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Résumé

Cette thèse est consacrée à une exploration des schémas de preuves succinctes de connaissance,
les SNARKs. S’inscrivant dans un contexte marqué par le développement du Cloud et des
technologies Blockchain, les SNARKs sont des primitives cryptographiques permettant la
vérification de l’intégrité des calculs. Dans un modèle de type client-serveur, où un client
à faible puissance de calcul délègue une tâche à un serveur à forte puissance de calcul, les
SNARKs permettent au client de vérifier efficacement si le serveur a bien exécuté la tâche
demandée.

Les principaux résultats acquis au cours de cette thèse suivent trois directions: la construc-
tion des preuves SNARKs résistant aux attaques cryptographiques post-quantiques, l’analyse
de la notion d’extractabilité des protocoles SNARKs avec des applications; et la conception
d’un schéma qui garantit non seulement l’intégrité des calculs, mais aussi la confidentialité
des données en entrée du calcul.

D’abord, nous remarquons qu’actuellement, la plupart des SNARKs sont basées sur des
hypothèses qui sont vulnérables face à une avancée technologique, comme la construction
d’un ordinateur quantique. Nous proposons la construction des SNARKs avec des meilleures
garanties de sécurité. Notre schéma est plus général et peut être implémenté avec des
chiffrements à base de réseaux qui sont conjecturés sécurisés même en présence d’ordinateurs
quantiques.

Nous nous intéressons aussi à des aspects plus théoriques des protocoles SNARKs. Grâce
à une analyse des protocoles plus complexes utilisant les preuves SNARKs, on pose les bases
d’une étude de la propriété d’extractabilité et la composabilité des SNARKs avec d’autres
primitives cryptographiques.

Nous considérons le cas d’usage des signatures numériques homomorphes, et nous clarifions
les limites et les propriétés des SNARKs dans ce contexte. Nous proposons une nouvelle
définition, celle d’O-SNARK, qui prend en compte l’extractabilité dans le cas étendu où
le serveur a accès à un oracle (qui peut par exemple générer des signatures valides). Mal-
heureusement, nous montrons un résultat d’impossibilité pour certains schémas de signature.
En revanche, nous offrons quelques solutions adaptées aux particularités du problème de
conception des O-SNARKs.

Additionnellement, nous considérons le problème de confidentialité des données dans les
calculs délégués. Nous nous intéressons à élaborer un protocole SNARK qui peut être utilisé
pour prouver des calculs effectués sur des données chiffrées.

Cette nouvelle notion doit permettre d’obtenir des bénéfices similaires en terme d’efficacité
que les preuves SNARKs classiques tout en restant compatible avec les schémas laborieux de
chiffrement homomorphe.

Ensemble, ces résultats posent les bases d’une étude détaillée des preuves SNARKs et
participent à la construction de nouveaux protocoles plus sécurisés et plus riches en fonction-
nalités.
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Abstract

The contributions detailed in this thesis focus on the design and the analysis of Succinct
non-interactive arguments of knowledge, known as SNARKs. SNARKs enable a party with
large computational resources to prove to a weaker party that a particular statement is
true in an efficient way without further interaction and under a minimal communication
requirement. SNARKs play a significant role both in the theory of proof systems and in
practice as essential building blocks for many cryptographic protocols.

We will present along this manuscript several results that deal with three different aspects
of SNARK protocols.
First, we remark the lack of SNARK constructions that take into account the advent of

quantum cryptoanalytic efforts. To address this problem, we propose a new framework that
optimizes some previous works and further allows the instantiation of a quantum-resilient
SNARK scheme from lattice assumptions.
We are also interested in the theoretical aspects of SNARK schemes. We study the

strong notion of soundness that made SNARKs very popular for a set of applications as
delegating computation, homomorphic authentification protocols, electronic cryptocurrencies
or anonymous credentials.

The knowledge soundness property of a SNARK can be formally stated in terms of some
knowledge extractability: whenever the prover returns an accepting proof, there exists an
extractor that is able to output a valid witness for the statement. We remark some limitations
of this definition in a scenario where adversarial provers are given access to an oracle. To
address this, we define a new notion, O-SNARKs, and we study the feasibility of such
knowledge extraction for this new notion. We first give a negative result: a counterexample
consisting of a ”malign” signing oracle for which SNARKs are insecure. On the positive side,
we present some candidates for O-SNARKs under specific restrictions.

We further recognize the need for using O-SNARKs in some well-known homomorphic
authentication schemes with underlying succinct proofs: homomorphic signatures, functional
signatures and aggregate signatures.
Last but not least, we address the problem of data privacy in delegated computation,

that takes into consideration along with the integrity of the result, the confidentiality of the
computation’s inputs. To achieve this, we study the possibility of constructing SNARKs that
enables verification of computations over encrypted data. The departing point is a generic
solution that combines fully homomorphic encryption schemes with SNARKs. We improve
the efficiency of this approach, by constructing a tailored SNARK designed to exploit the
structure of the ciphertexts for a specific encryption scheme. Using this dedicated SNARK
as a building block, we obtain a verifiable computation scheme over encrypted data, at a
prover’s costs that has a minimal dependence on the computation.

Together, these results strengthen the foundations of SNARK systems, give a deep under-
standing of their underlying security notions, and pave the way towards more secure and
more practical SNARK schemes.
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Chapter 1
Introduction

C ontext. The modern digital world that we live in today is the result of many
innovations and technology advances. Some of the most remarkable features we benefit
from nowadays are the automated systems for storing, processing, and distributing

information. The designated term used for these systems is Information Technology (IT)
and refers mainly to computers and communication networks. Since the widespread use of
IT facilities, it is evident that the standards of life and education have improved, as well
as many other things that include our needs and wants. Connectivity increases access to
information, ease of sharing and fast processing of data, but it also increases the possibility
of undesired behaviour. Unfortunately, the negative impact of these new technologies are
often overlooked.
A fascinating article in philosophy [vdHBPW18] addresses the relationship between the

new technologies and the security concerns they raise. The authors emphasise that recent
advances in information technology have reduced the amount of control over personal data
and open up the possibility of a range of negative consequences as a result of unreliable
infrastructures.

How can we avoid the new technologies to be a threat to our security?

1.1 The Role of Cryptography
Human beings have always valued their privacy and security, the protection of their personal
sphere of life. Even if unconsciously people expose themselves to many risks in their online
activities, they will always claim their right to privacy.

Alan Westin believes that new technologies alter the balance between privacy and disclosure,
he defines privacy as ”the claim of individuals, groups, or institutions to determine for
themselves when, how, and to what extent information about them is communicated to
others” [Wes67].

We certainly do not want our personal information to be accessible to just anyone at any
time, our outsourced data to be altered without us noticing, or our identities to be stolen
over the Internet. Meanwhile, it would be preferable to be able to enjoy the benefits of using
the latest technologies.

Cryptography addresses these and more concerns by designing systems that help us keep
our information secret to unintended receivers, prove our identity to digital interlocutors,

— 1 —
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and allowing secure communication in the presence of untrusted parties.
By using Cryptography, we can dream of regaining the comfort and privacy we seem to

lose as an information intensive society.

1.2 History of Cryptography

Cryptography has a long and fascinating history that begins together with the invention
of writing. In its early years, the focus was mainly on protecting the confidentiality of
information and ensuring secrecy in communications, such as those of spies, military leaders,
lovers. In recent decades, the field has expanded beyond confidentiality concerns to include
techniques for message integrity checking, sender/receiver identity authentication, digital
signatures, interactive and non-interactive proofs of knowledge and secure computation,
among others.

Early Ages. The earliest forms of secret writing required little more than local pen and paper
analogues, as most people could not read. Simple versions of ciphers have never offered much
confidentiality from enterprising opponents. An early substitution encryption method was
the Caesar cipher, in which each letter in the plaintext was replaced by another letter some
fixed number of positions further down the alphabet. It was named after Julius Caesar who
is reported to have used it, with a shift of 3, to communicate with his generals during his
military campaigns.
These methods of secure communication and authentication were only guaranteed by

ad-hoc constructions, and most of the time by keeping secret the design of the systems.
Later, the industrial revolution and the apparitions of machines changed both the possible
functionalities and the theoretical treatment of cryptosystems.

Military Cryptography. In 1883 Auguste Kerckhoffs wrote two journal articles on La Cryp-
tographie Militaire, [Ker83] in which he stated six design principles for military ciphers.
Translated from French, they are:

1. The system must be practical, if not mathematically indecipherable;
2. It should not require secrecy, and it should not be a problem if it falls into enemy

hands;
3. It must be possible to communicate and remember the key without using written notes,

and correspondents must be able to change or modify it at will;
4. It must be applicable to telegraph communications;
5. It must be portable, and should not require several persons to handle or operate;
6. Lastly, given the circumstances in which it is to be used, the system must be easy to

use and should not be stressful to use or require its users to know and comply with a
long list of rules.

Some are no longer relevant given the ability of computers to perform complex encryption,
but his second axiom, now known as Kerckhoffs’s principle, is still critically important.
The development of digital computers and electronics after WWII made possible much

more complex ciphers. Furthermore, computers allowed for the encryption of any kind of
data representable in any binary format, unlike classical ciphers which only encrypted written
language texts; this was new and significant.

The American mathematician Claude Shannon reformulated Kerckhoffs’s principle in 1949
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[Sha49] as ”the enemy knows the system”, i.e., ”one ought to design systems under the
assumption that the enemy will immediately gain full familiarity with them”. In that form, it
is called Shannon’s maxim. In contrast to security through obscurity, it is widely embraced
by cryptographers.

Modern Cryptography. Extensive open academic research into cryptography is relatively
recent; it began only in the mid-1970s. Modern cryptology is a research field that lives in the
intersection of mathematics, computer science and more recently, quantum physics according
to [HPS08]. The security of most nowadays cryptosystems is related to hard mathematical
problems and to some assumptions we make on the limitations of the machines designed to
break them. For those cryptographic techniques, there are no absolute proofs of security, as
one can always consider the brute-force attack, a method consisting in trying all possible
solutions to a problem until the correct one is found. At best, there are proofs that some
techniques are secure if some problem is difficult to solve, given a specific infrastructure.
The modern cryptosystems were developed and formalized beginning with the work of

Feistel [Fei73] at IBM in the early 1970s and culminating in 1977 with the adoption as a U.S.
Federal Information Processing Standard for encrypting unclassified information, the Data
Encryption Standard (DES). Nowadays, DES remains the standard cryptosystem for securing
electronic commerce for many financial institutions around the world.
This kind of encryption technique is called symmetric-key cryptosystems or secret-key

cryptosystems. They use the same key to encrypt a message and later on to decrypt the
ciphertext. A significant disadvantage of symmetric ciphers is the key management necessary
to use them securely. Each distinct pair of communicating parties must, ideally, share a
different key. The difficulty of securely establishing a secret key between two communicating
parties, when a secure channel does not already exist between them is a considerable practical
obstacle for users.
The most striking development in the history of cryptography that changed the way

encryption was perceived came in 1976 when Diffie and Hellman published ”New Directions
in Cryptography” [DH76]. This work introduced the revolutionary concept of Public-key
cryptography and also provided a new and ingenious method for key exchange, which solves
the key management problem mentioned before. The security of this key exchange protocol
is based on the difficulty of solving the discrete logarithm problem (with the existent means
of computation).

Although the authors had no practical realization of a public-key encryption scheme at the
time, the idea was clear, and it generated extensive interest and activity in the cryptographic
community.

Public-key Cryptography. The historian David Kahn, author of the famous book ”The
Codebreakers” [Kah67], described public-key cryptography as ”the most revolutionary new
concept in the field since polyalphabetic substitution emerged in the Renaissance”.
In public-key cryptography, each party has a pair of keys: a public one and a private (or

secret) one. The public one can be published, e.g., on the Internet, and allows anyone to
encrypt a message, that can only be decrypted with the corresponding private key. In order
to explain this concept, a simple analogy is often used: the public key corresponds to an
open lock, whereas the private key corresponds to the lock’s key. Publishing the public key is
equivalent to making the open lock available; then anyone can write a message, put it in a
box, and close the box with the provided lock. The sealed box is then sent to the recipient,
who can open it with the appropriate key.
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In 1978 Rivest, Shamir, and Adleman discovered the first practical public-key encryption
and signature scheme, now referred to as RSA [RSA78].
The RSA scheme is based on another hard mathematical problem, the intractability of

factoring large integers. This application of a hard mathematical problem to cryptography
revitalized efforts to find more efficient methods to factor. The 1980s saw significant advances
in this area but none which rendered the RSA system insecure. Another class of powerful
and practical public-key schemes was found by ElGamal in 1984 [ElG84]. These are also
based on some problem assumed intractable, the discrete logarithm problem.

One of the most significant contributions provided by public-key cryptography is the digital
signature; this is the digital analogous of a handwritten signature or stamped seal, and it is
intended to solve the problem of tampering and impersonation in digital communications.
Digital signatures can provide the assurances of origin, identity and status of an electronic
document, transaction or message.

In 1991, the first international standard for digital signatures (ISO/IEC 9796) was adopted.
It is based on the RSA public-key scheme. In 1994 the U.S. Government adopted the Digital
Signature Standard, a mechanism based on the ElGamal public-key scheme. The search for
new public-key schemes, improvements to existing cryptographic mechanisms, and proofs of
security continue at a rapid pace.
Nowadays, security products are being developed to address the security needs of an

information intensive society. Cryptography has become a widely used tool in communications,
computer networks, and in computer security generally.

Future of Cryptography. As well as being aware of the fascinating history of the field, the
cryptographic community must also sensibly consider hypothetical future developments
while working on their system designs. For instance, continuous improvements in computer
processing power have increased the efficacy of brute-force attacks; thus the required key
sizes are similarly advancing. Some cryptographic system designers are already considering
potential effects of quantum computing. The announced imminence of implementations of
these quantum machines should justify the need for this preemptive caution.

1.2.1 The Main Characters

To describe protocols functionalities, the roles of different parties and the type of interactions
between them, the use of some fictional characters and scenarios is necessary. Alice and Bob
are the world’s most famous cryptographic couple. Since their invention in 1978 by Ron
Rivest, Adi Shamir, and Leonard Adleman in their paper ”A method for obtaining digital
signatures and public-key cryptosystems” [RSA78], they have become familiar archetypes in
the cryptography field.
Through this thesis, various cryptographic scenarios will be imagined between Alice and

Bob. The two either want to secretly exchange messages, either authenticate on some
platform, sign documents and exchange them, etc. Moreover, a thing to remember about
Alice is that she is an Internet addict and she uses various Cloud services, storage for her
personal data, outsourced computation, remote software, etc. Occasionally a third party will
appear in the story, his name will be Charlie or Oscar. Other remarkable characters in this
crypto journey are the villains; Eve is the passive and submissive eavesdropper, Mallory the
active malicious attacker. Often, an adversary will interfere and make the lives of Alice and
Bob complicated.
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Alice. The main character, a tech addict, always connected.
Bob. Alice’s secret lover, he wants to privately exchange messages or

cryptographic keys with Alice.
Charlie. A generic third participant.
Eve. An eavesdropper, who is usually a passive attacker. While she can listen in

on messages between Alice and Bob, she cannot modify them.
Mallory. A malicious attacker. Unlike passive Eve, Mallory is an active attacker,

who can modify messages, substitute messages, or replay old messages. The
difficulty of securing a system against Mallory is much higher than against
Eve.

Oscar. An opponent, similar to Mallory, but not necessarily malicious. He is not
trustworthy. Nevertheless, he is delegated data to; he performs tasks for
other parties, such as large computations.

Arthur and Merlin. Arthur asks questions and Merlin provides answers. Merlin
has unbounded computational ability (like the wizard Merlin). In
interactive proof systems, Merlin claims the truth of a statement, and
Arthur (like King Arthur), questions him to verify the claim.

SNARK. ”For the Snark’s a peculiar creature, that won’t
Be caught in a commonplace way.
Do all that you know, and try all that you don’t:
Not a chance must be wasted to-day!”

Lewis Carroll

List of Characters

1.2.2 The Main Security Goals

Cryptographic primitives and protocols are designed to maintain a desired set of security
goals even under attempts at making them deviate from the expected functionality. The
most common security requirements bursting from applications are:

Privacy/Confidentiality. This is the main idea people associate to the term of cryptography.
Keeping information secret from all, but those who are authorized to see it. Confi-
dentiality is the protection of transmitted data from passive attacks, by preventing
disclosure of information to unauthorized parties. In a nutshell, a cryptographic scheme
or protocol between Alice and Bob achieves confidentiality if Alice is able to send
messages to Bob in such a way that only Bob can read the messages and Eve is not able
to see the actual content of their communication. Encryption is the main cryptographic
primitive to provide confidentiality.

Authentication. The process of proving one’s identity. This property can refer to both
data and user authentication. In the case of user authentication, this functionality
ensures that Alice is whom she claims to be. For message authentication, the goal is to
provide some additional information that guarantees to Bob that Alice originated the
message he received. In particular, no undesired third party, Mallory, should be able to
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impersonate Alice. Digital Signatures (DS) and Message Authentication Codes (MAC)
are the two cryptographic primitives that guarantee data authentication.

Integrity. Ensuring the information has not been altered by unauthorized or unknown means.
Data integrity provides assurance that data has not been modified in an unauthorized
manner after it was created, transmitted or stored. This means that there has been no
insertion, deletion or substitution done with the data. In a communication between
Alice and Bob, one must have the ability to detect data manipulation by adversarial
parties. Cryptographic hash functions are a fundamental building block for integrity.

Non-repudiation. Non-repudiation prevents either Alice or Bob from denying a message.
Thus, when Bob sends a message to Alice, he cannot change his mind and Alice can
prove that the message was, in fact, sent by the alleged sender.

1.3 Outsourcing Computation

Cloud computing is a revolutionary movement in the area of IT industry that provides storage,
computing power, network and software as an abstraction and as a service on demand over the
Internet, which enables its clients to access these services remotely from anywhere, anytime
via any terminal equipment. Moreover, the clients are no longer restricted to their limited
CPU, storage, and bandwidth; they are empowered to use the cloud resources to execute
large computations.

Since the Cloud has modified the definition of data storage and computation from personal
computers to the huge data centers, security and integrity of data have become some of the
major concerns that should be taken into account by the developers of the Cloud. While
clients are willing to outsource many tasks and resources to Cloud providers for the sake of
several benefits, how can they be assured that the Cloud will operate correctly? The business
providing the computing services may have a strong financial incentive to return incorrect
answers, if such answers require less work and are unlikely to be detected by the clients. On
the other side, some services are provided for ”free”, in exchange for the possibility to harvest
users information in order to create tailored advertising campaigns, extract statistics or trade
data to generate profits. The clients may not agree to lose control of their personal data or
to divulge sensitive information to unknown parties.

Two main challenges for cryptographers arise here: find solutions that are able to guarantee
the integrity of the results for the outsourced computations and/or the confidentiality of
client’s data.

More importantly, while privacy and integrity were long studied questions in cryptography,
the key difference is that cryptographic solutions for the cloud setting must preserve the
benefits of cloud computing. This means, for example, that these solutions must make sure
that the users do less work than what they outsourced to the cloud. It is also desirable to
keep the work performed by the workers as close as possible to the amount of work needed
to complete the original task.
These questions motivated the study of secure delegation of computation and further

research on proof systems, especially on a specific class of protocols, called SNARKs. SNARKs
are proof systems that enable users to securely outsource computations to untrusted cloud
providers in a verifiable manner. These protocols elegantly solve the problem of limited
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computational power and public trust, providing to the worker a way of proving correctness
of computations to the client in a way so the client can efficiently verify the result.

The other concern that we highlighted is the privacy of data while outsourcing storage and
computation. The user’s data can carry sensitive information such as personal health records,
financial records, trends of stock, scientific research records, just to list a few. Therefore, we
would like to use cryptography, for example, to encrypt the data before outsourcing it to the
Cloud server to maintain confidentiality. However, the traditional encryption schemes would
not allow the untrusted machine to perform the desired computation on the encrypted values.

More advanced techniques, called fully-homomorphic encryption allow a worker to compute
arbitrary functions over encrypted data, but they do not suffice to secure the outsourced
computation. Indeed, fully-homomorphic encryption provides no guarantee that the worker
performed the correct computation and they are very inefficient to use together with a general
verification tool such as the above mentionned SNARK.

We will examine all the current known approaches, their limitations and try to find better
solutions along this thesis.

