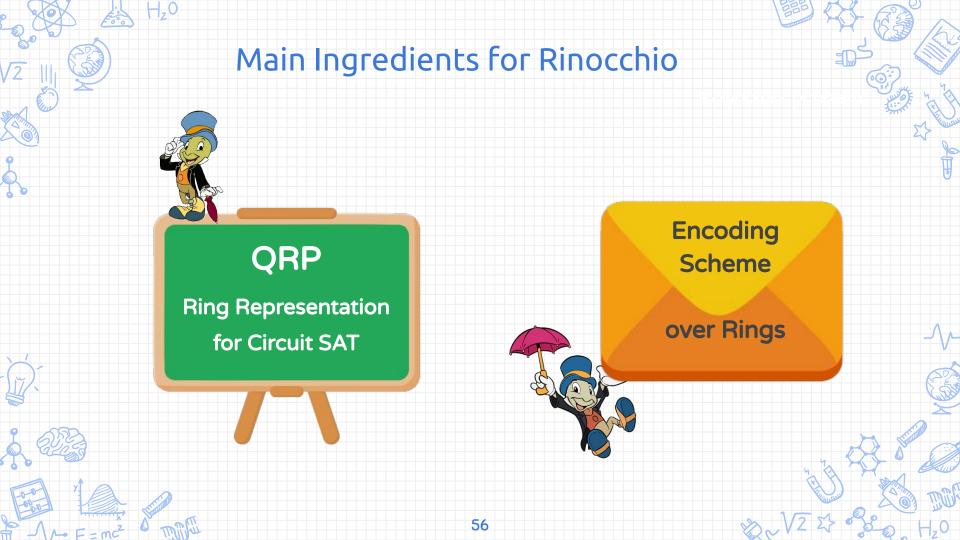
Fairness in Machine Learning

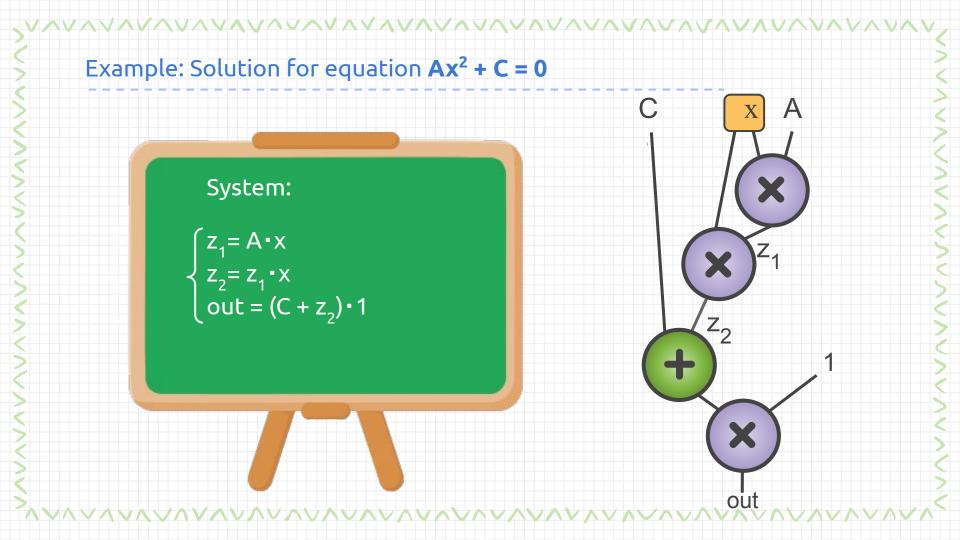
More SNARKs applications

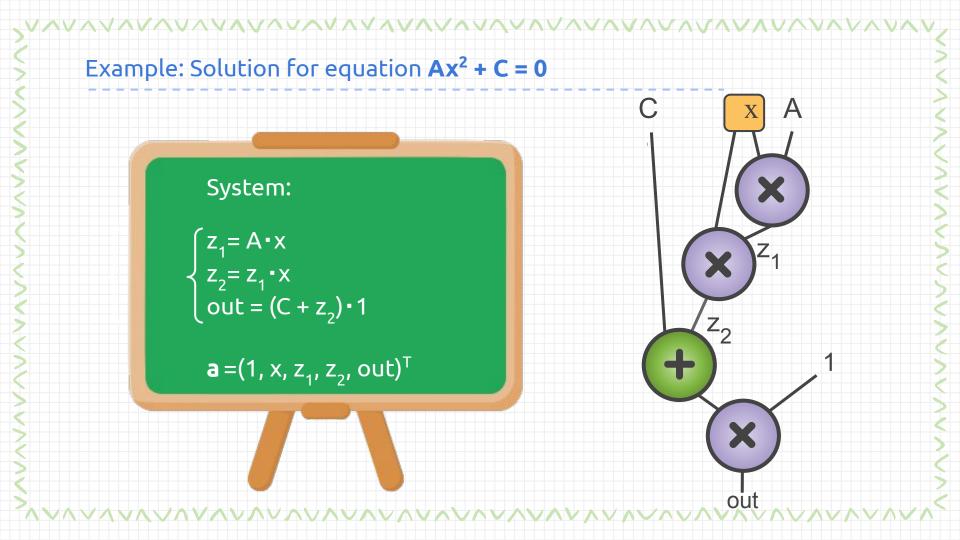


Technical Details