1.4 Proof Systems in Cryptography
Goldreich argued in [Gol95] that the notion of proof in cryptography is somewhat different
from the concept of a proof in a strict mathematical sense and more similar to a dynamical way
of understanding the proof by interaction and interpretation used by humans. Mathematical
proofs are more strict; they have a static and formal nature as they are either self-evident or
are obtained from earlier rules and axioms.
However, humans tend to use a more intuitive sense of proofs where the soundness of a

statement is established through the process. In a similar sense, in a cryptographic proving
protocol, instead of presenting a static proof for the claim, the prover tries to convince the
verifier by exchanging messages with it, a kind of questions & answers process.

A proof system in the cryptographical sense, is an interactive protocol by which one party
(called the prover) wishes to convince another party (called the verifier) that a given statement
is true. In zero-knowledge proof, we require further that the proof does not reveal anything
more than the truth of the statement. At a first glimpse, it sounds counter-intuitive, being
able to prove something is correct, without revealing any extra detail.

Let’s see that it is perfectly possible by a very simple day-to-day example:
Example 1.4.1 (Playing card). Imagine that we pick a card A♦ from a complete deck of
playing cards and we want to prove to an adversary that we have a red card in our hand.
We can prove that by revealing more information than expressed in the statement, just by
showing our card, A♦. Alternatively, we can choose to prove nothing more than the colour of
our card by revealing to the adversary all the black cards ♣,♠ left in the deck. Our opponent
should now be convinced we have a red card in our hands, but it did not learn anything else
about the value of our card.

Researches in zero-knowledge proofs have been prompted by authentication systems where
one party wants to prove its identity to a second party via some secret information such as
a password but doesn’t want to disclose anything about its secret password to the second
party. This is called a zero-knowledge proof of knowledge.

A proof of knowledge is an interactive protocol in which the prover succeeds in ”convincing”
a verifier that it knows something (a password, the steps of a computation, etc.) associated
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with the statement. For example, if the statement is ”I am Alice.”, the prover should show
knowledge of the secret password of Alice; if the statement is ”I computed the function f(x)
and obtained y.”, then the prover must convince its verifier that it knows all the steps of this
computation that lead to the result y.

What it means for a machine to have knowledge is defined formally in terms of an extractor.
As the program of the prover does not necessarily spit out the knowledge itself (as is the case
for zero-knowledge proofs), we will invoke another machine, called the knowledge extractor
that, by having access to the prover, can extract this witness (the knowledge).

The next step is the introduction of non-interactive proof systems, which reduce the number
of rounds of interaction between the prover and the verifier to only one. Some non-interactive
protocols consist in only one message from the prover to verifier; others need the verifier to
generate some setting information, called CRS, that can be made publicly available ahead of
time and independently of the statement to be proved later. To enforce security, and avoid
cheating from the verifier, this CRS is often generated by a third trusted party.

1.5 SNARKs
In the class of non-interactive proofs, a particularly interesting concept for proving integrity
of results for large computations is that of SNARK, i.e., succinct non-interactive argument
of knowledge. By this term, we denote a proof system which is:

succinct: the size of the proof is very small compared to the size of the statement or the
witness, i.e., the size of the computation itself,

non-interactive: it does not require rounds of interaction between the prover and the verifier,
argument: we consider it secure only for provers that have bounded computational resources,

which means that provers with enough computational power can convince the verifier
of a wrong statement,

knowledge-sound : it is not possible for the prover to construct a proof without knowing a
certain so-called witness for the statement; formally, for any prover able to produce a
valid proof, there is an extractor capable of extracting a witness (”the knowledge”) for
the statement.

SNARK systems can be further equipped with a zero-knowledge property that enables the
proof to be done without revealing anything about the intermediate steps (the witness). We
will call these schemes zk-SNARKs.

A (zk-)SNARK protocol (as any other non-interactive proof system) is described by three
algorithms that work as follows:

• Gen is the setup algorithm, generating a necessary string crs used later in the proving
process and some verification key vrs, sometimes assumed to be secret to the verifier
only. It is typically run by a trusted party.

• Prove is the proving algorithm that takes as input the crs, the statement u and a
corresponding witness w and outputs the proof π.

• Verify is the algorithm that takes as input the verification key vrs, the statement u and
the proof π, and returns 1 ”accept” the proof or 0, ”reject”.

The SNARK schemes can be used for delegating computation in the following way: a
server can run a computation for a client and non-interactively prove the accuracy of the



1.6 Our Contributions 9

result. The client can verify the result’s correctness in nearly-linear time in the size of the
input (instead of running the entire computation itself).

The goal of this thesis is to study these protocols, try to construct new efficient and secure
schemes and broaden their use to more applications.

1.6 Our Contributions
In this manuscript, we actively study the SNARK protocols, by proposing new constructions,
by revisiting the security analysis of existing schemes, by finding new applications, or by
combining SNARKs with other primitives in order to obtain further functionalities.

We expand below on the main contributions that are developed in this thesis and outline
some of their implications. The results discussed along this manuscript have been published
(or are in review process) in [GMNO18] (co-authored with Rosario Gennaro, Michele Minelli,
Michele Orrù), [FN16] (co-authored with Dario Fiore) and [FNP18] (co-authored with Dario
Fiore and David Pointcheval).
All along the five chapters, we place ourselves in the context of verifiable computation

(VC): we study the setting where a party with limited storage and computation resources
outsources its data and asks a powerful server located in the Cloud to run computation jobs
on it maintaining verifiable results.

1.6.1 A Survey on SNARKs

The first part of this thesis – Chapter 3 – introduces the object of our study, the SNARKs.
This part provides a broad overview, starting from explaining the motivations for proof
systems in cryptography and giving some early context, then recalling the SNARK history
from the first plausible construction, through successive improvements, to today most efficient
instantiations. We present in this chapter some of the most outstanding constructions in
the recent years. Our focus is mainly in detailing the idea of the framework presented by
Gennaro et al. for SNARKs from Quadratic Span Programs (QSP) – QSP is a polynomial
problem used to represent computations. This part is of independent interest and can be seen
as a background necessary to understand the further contributions presented in this thesis.

1.6.2 Post-Quantum SNARKs

In Chapter 4, we propose a new framework for building SNARKs that exploits the advantages
of previous constructions. It uses a new representation of a boolean circuit satisfiability
problem, SSP of Danezis et al. that offers some improvements over the QSP of Gennaro
et al. Also, this new framework minimizes the hardness assumptions necessary for proving
the security of our SNARK scheme. In a nutshell, in order to construct succinct proofs of
knowledge using our framework, one must use the following building blocks:

• an SSP, a way of translating the computation into a polynomial division problem,
meaning that we reduce the proof of the computation to the proof of a solution to this
SSP problem,

• an Enc encoding scheme that hides scalar values, but allows linear operations on the
encodings for the prover to evaluate polynomials, and some quadratic check property
for the verifier to validate the proofs,



10 Chapter 1 Introduction

• a CRS generator that uses this encoding scheme to hide a secret random point s and
all the necessary powers needed later by the prover to compute polynomial evaluations
on s.

The idea of the SNARK is simple; the prover has to convince the verifier that it knows
some polynomials, such that a division property between them holds (a solution to SSP
problem). Instead of sending the entire polynomials as a proof, it evaluates them in a secret
point s (hidden by the encoding) to obtain some scalars. The verifier, instead of checking
a polynomial division, has only to check a division between scalars, which makes the task
extremely fast.
Besides the improvements mentioned above, one of the most remarkable features of this

framework is the fact that it can accommodate for lattice-based encodings, meaning that we
can use it to obtain a quantum-resilient SNARK.

We show indeed how to build zero knowledge SNARKs from lattice assumptions, that are
claimed to withstand quantum attacks. Compared with previous works, our result achieves
zero-knowledge, relies on weaker assumptions, and is simpler and more efficient. Also, for a
reasonable set of parameters, we achieve post-quantum security. On the downside, the size
of our proofs is considerably larger than in previous works. Moreover, our construction is
designated-verifier, meaning that the verification procedure requires access to some secret
key, as opposed to publicly verifiable, where the verification procedure can be run by anyone
based solely on public information.

1.6.3 O-SNARKs

This result was motivated by the multiple applications of the SNARK protocols. SNARKs are
nowadays used not only for delegating computation but also in electronic cryptocurrencies,
authentication protocols, anonymous credentials, etc.
As mentioned while introducing SNARKs, one remarkable property that makes it so

appealing for many applications is the ”knowledge soundness”. Recall that assuming the
prover knows the witness, can be formally stated in terms of some knowledge extraction:
there exists an extractor, that whenever the prover returns an accepting proof, is able to
output a valid witness for the statement.
In this definition, we consider the extractor as a non-black-box algorithm that takes the

same input as the prover and any auxiliary information that the prover also had when
computing the proof. It can intuitively be seen as a machine that has access to the code of
the prover and can extract from it essentially all the knowledge.
In Chapter 5 we study the feasibility of extraction by looking at a scenario in which

adversarial provers are given black-box access, or what we call access to an oracle. For this
setting, we study if and under what assumptions such provers can admit an extractor.
We define a new notion, O-SNARKs, that is different from the well-studied SNARKs, by

allowing adversaries against the scheme to have Oracle access. We inspect if this notion is
worth being defined and we give some satisfactory positive results, candidates for O-SNARK,
in the random oracle model, in the limited setting where the prover makes non-adaptive
queries to the Oracle, or when the query space is bounded.

Unfortunately, on the negative side, we show an impossibility for extraction with oracles in
the standard model. We build a counterexample for a special signing oracle and then further
analyse different signing oracles to understand the limitation of those.
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This study of O-SNARKs is of high theoretical importance, as it establishes a framework
that eases the analysis and the use of SNARK extractors when adversarial provers are given
access to an oracle.

1.6.4 Applications of O-SNARK

In the following chapter – Chapter 6 – we are recognizing the need of using O-SNARKs by
explicitly applying them to larger protocols where this new definition is imperative. We
present some well-known homomorphic authentication schemes that can be instantiated with
O-SNARKs and that are impossible to prove secure using classical SNARKs (unless some
limitations are imposed on provers and signing oracles).
In the case of aggregate signatures, we further examine different ways to construct such

schemes, ones that require O-SNARKs and other weaker versions that can be instantiated
only with classical SNARKs. We develop non-standard proof techniques for our aggregator
scheme in order to bypass the impossibility results for SNARKs with Oracles.

1.6.5 SNARKs for Data Privacy

In this last part, concentrated in Chapter 7, we try to answer to another concern that arises
when we outsource computation, the privacy of the client’s data.

We try to find solutions for delegated computation, that take into consideration along with
the integrity problem, the confidentiality of the data.

To achieve this, we study the possibility of constructing cryptographic protocols that enable
verification of computations over encrypted data. The building blocks are an encryption
scheme that allows for homomorphic computations over the encrypted data and some proofs
of knowledge that allow verification of these computations. In this scenario, the client must
be able to efficiently verify the correctness of the result despite not knowing (anymore) the
inputs of the delegated computation.
This problem is addressed by verifiable computation (VC) with input privacy, a notion

that is close to both the active areas of homomorphic encryption and verifiable computation.
However, in spite of the efficiency advances in the respective areas, VC protocols that
guarantee the privacy of the inputs are still expensive. The only exception is a protocol by
Fiore, Gennaro and Pastro (CCS’14) that supports arithmetic circuits of degree at most 2.
In this chapter, we propose new efficient protocols for VC on encrypted data that improve
over the state of the art solution of Fiore et al. in multiple aspects. First, we can support
computations of degree higher than 2. Second, we achieve public delegability and public
verifiability whereas Fiore et al. need the same secret key to encode inputs and verify outputs.
Third, we achieve a new property that guarantees that verifiers can be convinced about the
correctness of the outputs without learning information on the inputs. The key tool to obtain
our new protocols is a new SNARK that can efficiently handle computations over a quotient
polynomial ring, such as the one used by Ring-LWE somewhat homomorphic encryption
schemes.

1.6.6 Other Contributions

In addition to the contributions outlined above and developed in this manuscript, we have
worked during our thesis on other problems related to Cloud Computing and secure delegation
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of data, in [ACNP16]. This result is not described in this thesis as it is not related to the
main topic, the SNARK protocols.
For better security, as we have seen, it is recommended that users encrypt their data

before outsourcing it to the Cloud. However, this leads to a key management issue: Users
have to remember cryptographic keys. Humans cannot remember large secret keys, but just
low-entropy passwords (and not too many).

Password-protected secret sharing (PPSS) schemes allow a user to publicly share its high-
entropy secret across different servers and to later recover it by interacting with some of
these servers using only his password without requiring any authenticated data [Jab01]. In
particular, this secret will remain safe as long as not too many servers get corrupted. However,
servers are not always reliable, and the communication can be altered. To address this issue,
a robust PPSS should additionally guarantee that a user can recover his secret as long as
enough servers provide correct answers, and these are received without alteration.

In [ACNP16], we propose new robust PPSS schemes which are significantly more efficient
than the existing ones. Our contributions are two-fold: First, we propose a generic technique
to build a Robust Gap Threshold Secret Sharing Scheme (RGTSSS) from some threshold
secret sharing schemes.

Then, we use this new approach to design two new robust PPSS schemes that are efficient,
from two OPRFs. Our schemes are proven in the random-oracle model, just because our
RGTSSS construction requires random non-malleable fingerprints, which are provided by an
ideal hash function.
Our main contribution in designing PPSS schemes is the efficient realization of the ro-

bustness, that consists of a single check at the very end of the protocol, during the secret
reconstruction. We point out that, in order to achieve robustness in a PPSS protocol, one does
not need to distinguish between correct and incorrect shares at each individual evaluation
with a server as required in prior works.

1.7 Organization of the manuscript

This thesis is organized into seven chapters as follows:
Chapter 1 is the present introduction.
Chapter 2 introduces the notation used in the manuscript, and gives some definitions and

some general notions.
Chapter 3 presents proof systems and notably SNARKs in detail, and constitutes a sort

of survey on the area; it is mostly presented as a high-level introduction to the subject and
contains many simplifications and examples to help the reader understand step-by-step the
frameworks of diverse SNARK constructions.

Chapter 4 is a new construction of SNARK from lattices that also introduces a new general
framework for such protocols that realizes a trade-off between the number of underlying
hardness assumptions and the proof size.

Chapter 5 is more theoretical, it represents an extensive analysis of the security notion of
knowledge soundness and the extraction for the SNARK. It is a very technical chapter, a
good understanding of the concept is needed.
Chapter 6 gives various applications of the previously defined notion. It is highly recom-

mended to read Chapter 5 before.
Chapter 7 considers the other side of the coin for outsourced computations, and try to
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answer to a more challenging problem, achieving privacy of the data together with guarantees
on the computation. It uses techniques and tools from all the previous chapters to construct
a new dedicated SNARKs for this particular need.
Chapter 8 draws some conclusions and outlines several questions that remain open, and

that can be the topic for extending the research presented in this manuscript.

To make the reading of this manuscript more enjoyable, all the chapters will have
a parallel storyline, a ludic way of motivating and describing the interest of the
crypto notions discussed.a
The main character of our story is Alice, a young girl discovering a new world,
Cryptoland, an allusion to Lewis Caroll famous story. A reader not interested in
the technical and scientifical content of this thesis can still follow the great ad-
ventures of Alice in this magic Cryptoland and identify itself with the character.
Most of the problems and struggles encountered by our fictional Alice character
can be also day-to-day life concerns for most of us and surprisingly, the answer to
them comes from Cryptography.b I hope that this childish, naive story will raise
awareness of the role and importance of our work in the real world and arouse
some curiosity to better understand the concepts and techniques used in the field
of cryptography.

aThis attempt of crypto outreach was inspired to me by the novel Sophie’s World [Gaa96] by
Norwegian writer Jostein Gaarder.

bWe warn the reader that Alice is not always a moral example to follow.

Alice in Cryptoland





Chapter 2
Preliminaries

N otations, Assumptions and first Primitives. In this chapter, we introduce the
notation and basic assumptions and primitives employed throughout this manuscript.
We start by recalling some standard mathematical and computational concepts, and

by briefly explaining provable security. We also remind some well-known number-theoretic
assumptions, and define most of the cryptographic primitives involved in this work, including
one-way functions, lattice-based encryption, digital signatures, commitment schemes. Most
of the notions introduced in this chapter are rather usual; thus it can be easily skimmed
through.
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2.1 Notation and Preliminaries

2.1.1 Mathematical Notions

Sets, Integers, Functions, Bit Strings. We denote the set of real numbers by R, the set of
integers by Z and the set of non-negative integers by N. If S is a set, then | S | denotes its
size. For two sets D and R, we denote by F(D,R) the set of all functions f : D → R with
domain D and range R.
For two integers a, b such that a < b, we write {a, . . . , b} or [a, b] to denote the set of

integers between a and b (a and b included). If a = 1, then we use [b] for {1, . . . , b}.
The set of all bit strings is denoted by {0, 1}∗, while the set of bit strings of length n ∈ N

is {0, 1}n. A bit string is often denoted by a lowercase letter, such as x or y. If x ∈ {0, 1}∗,
its length is |x| and the i-bit of x is xi (for i ∈ [|x|]).

Modular Arithmetic. For a positive integer n, we denote by (Zn,+) the additive group of
integers modulo n and by (Zn,+, ·) the ring of integers modulo n. We often abuse this
notation by using Zn. For an integer x ∈ Z, the reduction of x modulo n, denoted x mod n,
is the remainder of the Euclidean division of x by n. Furthermore, we denote by (Z∗n, ·) or
simply Z∗n the group of units of the ring Zn called also the multiplicative group of integers
modulo n. Note that when n is a prime number, denoted by p, which will often be the case in
this thesis, Zp is also a field, and Z∗p = Zp \ {0}. For arbitrary integers n, the size of Z∗n (the
number of invertible elements modulo n) is given by Euler’s totient function, which we denote
σ(n). It corresponds to the number of integers k between 1 and n such that gcd(k, n) = 1,
where gcd denotes the greatest common divisor.

Cyclic Groups. We recall that a cyclic group is a finite group generated by a single element.
In particular, a cyclic group is commutative (or abelian). Throughout this manuscript, we
denote by a tuple (p,G, g) a multiplicative cyclic group of prime order p generated by an
element g, so that G = 〈g〉 = {1, g, ..., gp−1}, where 1 denotes the identity element. We often
abuse this notation by using the notation G when the order and the generator are clear from
the context. We also assume that the multiplication over G is an efficient operation, so given
g and x ∈ Zp, one can efficiently compute gx.

Bilinear Groups. A bilinear group is given by a description (n,G,G,GT , e) such that

• n is prime or composite;
• G,G are groups of order kn and GT of order ln for k, l ∈ N and all the elements of

these groups are of order at most n;
• e : G×G→ GT is a bilinear asymetric map (pairing), which means that ∀a, b ∈ Zn :

e(ga, gb) = e(g, g)ab;
• if G and G are cyclic and g and g are the generators of G and G respectively, then

e(g, g) generates GT ;
• membership in G,G,GT can be efficiently decided, group operations and the pairing e

are efficiently computable, generators are efficiently sampleable, and the descriptions of
the groups and group elements each have linear size.

Polynomials, Rings. For any ring R and any integer k, we denote by R[X1, . . . , Xk] the
ring of multivariate polynomials in indeterminates X1, . . . , Xk over R and coefficients in
R. We call R[X1, . . . , Xk]≤d its subspace containing only polynomials whose degree in each
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indeterminate is at most d. For a polynomial P ∈ R[X1, . . . , Xk], we denote by P (a1, . . . , ak),
its evaluation in (a1, . . . , ak) ∈ Rk by setting X1 = a1, . . . , Xk = ak.

In the same manner, we use R[X] for polynomials in the variable X with coefficients in R.
For some polynomial R ∈ Z[X] of degree d, we consider the quotient ring Z[X]/〈R(X)〉. For
a prime q � d we define F = Zq a finite field and Rq = R/qR.
When there is no risk of confusion or conflict with other notations, we may denote the

mono-variate polynomials by lowercase letters v(x) ∈ F[x] (we employ this notation in
Chapters 3 and 4).

Vectors, Matrices. Vectors are denoted by lower-case bold letters, like v, or in some situations
with an arrow as in #”c . We indicate a vector v’s i-th entry by vi (not in bold). We use 0 for
the zero-vector. We use vᵀ for the transpose of a vector v, which is then a row. For a vector
v, we define the Lp norm as

‖v‖p =
(

n∑
i=1
|vi|p

)1/p

,

and for p =∞, we define ‖v‖∞ = maxi |vi|. When we omit the subscript and simply write
‖v‖, we refer to the L2 norm of the vector v. Given two vectors of the same length a,b ∈ Rn,
we use either 〈a,b〉 or a · b to denote their inner (or dot) product ∑i∈[n] ai bi.

Matrices are denoted by upper-case bold letters, like A ∈ Fn×m. When a square matrix is
invertible, we denote by A−1 its inverse.
For a d1-dimensional vector a and a d2-dimensional vector b, we write (a‖b) to denote

the (d1 + d2)-dimensional vector obtained by concatenating a and b. We will use a similar
notation for concatenating matrices with matrices or matrices with vectors.

Asymptotic Behaviors. When f and g are two functions f : N → R, we write f = O(g) or
g = Ω(f) to indicate that there exist a constant c and an integer n0 ∈ N such that for any
integer n ≥ n0, |f(n)| ≤ c · |g(n)|. We say that a function ε : N → [0, 1] is negligible (or
1− ε is overwhelming) if, for any constant c ∈ N, there exists η0 ∈ N such that for any η ≥ η0,
ε ≤ 1

ηc .

Distributions and Probabilities. Given a set S, we write x←$S to indicate that x is sampled
uniformly at random from S (independently of everything else). Similarly, if D is a probability
distribution, then we write x ← D to denote that x is sampled according to D. We write
Pr[X = x ] to indicate the probability of a random variable X taking the value x. Given two
distributions X,Y over a finite or countable domain D, their statistical distance is defined as
∆ (X,Y ) = 1

2
∑
v∈D |X(v)− Y (v)|. When it is clear from the context, we sometimes write

“random” for “uniformly at random”.

Miscellaneous. The value “true” is represented by 1, while the value “false” is represented
by 0. Logarithm log is always in basis 2: log = log2.

2.1.2 Algorithms

Probabilistic Turing Machines. A Turing machine is an abstract model of computations in
which a tape head reads symbols on the tape and performs operations (writing, moving left,
moving right) that depend on the symbol that is read.

A probabilistic Turing machine is a multi-tape Turing machine that can use an additional
tape containing random bits (usually called random coins).
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When discussing interactive protocols, that involve interactive parties, the parties will
be modeled as interactive probabilistic Turing machines, i.e., multi-tape Turing machines
equipped with a read-only input tape, a read-only random tape, a read-and-write work tape, a
write-only output tape, and a pair of communication tapes, one read-only and one write-only.
The interaction between Turing machine is captured by letting pairs of machines share their
communication tape: the read-only communication tape of one machine is the write-only
communication tape of another machine, and vice versa. For simplicity, unless otherwise
stated, all algorithms discussed in this work will be probabilistic Turing machines.

Random Access Machines. A random access machine (RAM) is a simple model of computation.
Its memory consists of an unbounded sequence of registers. Each of the registers may hold
an integer value. This model assumes a single processor. In the RAM model, instructions
are executed one after the other, with no concurrent operations. This model of computation
is an abstraction that allows us to compare algorithms on the basis of performance. The
assumptions made in the RAM model to accomplish this are: Each simple operation takes
one-time step. Loops and subroutines are not simple operations. Each memory access takes
one-time step, and there is no shortage of memory. For any given problem the running time
of an algorithm is assumed to be the number of time steps. The space used by an algorithm
is assumed to be the number of accessed RAM memory cells.

Polynomial-Time Algorithms. We will call a PPT algorithm, or equivalently an efficient
algorithm, a probabilistic algorithm whose expected running time is bounded by a polynomial
in his input size, where the expectation is taken over the random coins of the algorithm.

For an algorithm A, we write y ← A(x) to denote the fact that we run A on input x with
fresh random coins and we obtain an output y.
For two PPT algorithms A, E , with the writing (A‖E)(x) we denote the execution of A

followed by the execution of E on the same input x and with the same random coins. The
output of the two is separated with a semicolon, e.g., (outA; outE)← (A‖E) (x).

2.2 Provable security

Provable security dates back at least to Shannon’s proof that the one-time pad hides all
information about the encrypted message [Sha49], but only with the rise of public-key
cryptography, which requires constructions with a rich mathematical structure that can also
be exploited by cryptanalysts, did provable security really take off. Modern security definitions
for cryptographic schemes usually consider a security game or experiment, which models
how a potential adversary can attack the system. Classic examples are the definitions of
CPA/CCA secure public-key encryption schemes [GM84, RS92], unforgeability for signatures
schemes [GMR88] or pseudorandomness [GMY82, BM82].
Almost any problem can be solved if enough computational power or enough time is

available, e.g., by enumerating and trying every possible solution until finding the right one
(this approach is known as brute-force attack).

With this in mind, the goal of provable security is then to assess the amount of effort
required to solve a certain problem (i.e., break a particular system).
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2.2.1 Security Reductions
A cryptosystem is deemed ”secure” if breaking it would require an unreasonable effort (with
regards to computations, elapsed time, data storage, . . . ) from a reasonable attacker. The
choice of what is reasonable depends on the security model (e.g., what kind of adversary we
are considering), and on the security guarantees that we require from the scheme.

To prove the security of a cryptographic scheme, one has to specify
• the algorithmic assumptions: consider a computationally hard underlying mathematical

problem which is well known to be intractable by any probabilistic polynomial time
algorithm.

• the security notions to be guaranteed: modelized as an experiment where an adversary
attacking the scheme is called one or several times with various inputs

• a polynomial reduction: an adversary can be used to construct an algorithm that breaks
the underlying assumption

Security Parameter. The previous considerations are numerically represented by a security
parameter, that we denote with λ: A cryptosystem provides λ bits of security if it requires 2λ
elementary operations to be broken. Although usually omitted in order to ease notation, all
the integers, vectors, and matrices that we define will implicitly be a function of λ. However,
sometimes we explicitly write that an algorithm (e.g., Setup) takes 1λ as an argument. The
reason for doing this is that we want the algorithm to run in a time that is polynomial in λ,
so its input must have size λ.
The parameters of the system will be chosen so that the system is estimated to provide

λ bits of security – i.e., such that the best known attack on the system requires 2λ steps
to be mounted. A common widely accepted value of the security parameter is 128: if 2128

computational steps are necessary to break a system, attacking the system can be considered
infeasible within a reasonable amount of time, with the current computing power of classical
computers.
Oracle Access. In addition to inputs and random coins, algorithms will sometimes be given
access to oracles. An oracle is an ideal black-box that receives some inputs and returns some
output, and is used to capture the fact that an algorithm might get access to the answers
to some queries, without specifying how these queries are asked, or how these answers are
computed. Running times of Oracles are not taken into account in the running time of the
algorithms: a query to an oracle always only counts for one clock cycle.
Adversaries. Adversaries are probabilistic algorithms or Turing machines, which will be
denoted with calligraphic letters (e.g.,A,B). They will be usually modeled as efficient
algorithms taking 1λ as input. We will sometimes also consider security against unbounded
adversaries, which can run in arbitrary time.
Experiments. We often define our security notions or assumptions using experiments,
parametrized by the security parameter λ, and during which an adversary is called one
or several times with various inputs. An experiment can be seen as a game between an
adversary A and an implicit challenger which provides its input to the adversary as well as
some oracle access. We write AO(x) to say that the adversary A is called with input x and
has access to the oracle O.
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Assumptions, Advantage, Indistinguishability. To define an assumption or a security notion,
we then define a problem as an experiment or as distinguishing two experiments. We say
that the problem is hard if no PPT algorithm can solve it.

The advantage of an adversary A in an experiment Exp is the probability that this adversary
outputs 1 in this experiment:

AdvExp
A = Pr

[
ExpA(1λ) = 1

]
.

When the experiment Exp corresponds to a cryptographic assumption or to a security
notion we say that this assumption or property computationally holds if the above advantage
is negligible negl for any PPT adversary. We further say that it statistically holds if the above
advantage is negligible for any (even unbounded) adversary. We finally say that it perfectly
holds if the above advantage is 0 for any (even unbounded) adversary.
Similarly, we define the advantage of an adversary A in distinguishing two variants of an

experiment Exp0 and Exp1 over the random guess (we denote the global experiment Exp):

AdvExp
A =

∣∣∣Pr
[
Exp1

A(1λ) = 1
]
− Pr

[
Exp0

A(1λ) = 1
]∣∣∣ .

As before, we say that two games are computationally indistinguishable if the advantage
of any PPT adversary in distinguishing these two games is negligible. We say that two
experiments are statistically indistinguishable (resp. perfectly indistinguishable or equivalent)
if the advantage of any (unbounded) adversary in distinguishing these two games is negligible
(resp. 0). For both types of qualities, probabilities are over the random coins of the challenger
and of the adversary.

Hybrid Arguments. Most of the security proofs in this thesis are proofs by games (also called
hybrid arguments) as defined in [Sho02, KR01, BR06]: to bound an advantage in some game
experiment corresponding to some security notion, we construct a sequence of games. The
first game is Hybrid 0 is the experiment itself, while the last game corresponds to some
security notion or is such that the adversary just cannot win. Furthermore, we prove that
two consecutive games are indistinguishable either perfectly, statistically, or computationally.
In other words, we bound the difference of advantages by a negligible quantity. Similarly,
to bound an advantage of an adversary in distinguishing two experiments, we construct a
sequence of indistinguishable games starting with the first experiment and ending with the
second experiment.

Hybrid 0

Step 1
Step 2
Step 3

Hybrid 1

Step 1
Step 2 is different
Step 3

Figure 2.1: Two indistinguishable consecutive games in a hybrid argument
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2.2.2 Abstract Models of Computation
Computational security proofs in cryptography, without unproven intractability assumptions,
exist today only if one restricts the computational model as specified by Maurer [Mau05].

Proving the security of a particular cryptographic system means to exhibit a lower bound
on the hardness of a certain computational problem. Unfortunately, for general models
of computation no useful lower bound proofs are known, and it is therefore interesting to
investigate reasonably restricted models of computation, if one can prove relevant lower
bounds for them. In a restricted model one assumes that only certain types of operations
are allowed. For example, the generic model which assumes that the properties of the
representation of the elements of the algebraic structure (e.g., a group) under consideration
cannot be exploited.

Other models used invoke trusted third parties to perform some task without cheating; for
example, the public key infrastructure (PKI) model requires a certificate authority, which if
it were dishonest, could produce fake certificates and use them to mount a man in the middle
attack to read encrypted messages.
Standard Model. Schemes which can be proven secure using only complexity assumptions
are said to be secure in the standard model. In this model of computation, the adversary
is only limited by the amount of time and computational power available. Security proofs
are notoriously difficult to achieve in the standard model, so in many proofs, cryptographic
primitives are replaced by idealized versions.
Random Oracle Model. The most usual example of the technique of idealizing is known as
the random oracle model (ROM) [BR93, CGH98] and it assumes the existence of a truly
random function to which all parties involved in a protocol have access. Since in reality,
no such ideal function exists, random oracles are instantiated with hash functions, and one
heuristically assumes that a hash function behaves well enough to be a replacement for
random oracles. Random oracles allow proving protocols are secure while they are still
practically efficient. On the negative side, Canetti, Goldreich and Halevi prove in [CGH98]
that there exist signature and encryption schemes that are secure in the ROM, but for which
any implementation of the random oracle results in insecure schemes.
Generic Group Model. The generic group model [Sho97, Mau05] is another idealised crypto-
graphic model, where algorithms do not exploit any special structure of the representation of
the group elements and can thus be applied in any cyclic group.

In this model, the adversary is only given access to a randomly chosen encoding of a group,
instead of efficient encodings, such as those used by the finite field or elliptic curve groups
used in practice. The model includes an oracle that executes the group operation. This
oracle takes two encodings of group elements as input and outputs an encoding of a third
element. If the group should allow for a pairing operation this operation would be modeled
as an additional oracle.

One of the primary uses of the generic group model is to analyse computational hardness
assumptions. An analysis in the generic group model can answer the question: ”What is
the fastest generic algorithm for breaking a cryptographic hardness assumption”. A generic
algorithm is an algorithm that only makes use of the group operation, and does not consider
the encoding of the group.



2.3 Computational Assumptions 23

Common Reference String Model. The common reference string (CRS) model, introduced
by Damgård [Dam00], captures the assumption that a trusted setup in which all involved
parties get access to the same string crs taken from some distribution D exists. Schemes
proven secure in the CRS model are secure given that the setup was performed correctly.
The common reference string model is a generalization of the common random string model,
in which D is the uniform distribution of bit strings.

2.3 Computational Assumptions
In this section, we recall the classical computational assumptions on which we will rely
throughout this work. As most cryptographic assumptions (and unlike standard assumptions
in complexity theory, which are worst-case hardness assumptions), they are concerned with
the average-case hardness of specific mathematical problems.

The assumptions we will discuss along this work can be divided into two main categories,
discrete-logarithm-based assumptions and lattice-based assumptions. We will also make a
separation between falsifiable assumptions and non-falsifiable or extractable ones.

The discrete-logarithm-based assumptions were for a long time the assumptions underlying
most constructions of public-key cryptography (with some noticeable exceptions [McE78]).
Even though the last decade has witnessed the emergence of new types of cryptographic
assumptions (the most prominent being lattice-based assumptions [Ajt96, Reg05a, HPS98,
LPR10a]), they remain widely used to date, and as such, a large body of work has been
dedicated to their study; we will recall the main cryptanalytic results and cryptographic
reductions when introducing the assumptions. A general issue with the discrete logarithm
assumptions, which was one of the main motivations for the study of alternative assumptions,
is that they are only conjectured to hold against classical PPT adversaries: it was shown
in the seminal work of Shor [Sho99] that they do not hold against quantum polynomial-
time adversaries, hence the advent of general-purpose quantum computers would render
insecure the constructions based on these assumptions. However, their security against
classical computers is quite well understood, and they enjoy a number of algebraic properties
which make them well suited for a vast number of applications and amenable to practical
instantiations.

2.3.1 Discrete-Logarithm-Based Assumptions
Given a cyclic group G of order n ∈ N with a generator g, the discrete logarithm assumption
over G states, informally, that it is computationally infeasible given a random group element
h ∈ G to find an integer x ∈ [n] such that h = gx. Generic algorithms to solve discrete
logarithm, which are independent of the particular structure of the underlying group G, have
a running time proportional to

√
n. In spite of more than four decades of intense cryptanalytic

effort, there exist certain groups in which we still do not know any algorithm with better
efficiency than the generic algorithms. For all assumptions discussed in this section, no attack
significantly better than solving the discrete logarithm assumption is known, although in
most cases, no formal reduction showing that a PPT algorithm breaking the assumption
would imply a PPT algorithm breaking the discrete logarithm assumption is known. As
previously mentioned, the discrete logarithm assumption (hence all assumptions discussed in
this section) does not hold against quantum polynomial-time adversaries [Sho99].
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The Discrete Logarithm Assumption. Let G be a cyclic group of order n ∈ N, with a
generator g. The discrete logarithm assumption states that:

Assumption 2.3.1 (DLog). For any efficient algorithm A, Discrete Logarithm Assumption
holds relative to a group G if:

Advdlog
A = Pr

[
DLogA(G, g, 1λ) = 1

]
= negl.

where DLogA is the experiment depicted in Figure 2.2.

DLogA(G, g, 1λ)

x←$Zn
X := gx

x′ ← A(X)
return (x′ = x)

CDHA(G, g, 1λ)

(x, y)←$Z2
n

(X,Y ) := (gx, gy)
Z ← A(X,Y )
return (Z = gxy)

Figure 2.2: Experiments for DLog and for CDH assumptions.

Random Self-Reducibility. An important property of the discrete logarithm assumption is its
random self-reducibility, a property introduced in [AFK87]: if the discrete logarithm problem
is hard for some specific instances over a group G, then it remains hard for random instances
over G.
Generic Attacks. A generic deterministic algorithm for computing discrete logarithms in
arbitrary groups was designed by Shanks [Sha71], and it is known under the name of baby-step-
giant-step algorithm. This algorithms needs O(

√
n) group operations (and comparable space

complexity) to solve the problem. An improvement was made by Pollard in [Pol78], whose
solution uses only constant space (at the cost of being probabilistic rather than deterministic),
and still O(

√
n) group operations. Pollard’s rho algorithm, for which practical improvements

were suggested in [BLS11], is the state-of-the-art algorithm for computing arbitrary discrete
logarithm in generic groups. However, more efficient algorithms can exist for specific groups,
which might have additional structure. Shoup’s proof of optimality of Pollard’s algorithm in
a model known as the generic group model [Sho97] suggests that it might be asymptotically
optimal in arbitrary groups. This has led to two research directions: designing improved
algorithms for specific groups commonly used in crypto, or designing particular groups in
which no attack better than Pollard’s rho algorithm is known.
Instantiating G with Finite Fields. One of the most common instantiations of G: Let p be a
random large prime. Then Fp = Zp is the field with p elements, and the multiplicative group
F∗p is a cyclic group of order p− 1 where DLog is conjectured to hold.
Instantiating G with Elliptic Curves. Alternatively, it is common to instantiate the DLog
assumptions over elliptic curves, which are algebraic curves defined by an equation of the
form y2 = x3 + ax+ b over a field on which a group operation can be defined. Elliptic curves
have been the subject of a very rich study. Group elements are up to ten times smaller over
elliptic curves than over finite fields for comparable security requirements.
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The Computational Diffie-Hellman Assumption. The CDH assumption was introduced by
Diffie and Hellman in their seminal work on public-key cryptography [DH76], and has been
used as a basis for a tremendous number of cryptographic applications. Formally, the
assumption is stated as follows:

Assumption 2.3.2 (CDH). For any efficient algorithm A, CDH holds relative to a group G if:

Advcdh
A = Pr

[
CDHA(G, g, 1λ) = 1

]
= negl.

where CDHA,1λ is the experiment depicted in Figure 2.2.

It is easy to see that hardness of DLog is implied by hardness of CDH. In the reverse
direction, no attack significantly better than solving a discrete logarithm problem is known
against CDH. However, no formal reduction is known in general. It was proven by Boer
[dB88] that CDH is as hard as the discrete logarithm problem over F∗p if φ(p− 1) is smooth
(i.e., its prime factors are small). A general algorithm for solving DLog given access to a CDH
oracle in an arbitrary group is due to Maurer [Mau94], but it assumes (informally) that some
additional information is known about the order of the group. We also note that as for the
DLog assumption, the CDH assumption satisfies random self-reducibility.

2.3.2 Assumptions on Bilinear Groups
As already defined, a bilinear group (see Figure 2.3) is given by a description (n,G,G,GT , e)
where e is a pairing application or bilinear map from G × G to GT with the interesting
property that for all exponents a, b we have that e(ga, gb) = e(g, g)ab. Elliptic curves equipped
with bilinear maps are commonly used in cryptography, either in the symmetric pairing
setting, i.e., G = G or in the asymmetric pairing setting where G 6= G.

Bilinear Group gk := (p,G,G,GT , e)

• p is a λ-bit prime
• G,G,GT are cyclic groups of order q

(G = G in the symmetric case)
• e : G×G→ GT is a bilinear map:

∀a, b ∈ Zp : e(ga, gb) = e(g, g)ab

• if 〈g〉 = G and 〈g〉 = G, then 〈e(g, g)〉 = GT

Figure 2.3: Asymmetric bilinear group of prime order.

The q-type Assumptions. The classic standard assumptions (such as DLog,CDH) are not
parametrized and always have constant size (are static). Consequently, the assumption,
when used in a reductionist proof, is independent of any system parameters or oracle queries
and only related to the security parameter. In contrast, non-static q-type assumptions are
parametrized by q, and they, are actually, a family of assumptions. They may be used in a



26 Chapter 2 Preliminaries

static way for a fixed q, but if a reductionists proof relies on the non-static version, then q is
usually related to the number of oracle queries an adversary makes, to the size of input or to
the number of computational steps necessary in a protocol.
The q–Power Diffie-Hellman (q-PDH). Let the generator G denote the algorithm by which
bilinear groups are generated. G inputs a security parameter λ and outputs a description of
a bilinear group gk := (q,G,G,GT , e)←$G(1λ). Roughly speaking, the q-PDH assumption
says that given g, gs, . . . gsq , gsq+2

, . . . gs
2q it is hard to compute the missing element gsq+1 .