R1CS for vector $\mathbf{a} = (1, A, C, x, z_1, z_2, out)$

$$a = (1, x, z_1, z_2, out)^T$$

NV V V V V

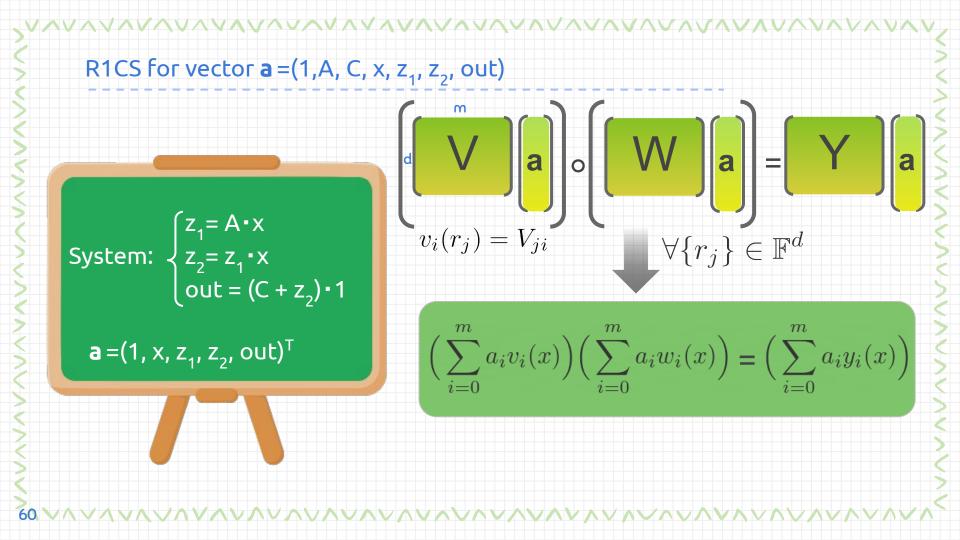
System: $\begin{cases} z_1 = A \cdot x \\ z_2 = z_1 \cdot x \\ out = (C + z_2) \cdot 1 \end{cases}$