Assumption 2.3.3 (q-PDH). The q-Power Diffie-Hellman (q-PDH) assumption holds for the
bilinear group generator G if for all PPT adversaries A we have, on the probability space
gk← G(1λ), g←$G and s←$Zp:

Advq-pdh
A := Pr

[
q-PDHA(gk, 1λ) = 1

]
= negl.

where q-PDHA is defined as in Figure 2.4.

A heuristic argument for believing in the q-PDH hardness is given by Groth in [Gro10].
Groth gives a proof to show that the q-PDH assumption holds in the generic bilinear group
model. Some variants to this assumptions exist. Sometimes the input of the adversary is
extended, also containing the values ĝ, . . . , ĝsq , for ĝ←$G or other auxiliar inputs.

q-SDHA(gk, 1λ)

g←$G
s←$Zp
σ ← (g, gs, . . . gs

q

)
(r, y)← A(gk, σ)
return (y = g1/(s−r))

q-PDHA(gk, 1λ)

g←$G
s←$Zp
τ ← (g, gs, . . . gs

q

, gs
q+2
, . . . gs

2q

)
y ← A(gk, τ)
return (y = gs

q+1
)

Figure 2.4: Experiments for q-SDH and q-PDH assumptions.

The q–Strong Diffie-Hellman Assumption (q-SDH). The Strong Diffie-Hellman assumption
[BB08] says that given gk, g←$G and a set of powers (g, gs, . . . gsq) for a random exponent
s←$Zp, it is infeasible to compute y = g

1
s−r for a chosen r ∈ Zp.

Assumption 2.3.4 (q-SDH). The q–Strong Diffie-Hellman assumption holds relative to a
bilinear group generator G if for all PPT adversaries A we have, on the probability space
gk← G(1λ), g←$G and s←$Zp:

Advq-sdh
A := Pr

[
q-SDHA(gk, 1λ) = 1

]
= negl.

where q-SDHA is the experiment depicted in Figure 2.4.

A proof in Boneh and Boyen [BB08] shows that the q-SDH assumption holds in the generic
bilinear group model.
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As for the q-PDH assumption, variants with extended input to auxiliary values exist. We
can adapt the q-SDH assumption to hold in the target group GT . The Target-group Strong
Diffie-Hellman (q-TSDH) assumption says that given (g, gs, . . . , gsq) it is infeasible to find an
r ∈ Zp and to compute y = e(g, g)

1
s−r .

2.3.3 Falsifiable vs. Non-Falsifiable Assumptions

Falsifiable Assumptions. A desired characteristic of a computational hardness assumption
is falsifiability, i.e., that if the assumption were false, then it would be possible to prove
it. In particular, Naor [Nao03a] introduced a formal notion of cryptographic falsifiability.
Roughly speaking, a computational hardness assumption is said to be falsifiable if it can
be formulated in terms of a challenge: an interactive protocol between an adversary and a
challenger (verifier), where an efficient adversary can convince the verifier to accept if and
only if the assumption is false.
Furthermore, the complexity of checking the refutation of the assumption is of interest

and should be a major consideration in how acceptable the assumption is. If the assumption
is false, then it should be possible to solve the challenge (and the solution can be verified) in
time related to the time it takes to break the assumption.
Most standard cryptographic assumptions are falsifiable (e.g., hardness of factoring, dl,

RSA,CDH, LWE, etc.). Intuitively, assumptions that are not falsifiable are more laborious
to reason about, and therefore we have significantly less confidence in them. However, in
some cases, in order for a challenger to decide whether an adversary breaks some scheme,
the challenger needs to decide whether an NP statement is true or false, which may not be
efficient.

Non-Falsifiable Assumptions. The knowledge assumptions are the most common non-
falsifiable assumptions that we use in cryptography. They are considered non-standard
assumptions, also called extractability assumptions, in the sense that any efficient algorithm
that succeeds in the associated experiment, there exists a knowledge extractor algorithm that
efficiently recovers the said witness.

Knowledge assumptions capture our belief that certain computational tasks can be achieved
efficiently only by (essentially) going through specific intermediate stages and thereby obtain-
ing, along the way, some specific intermediate values. A number of different extractability
assumptions exist in the literature, most of which are specific number-theoretic assumptions.
Usually, these knowledge assumptions can be proven secure in the generic group model. Ab-
stracting from such specific assumptions, one can formulate general notions of extractability
for one-way functions and other basic primitives (see [CD09]).

2.3.4 Knowledge Assumptions

The framework of such an assumption is as follows: an extractability assumption considers
any PPT algorithm M that, on input a security parameter λ and some benign auxiliary
input z returns a secret output and a public output. Then, the assumption states that if M
satisfies certain efficiency or hardness properties (to be defined later), then for any adversary
algorithm A trying to simulate M, there exists an efficient algorithm EA that, given the
security parameter, A’s public output and random bits, can compute a matching secret
output. Actually, it is more appropriate to talk about a class of extractability assumptions,
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varying over the specific algorithms M, and the algorithms Z that generate the auxiliary
input z taken as input by M.

The q-Power Knowledge of Exponent Assumption. This class of assumptions have the
following flavor: if an efficient algorithm, given the description of a finite group along with
some other public information, computes a list of group elements that satisfies a certain
algebraic relation, then there exists a knowledge extractor that outputs some related values
that “explain” how the public information was put together to satisfy the relation. The
knowledge of exponent (KEA) assumption was the first of this type, introduced by Damgard
[Dam92]. It says that given g, gα in a group G it is infeasible to create c, ĉ so ĉ = cα without
knowing a such that c = ga and ĉ = (gα)a.

q-PKEgk,Z,A,EA(1λ)

g←$G, s←$Zp
σ ← (g, gs, . . . gs

q

, gα, gαs . . . gαs
q

)
z ← Z(gk, σ)
(c, ĉ; {ai}qi )← A(σ, z)

return (ĉ = cα) ∧ c 6=
q∏
i

(gs
i

)ai

Figure 2.5: Experiments for q-PKE assumptions.

The q-power knowledge of exponent assumption (q-PKE) is a generalization of KEA. It
says that given the successive powers of some random value s ∈ Zp encoded in the exponent
{g, gs, gs2 , . . . , gsq , ĝ, ĝs, ĝs2 , . . . , ĝsq} –where either g ∈ G, ĝ ∈ G for the asymmetric bilinear
groups, or g ∈ G, ĝ := gα ∈ G in symmetric ones– it is infeasible to create c, ĉ where ĉ = cα

without knowing a0, a1, . . . aq that satisfy c = ∏q
i=0(gsi)ai . This is more formally defined (in

the symmetric case) by the existence of an extractor:

Assumption 2.3.5 (q-PKE). The q-Power Knowledge of Exponent (q-PKE) assumption holds
relative to a bilinear group given by the description gk and for the class Z of auxiliary input
generators if, for every non-uniform PPT auxiliary input generator Z ∈ Z and non-uniform
PPT adversary A, there exists a non-uniform PPT extractor EA such that:

Advq-pke
Enc,Z,A,EA := Pr

[
q-PKEEnc,Z,A,EA = true

]
= negl,

where q-PKEEnc,Z,A,EA is the game depicted in Figure 4.5.

These assumptions can be reformulated in terms of ”encodings”, a generalization of the
exponential function in the bilinear group. Roughtly speaking, an encoding is a way to
hide values; we will formally define encodings and knowledge assumptions for encodings in
Chapter 4.
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2.3.5 Lattice Assumptions

For quantum computers, solving discrete logarithm problems is easy, so all the hardness
assumptions stated until now are not quantum resilient. Fortunately, lattice problems we
will discuss in this part are conjectured to be quantum-hard [Pei15]. This makes some
lattice-based cryptosystems candidates for post-quantum cryptography.

To begin with, we present some basic definitions and background for lattices and we recall
several fundamental computational problems used in post-quantum cryptography.

b1

b2

b3

b4

Figure 2.6: A two-dimensional lattice with two different bases

Lattice Definition, Basis. An n-dimensional lattice Λ is a discrete additive subgroup of Rn.
For an integer k < n and a rank k matrix B ∈ Rn×k, Λ (B) =

{
Bx ∈ Rn | x ∈ Zk

}
is the

lattice generated by the columns of B. The columns of B form a basis of the lattice.
In this work, we are only interested in full-rank lattices, i.e., those for which k = n. A lattice

basis B is never unique: for any unimodular matrix U ∈ Zn×n (i.e., such that det (U) = ±1),
the matrix B ·U is also a basis of Λ (B). In Figure 2.6 we show a two-dimensional lattice
with two different bases B = (b1,b2), B = (b3,b4).

The minimum distance of a lattice Λ is the length of a shortest nonzero lattice vector:

λ1 (Λ) := min
06=v∈Λ

‖v‖

Fundamental parallelepiped. For any lattice basis B, we define the associated fundamental
parallelipiped P (B) = {Bx : x ∈ Rn, 0 ≤ xi < 1 ∀i} .
We define the determinant of Λ, denoted as det (Λ), as the n-dimensional volume of its

fundamental parallelepiped P (B).
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Gaussian Function, Discrete Distribution. For any σ > 0 the spherical Gaussian function
with mean 0 and parameter σ (omitted if 1) is defined as

ρσ (x) := Exp
(−π ‖x‖

σ2

)
for any x ∈ Rn.
For any discrete subset A ⊆ Rn we define ρσ(A) := ∑

x∈A ρσ(x), the discrete integral of
ρσ over A. We then define χσ, the discrete Gaussian distribution over A with mean 0 and
parameter σ as:

χσ : A→ R+ : y 7→ ρσ(y)
ρσ(A) .

We denote by χnσ the discrete Gaussian distribution over Rn where each entry is indepen-
dently sampled from χσ. Intuitively, one can think of χnσ as a sphere of radius σ

√
n/(2/π)

centered around the origin.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

Figure 2.7: One-dimentional discrete Gaussians, in blue χ2
σ1 for parameter σ1 =

√
2π/2, in

red χ2
σ2 for σ2 =

√
2π.

We now report a very well known result about additivity of Gaussian distributions.

Lemma 2.3.6 (Pythagorean additivity of Gaussians). Let χ1 and χ2 be Gaussian distributions
with parameters σ1 and σ2, respectively. Then χ+, obtained by sampling χ1 and χ2 and
summing the results, is a Gaussian with parameter

√
σ2

1 + σ2
2.

Smoothing parameter. Another important quantity for a lattice Λ is its smoothing parameter.
Roughly speaking, this can be seen as the minimum amount of Gaussian “blur” required to
“smooth out” all the discrete structure of Λ. Consider that one picks a noise vector from a
Gaussian distribution with radius at least as large as the smoothing parameter, and reduces
the noise vector modulo the fundamental parallelepiped of the lattice, then the resulting
distribution is very close to uniform.
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This parameter plays a central role in the best known worst-case/average-case reductions
for lattice problems, and in a wealth of lattice-based cryptographic constructions. We now
give a more formal definition.

Definition 2.3.7 (Smoothing parameter [MR04]). For a lattice Λ ⊆ Rn and a positive real
ε > 0, the smoothing parameter ηε (Λ) is the smallest real r > 0 such that ρ1/r (Λ∗ \ {0}) ≤ ε,
where Λ∗ is the dual of the lattice Λ defined as

Λ∗ := {v : ∀ y ∈ Λ, 〈v,y〉 ∈ Z} .

2.3.5.1 Computational Problems on Lattices

Lattice problems have received considerable attention as a potential source of computational
hardness to be used in cryptography, after a breakthrough result of Ajtai [Ajt96] showing
that if certain lattice problems are computationally hard to solve in the worst case, then
average-case one-way functions (a fundamental cryptographic primitive that we will define
in the next section) exist. The main worst-case lattice problem considered by Ajtai is that
of finding a set of n-linearly independent lattice vectors in an arbitrary lattice of length
within a polynomial (in n) factor from the shortest such set. This problem in turn, is related,
using standard techniques, to various other lattice problems, like approximating the length
of the shortest non-zero lattice vector in the worst case, within factors polynomial in n.
No polynomial time algorithm is known to solve any of these worst-case problems, so it is
reasonable to conjecture that the problems are hard for any polynomial approximation factor.

We present here a class of well-known computational problems on lattices and for ease of
presentation we illustrate the solutions for 2-dimensional lattices.

v

−v

b1

b2

Figure 2.8: Shortest Vector Problem (SVP)

Shortest Vector Problem (SVP). Given an arbitrary basis B of some lattice Λ = Λ (B), find
a shortest nonzero lattice vector, i.e., a vector v ∈ Λ such that ‖v‖ = λ1 (Λ).
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v

b1

b2

Figure 2.9: Approximate Shortest Vector Problem (SVPγ)

Approximate Shortest Vector Problem (SVPγ). Given an arbitrary basis B of a lattice
Λ = Λ (B), find a nonzero vector v ∈ Λ such that ‖v‖ ≤ γ · λ1 (Λ).
Decisional Approximate SVP (GapSVPγ). Given an arbitrary basis B of a lattice Λ = Λ (B),
where λ1 (Λ) ≤ 1 or λ1 (Λ) > γ, determine which is the case.

b1

b2

Figure 2.10: Decisional Approximate Shortest Vector Problem (GapSVPγ)

Approximate Shortest Independent Vector Problem (SIVPγ). Given an arbitrary basis B
of an n-dimensional lattice Λ = Λ (B), output a set S = {v1, . . . ,vn} ⊂ Λ of n linearly
independent lattice vectors such that ‖vi‖ ≤ γ · λ1 (Λ) for all i ∈ [n].
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v1

v2

b1

b2

Figure 2.11: Approximate Shortest Independent Vector Problem (SIVPγ).

Approximate Closest Vector Problem (CVPγ). Given an arbitrary basis B of an n-dimensional
lattice Λ = Λ (B) and a target vector t ∈ Rn, find a vector v ∈ Λ such that 0 < ‖v− t‖ ≤
γ · Dist (t,Λ) = γ · infx∈Λ ‖x− t‖.
Approximate Bounded Distance Decoding Problem (BDDγ). Given an arbitrary basis B of an
n-dimensional lattice Λ = Λ (B) and a target vector t ∈ Rn such that Dist(t,Λ) ≤ γ−1 ·λ1 (Λ),
find a vector v ∈ Λ such that ‖v− t‖ = Dist (t,Λ).

v
t

b1

b2

Figure 2.12: Approximate Bounded Distance Decoding Problem (BDDγ)

The reader is referred to [MG02] for further discussion of these lattice problems. All the
previous definitions were parameterized by a positive real valued function γ = γ(n).
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2.3.6 Learning With Errors
The learning with errors (LWE) problem was introduced by Regev in [Reg05b], and has
become one of the most known problems in lattice-based cryptography. It has been used to
construct several cryptosystems, and it is believed to be hard even for quantum computers.
This problem comes in two flavors, search and decision: we present them both in the following.
Parameters, LWE Distribution. LWE is parameterized by two positive integers, n and q, and
an error distribution χ over Z, usually a discrete Gaussian of width αq, 0 < α < 1. We use
the notation Γ := (q, n, α, χ), with q, n ∈ N for the parameters.

Definition 2.3.8 (LWE distribution). Given a secret vector s ∈ Znq , the LWE distribution LWEs,χ
over Znq ×Zq is sampled by picking a←$Znq , an error e← χ, and returning (a, c = 〈s,a〉+ e).

Search-LWE Assumption. This assumption states that, given m independent samples
(ai, bi)← LWEs,χ, for a fixed s←$Znq , it is hard to find s. More formally:

Assumption 2.3.9 (sLWE). The searching Learning With Errors assumption holds for a
parameter generation algorithm Pgen if for any PPT adversary A:

Advslwe
Pgen,A := Pr [sLWEPgen,A] = negl,

where sLWEPgen,A is defined as in Figure 2.13.

Decisional-LWE Assumption. Given m independent samples (ai, ci) ∈ Znq × Zq, where every
sample is either distributed according to LWEs,χ for some fixed s ∈ Znq or uniformly random
in Znq × Zq, decisional lwe assumption states that distinguishing which is the case is hard.

Assumption 2.3.10 (dLWE). The decisional Learning With Errors (dLWE) assumption holds
for a parameter generation algorithm Pgen if for any PPT adversary A:

Advdlwe
Pgen,A := Pr [dLWEPgen,A = true ]− 1/2 = negl,

where dLWEPgen,A is defined as in Figure 2.13.

Most of the constructions presented in this manuscript will be based on the decisional LWE
(dLWE) problem. In [Reg05b], Regev proved the following theorem on the hardness of dLWE:

Theorem 2.3.11 (Hardness of dLWE). For any m = poly[n], any modulus q ≤ 2poly[n], and any
(discretized) Gaussian error distribution χσ of parameter σ = αq ≥ 2

√
n (where 0 < α < 1),

solving the dLWEn,q,χσ ,m problem is at least as hard as quantumly solving GapSVPγ and SIVPγ
on arbitrary n-dimensional lattices, for some γ = Õ(n/α).

2.3.6.1 Ring Learning With Errors

A version of the LWE problem over rings was introduced in [SSTX09, LPR10b]. The advantage
of this variant instead of plain LWE is compactness and efficiency. In the case of ring-LWE,
each sample gives a n-dimensional pseudorandom ring element c ∈ R, instead of just a
pseudorandom scalar c ∈ Zq. We can thus say that a single ring-lwe sample with a ∈ R
takes the place of n LWE samples with vectors ai ∈ Znq . Moreover, thanks to techniques like



2.3 Computational Assumptions 35

sLWEA(Pgen, 1λ)

Γ := (q, n, α, χ) := Pgen(1λ)
s←$Znq
σ := (a, c)← LWEs,χ

s′ ← A(Γ, (ab, cb))
return (s = s′)

dLWEA(Pgen, 1λ)

Γ := (q, n, α, χ) := Pgen(1λ)
s←$Znq , b←$ {0, 1}
σ0 := (a0, c0)← LWEs,χ

σ1 := (a1, c1) ←$Znq × Zq
b′ ← A(Γ, (ab, cb))
return (b = b′)

Figure 2.13: The search and decisional LWE games for parameters Γ

FFT, the multiplication between ring elements can be performed in quasi-linear time. The
essential drawback of ring-LWE is its conjectured hardness, which is not as well-established
as for classical LWE. We will not give details about this, but refer the interested reader to
specialized literature (e.g., [APS15a]).

Definition 2.3.12 (Ring-LWE Distribution). Let R = Z [X] /f (X) be a polynomial ring such
that f is some cyclotomic polynomial of degree n. Let q ≥ 2 be an integer modulus, and let
Rq = R/qR be the quotient ring. Finally, let χ be an error distribution over R. For a fixed
secret s ∈ Rq, the ring-LWE distribution rLWEs,χ is sampled by taking a←$ Rq, e← χ, and
outputting (a, b = s · a+ e). All the computations are, as usual, done modulo q.

Analogously to what was done for LWE, we now roughtly present the two versions of the
ring-LWE problem.
Search ring-LWE. Given m independent samples (a, b)← rLWEs,χ, for a fixed s←$ R, find s.
Decisional ring-LWE. Given m independent samples (a, b) ∈ R ×R, where every sample is
either distributed according to rlwes,χ for some fixed s ∈ R or uniformly random in R ×R,
distinguish which is the case.

2.3.6.2 Link Between LWE and Lattice-Based Problems

We now clarify the link between LWE and the lattice problems presented in Section 2.3.5.1.
Reduction from sLWE to BDD. Let A←$Zn×mq , and let Λ be the following lattice

Λ = Λ (A) :=
{

Aᵀv : v ∈ Znq
}

+ qZm

This is an m-dimensional q-ary lattice, since Aᵀ has m rows and the lattice is defined modulo
the integer q.