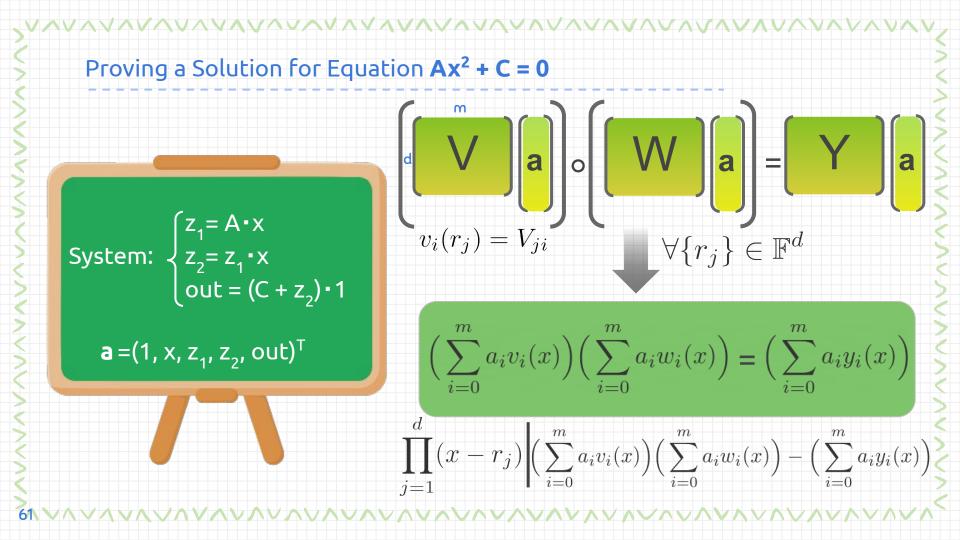
a =(1, x, z₁, z₂, out)^T

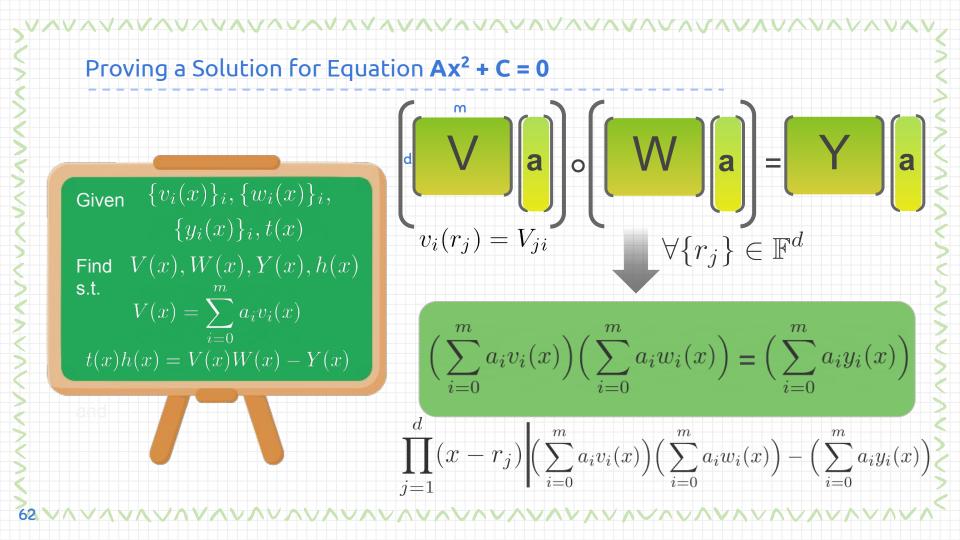
 $(A, 0, 0, 0, 0) \cdot \mathbf{a} \circ (0, 1, 0, 0, 0) \cdot \mathbf{a} = (0, 0, 1, 0, 0) \cdot \mathbf{a}$

 $(0, 0, 1, 0, 0) \cdot \mathbf{a} \circ (0, 1, 0, 0, 0) \cdot \mathbf{a} = (0, 0, 0, 1, 0) \cdot \mathbf{a}$

 $(C, 0, 0, 1, 0) \cdot \mathbf{a} \circ (1, 0, 0, 0, 0) \cdot \mathbf{a} = (0, 0, 0, 0, 1) \cdot \mathbf{a}$







Polynomial Equation with Coefficients in a Ring

63 V

$$t(x) = \prod_{j=1}^{d} (x - r_j) \left[\left(\sum_{i=0}^{m} a_i v_i(x) \right) \left(\sum_{i=0}^{m} a_i w_i(x) \right) - \left(\sum_{i=0}^{m} a_i y_i(x) \right) = p(x) \right]$$

Necessary property over Rings for Ideals $I_j = (x - r_j)$

Isomorphism for **QRP** soundness \Leftrightarrow **Ideals** I_j are co-prime:

$$\frac{R[x]}{(t(x))} \simeq \frac{R[x]}{I_1} \times \ldots \times \frac{R[x]}{I_d} \simeq R \times \ldots \times R$$
$$p(x) \quad \longmapsto \quad \left(p_1(x), \ \dots, p_d(x)\right) \quad \longmapsto \left(p(r_1), \ \dots, \ p(r_d)\right)$$

Polynomial Equation with Coefficients in a Ring Works for $R = \mathbb{F}$, as then $-r_j\Big) \left(\sum_{i=0}^m a_i v_i(x)\right) \left(\sum_{i=0}^m a_i w_i(x)\right) - \left(\sum_{i=0}^m a_i y_i(x)\right)\right)$ the ideals I_i are co-prime. Necessary perty over Rings for Ideals $I_i = (x - r_i)$ Isomorphism for **RP** soundness \Leftrightarrow **Ideals** I_i are co-prime: $\begin{aligned} \frac{R[x]}{(t(x))} &\simeq \frac{R[x]}{I_1} \times \ldots \times \frac{R[x]}{I_d} \simeq R \times \ldots \times R \\ p(x) &\longmapsto (p_1(x), \ \ldots, p_d(x)) \longmapsto (p(r_1), \ \ldots, \ p(r_d)) \end{aligned}$

Exceptional Sets: to the rescue!

Def: Let R be a commutative ring. A set $\mathbf{A} = \{g_1, ..., g_n\} \subset R$ is **exceptional** iff: $\forall i \neq j, (g_i - g_j) \in R^*$

65

Exceptional sets have **no further** algebraic **structure**. Not even <u>closure</u>!

Exceptional Sets

66

Def: Let R be a commutative ring. A set $\mathbf{A} = \{g_1, ..., g_n\} \subset R$ is **exceptional** iff: $\forall i \neq j, (g_i - g_j) \in R^*$

Exceptional sets have **no further** algebraic **structure**. Not even <u>closure</u>!

Given exceptional set **A**, the **ideals** $I_j = (x - g_j)$ are **pairwise co-prime** (i.e. $\forall i \neq j, I_i + I_j = R[X]$).

- Proof: $-(x g_i) + (x g_j) = (g_i g_j) \in \mathbb{R}^*$
- Meaning: We can apply CRT in R[X], for big enough $A \subset R$.

Exceptional Sets

67

Def: Let R be a commutative ring. A set $\mathbf{A} = \{g_1, ..., g_n\} \subset R$ is **exceptional** iff: $\forall i \neq j, (g_i - g_j) \in R^*$

Exceptional sets have **no further** algebraic **structure**. Not even <u>closure</u>!

Given exceptional set **A**, the **ideals** $I_j = (x - g_j)$ are pairwise co-prime (i.e. $\forall i \neq j, I_i + I_j = R[X]$).

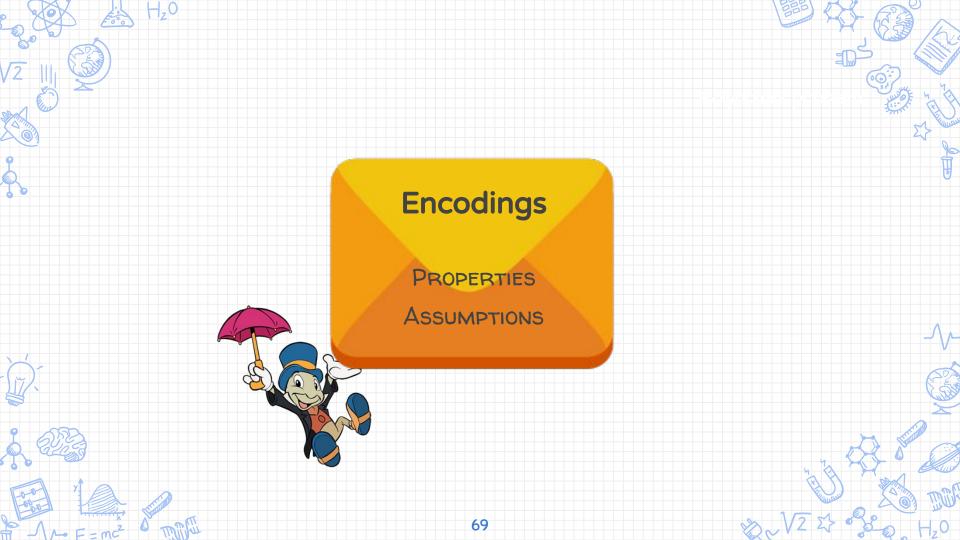
$$\frac{R[x]}{(t(x))} \simeq \frac{R[x]}{I_1} \times \ldots \times \frac{R[x]}{I_d} \simeq R \times \ldots \times R$$
$$p(x) \longmapsto (p_1(x), \dots, p_d(x)) \longmapsto (p(g_1), \dots, p(g_d))$$