Let s←$Znq , let χ be an LWE error distribution, e← χm, and c = Aᵀs + e ∈ Zmq . Now it
is easy to see that, for sufficiently small error terms, the vector c is rather close to a specific
vector (or point) of the lattice Λ, namely Aᵀs, whereas a random vector u←$Zmq will be far
from Λ with high probability. We can then conclude that solving search-LWE amounts to
solving an average instance of the BDD problem on the lattice Λ. In fact, once the vector
Aᵀs ∈ Λ has been found, s can be trivially recovered, e.g., by Gaussian elimination.
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Reduction from dLWE to GapSVPγ and SIVPγ . We already mentioned a result by Regev
Theorem 2.3.11 about the hardness of dLWE that reduces to the quantum hardness of GapSVPγ
and SIVPγ on arbitrary n-dimensional lattices, for some γ = Õ(n/a). The reduction has been
improved since, and the result generalized for rLWE; making the dLWE problem a fruitful
assumption to build cryptographic primitives and relying on well-studied assumed-hard
problems.
Among other things, LWE was used as the basis of public-key encryption schemes secure

under chosen-plaintext attacks [Reg05b, KTX07, PVW07] and chosen-ciphertext attacks
[PW08, Pei08], oblivious transfer protocols [PW08], identity-based encryption (IBE) schemes
[GPV07, CHKP12, ABB10], various forms of leakage-resilient encryption (e.g., [AGV09,
ACPS09, DGK+10, GKPV10]) and more. In addition, LWE is attractive as it typically leads
to efficient implementations, involving low complexity operations (often mainly additions).

2.4 Cryptographic Primitives
In this section we give a basic introduction to public-key cryptographic primitives, namely
one-way functions, encryption schemes, commitments, signature schemes. We outline some
generic algorithms and provide some definitions related to the security of some of these
schemes.

2.4.1 One-Way Functions
Cryptography is based on the existence of tasks that can be efficiently executed, but that
cannot be efficiently abused. One-way functions represent the most fundamental object
of this kind, and as such constitute the basis of a variety of other primitives: a one-way
function is a function that can be efficiently computed, but that cannot be efficiently inverted
(where inverting means finding any valid preimage of a random image). The existence of such
one-way functions is still an open conjecture. In fact, their existence would prove that the
complexity classes P and NP are not equal, thus resolving the foremost unsolved question of
theoretical computer science. This is nevertheless an assumption that is necessary to prove
the existence of almost any cryptosystem (at least from a theoretical point of view).

More formally, for a security parameter denoted by λ:

Definition 2.4.1 (One-Way Function). A function f : {0, 1}∗ → {0, 1}∗ is one-way if it
satisfies the following two conditions:
Efficient. Given λ and x ∈ {0, 1}∗ the value f(x) can be computed in poly(λ) time.
One-way. For all PPT algorithms A, the following is negligible (in λ):

Pr[A(f(Uλ), 1λ) ∈ f−1(f(Uλ))] = negl.

Primitives related to one-way functions exists and we will define one essential in this work,
the universal one-way hash function.
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Universal One-Way Hash Functions. The notion of universal one-way hash function (UOWHF)
families was introduced in [NY89].

Definition 2.4.2 (Universal one-way hash family). A collection of function families H = {H}λ
where each H is a function family H = {h : {0, 1}q(λ) → {0, 1}`(λ)} is an universal one-way
hash family if:

Efficient. The functions q(λ) and `(λ) are polynomially-bounded; furthermore, given λ and
x ∈ {0, 1}q(λ) the value h(x) can be computed in poly(λ) time.

Compressing. For all λ we have that q(λ) > `(λ).

Universal one-way. For all PPT algorithms A, the following is negligible (in λ):

Pr[x← A(1λ);h $← H;x′ ← A(1λ, h, x) : x, x′ ∈ {0, 1}q(λ) ∧ x 6= x′ ∧ h(x) = h(x′)] = negl.

Collision-Resistant Hash Functions. A collision-resistant hash function (CRHF) is a function
ensemble for which it is hard to find two inputs that map to the same output. Formally:

Definition 2.4.3 (Collision Resistant Hash Family). A collection of function families H = {H}λ
where each H is a function family H = {h : {0, 1}q(λ) → {0, 1}`(λ)} is collision-resistant if:

Efficient. The functions q(λ) and `(λ) are polynomially-bounded; furthermore, given λ and
x ∈ {0, 1}q(λ) the value h(x) can be computed in poly(λ) time.

Compressing. For all λ we have that q(λ) > `(λ).

Collision resistant. For all PPT algorithms A, the following probability is negligible (in λ):

Pr[h←$H, (x, x′)← A(1λ, h) : x, x′ ∈ {0, 1}q(λ) ∧ x 6= x′ ∧ h(x) = h(x′)] = negl.

Merkle Trees. We recall here what a Merkle tree or hash tree represents: A hash tree or
Merkle tree is a (binary) tree in which every leaf node is labelled with the hash of a data
block, and every non-leaf node is labelled with the cryptographic hash of the labels of its
child nodes. Hash trees allow efficient and secure verification of the contents of large data
structures. Hash trees are a generalization of hash lists and hash chains.
The concept of hash trees is named after Ralph Merkle who patented it in 1979 [Mer79].

Merkle tree (MT) hashing enables a party to use a CRHF to compute a succinct commitment
to a long string π ∈ {0, 1}q(λ) and later to locally open to any bit of π (in a succinct manner).

The structure of the tree allows for efficient mapping of arbitrarily large amounts of data
and enables easy identification of where changes in that data occur. This concept enables
Merkle proofs, with which, someone can verify that the hashing of data is consistent all the
way up the tree and in the correct position without having to actually look at the entire
set of hashes. Instead, demonstrating that a leaf node is a part of a given binary hash tree
requires computing a number of hashes proportional to the logarithm of the number of leaf
nodes of the tree; this contrasts with hash lists, where the number is proportional to the
number of leaf nodes itself.
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2.4.2 Encryption Schemes

Secret-key Encryption. A secret-key encryption scheme consists of the following algorithms:

KeyGen(1λ)→ (k,Γ): on input the security parameter λ, outputs the key k and some public
parameters Γ;

Enc (sk,m)→ c: on input the key sk and a message m, outputs a ciphertext c;
Dec (sk, c)→ m: on input the key sk and a ciphertext c, outputs a message m.

While in a secret-key encryption scheme the same key is used both for encrypting and
decrypting, in a public-key encryption scheme there are two separate keys, a public and a
private (or secret) one, which are used for encrypting and decrypting, respectively.

Public-key Encryption. A public-key encryption scheme consists of the following algorithms:

KeyGen(1λ)→ (pk, sk,Γ): on input the security parameter λ, outputs the public key pk, the
secret key sk, and some public parameters Γ;

Enc (pk,m)→ c: inputs the public key pk and a message m, outputs a ciphertext c;
Dec (sk, c)→ m: inputs the secret key sk and a ciphertext c, outputs a message m.

Correctness. We give the correctness definition for public-key encryption, the one for the
secret-key follows the same format:
We say that the public-key encryption scheme Enc = (KeyGen,Enc,Dec) is correct if, for

any (pk, sk,Γ)← KeyGen(1λ) and a message m, Pr[Dec(sk,Enc(pk,m)) 6= m] = 0.

We now give a standard definition of security for an encryption scheme, namely that of
indistinguishability under chosen-plaintext attacks (IND-CPA).

Indistinguishability Under Chosen-Plaintext Attacks. For a public-key encryption scheme
Enc = (KeyGen,Enc,Dec), we define IND-CPA security via the game depicted in Figure 2.14.
We say that Enc is IND-CPA secure if, for any PPT adversary A, it holds that

Advind-cpa
A = Pr

[
IND-CPAEnc,A(1λ)

]
− 1

2 = negl.

where Advind-cpa
A is the advantage of an adversary A when playing the game IND-CPAEnc,A(1λ).

IND-CPAEnc,A(1λ)

(pk, sk)← KeyGen
(
1λ
)

(m0,m1)← A (pk)
b←$ {0, 1}
c← Enc (pk,mb)
b′ ← A (pk, c)
return b′ = b

Figure 2.14: Experiment for IND-CPA security notion.
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An Example: Regev’s Symmetric Encryption Scheme. We now present as example, a basic
version of a well-known encryption scheme based on the LWE assumption (see Assump-
tion 2.3.10), usually referred to as the Regev encryption scheme [Reg05b].

Construction 2.4.4 (Regev Encryption Scheme). This encryption scheme operates on bits,
i.e., the message space isM = {0, 1}. It is composed of the following algorithms:
KeyGen(1λ)→ (sk,Γ) : given the security parameter in unary, choose an integer n = n (λ),

a modulus q = q (λ), 0 < α < 1, an error distribution χσ of parameter σ = αq ≥ 2
√
n,

and output a secret key sk←$Znq and public parameters Γ = (n, q, χσ). In the following,
Γ is an implicit argument to all the algorithms.

Enc (sk,m ∈M)→ c : given the secret key sk and a message m, sample a←$Znq , e ← χ,
and return c =

(
a, b = 〈sk,a〉+ e+m q

2
)
∈ Zn+1

q .
Dec (sk, c)→ m′ : given the secret key sk and a ciphertext c = (a, b) ∈ Zn+1

q , compute
b− 〈sk,a〉 and return m′ = 0 if this quantity is closer to 0 than to q

2 . Otherwise return
m′ = 1.

Correctness and security of Construction 2.4.4 are straightforward: correctness holds as
long as |e| < q

4 , whereas security comes directly from the LWE assumption. In particular,
the term 〈sk,a〉+ e plays the role of a random mask for the message m.

Remark 2.4.5 (Extending the message space). Construction 2.4.4 can be trivially extended to
M = Zp, for q > p ∈ N . It is sufficient to multiply m by q

p instead of q
2 during encryption,

and round appropriately during decryption. Naturally, this implies a different condition on
the error for correctness to hold: in this case, it is necessary that |e| < q

2p .

Parameters. Going through the details of the Regev cryptosystem and the extended encryp-
tion, it is evident that choosing parameters for lattice-based cryptosystems is no trivial matter.
Several authors have studied the problem, e.g., [GN08, RS10], and we refer to these works for
more details. Choosing parameters is a matter of trade-offs. Generally one would like to have
as small parameters as possible, while still maintaining correctness and security. Assuming a
fixed p, choosing a bigger q and α will result in harder underlying lattice problems, thereby
increasing security. On the other hand, choosing a larger α makes decryption harder, and in
turn one will have to choose a bigger q, harming efficiency.

2.4.3 Homomorphic Encryption Schemes
Some encryption schemes have the additional property of homomorphism, that allows
one to perform operations on ciphertexts based solely on publicly available information,
and in particular without having access to any secret key. For example, an additively
homomorphic encryption scheme allows anyone to take a ciphertext c1 encrypting a message
m1, a ciphertext c2 encrypting a message m2, and produce a ciphertext c+ that decrypts
to m1 +m2. Analogously, a multiplicatively homomorphic encryption scheme allows one to
produce a ciphertext c× that decrypts to m1 ·m2. And this is possible without having access
to either m1 or m2 or any secret information.
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Definition 2.4.6 (Homomorphic Encryption). A homomorphic (public-key) encryption scheme
H.Enc with message spaceM is composed of the following algorithms:
H.KGen(1λ)→ (sk, pk, evk) : given the security parameter, output a secret key sk, a public

key pk and an evaluation public key evk.
H.Enc (sk, µ)→ c : given the public key pk and a message µ ∈M, output a ciphertext c.
H.Dec (sk, c)→ µ : given the secret key sk and a ciphertext c, output a message µ ∈M.
H.Eval (evk, f, c1, . . . , c`) : given the public key evk, a function f :M` →M and ciphertexts

c1, . . . , c`, apply the function f on ciphertexts ci and output a ciphertext cf .

We now give a fundamental definition for any homomorphic encryption scheme, i.e., evalu-
ation correctness.
Evaluation Correctness. We say that the H.Eval algorithm correctly evaluates all functions
in F if, for any function f ∈ F :M` →M and respective inputs x1, . . . , x`, it holds that

Pr[H.Dec (sk, H.Eval (evk, f, c1, . . . , c`)) 6= f (x1, . . . , x`)] = negl,

where sk← H.KGen(1λ), and ci ← H.Enc (pk, xi) , ∀i ∈ [`].

Somewhat and Fully Homomorphic Encryption. In most of the homomorphic encryption
schemes known to date, an error term is injected during the encryption procedure for security
purposes. The reason is that these encryption schemes rely on the hardness of solving “noisy”
problems, i.e., problems where the relations are not exact, but are perturbed by a moderate
quantity of error as dLWE mentioned in Assumption 2.3.10. Combining multiple ciphertexts
through homomorphic operations has the side effect of combining the noises as well, thus
increasing the magnitude of the error in the resulting encryption. When the error grows
beyond a certain threshold, correctness is lost, meaning that the decryption procedure will
not return the expected result. We say that an encryption scheme is somewhat homomorphic
if it can evaluate a certain number of homomorphic operations, before the error grows too
much to maintain the correctness of the evaluation.
On the other hand, a fully homomorphic encryption (FHE) scheme is a homomorphic

scheme that allows for the evaluation of arbitrarily complex computations over encrypted data.
The problem of designing such scheme was suggested by Rivest, Adleman and Dertouzos in
1978 [RAD78] but, despite moderate progress [GM82, Pai99, BGN05, IP07], it remained the
“Holy Grail of cryptography” ([Mic10]) until the breakthrough result of Gentry in 2009 [Gen09].
In the case of FHE, there is no need to set an a priori bound on the number of homomorphic
operations, thus making the scheme more flexible. In contrast, FHE schemes tend to be
considerably less efficient than their leveled relaxation1, which, for specific applications, can
be noticeably faster and, as a consequence, more appealing.
Over the years, homomorphic encryption has been a very active field for research, and

this has led to a long list of works and improvements, (e.g., [vDGHV10, SS10, SV10, BV11a,
BV11b, BGV12, GHS12, GSW13, BV14, AP14]). This comprised both theoretical works that
put forth new ideas and constructions, and implementation works that optimized existing
constructions with the goal of achieving the best possible efficiency.

The FHE constructions that we know of can roughly be divided into three groups, usually
referred to as generations. “first generation” FHE usually denotes the one stemming directly

1In a ”leveled” FHE scheme, the parameters of the scheme may depend on the depth of the circuits that the
scheme can evaluate (but not on their size).
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from Gentry’s seminal work [Gen09] and based on ideal lattices and the approximate GCD
problem; “second generation” usually indicates constructions proposed in a sequence of works
by Brakerski and Vaikuntanathan [BV11a, BV11b] and based on the LWE problem; “third
generation” usually denotes the GSW FHE scheme by Gentry, Sahai, and Waters [GSW13]
and subsequent works (e.g., [AP14, HAO15]).

2.4.4 Digital Signatures

Digital Signatures enable the holder of a secret key to sign messages in such a way that
anyone in possession of the corresponding public verification key can determine the validity of
a given message-signature pair. For security, it is required that the signature is unforgeable,
i.e., no efficient adversary can forge a valid signature (unless the adversary knows the secret
key).

Definition 2.4.7 (Digital Signature). A digital signature scheme Σ consists of a triple of
algorithms Σ = (KeyGen,Sign,Verify) working as follows:

KeyGen(1λ)→ (sk, vk) the key generation takes as input the security parameter λ and returns
a pair of keys (sk, vk).

Sign(sk,m)→ σ on input a signing key sk and a message m, the signing algorithm produces
a signature σ.

Verify(vk,m, σ)→ 0/1 given a triple vk,m, σ the verification algorithm tests if σ is a valid
signature on m with respect to verification key vk.

The standard security notion for digital signatures, unforgeability against chosen-message
attacks (UF-CMA, for short) is defined by the experiment in Figure 2.15 where the adversary
(the forger) F has access to the signing oracle Sign(sk, ·).

UF-CMAΣ,F (1λ)

(sk, vk) $← KeyGen(1λ)

(m∗, σ∗) $← FSign(sk,·)(vk)
return (Verify(vk,m∗, σ∗))
∧ (m∗ is “new”)

Figure 2.15: Experiment for UF-CMA security notion.

A message m∗ is said “new” if it is different from all the messages mi that the adversary
queried to the signing oracle Sign(sk, ·) during the experiment.

Definition 2.4.8 (UF-CMA security). A digital signature scheme Σ is UF-CMA-secure if for
any forger F running in time t = poly(λ) and making Q = poly(λ) signing queries, the
following probability is negligible:

Advuf-cma
Σ,F (λ) = Pr[UF-CMAΣ,F (1λ)] = negl.
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We say that an adversary F (ε, t,Q)-breaks the unforgeability of Σ if Advuf-cma
F ,Σ (λ) ≥ ε

holds for an F running in time t and making Q queries.
A stronger notion of security is strong unforgeability against chosen-message attacks

(SUF-CMA). This notion is defined by considering a security experiment slightly different
than UF-CMAF ,Σ(1λ). Instead of checking whether m∗ is “new”, one checks whether the pair
(m∗, σ∗) is “new”, i.e., if (m∗, σ∗) is different from all the pairs (mi, σi) obtained by F from
the signing oracle.
Homomorphic Signatures. The notion of homomorphic signatures was formalized by [BFKW08]
and long studied since then.

A homomorphic signature scheme (HS) enable the holder of a secret key to sign messages
m1, . . .mn in such a way that anyone in possession of the corresponding signatures σ1, . . . σn
and a function f can produce a valid signature σ for the message f(m1, . . .mn). The key
property of HS is succinctness: the size of the evaluated signature σ should be smaller than
the concatenation of the initial signatures {σi}i∈[n] (and it is usually logarithmic in n, the
number of messages). In homomorphic settings the definition of unforgeability depends on the
class of functions f supported by the scheme. For schemes that support only linear functions
on a vector space, e.g., [BF11b], unforgeability states that the adversary should not be able
to derive a correct signature for a message (vector) which cannot be obtained as a linear
combination of previously honestly signed messages. If we applied the same reasoning to
linearly homomorphic signatures with messages in a field or to Fully Homomorphic Signature
schemes (FHS), e.g., [BF11a] we would end up with a useless notion of security: because it
is always possible to generate a valid signature for any message derived as a function from
the initial set of {mi}i∈[n], meaning that one can compute signatures for any message in
the whole message space. A meaningful notion of unforgeability for FHS requires that the
adversary should not be able to derive a valid signature σ∗ for a value y∗ that is not the
correct output of f(m1, . . .mn). This notion is achieved thanks to labelled programs [GW13],
as in FHS the signatures, the homomorphically evaluated signatures and the verification
procedure all depend on the labels. The unforgeability intuitions given in this section are
approximations of the core meaning of the corresponding security notions that are detailed
in Section 6.2.1 of Chapter 6.

2.4.5 Commitment Schemes
The notion of commitment is one of the most fundamental and widely used in cryptography.
First, a non-interactive commitment scheme allows a sender to create a commitment to a
secret value. It may later open the commitment and reveal the value in a verifiable manner.
A commitment should be hiding and binding in the sense that a commitment does not reveal
the secret value and cannot be opened to two different values:
Definition 2.4.9 (Non-Interactive Commitment). A non-interactive commitment scheme is a
tuple of algorithms Com = (ComGen,Com,ComVer,OpenVer):

ComGen(1λ) → ck: Generates a commitment public key ck. It specifies a message space
Mck, a randomness space Rck, and a commitment space Cck. This algorithm is run by
a trusted or distributed authority;

Com(ck,m)→ (c, o): Outputs a commitment c and an opening information o. This algorithm
specifies a function Comck : Mck ×Rck → Cck. Given a message m ∈Mck, the sender
picks a randomness ρ ∈ Rck and computes the commitment (c, o) = Comck(m, ρ).
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ComVer(ck, c)→ 0/1: Checks whether c is a well-formed commitment. If so, it outputs 1,
otherwise it outputs 0;

OpenVer(ck, c,m, o)→ 0/1: Outputs 1 if the value m ∈Mck is the committed message in the
commitment c and 0 if (m, o, c) does not correspond to a valid pair opening-commitment.

We say Com = (ComGen,Com,ComVer,OpenVer) is a secure commitment scheme if it satisfies
the following properties:
Correctness. Let ck ← ComGen(1λ). Any commitment of m ∈ Mck honestly generated
(c, o)← Com(ck,m) is successfully verified by ComVer(ck, c) and by OpenVer(ck, c,m, o).
Hiding. It is statistically hard, for any adversary A, to generate two messages m0,m1 ∈Mck
such that A can distinguish between their corresponding commitments c0 and c1 where
(c0, o0) ← Com(ck,m0) and (c1, o1) ← Com(ck,m1). Meaning that the advantage of the
adversary A on winning the game depicted in Figure 2.16 is negligible:

Advhiding
Com,A(λ) = Pr

[
HidingCom,A(1λ)

]
= negl.