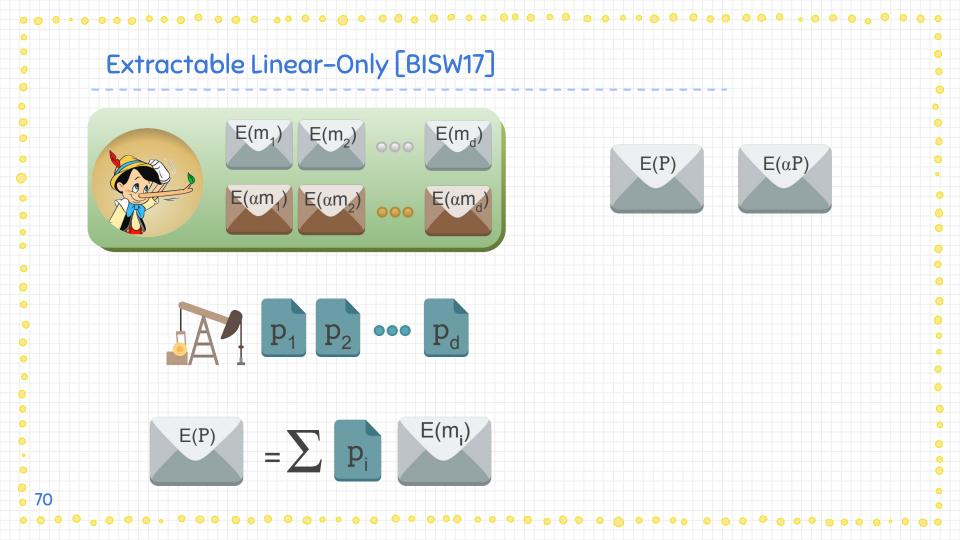
Schwartz-Zippel Lemma over Rings

$$t(x) = \prod_{j=1}^{d} (x - r_j) \left| \left(\sum_{i=0}^{m} a_i v_i(x) \right) \left(\sum_{i=0}^{m} a_i w_i(x) \right) - \left(\sum_{i=0}^{m} a_i y_i(x) \right) = p(x)$$

Lemma: Let
$$f \in R[X]$$
 be a non-zero poly.

$$\Pr[f(s) = 0] \le \frac{\deg(f)}{|A|}$$



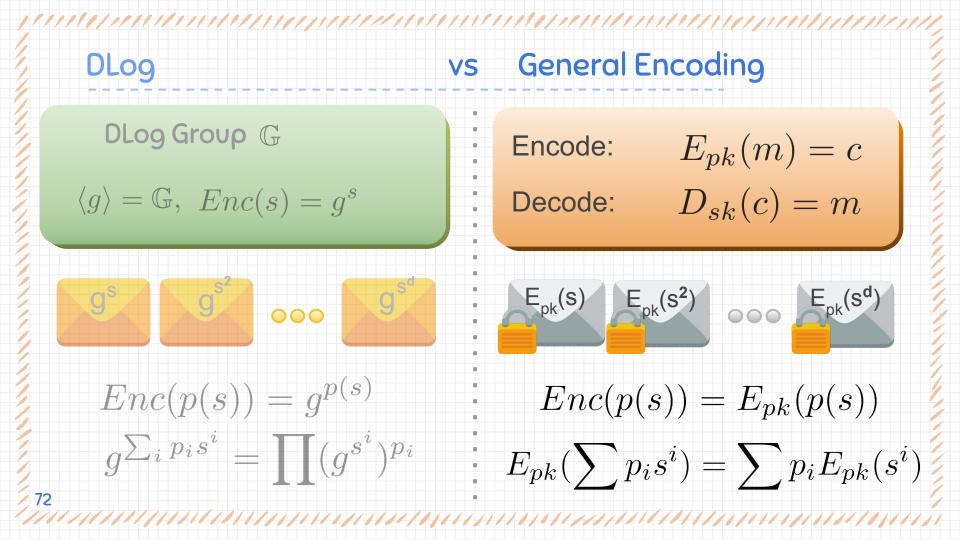


Encodings over Fields

DLog Group G

$$\langle g \rangle = \mathbb{G}, \ Enc(s) = g^s$$

$$Enc(p(s)) = g^{p(s)}$$
$$g^{\sum_{i} p_{i} s^{i}} = \prod (g^{s^{i}})^{p_{i}}$$



Ovadratic Root Detection – Pairings

$$\begin{aligned}
\langle g \rangle &= \mathbb{G}, \langle \tilde{g} \rangle = \tilde{\mathbb{G}} \\
Enc(s) &= g^s \quad e : \mathbb{G} \times \mathbb{G} \to \tilde{\mathbb{G}} \\
e(g^a, g^b) &= \tilde{g}^{ab}
\end{aligned}$$
Quadratic root detection **public**

$$t(s)h(s) \stackrel{?}{=} p(s) \\
e(g^{t(s)}, g^{h(s)}) \stackrel{?}{=} e(g^{p(s)}, g)
\end{aligned}$$

Publicly VerifiablevsDesignated Verifiable
$$\langle g \rangle = \mathbb{G}, \langle \tilde{g} \rangle = \tilde{\mathbb{G}}$$
 $Enc(s) = g^s$ $e: \mathbb{G} \times \mathbb{G} \to \tilde{\mathbb{G}}$ $Enc(s) = g^s$ $e: \mathbb{G} \times \mathbb{G} \to \tilde{\mathbb{G}}$ $Encode:$ $E_{pk}(m) = c$ $e(g^a, g^b) = \tilde{g}^{ab}$ $Encode:$ $D_{sk}(c) = m$ Quadratic root detection public $Uudratic root detection needs$ $Uudratic root detection needs$ $t(s)h(s) \stackrel{?}{=} p(s)$ $u(s)h(s) \stackrel{?}{=} p(s)$ $h(s)$ $e(g^{t(s)}, g^{h(s)}) \stackrel{?}{=} e(g^{p(s)}, g)$ $p(s)$ $h(s)$

Encoding Instantiation for LWE Rings
Rings of the form
$$\mathscr{R}_q = \mathbb{Z}_q[X]/(h(X))$$
. TFHE $\mathbb{R}_q \approx \mathbb{Z}_q^n \quad \mathbb{Z}_q \approx q^{-1}\mathbb{Z}/\mathbb{Z}$
 $\widetilde{vov} = \{0, ..., p_1 - 1\} \subset \mathscr{R}_q; \quad q = \prod p_i \text{ s.t. } p_1 < p_2 < ...$
Advantages & Future directions:
 \mathscr{L} Supports "somewhat homomorphic" variants of **BGV** [BGV12] and **FV** [FV12]
 \mathscr{L} Allows for significantly better choices for RLWE parameters

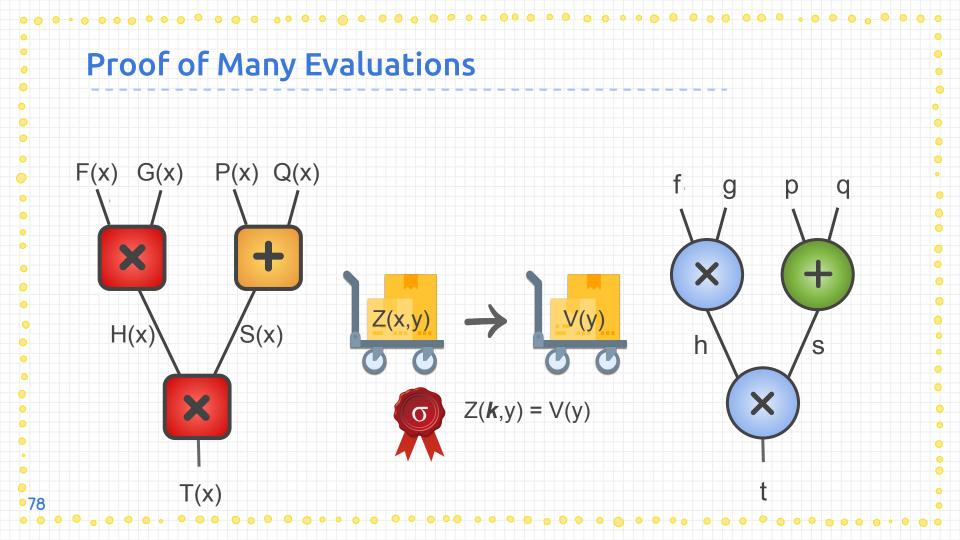
- **X** First SNARK to support rings with $q \neq$ prime \rightarrow more expressive FHE
- ★ We enable new FHE operations → new circuits for plaintext packing, modulo switching