HidingCom,A(1λ)

ck← ComGen
(
1λ
)

(m0,m1)← A (ck)
b←$ {0, 1}
(cb, ob)← Com(ck,mb)
b′ ← A (ck, cb)
return b′ = b

BindingCom,A(1λ)

ck← ComGen
(
1λ
)

(c, (m0, o0), (m1, o1))← A(ck)
return

(
(m0 6= m1)∧

(OpenVer(ck, c,m0, o0) = 1)∧
(OpenVer(ck, c,m1, o1) = 1)

)

Figure 2.16: Experiments for Hiding and Binding.

Binding. It is computationally hard, for any adversary A, to come up with a collision
(c,m0, o0,m1, o1), such that o0 and o1 are valid opening values for two different pre-images
m0 6= m1 for c. For any adversary A, the following probability is negligible

Advbinding
Com,A(λ) = Pr

[
BindingCom,A(1λ)

]
= negl.

The game for the binding property is depicted in Figure 2.16.
Knowledge Binding. For every adversary A that produces a valid commitment c associated
to a message that verifies, i.e. such that ComVer(ck, c) = 1, there is an extractor EA that is
able to output a pre-image m and a valid opening o of c, with overwhelming probability:

Pr

 ck← ComGen(1λ)
OpenVer(ck, c,m, o) = 1 (c; (m, o))← (A‖EA)(ck)

ComVer(ck, c) = 1

 = 1− negl.

For the sake of simplicity, throughout this work, we will omit the commitment key ck from
the input of the algorithms, and with a slight abuse of notations, we will adopt the writing
Com(m)→ (c, o).
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Homomorphic Commitment Scheme. A commitment scheme can also be homomorphic, if
for a group law ⊕ on the message space Mck, from (m0, o0)← Com(ck,m0) and (m1, o1)←
Com(ck,m1), one can efficiently generate c from c0, c1 as well as o from o0 and o1 so that
OpenVer(ck, c, o,m0 ⊕m1) = 1.
An Example: Pedersen Commitment Scheme. A famous example of commitment scheme
is the Pedersen commitment scheme [Ped92], which is perfectly hiding and whose binding
property relies on the discrete logarithm assumption:

Construction 2.4.10 (Pedersen Commitment). The Pedersen commitment scheme is defined
as follows:

ComGen(1λ)→ ck: Generates the description of a group G of prime order p together with
two generators (g, h)←$G2. We let ck := (G, p, g, h);

Com(ck,m)→ (c, o): Given ck and the message m ∈ Zp it samples a randomness r←$Zp
and computes the commitment (c, o) := (gmhr, r).

ComVer(ck, c)→ 0/1: Checks whether c ∈ G;
OpenVer(ck, c,m, o)→ 0/1: Outputs 1 if gmhr = c.

This commitment scheme is perfectly hiding, binding under the discrete logarithm assump-
tion in G, and additively homomorphic.

Proof. For the hiding property, notice that upon random choice of r ∈ Zp, for any m ∈ Zp,
c = gmhr is uniformly distributed over G. For the binding property, given openings (r0, r1)
for a commitment c to distinct messages (m0,m1), the relation gm0hr0 = gm1hr1 leads to
h = g(m0−m1)/(r1−r0), which gives the discrete logarithm of h in base g. Finally, it is clear
that from c0 = gm0hr0 and c1 = gm1hr1 , r0 + r1 is a valid opening of c0c1 to m0 +m1, hence
the homomorphic property.
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Succinct Non-Interactive Arguments
of Knowledge

S urvey of Proof Systems. In this chapter, we provide the reader with an overview
of the context of our work and we introduce Succinct Non-interactive Arguments
of Knowledge (SNARK), the main object of study in this thesis. We recall the

history of proof systems in cryptography; we try to give an idea of their importance, the
evolution of soundness notion, the way SNARKs burst into cryptography and some well-known
constructions.
The first part of the chapter is rather informal; it gives some intuition and the historical

evolution of (zero-knowledge) proofs and arguments. A more detail study of these notions
that are tangential with the SNARK advancements can be read in some recent PhD thesis,
such as the ones by Geoffroy Couteau [Cou18] and Fabrice Ben Hamouda [Ben16] and in the
survey [Gol08] that I used for inspiration. This chapter can be seen as a (non-comprehensive)
introduction to SNARKs, that recalls a variety of outstanding results, together with historical
insights and concrete examples. The idea is for this chapter to be of independent interest as
a brief survey on zero-knowledge proofs and SNARKs.
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Back in the days when everyone was addicted to technology and connected to the
internet, always checking their smartphones, downloading new apps, and constantly
posting on social media... back in these times lived Alice, a little girl who had a
simple life, going to school as every child of her age.
Day after day, Alice, gets more and more immersed in her technological gizmos
and gadgets. These technologies have made possible for Alice to discover many
functionalities and applications, to stay in touch with her friends and to find new
hobbies.
Nevertheless, Alice still has a dilemma: She thinks that she spends too much time
on doing her boring homework, she has to solve tons of redundant calculations and
exercises on math, physics and other subjects. She considers that useless, even more
in this modern world, where we can find online a variety of learning materials so
much more exciting than old-school lecture books. She would like to find a way to
overcome the school system and become a self-taught girl.
In this world where Alice is so connected, there may exist a solution to that!
Searching over the Internet, she found the website of Oscar, a freelance who made
some application that promises incredible functionalities: solving any school exer-
cise, being math, chemistry, physics or any other science subject. This is exactly
what she wanted! Alice starts daydreaming of herself being able to freely enjoy her
passions while her homework is done without any effort.
She only has to install the app, give her homework as input, and then just enjoy her
spare-time, surfing the Internet, watching movies, dancing, playing with her friends,
reading her favorite books, writing stories, instead of doing her boring science ex-
ercises. But wait! That sounds too good to be true... So Alice, a foresighted and
smart girl, has a hard time to fully trust this ”magical” service proposed by Oscar.
Of course, she would like to try it, but letting someone solve complicated exercises
for her and just receiving some answers without any guarantees of correctness seems
too risky.
She needs to find a way to check that the received solutions are the correct ones.
Of course she does not consider to try solving her homework again by herself in
order to compare and check that the application was accurate. She needs something
faster than that and also convincing.
Something like a proof from Oscar that the computation was performed as ex-
pected, a proof that Alice can verify fast and efficiently.
One way of doing so is by asking the solver specific questions, on how he achieved
the solution, to detect that the process was correct. However, this seems an over-
head for Alice, who does not want to spend her time to communicate with Oscar
about this service, she wants just to receive a short and fast to check proof together
with the solved homework. Also, from the point of view of Oscar, as a service
provider, he has no interest to reveal to Alice his specific methods and tricks... He
also fears that a competitor may steal his idea, so he may want to keep the details
of the computation private.
She needs a fast solution, not requiring interaction and coming in a concise format.
Would she be able to find such a proof? Through this chapter, Alice will get some
possible answers to her problem, let’s see if any of them is good enough for her
needs.

Tale one: Down the Rabbit-Hole
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3.1 Introduction to Proofs and Arguments.
In modern cryptography, proofs play an essential dual role. Not only are they at the heart
of provable security, but they are also both an important subject of study of cryptography
and an important tool to construct advanced cryptosystems or cryptographic protocols.
Proof systems introduced by [GMR89] are fundamental building blocks in cryptography.
Extensively studied aspects of proof systems are the expressivity of provable statements and
their efficiency.
Complexity Classes. In order to better understand the role of proofs and their classification,
we will briefly and informally introduce some basic complexity notions. The complexity
classes will be defined by the type of computational problem, the model of computation, and
the resource that are being bounded and the bounds. The resource and bounds are usually
stated together, such as ”polynomial time”, ”logarithmic space”, ”constant depth”, etc. We
will introduce the main two fundamental complexity classes, P and NP. They are used to
classify decision problems.
P versus NP. On the one hand, the class P is the class of languages L, such that there exists
an algorithm that takes as input a bit string x and that can decide in polynomial time (in
the size of x), whether x ∈ L. We generally consider this class as the class of easy-to-decide
languages and call them polynomial-time algorithms, efficient algorithms.
On the other hand, the class NP is the class of languages L, such that there exists an

algorithm, that takes as input two bit strings x and w and that can decide in polynomial
time (in the size of x), whether w is a valid proof or witness that x ∈ L. We suppose that for
any statement x ∈ L, there exists such a witness w, while otherwise (x /∈ L) no such witness
exists. A formal definition is stated as follows:

Definition 3.1.1 (The Class NP). A language L is in the class NP if there exists a polynomial
time algorithm RL such that

L = {x|∃ w, |w| = poly(|x|) ∧RL(x,w) = 1}.

By restricting the definition of NP to witness strings of length zero, we capture the same
problems as those in P. While the class P is clearly included in NP, finding whether NP is
included in P is one of the most important open problems in computer science.

It basically asks whether being able to efficiently check a proof of a statement, is equivalent
to being able to check if a statement is true or false efficiently. Even if we don’t have any
clear evidence for that, most researchers strongly believe that P 6= NP.

In cryptography, considerable atention is given to the NP-hard complexity class. NP-hard
is the defining property of a class of problems that are, informally, ”at least as hard as the
hardest problems in NP”.
We will often talk about NP-complete decision problems, the ones belonging to both the

NP and the NP-hard complexity classes.
Example: Satisfiability Problems SAT. As an example for a problem in NP, let us consider
the problem of boolean formula satisfiability (SAT). For that, we define a boolean formula
using an inductive definition:
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• any variable x1, x2, x3, . . . is a boolean formula
• if f is a boolean formula, then ¬f is a boolean formula (negation)
• if f and g are boolean formulas, then (f∧g) and (f∨g) are boolean formulas (conjunction

/ and, disjunction / or).
The string ((x1 ∧ x2) ∧ ¬x2) would be a boolean formula.

A boolean formula is satisfiable if there is a way to assign truth values to the variables so
that the formula evaluates to true. The satisfiability problem SAT is the set of all satisfiable
boolean formulas: SAT(f) := 1 if f is a satisfiable boolean formula and 0 otherwise.
The example above, ((x1 ∧ x2) ∧ ¬x2), is not satisfiable and thus does not lie in SAT.

The witness for a given formula is its satisfying assignment and verifying that a variable
assignment is satisfying is a task that can be solved in polynomial time.
The attractive property of this seemingly simple problem is that it does not only lie in

NP, it is also NP-complete. It means that it is one of the hardest problems in NP, but more
importantly – and that is the definition of NP-complete – an input to any problem in NP
can be transformed to an equivalent input for SAT in the following sense:
For any NP -problem L there is a so-called reduction function f , which is computable in

polynomial time such that:

L(x) = SAT(f(x)).

Such a reduction function can be seen as a compiler: It takes source code written in some
programming language and transforms it into an equivalent program in another programming
language, which typically is a machine language, which has the same semantic behaviour.
Since SAT is NP-complete, such a reduction exists for any possible problem in NP.

Computational problems inside NP can be reduced to each other and, moreover, there are
NP-complete problems that are basically only reformulations of all other problems in NP.
In the following section, we will discuss some other characterisations of NP class, such as

Probabilistically Checkable Proofs (PCP) or (Boolean or Arithmetical) Circuit Satisfiability
(Circuit-SAT).

3.1.1 Interactive Proofs
By Definition 3.1.1, the class NP contains all languages for which an unbounded prover can
compute deterministic proofs, where a proof is viewed as a string of length polynomial in
the statement x. An interactive proof relaxes these requirements in two directions: first, the
parties are allowed to use random coins, second, the output of a proof verification should
only match the actual truth of the statement with some reasonable enough probability and
obviously, there is interaction between parties.
First Interactive Proofs. In two independent seminal papers, that won a Gödel prize, Babai
[Bab85] and Goldwasser, Micali, and Rackoff [GMR85] introduced the notion of interactive
proofs also known as Arthur-Merlin proofs.
Both works studied complexity classes where a computationally unbounded prover must

convince a polynomially bounded receiver of the truth of a statement using rounds of
interactions. The main difference between the notions studied in these papers is regarding
the random coins of the verifier: in the work of Babai, the verifier was required to reveal
to the prover all coins that he used during the computation. Such interactive proofs are
referred to as public coin interactive proofs, as opposed to private coin interactive proofs, in
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which the verifier might keep its internal state hidden. The complexity classes corresponding
to public coin interactive proofs were denoted AM [f(n)] by Babai, where AM stands for
Arthur-Merlin, n is the input length, and f(n) is the allowed number of rounds of interaction.
The complexity classes corresponding to private coin interactive proofs were denoted IP [f(n)]
by Goldwasser, Micali, and Rackoff.

Zero-Knowledge. As pointed out by Goldwasser, Micali, and Rackoff in their seminal paper
[GMR85], an essential question about interactive proofs in cryptography is whether the
prover reveals more information (or knowledge) to the verifier than the fact that x ∈ L.
Indeed, in cryptography, we often want to hide information. A proof that does not reveal any
information to the verifier besides the membership of the statement to the language is called
a zero-knowledge proof. A way to formally define this property is to consider a simulator
that is able to behave exactly as the prover in the protocol and to produce a ”fake” proof
without knowing the witness. This should be done in a way that a verifier will not be able to
tell if it interacts with the real prover or with this simulator. Intuitively, we can then argue
that a honestly generated proof looks indistinguishable from a simulated value produced
independently of the witness, meaning that the proof reveals as much information about the
witness as this value, so basically zero-knowledge.

This concept might seem very counter-intuitive and impossible to achieve. However, in
[GMW86], Goldreich, Micali, and Wigderson constructed zero-knowledge proofs for any
language in NP, under a very weak assumption, namely the existence of one-way functions.

Succinct Arguments. Related to efficiency and to optimization of communication complexity,
it has been shown that statistically-sound proof systems are unlikely to allow for significant
improvements in communication [BHZ87, GH98, GVW02, Wee05]. When considering proof
systems for NP this means that, unless some complexity-theoretic collapses occur, in a
statistically sound proof system any prover has to communicate, roughly, as much information
as the size of the NP witness. The search for ways to beat this bound motivated the study of
computationally-sound proof systems, also called argument systems [BCC88], where soundness
is required to hold only against computationally bounded provers. Assuming the existence of
collision-resistant hash functions, Kilian [Kil92] showed a four-message interactive argument
for NP. In this protocol, membership of an instance x in an NP language with NP machine M
can be proven with communication and verifier’s running time bounded by p(λ, |M |, |x|, log t),
where λ is a security parameter, t is the NP verification time of machine M for the instance
x, and p is an universal polynomial. Argument systems of this kind are called succinct.

Zero-Knowledge Proofs and Arguments. A zero-knowledge proof or its relaxed version,
argument, is a protocol between a prover P and a verifier V for proving that a statement x
is in a language L. Informally, such a protocol has to satisfy three properties:

Completeness. An honest verifier always accepts a proof made by an honest prover for a
valid word and using a valid witness.

Soundness. No unbounded/PPT adversary can make an honest verifier accept a proof of
a word x ∈ L either statistically (for zero-knowledge proofs)/computationally (for
zero-knowledge arguments).

Zero-knowledge It is possible to simulate (in polynomial-time) the interaction between
a (potentially malicious) verifier and an honest prover for any word x ∈ L without
knowing a witness w.
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Honest-Verifier Zero-Knowledge. Honest-verifier zero-knowledge arguments or proofs are
similar to the ones defined above, except that we assume that the verifier is not malicious.
The zero-knowledge property applies only to verifiers that behave honestly and follow the
protocol. This relaxation enables to construct even more efficient schemes.

3.1.2 Interactive Arguments of Knowledge

The proofs and arguments we discussed in the previous section are tools used for membership
statements, i.e., proving membership of an instance x in a language L. Restricting our
attention to NP-languages, such statements can be phrased as existential statements, of the
form ∃w,RL(x,w) = 1. Proofs of knowledge strengthen the security guarantee given by
classical zero-knowledge proofs. While a zero-knowledge proof suffices to convince the verifier
of the existence of a witness w for the statement, a proof of knowledge additionally shows
that the prover knows such a witness.
Several remarks are in order here. First, we have to define what it means for a prover to

know such a witness. Intuitively, to make sure a prover has used the witness, it should be
possible to ”extract” this knowledge from that prover. Informally, this is done as follows: we
say that an (efficient) algorithm A knows a value w if we can build a simulator Sim that, for
any such A that produces an accepting transcript, Sim can extract the witness w from its
interaction with A.
Second, an important property of proofs of knowledge is that they can make sense even

for statements that are trivial from an existential point of view, i.e., for trivial languages for
which a membership witness always exists, but can be hard to compute. We illustrate this
with a classical example:

Example 3.1.2 (Discrete Logarithm Language). Let LDLog(G, g) denote, for a cyclic group
(G, ·) with a generator g, the following language:

LDLog(G, g) = {h ∈ G|∃ x ∈ Z, gx = h} .

As g is a generator of G, this is a trivial language: all elements of G belong to LDLog,
∀ h ∈ G,∃ x ∈ Z such that gx = h, and this exponent x is not unique. However, computing
such an integer x can be computationally infeasible (see the discussion on the discrete
logarithm assumption, Section 2.3.1). Therefore, while asking a prover to show the existence
of the discrete logarithm of some word h is meaningless, convincing a verifier that a prover
knows the discrete logarithm of h in base g gives him a piece of non-trivial information.

Sigma-Protocols. In this part we will describe a specific class of zero-knowledge proof systems
to which very efficient zero-knowledge protocols from the literature belong: Σ-protocols
[CDS94].

Definition 3.1.3 (Sigma-Protocol). A Σ-protocol for a language L is a public-coin honest-
verifier zero-knowledge proof of knowledge, with a particular three-move structure:

Commit Phase. P sends to V some commitment values to some randomness,
Challenge Phase. V sends to P a uniformly random challenge e,
Response Phase. P sends to V an answer f(w, r, e) where f is some public function, and w

is the witness held by P
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Example: The Schnorr Protocol. In Example 3.1.2, we were mentioning the possibility to
prove knowledge of the discrete logarithm of some group element h in some base g, where g is
the generator of some group G. We now elaborate on this example by describing a Σ-protocol
for proving knowledge of a discrete logarithm. The protocol is given in Figure 3.1. It was
first described in [Sch90], and it is commonly used as an authentication protocol: given a
public value h, the prover authenticates himself by proving his knowledge of the secret value
x associated to this public value (i.e., x is such that gx = h for a fixed generator g).

Prover Verifier
(x=logg h)

r←$Zp
a← gr

a−−−−→
e←−−−− e←$Zp

σ ← ex+ r
σ−−−−→ gσ

?= hea

Figure 3.1: Schnorr Σ-Protocol for DLog Language.

Rewinding. The standard solution to prove the security of Σ-protocols is to use a technique
called rewinding. The simulator will run the code of the prover, feeding it with the verifier
inputs it requires, and then rewind it to some previous state so as to feed it with different
inputs. By doing so, the simulator will be able to get several outputs of the prover with
respect to different verifier inputs, starting from some common state of the prover. Intuitively,
this allows the simulator to cancel out some randomness that had been introduced by the
prover to mask its witness.
Security Analysis (Sketch). We show that the protocol given in figure Figure 3.1 is perfectly
complete, knowledge-extractable, and honest-verifier zero-knowledge.

Perfect completeness. It follows immediately by inspection: if σ = ex + r mod p, then
gσ = gex+r = (gx)egr = hea.

Honest-verifier zero-knowledge. Let Sim be a simulator which is given the common input
(G, g, h) and the code of the verifier. Sim selects a uniformly random tape for the verifier
algorithm and runs it with this random tape on a random input message a ∈ G. Once
the Verifier outputs a challenge e, Sim restarts the protocol, feeding Verifier algorithm
with the same random tape and setting the input message a to grh−e for a uniformly
random r. Note that a is distributed exactly as in an honest execution of the protocol.
After the verifier outputs the challenge e (the verifier is assumed honest, so it uses only
the coins of his random tape. Hence, this challenge is the same than the one extracted
by Sim in the previous run of the verifier), Sim answers with σ := r. Observe that the
equation gσ = hea is satisfied for the chosen values of σ and a, and that the answer
is distributed exactly as in an honest run, hence the honest-verifier zero-knowledge
property.

Knowledge-extraction. Consider a prover that runs in time T and produces an accepting
answer with non-negligible probability ε, and let Sim′ be a simulator which is given
the code of the prover as input. Once the prover outputs the first flow a, Sim′ writes a
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random e ∈ Zp on its message input tape, and gets an answer σ. Then, Sim′ rewinds
the prover to step 2 of the protocol, feeding it with a new random e′ and receiving a
corresponding new answer σ′. Observe that if both (σ, σ′) are accepting answers, it
holds that gσ = hea, gσ

′ = he
′
a, which gives gσ−σ′ = he−e

′ = (gx)e−e′ . In this case,
Sim′ can obtain x by computing (σ − σ′)(e − e′)−1 (mod p) (as we have e 6= e′ with
overwhelming probability). We argue the simulator Sim′ for a prover that runs in time
T and has success probability ε runs in O(T/ε) (the simulator repeats the rewinding
procedure at most 1/ε times).