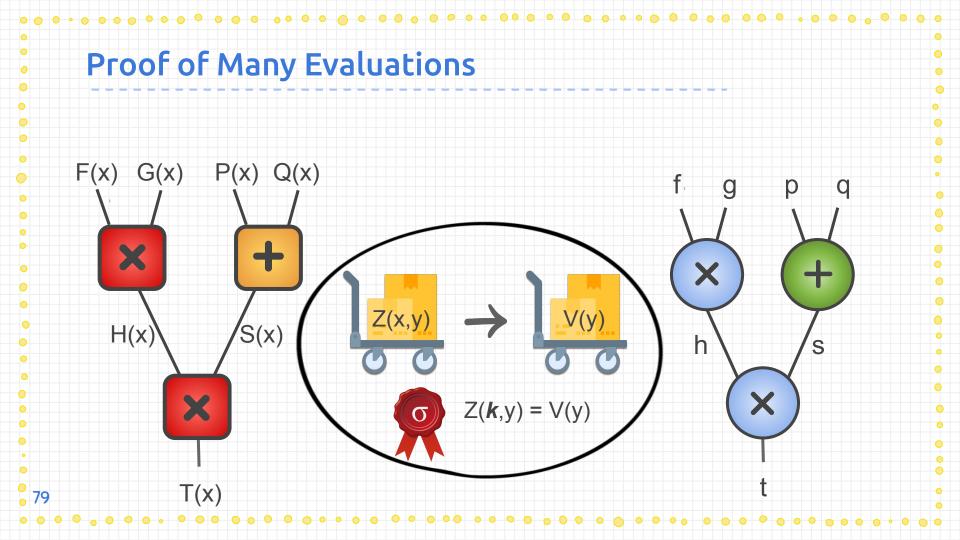
× : (We are only designated-verifier, we don't support Bootstrapping operations

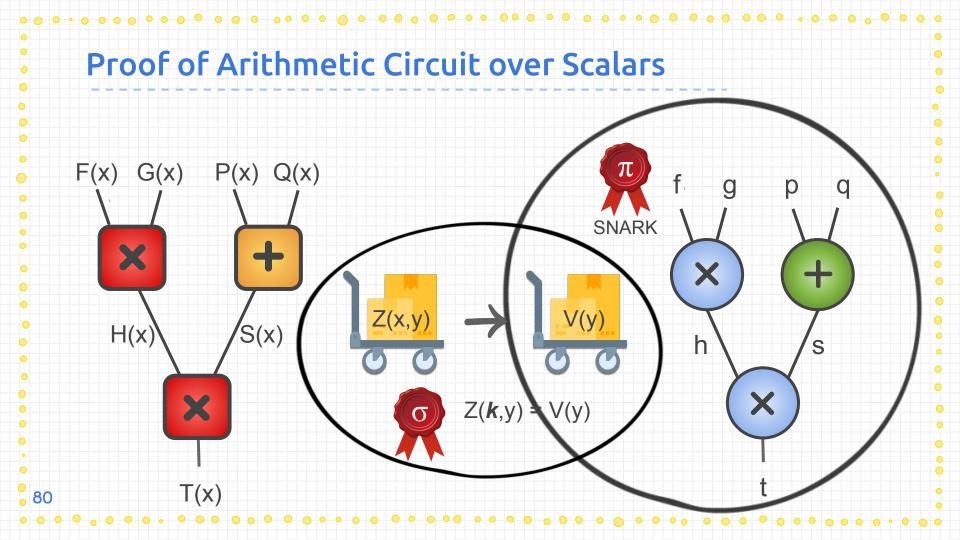
Rings of the form $\Re_q = \mathbb{Z}_q[X]/(h(X))$. $q = \prod p_i \text{ s.t. } p_1 < p_2 < \dots$ TFHE $\mathbb{R}_q \approx \mathbb{Z}_q^n$ $\mathbb{Z}_q \approx q^{-1}\mathbb{Z}/\mathbb{Z}$ Performance Evaluation: \star # levels L for BGV [BGV12] and FV [FV12]	Encoding Instantiation for LWE Rin	
$q = \prod p_i \text{ s.t. } p_1 < p_2 < \dots$ $FHE \mathbb{R}_q \approx \mathbb{Z}_q^n \mathbb{Z}_q \approx q^{-1}\mathbb{Z}/\mathbb{Z}$ $BGV 2 2^{12} 47 109 \\ FV 2 2^{13} 48 218 \\ BGV 4 2^{14} 51 438 \\ FV 4 2^{14} 51 438 \\ FV 6 2^{14} 51 438 \\ FV 6 2^{14} 51 438 \\ FV 6 2^{14} 51 438 \\ BGV 8 2^{15} 51 881 \\ FV 8 2^{14} 50 438 \\ BGV 8 2^{15} 51 881 \\ FV 8 2^{14} 50 438 \\ BGV 10 2^{15} 56 881 \\ FV 10 2^{15} 56 81 \\ FV 10 2^{15} 56 81 \\ FV 10 2^{15} 56 81 \\ FV 10 8^{16} 10 8^{16} 10 8^{16} 10 10 10 10 10 10 10 1$	Rings of the form $\mathscr{R}_q = \mathbb{Z}_q[X]/(h(X)).$	
FV 4 2^{14} 51 438 BGV 6 2^{14} 51 438 BGV 6 2^{14} 51 438 BGV 6 2^{14} 51 438 BGV 8 2^{15} 51 881 FV 8 2^{14} 50 438 BGV 8 2^{15} 51 881 FV 8 2^{14} 50 438 BGV 10 2^{15} 56 881 FV 10 2^{15} 56 881		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
FV 8 2^{14} 50 438 Performance Evaluation: BGV 10 2^{15} 56 881 BGV 10 2^{15} 56 881 FV 10 2^{15} 56 881		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
→ × TFHE performance for such plaintexts? FV 12 2 ¹⁵ 57 881	 Performance Evaluation: # levels L for BGV [BGV12] and FV [FV12] 	$\frac{\text{FV}}{\text{BGV}} = 8 2^{14} 50 438$