3.1.3 Non-Interactive Proofs and Arguments

As we have seen previously, interactive proofs can be understood as a relaxation of the
standard non-interactive proofs (captured by the class NP), where we allow interaction (as
well as random coins) between the verifier and the prover. In this section, we will focus
on protocols that do not require more communication, than a sole message from prover to
verifier. In a non-interactive proof or argument, the prover just sends one message (called
the proof) to the verifier, and the latter can check it in order to accept it or not. This proof
is similar to a witness of an NP language, except that sending a witness often gives too much
knowledge to the verifier.

Non-Interactive Zero-Knowledge. Zero-knowledge proofs are randomized interactive proof
systems satisfying a specific zero-knowledge property. All the results mentioned previously
relied on interactive protocols with strong security guarantees without making any trust
assumption whatsoever. This is known as the standard model (see Section 2.2.2), and it
provides the highest real-world security guarantees in an adversarial context. However, the
absence of any form of trust strongly narrows the range of feasibility results: several desirable
properties, either related to the security or to the efficiency of interactive proof systems, are
proved impossible to achievable in the standard model. Consider the important question of
building zero-knowledge proofs with a small number of rounds of interaction. We know that
there is no hope of building a zero-knowledge proof system in the standard model with a
single round of interaction for non-trivial languages [GO94], and strong limitations are also
known for two rounds of interaction [GO94, BLV03].
A natural theoretical question is to ask whether there are zero-knowledge randomized

proofs that are completely non-interactive (no round of interaction is needed). Such systems
are called non-interactive zero-knowledge proof systems (NIZK). This question is also very
interesting from a practical point of view: in the real world, interactivity means exchanging
information over some network, which raises some latency issues. Other motivations for
NIZK proofs are their applications to numerous cryptographic primitives.

Common Reference String. In light of the strong limitations discussed above, an interesting
research direction is to find the minimal trust assumptions one could make that lead to a
model in which practically efficient NIZK proof systems can be built. Some impossibility
results and studies of lower-bounds were shown for various models, we refer to [Wee07] for
more details. The common reference string model (CRS) described in Section 2.2.2 has
proven very convenient to use for constructing a large variety of efficient primitives with
strong security requirements. In this model, the prover and the verifier both have access
to a common bit string chosen by some trusted party. In practice, such a bit string can be
generated by a multi-party computation between users who are believed not to collude.
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First NIZK Schemes. Blum et al. first study the non-interactive zero-knowledge proof
system and present the common reference string model that is generally applied at present
[BFM88, DMP90]. This first construction of [BFM88] is a bounded NIZK proof system,
meaning that for different statements in NP language, the proof system has to use different
CRSs and the length of the statement is controlled by the length of CRS.

Later, Blum et al. [DMP90] presented a more general (multi-theorem) NIZK proof system
for 3SAT by improving the previous one, which allows to prove many statements with the
same CRS.
Both [BFM88] and [DMP90] based their NIZK systems on certain number-theoretic

assumptions (specifically, the hardness of deciding quadratic residues modulo a composite
number). Feige, Lapidot, and Shamir [FLS90] showed later how to construct computational
NIZK proofs based on any trapdoor permutation.
Much research has been devoted to the construction of efficient NIZK proofs [Dam93,

KP98, BDP00], but back then, the only known method to do so has been the ”hidden random
bits” model. This hidden random bits model assumes the prover has a string of random
bits, which are secret to the verifier. By revealing a subset of these bits, and keeping the
rest secret, the prover can convince the verifier of the truth of the statement in question.
Improvements in the efficiency of NIZK proofs have come in the form of various ways to set
up a hidden random bits model and how to use it optimally.

Groth-Sahai Proofs. For a long time, two main types of NIZK proof systems were available:
efficient but heuristically secure proof systems in the random oracle model and inefficient
proof systems in the hidden random bits model [FLS90, Dam93, KP98, BDP00], which can
be instantiated in the standard model, under well-studied assumptions. This changed with
the arrival of pairing-based cryptography, from which a fruitful line of work (starting with
the work of Groth, Ostrovsky, and Sahai [GOS06b, GOS06a]) introduced increasingly more
efficient NIZK proof systems in the standard model.

The Groth-Ostrovsky-Sahai proof system was the first perfect NIZK argument system for
any NP language and the first universal composability secure NIZK argument for any NP
language. This resolved a central open problem concerning NIZK protocols. The mechanism
was dramatically different from the previous works, such as Blum-Feldman-Micali proof
system [BFM88] and Blum-Santis-Micali-Persiano proof system [DMP90].
This line of work culminated with the framework of Groth-Sahai proofs [GS08], which

identified a restricted, yet very powerful class of languages for which efficient pairing-based
NIZK could be designed, with security based on essentially any standard assumption on
pairing-friendly groups. This framework greatly improved the efficiency and practicability of
NIZK and created a new line of research on the applications of NIZK.

Nevertheless, these schemes pose a limitation on the length of the proof statement in order
to achieve adaptive soundness against dishonest provers who may choose the target statement
depending on the CRS. Since the common reference string is public, it would be more natural
to define soundness adaptively.
The first adaptively-sound statistical NIZK argument for NP that does not pose any

restriction on the statements to be proven requires non-falsifiable assumptions (see [AF07]).
Abe and Fehr [AF07] have demonstrated also an impossibility result: no adaptively-sound
statistical zero-knowledge NIZK argument for an NP-complete language can have a ”direct
black-box” security reduction to a standard cryptographic assumption unless NP ⊆ P/poly.
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Fiat-Shamir Heuristic. The Fiat-Shamir heuristic [FS87] is a heuristic method to convert
Σ-protocols (see Section 3.1.2) into non-interactive zero-knowledge proofs. It proceeds as
follows: to prove the membership of an instance x to a language L the prover first computes
the first flow (the commitments) of a Σ-protocol for this statement. Let a denote this first
flow. Then, the prover sets e ← RO(x, a), where RO is some hash function modeled by a
random oracle, and computes the last flow (step 3 of the Σ-protocol), using e as the challenge.
While this approach leads to very efficient NIZKs, it cannot be proven to work under any
standard assumption related to hash functions. Instead, the above methodology can be
proven to work only in the random oracle model (see Section 2.2.2 for details). This model
has its disadvantages, as it is seen more as heuristically secure since no trully random hash
functions can be used in practice. Some failures of the random oracle methodology when
implemented in practice are shown in [CGH98].

Still, an open question is whether there exist concrete hash families that are ”Fiat-Shamir-
compatible” (i.e., that can guarantee soundness and potentially also zero-knowledge for the
transformed protocol). Initial results in this direction were negative. Indeed, Goldwasser and
Kalai [GK03] (following Barak [Bar01]) demonstrated a three-round, public-coin argument
scheme for which applying the Fiat-Shamir transform with any hash family never yields a
sound protocol. Furthermore, Bitansky et al. [BDG+13] show that, even when starting with a
three-round proof, soundness of the Fiat-Shamir transform with a concrete hash family cannot
be proved via black-box reduction to standard, game-based assumptions. In contrast, a recent
line of work [KRR17, CCRR18, HL18] circumvents the [BDG+13] impossibility result by using
stronger than standard hardness assumptions to construct FS-compatible hash families. Kalai
et al. [KRR17] gave the first construction of a hash family that is FS-compatible for arbitrary
constant-round (public-coin) interactive proofs, albeit from complex obfuscation assumptions.
Canetti et al. ([CCRR18]) then provide alternative families without obfuscation, but using
complex KDM-security assumptions on secret-key encryption schemes. It is important to
remark that the assumptions made by [KRR17, CCRR18] are non-falsifiable and highly
complex in the following sense: both involve an adversary that is in part computationally
unbounded.
In two recent companion articles, Canetti et al. [CCH+18, CLW18] construct explicit

hash functions that are FS-compatible for a rich class of protocols, and they prove their
security under assumptions that are qualitatively weaker than what was previously known.
Using these hash families, new results can be obtained for delegation of computation and
zero-knowledge.

SNARG: Succinct Non-Interactive Arguments. Starting from Kilian’s protocol, Micali
[Mic94] used the Fiat-Shamir heuristic to construct a one-message succinct argument for NP
whose soundness is set in the random oracle model. New more efficient systems followed
in the CRS model, they are called succinct non-interactive arguments (SNARGs) [GW11].
The area of SNARGs became quite popular in the last years with the proposal of several
constructions in the standard model, some of which gained significant improvements in
efficiency [Gro10, Lip12, BCCT12, GGPR13, PHGR13, BCG+13, DFGK14, Gro16].

Non-Falsifiable Assumptions. Noteworthy is that all SNARG constructions are based on
non-falsifiable assumptions [Nao03b], a class of assumptions that is likely to be inherent in
proving the security of SNARGs (without random oracles), as stated by Gentry and Wichs in
their work [GW11]. They show that no construction of SNARGs can be proven secure via a
black-box reduction from any falsifiable assumption (unless that assumption is already false).
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IP ZK-ARG KNL NIZK SNARK Post-Q
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Figure 3.2: Proof systems. Some of the results mentioned in this chapter: Interactive schemes,
starting with proofs (IP), zero-knowledge proofs and arguments (ZK-ARG),
arguments of knowledge (KNL), then non-interactive zero-knowledge (NIZK),
SNARKs and post-quantum schemes.

Knowledge Soundness. SNARGs have also been strengthened to become succinct non-
interactive arguments of knowledge (SNARKs) [BCCT12, BCC+14]. SNARKs are SNARGs
where computational soundness is replaced by knowledge soundness. Intuitively speaking,
this property says that every prover producing a convincing proof must “know” a witness.
On the one hand, knowledge soundness turns out to be useful in many applications, such
as delegation of computation where the untrusted worker contributes its own input to the
computation, or recursive proof composition [Val08, BCCT13].

On the other hand, the formalization of knowledge soundness in non-interactive protocols is
a delicate point since rewinding techniques mentioned in Section 3.1.2 do not apply anymore.
Typically, the concept that the prover ”must know” a witness is expressed by assuming
that such knowledge can be efficiently extracted from the prover by means of a so-called
knowledge extractor. In SNARKs, extractors are inherently non-black-box, and the definition
of knowledge soundness requires that for every adversarial prover A generating an accepting
proof π there must be an extractor EA that, given non-black-box access to A (e.g., by getting
the same input and the code of A), outputs a valid witness.

Post-Quantum Proof Systems. Almost all the proof systems mentioned so far are based on
discrete-log type assumptions, that do not hold against quantum polynomial-time adversaries
[Sho99], hence the advent of general-purpose quantum computers would render insecure the
constructions based on these assumptions. Efforts were made to design such systems based
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on quantum resilient assumptions. We note that the original protocol of Micali [Mic94] is a
zk-SNARK which can be instantiated with a post-quantum assumption since it requires only
a collision-resistant hash function – however (even in the best optimized version recently
proposed in [BSBHR18]) the protocol does not seem to scale well for even moderately complex
computations.

Some more desirable assumptions that withstand quantum attacks are the aforementioned
lattice assumptions [Ajt96, MR04]. Nevertheless, few non-interactive proof systems are built
based on lattices. Some recent works that we can mention are the NIZK constructions
for specific languages, like [KW18, LLNW18, BBC+18] and the two designated verifier
SNARG constructions [BISW17, BISW18], designed by Boneh et al. using encryption
schemes instantiated with lattices. We introduce in this thesis (in Chapter 4) the first
lattice-based designated-verifier zk-SNARK [GMNO18] that assumes weaker properties on
the encryption schemes than the non-interactive argument of Boneh et al. and additionally
achieves knowledge-soundness.

3.2 SNARK: Definitions

The Universal Relation and NP Relations. A difficulty that arises when studying the efficiency
of proofs for arbitrary NP statements is the problem of representation. Proof systems are
typically designed for inconvenient NP-complete languages such as circuit satisfiability or
algebraic constraint satisfaction problems, while in practice, many of the problem statements
we are interested in proving are easier (and more efficient) to express via algorithms written
in a high-level programming language. Modern compilers can efficiently transform these
algorithms into a program to be executed on a random-access machine (RAM) [CR72, AV77].
Therefore, we choose to define SNARK protocols that efficiently support NP statements
expressed as the correct execution of a RAM program.
We recall the notion of universal relation from [BG08], here adapted to the case of

non-deterministic computations.

Definition 3.2.1. The universal relation is the set RU of instance-witness pairs (u,w) =
((M,x, t), w), where |u|, |w| ≤ t and M is a random-access machine such that M(x,w) accepts
after running at most t steps. The universal language LU is the language corresponding to
RU .

For any constant c ∈ N, Rc denotes the subset of RU of pairs (u,w) = ((M,x, t), w)
such that t ≤ |x|c. Rc is a “generalized” NP relation that is decidable in some fixed time
polynomial in the size of the instance.
Universal Arguments vs. Weaker Notions. A SNARK for the relation R = RU is called a
universal argument. In the definition of RU we can replace the RAM machine M by a Turing
machine, depending on the wished applications.
A weaker notion that we will also consider is a SNARK for the relation R = Rc for a

constant c. A SNARK can also be defined for a specific efficiently decidable binary relation
R, or for a boolean or arithmetic circuit C. We will consider such definitions in some sections
of this thesis, and we will mention if an adaptation for the specific settings is necessary.
Universal SNARK. We choose here to introduce the very general definition of universal
SNARKs, only parametrized by a time bound T .
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Definition 3.2.2 (SNARK for NP [BCC+14]). A SNARK is defined by three algorithms:

Gen(1λ, T )→ (vrs, crs): on input a security parameter λ ∈ N and a time bound T ∈ N, this
algorithm outputs a common reference string crs and a verification state vrs.;

Prove(crs, u, w)→ π: given a prover reference string crs, a statement u and a witness w s.t.
(u,w) ∈ R, this algorithm produces a proof π;

Ver(vrs, u, π)→ b: on input a verification state vrs, an instance u, and a proof π, the verifier
algorithm outputs b = 0 (reject) or b = 1 (accept);

satisfying completeness, succinctness, knowledge-soundness as described below:

COMPLΠ,A

(crs, vrs)← Gen(1λ, T )
(u,w)← A(crs)
π ← Prove(crs, u, w)
return

(
R(u,w) = 1

∧ Ver(vrs, u, π) = 0
)

KSΠ,A,EA

(crs, vrs)← Gen(1λ, T )
(u, π;w)← (A‖EA)(crs, z)
return

(
R(u,w) = 0

∧ Ver(vrs, u, π) = 1
)

ZKΠ,Sim,A

(crs, vrs)← Gen(1λ, T )
(crs, td)← Simcrs(1λ, T )
b←$ {0, 1}
if b = 1 π ← Prove(crs, u, w)
if b = 0 π ← Simproof(td, u)
b′ ← A(vrs)
return (b = b′)

Figure 3.3: Games for completeness, knowledge soundness, and zero-knowledge .

• Completeness. For every time bound T ∈ N, and any PPT adversary A:

Advcompl
Π,A := Pr

[
COMPLΠ,A(λ) = true

]
= negl,

where COMPLΠ,A(λ) is the game depicted in Figure 3.3.

• Succinctness. There exists a fixed polynomial p(·) independent of R such that for every
large enough security parameter λ ∈ N, every time bound T ∈ N, and every instance
y = (M,x, t) such that t ≤ T , we have

– Gen runs in time
{
p(λ+ log T ) for a fully-succinct SNARG
p(λ+ T ) for a pre-processing SNARG

– Prove runs in time
{
p(λ+ |M |+ |x|+ t+ log T ) for fully-succinct SNARG
p(λ+ |M |+ |x|+ T ) for pre-processing SNARG

– Ver runs in time p(λ+ |M |+ |x|+ log T )
– a honestly generated proof has size |π| = p(λ+ log T ).

• Knowledge Soundness. For every PPT adversarial proverA, there exists a PPT extractor
EA such that for every large enough λ ∈ N, every benign auxiliary input z ∈ {0, 1}poly(λ),
and every time bound T ∈ N, for the relation R it holds:

Advks
Π,A,EA := Pr

[
KSΠ,A,EA(λ) = true

]
= negl,
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where KSΠ,A,EA(λ) is defined in Figure 3.3.
We call a zk-SNARK, a SNARK for which the zero knowledge property holds:

• Statistical Zero-knowledge. There exists a stateful interactive polynomial-size simulator
Sim = (Simcrs, Simproof) such that for every large enough security parameter λ ∈ N,
auxiliary input z ∈ {0, 1}poly(λ), time bound T ∈ N and relation R and for all stateful
interactive distinguishers A, ∀ (u,w) ∈ R :

Advzk
Π,Sim,A := Pr

[
ZKΠ,Sim,A(λ) = true

]
= negl,

where ZKΠ,Sim,A(λ) is defined in Figure 3.3.

Adaptive Soundness. A SNARG is called adaptive if the prover can choose the statement u
to be proved after seeing the reference string crs and the argument remains sound.

SNARG vs. SNARK. If we replace the Knowledge Soundness with the following weaker
property, (adaptive) soundness we obtain what we call a SNARG, a succinct non-interactive
argument:

• Adaptive Soundness. For every PPT adversarial prover A there is a negligible function
ε(λ) such that for every time bound T ∈ N,

Pr
[

Ver(vrs, u, π) = 1 (crs, vrs)← Gen(1λ, T )
∧ u 6∈ LR (u, π)← A(crs)

]
≤ ε(λ)

The adaptive soundness is a weaker security notion than the adaptive knowledge soundness.

Publicly verifiable vs. Designated Verifier. In the same line of past works [DFGK14, ABLZ17,
Fuc18], we will assume for simplicity that crs can be extracted from the verification key vrs.

If security (adaptive KS) holds against adversaries that also have access to the verification
state vrs, then the SNARK is called publicly verifiable; otherwise it is designated verifier.

SNARK Constructions. The framework for constructing SNARKs starts with finding a ”good”
characterization of the complexity class NP and take advantage of its specific properties for
applying some compression techniques on top.
Indeed, by choosing a suitable NP-complete problem representation as in Section 3.1, we

are able to construct generic SNARK schemes for NP-complete languages. For example,
many SNARKs have as a departure point the circuit satisfiability (Circ-SAT) problem.
Circ-SAT problem is the decision problem of determining whether a given Boolean circuit
has an assignment of its inputs that makes the output true. Circ-SAT has been proven
to be NP-complete. Another very useful characterisation of the NP-complete class are
the Probabilistically Checkable Proofs (PCP). Using this characterisation, we can give
a framework for constructing SNARKs that was exploited by many works in the field
[Mic94, CL08, GLR11, BCCT12, DFH12, BSBHR18].

Since our contributions follow a different approach for constructing SNARKs, we will not
give all the technical details of this line of works. For the completeness of this short survey,
we will give an informal overview of some preliminary constructions and then we will focus
on the state of art, the SNARKs for circuits.
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3.3 SNARK: Construction from PCP
In this section, we provide some high level intuition for some notable SNARK construction
in the literature, introduced by the work ”The hunting of the SNARK” [BCC+14].
This methodology to construct SNARKs is based on PCP characterization of NP, and it

is first achieved in the random oracle model (ROM), which gave only heuristical security.
The idea is to apply the random-oracle-based Fiat-Shamir transform to Kilian’s succinct
PCP-based proof system [Kil92], achieving logarithmic proof size and verification time.

Later, the construction is improved by removing the use of the random oracles and replacing
them with extractable collision-resistant hash functions (ECRH).

We first informally introduce Probabilistically Checkable Proofs (PCP), a characterisation
of the NP-class.

3.3.1 Probabilistically Checkable Proofs
The original version of the PCP Theorem [ALM+98] states that proofs for any NP language
can be encoded in such a way that their validity can be verified by only reading a constant
number of bits, and with an error probability that is upper bounded by a constant. The class
PCP is a generalization of the proof verifying system used to define NP, with the following
changes:

Probabilistic Verifier. The verifier is probabilistic instead of deterministic. Hence, the verifier
can have different outputs for the same inputs x.