[PKC:FNP20] SNARK approach

Verifiable CaP zk-SNARK **ZK Proof** for evaluation **Compactly Commit** Computation for arithmetic circuit in random point **k** to Polynomials with over scalars **Privacy** + X + VC $C_{\mathbb{R}_q}$ $C_{\mathbb{Z}_q}$ X







FHE Arithmetics: tailored SNARKs

[FVP20] Boosting Verifiable Computation on Encrypted Data

Dario Fiore, Anca Nitulescu, David Pointcheval

- ★ Only supports rings of polynomials $\mathbb{R}_q = \mathbb{Z}_q[x]/R(x)$ for q prime \rightarrow inefficient FHE
- X Does not support operations for bootstrapping, rescaling etc. in FHE
- Modular Commit&Proof Composition
- X Publicly Verifiable, anyone can verify without key
- X Zero-Knowledge for inputs and computation

More specific FHE computations: MyOPE

[INPP21] Malicious securitY for Oblivious Polynomial Evaluation

Malika Izabachène, Anca Nitulescu, Paola de Perthuis, David Pointcheval

- SNARK for Inner-Product over ciphertexts: adds security against malicious parties X
- Reduce communication in 2PC with FHE X
- Applications to PSI X

Receiver: point a

Sends C(aⁱ) for some i

Receives C(p) and π

Sender: $P(X) = p_i x^i$

Computes Eval p=P(a): $C(p) = \langle C(a^{i}), p_{i} \rangle$

Proves eval π

Conclusions



Conclusions

Quadratic Programs and SNARKs over fields

- X Lots of implementations, but they fall short in one aspect
- **×** Emulating ring arithmetic on SNARKs is expensive and unfriendly to applications
- X Today's cost: Compilation to circuits over fields, costly preprocessing

Rinocchio: SNARKs for Ring Arithmetics

- X Circuit-SAT for arithmetic circuits over commutative rings: Quadratic Ring Programs (QRP)
- **×** Better fits FHE schemes arithmetics $\mathbb{R}_q = \mathbb{Z}_q[x]/R(x)$ even for q not prime
- X Supports sub-circuits for special operations in FHE: modulo switching
- ✗ Designated Verifier only
- X Can be turned Zero-Knowledge using Context Hiding techniques

Conclusions

Quadratic Programs and SNARKs over fields

- X Lots of implementations, but they fall short in one aspect
- **×** Emulating ring arithmetic on SNARKs is expensive and unfriendly to applications
- X Today's cost: Compilation to circuits over fields, costly prepocessing

Rinocchio: SNARKs for Ring Arithmetics

- X Circuit-SAT for arithmetic circuits over commutative rings: Quadratic Ring Programs (QRP)
- **X** Better fits FHE schemes arithmetics $\mathbb{R}_q = \mathbb{Z}_q[x]/R(x)$ even for q not prime
- X Supports sub-circuits for special operations in FHE: modulo switching
- X Designated Verifier only
- X Can be turned Zero-Knowledge using Context Hiding techniques

Open Questions

- X Other Encodings over rings \rightarrow publicly verifiable
- X More efficient instantiations: Security assumptions over rings: L-O extractable vs PKE

Credits

Special thanks to all those who made and released these resources for free:

- **X** Presentation template by <u>SlidesCarnival</u>
- **X** Illustrations by <u>Disneyclips</u>, <u>Iconfinder</u> and <u>Flaticon</u>