Random Access to the Proof. The verifier has random access to the proof string π. This
means each bit in the proof string can be independently queried by the verifier via a
special address tape: If the verifier desires say the i-th bit in the proof of the string, it
writes i in base-2 on the address tape and then receives the bit πi.

Constant Number of Queries. We are interested in probabilistic verification procedures
that access only a few locations in the proof [ALM+98], and yet are able to make a
meaningful probabilistic verdict regarding the validity of the alleged proof. Specifically,
the verification procedure should accept any valid proof (with probability 1) but rejects
with probability at least 1/2 any alleged proof for a false assertion.

Adaptiveness. Verifiers can be adaptive or non-adaptive. A non-adaptive verifier selects its
queries based only on its inputs and random tape, whereas an adaptive verifier can, in
addition, rely upon bits it has already queried in π to select its next queries.

The fact that one can (meaningfully) evaluate the correctness of proofs by examining
few locations in them is indeed surprizing and somewhat counter-intuitive. Needless to say,
such proofs must be written in a somewhat non-standard format, because standard proofs
cannot be verified without reading them in full (since a flaw may be due to a single improper
inference). In contrast, proofs for a PCP system tend to be very redundant; they consist of
superfluously many pieces of information (about the claimed assertion), but their correctness
can be (meaningfully) evaluated by checking the consistency of a randomly chosen collection
of few related pieces.

NP-proofs can be efficiently transformed into a (redundant) form that offers a trade-
off between the number of locations (randomly) examined in the resulting proof and the
confidence in its validity.

A more formal definition follows:
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Verifier V(x)
x ∈ {0, 1}n

r(n) random coins

π1

π2

π3

π4

...

πN−1

πN

proof π

q(n)
queries

Figure 3.4: A PCP verifier V for a language L with input x and random access to a string π.

Definition 3.3.1 (Probabilistically Checkable Proofs). Let L be a language and q, r : N→ N. A
probabilistically checkable proof system PCP(r(n), q(n)) for L is a probabilistic polynomial-time
oracle machine, called verifier and denoted V , that satisfies the following conditions:

Efficiency. On input a string x ∈ {0, 1}n, and given a random access to a string π called
the proof, V uses at most r(n) random coins and makes at most q(n) queries to locations of
π (see Figure 3.4). Then it outputs 1 (for “accept”) or 0 (for “reject”).
Completeness. For every x ∈ L there exists a proof string π such that, on input x and

access to oracle π, machine V always accepts x.
Soundness. For every x /∈ L and every proof string π, on input x and access to oracle π,

machine V rejects x with probability at least 1/2.

The error probability (in the soundness condition) of PCP systems can be reduced by
successive applications of the proof system. In particular, repeating the process for k times,
reduces the probability that the verifier is fooled by a false assertion to 2−k, whereas all
complexities increase by at most a factor of k. Thus, PCP systems of non-trivial query-
complexity provide a trade-off between the number of locations examined in the proof and
the confidence in the validity of the assertion.

We say that a language L is in PCP(r(n), q(n)) if L has a (cr(n), dq(n))-verifier V for some
constants c, d.

Theorem 3.3.2 (PCP Theorem [ALM+98]).

NP = PCP(logn, 1)



62 Chapter 3 Succinct Non-Interactive Arguments of Knowledge

Kilian Interactive Argument of Knowledge from PCP. When PCP theorem [ALM+98] camed
out, it revolutionized the notion of “proof” – making the verification possible in time
polylogarithmic in the size of a classical proof. Kilian adapted this PCP characterization
of NP to the cryptographic setting, showing that one can use PCPs to construct interactive
arguments (i.e., computationally sound proof systems [BCC88]) for NP that are succinct
– i.e., polylogarithmic also in their communication complexity. In his work [Kil92], Kilian
presents a succinct zero-knowledge argument for NP where the prover P uses a Merkle tree
(see definition in Section 2.4.1) in order to provide to the verifier V “virtual access” to a PCP
proof π. An example of such a Merkle tree is illustrated in Figure 3.5.
More precisely, to prove a statement x ∈ L we need the following interactions:
1. The verifier starts by sending the prover a collision resistant hash function (CRHF) H

(in the sense of Section 2.4.1).
2. The prover, on private input a witness w, constructs a PCP-proof π.

In order to yield efficient verifiability, P cannot send to V the witness w, nor π.
Instead, it builds a Merkle tree with the proof π as the leaf values (using the collision-
resistant hash function H from the verifier) producing a root value.
The prover sends this root to V as a commitment to π.

3. V tosses a fixed polynomial number of random coins and sends them to P .
4. Both the prover P and the verifier V compute the PCP queries by internally running

the PCP verifier on input x and root.
5. The prover P sends back answers to those queries, together with “proofs”– called

authentication paths – that each answer is consistent with the root of the Merkle tree.
6. Finally, the verifier accepts if all the answers are consistent with the root value, and

convinces the PCP. Kilian’s protocol is succinct, because the verifier V , invoking
the PCP verifier, makes only a fixed polynomial number of queries and each query is
answered with an authentication path of some fixed polynomial length, all independent
of the length of the witness.

At a very high-level, the soundness follows from the fact that the Merkle tree provides
the verifier “virtual access” to the PCP proof, in the sense that given the root value of the
Merkle tree, for every query q, it is infeasible for a cheating prover to answer q differently
depending on the queries. Therefore, interacting with the prover is “equivalent” to having
access to a PCP proof oracle. Then it follows from the soundness of the PCP system that
Kilian’s protocol is sound.

Micali CS proofs. Micali [Mic94] showed how to make interactive arguments non-interactive
by applying the Fiat-Shamir heuristic (see Section 3.1.3) to Kilian’s construction. The idea
was to apply a hash function, modeled as a random oracle, to its PCP string both as a form
of commitment and to non-interactively generate the verifier’s PCP queries.

Private Information Retrieval (PIR). The work of [CL08] proposed the PCP+MT+PIR
approach to “squash” Kilian’s four-message protocol into a two-message protocol. To
understand their techniques, we briefly define Private Information Retrieval (PIR) schemes.
A (single-server) polylogarithmic private information retrieval (PIR) scheme ([CMS99,

Lip05, GR05, BV11a]) allows a user to retrieve an item from a server in possession of a
database without revealing which item is retrieved.
One trivial, but very inefficient way to achieve PIR is for the server to send an entire

copy of the database to the user. There are two ways to address this problem: one is to
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Figure 3.5: A Merkle tree for commiting to the string π. Each inner node of the tree is
the hash value of the concatenation of its two children: hij = h(πi‖πj), Hik =
h(hij‖hj+1k), root = h(H14‖H58), for i, j, k ∈ [8].

make the server computationally bounded, and the other is to assume that there are multiple
non-cooperating servers, each having a copy of the database. We will consider the first one
that assumes bounded running times and succinctness of the server answers. More formally:

Definition 3.3.3 (Private Information Retrieval). A (single-server) polylogarithmic private
information retrieval (PIR) scheme consists of a triple of algorithms (PEnc,PEval,PDec) that
work as follow:

PEnc(1λ, i, r): outputs an encryption Ci of query i to a database DB using randomness r,
PEval(DB,Ci): outputs a succinct blob ei ”containing” the answer DB[i],
PDec(ei): decrypts the blob ei to an answer DB[i].
The three proprieties a PIR scheme should satisfy are corectness, succinctness (the running
time of both PEnc,PEval should be bounded) and semantic security, in the sense that the
encryptions of indexes i with the PEnc algorithm should not reveal information about their
value.
The PCP+MT+PIR Approach. We have seen that in Kilian’s protocol, the verifier obtains
from the prover a Merkle hash to a PCP oracle and only then asks the prover to locally open
the queries requested by the PCP verifier. In [CL08]’s construction, the verifier also sends in
the first message, a PIR-encrypted version of the PCP queries (the first message of a PIR
scheme can be viewed as an encryption to the queries); the prover then prepares the required
PCP oracle, computes and sends a Merkle hash of it, and answers the verifier’s queries by
replying to the PIR queries according to a database that contains the answer (as well as the
authentication path with respect to the Merkle hash) to every possible verifier’s query. Di
Crescenzo and Lipmaa proved the soundness of the above scheme based on the assumption
that any convincing prover P must essentially behave as an honest prover: Namely, if a
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proof is accepting, then the prover must have in mind a full PCP oracle, which maps under
the Merkle hash procedure to the claimed root, and such a proof π can be obtained by an
efficient extractor E .

They then showed that, if this is the case, the extracted string π must be consistent with
the answers the prover provides to the PCP queries, for otherwise the extractor can be used
to obtain collisions of the hash function underlying the Merkle tree. Therefore, the extracted
string π also passes the PCP test, where the queries are encrypted under PIR. Then, it follows
from the privacy of the PIR scheme that, the string π is “computationally independent” of
the query. Hence from the soundness of PCP, they conclude that the statement must be true.

3.3.2 SNARKs from PCP

We have mentioned two methodologies that can be applied to obtain SNARGs from PCPs,
one is the Fiat-Shamir heuristic in the random oracle model, the other is the PCP+MT+PIR
Approach. In both cases, we do not obtain knowledge soundness, but only plain adaptive
soundness. Recent works [GLR11, BCCT12, DFH12, BCC+14] have improved Micali’s
construction by adding knowledge soundness and removing the random oracles, replacing them
with “extractable collision-resistant hash functions” (ECRHs), a non-falsifiable extractability
assumption.

Extractable Collision-Resistant Hash. We start by defining a natural strengthening of
collision-resistant hash functions introduced in Section 2.4.1: the extractable collision-resistant
hash functions (ECRH). An ECRH function family satisfies the two following properties:

• it is collision-resistant in the standard sense 2.4.1,
• it is extractable in the sense that for any efficient adversary that is able to produce

a valid evaluation of the function there is an extractor that is able to produce a
corresponding preimage.

The ECRH+PIR Approach. The [BCC+14] construction obtains the stronger notion of
knowledge soundness arguments, SNARKs, and also a pre-processed protocol rather than
one-round of communication, based on the more restrictive assumption that ECRHs exist. At
a very high-level, their construction modifies the PCP+MT+PIR approach by replacing the
CRHF underlying the Merkle tree with an ECRH. The additional features of this modified
construction are:
(a) The verifier’s message can be generated offline independently of the theorem being

proved and thus we refer to this message as a verifier-generated reference string (VGRS);
(b) The input can be chosen adaptively by the prover based on previous information,

including the VGRS;
(c) The construction is an (adaptive) argument of knowledge;
(d) The running time of the verifier and the proof length are ”universally succinct”; in

particular, they do not depend on the specific NP-relation at hand.
On the other hand, the scheme is only designated-verifier.
The main challenges in [BCC+14] construction and the required modifications they make

to [CL08] are briefly mentioned in the following.
Extracting a witness. To obtain knowledge soundness, they first instantiate the underlying

PCP system with PCPs of knowledge, which allow for extracting a witness from any sufficiently-
satisfying proof oracle.
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Adaptivity. In their setting, the prover is allowed to choose the claimed theorem after
seeing the verifier’s first message (or, rather, the verifier-generated reference string). In order
to enable the (honest) verifier to do this, they PIR-encrypt the PCP verifier’s coins rather
than its actual queries (as the former are independent of the instance), and require the prover
to prepare an appropriate database (containing all the possible answers for each setting of
the coins, rather than a proof oracle).
From local to global extraction. Unlike [CL08], which directly assumed the ”global extraction”

guarantees from a Merkle tree, Bitansky et al. show that the ”local extraction” guarantee can
be lifted using ECRH functions instead of simple CRHF, to the ”global extraction” guarantee
on the entire Merkle tree. The main technical challenge in their construction is establishing
this ”global” knowledge feature, more precisely, to obtain an extracted PCP proof π that will
be sufficiently satisfying for extracting a witness from a very ”local” one (namely, the fact
that it is infeasible to produce images of the ECRH without actually knowing a preimage).
To achieve this, they start from the root of the Merkle tree and ”work back towards the

leaves”; that is, extract a candidate proof π by recursively applying the ECRH-extractor to
extract the entire Merkle tree, where the leaves should correspond to π. However, recursively
composing ECRH-extractors already encounters a difficulty: each level of extraction incurs a
polynomial blowup in computation size. Hence, without making a very strong assumption on
the amount of “blowup” incurred by the extractor, one can only apply extraction a constant
number of times. This problem is solved by replacing the binary Merkle tree with a squashed
Merkle tree, where the fan-in of each node is polynomial rather than binary as is usually the
case.
Knowledge Soundness. Given the previous discussion, knowledge soundness of the entire
scheme is shown in two steps:

Local Consistency. They show that whenever the verifier is convinced, the recursively
extracted string contains valid answers to the verifier’s PCP queries specified in its PIR
queries. Otherwise, it is possible to find collisions within the ECRH as follows. A collision
finder could simulate the PIR-encryption on its own, invoke both the extraction procedure
and the prover, and obtain two paths that map to the same root but must differ somewhere
(as one is satisfying and the other is not) and therefore obtain a collision.

From Local to Global Consistency. Next, using the privacy guarantees of the PIR scheme,
they show that, whenever one extracts a set of leaves that are satisfying with respect to the
PIR-encrypted queries, the same set of leaves must also be satisfying for almost all other
possible PCP queries and is thus sufficient for witness-extraction. Indeed, if this was not
the case then one would be able to use the polynomial-size extraction circuit to break the
semantic security of the PIR.

Furthermore, the [BCC+14] construction achieves a communication complexity and a
verifier’s time complexity bounded by a polynomial in the security parameter, the size of the
instance, and the logarithm of the time it takes to verify a valid witness for the instance,
obtaining a fully-succinct SNARK.
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3.4 SNARK: Construction from QAP

We will present here the methodology for building SNARKs common to a family of construc-
tions, some of which represent the state of the art in the field.
Most constructions and implementations of SNARKs [PHGR13, Lip13, DFGK14, Gro16,

GMNO18] have as a central starting point the framework based on quadratic programs
introduced by Gennaro et al. in [GGPR13]. This common framework allows to build
SNARKs for programs instantiated as boolean or arithmetic circuits.
This approach has led to fast progress towards practical verifiable computations. For

instance, using span programs for arithmetic circuits (QAPs), Pinocchio [PHGR13] provides
evidence that verified remote computation can be faster than local computation. At the
same time, their construction is zero-knowledge, enabling the server to keep intermediate
and additional values used in the computation private.
Optimized versions of SNARKs based on QAP approach are used in various practical

applications, including cryptocurrencies such as Zcash [BCG+14], to guarantee anonymity
via the ZK property while preventing double-spending.

Circuits and Circ-SAT Problem. A SNARK scheme for a circuit has to enable verification of
proofs for (Arithmetic or Boolean) Circ-SAT problem, i.e., a prover, given a circuit has to
convince the verifier that it knows an assignment of its inputs that makes the output true.
In the following definitions, we may see a circuit C as a logical specification of a satisfiability
problem.
Arithmetic Circuits. Informally, an arithmetic circuit consists of wires that carry values

from a field F and connect to addition and multiplication gates. See Figure 3.6 for an example.
Boolean Circuits. A boolean circuit consists of logical gates and of a set of wires between

the gates. The wires carry values over {0, 1}. See Figure 3.7 for an example.
Associated to any circuit, we define a satisfaction problem as follows:

Definition 3.4.1 (Circuit Satisfaction Circ-SAT). The circuit satisfaction problem of a circuit
C : Iu × Iw → {0, 1} is defined by the relation RC = {(u,w) ∈ Iu × Iw : C(u,w) = 1} and its
language is LC = {u ∈ Iu : ∃ w ∈ Iw, C(u,w) = 1}.

Standard results show that polynomially sized circuits are equivalent (up to a logarithmic
factor) to Turing machines that run in polynomial time, though of course the actual efficiency
of computing via circuits versus on native hardware depends heavily on the application; for
example, an arithmetic circuit for matrix multiplication adds essentially no overhead, whereas
a boolean circuit for integer multiplication is far less efficient.

3.4.1 From Circuits to Quadratic/Square Programs

Back in 2013, Gennaro, Gentry, Parno and Raykova [GGPR13] proposed a new, influential
characterization of the complexity class NP using Quadratic Span Programs (QSPs), a natural
extension of span programs defined by Karchmer and Wigderson [KW93].
Some variants and improvements of QSPs followed. In [Lip13], Lipmaa gave a class of

more efficient quadratic span programs by combining the existing techniques with linear
error-correcting codes.
Parno et al. [PHGR13] defined QAP, a similar notion for arithmetic circuits, namelly

Quadratic Arithmetic Programs.
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More recently, an improved version for boolean circuits, the Square Span Programs (SSP)
was presented by [DFGK14]. Naturally, this led to a simplified version for arithmetic circuits
in the same spirit, Square Arithmetic Programs (SAP), proposed in [GM17].
These are methods to compactly encode computations, so as to obtain efficient zero-

knowledge SNARKs.
The main idea is to represent each gate inputs and outputs as a variable. Then we may

rewrite each gate as an equation in some variables representing the gate’s input and output
wires. These equations are satisfied only by the values of the wires that meet the gate’s
logic or arithmetic specification. By composing such constraints for all the gates in the
circuit, a satisfying assignment for any circuit can be specified first as a set of quadratic
equations, then as a constraint on the span of a set of polynomials, defining the corresponding
Quadratic/Square Program for the circuit. As a consequence, the prover needs to convince the
verifier that all the quadratic equations are satisfiable by finding a solution of the equivalent
polynomial problem.
For the sake of completness, we will define here the two most popular languages for

SNARKs: Quadratic Arithmetic Programs, that are central to the most efficient SNARK
implementations known today and Square Span Programs, that are easy to understand,
efficient languages for boolean circuits.

Quadratic Arithmetic Programs (QAPs). Before formally defining QAPs, we walk through
the steps for encoding the toy example circuit in Figure 3.6 into an equivalent QAP.
First, we select two arbitrary values from some field F of order p: r5, r6 ∈ F to represent

the two multiplication gates (the addition gates will be compressed into their contributions
to the multiplication gates).
We define three sets of polynomials V = {vi(x)}, W = {wi(x)} and Y = {yi(x)}, i ∈ [6]

by letting the polynomials in V encode the left input into each multiplication gate, the W
encode the right input into each gate, and the Y encode the outputs. Thus, for the circuit in
Figure 3.6, we define six polynomials for each set V, W and Y , four for the input wires, and
two for the outputs from the multiplication gates.

We define these polynomials based on each wire’s contributions to the multiplication gates.
Specifically all of the vi(r5) = 0, except v3(r5) = 1, since the third input wire contributes to
the left input of c5’s multiplication gate. Similarly, vi(r6) = 0, except for v1(r6) = v2(r6) = 1,
since the first two inputs both contribute to the left input of c6’s gate. For W, we look
at right inputs. Finally, Y represents outputs; none of the input wires is an output, so
yi(r5) = yi(r6) = 0 for i ∈ [4] and y5(r5) = y6(r6) = 1. We can use this encoding of the
circuit to efficiently check that it was evaluated correctly.

More generally, we define a QAP, an encoding of an arithmetic function, as follows.

Definition 3.4.2 (QAP). A Quadratic Arithmetic Program Q over the field F contains three
sets of m + 1 polynomials V = {vi(x)}, W = {wi(x)} and Y = {yi(x)}, i ∈ {0, 1 . . .m}
and a target polynomial t(x). Suppose F is an arithmetic function that takes as input n
elements of F and outputs n′ elements, for a total of N = n + n′ I/O elements. Then,
(c1, . . . , cN ) ∈ FN is a valid assignment of F ’s inputs and outputs, if and only if there exist
coefficients (cN+1, ..., cm) such that t(x) divides p(x), where:

p(x) :=
(
v0(x) +

m∑
i=1

civi(x)
)
·
(
w0(x) +

m∑
i=1

ciwi(x)
)
−
(
y0(x) +

m∑
i=1

ciyi(x)
)
. (3.1)
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output

×

+

c1 c2

×

c3 c4

c5

c6

Roots Polynomials in QAP (V,W,Y, t(x))
Gates Left inputs Right inputs Outputs

v3(r5) = 1 w4(r5) = 1 y5(r5) = 1
r5 vi(r5) = 0, wi(r5) = 0, yi(r5) = 0,

i 6= 3 i 6= 4 i 6= 5
v1(r6) = v2(r6) = 1 w5(r6) = 1 y6(r6) = 1

r6 vi(r6) = 0, wi(r6) = 0, yi(r6) = 0,
i 6= 1, 2 i 6= 5 i 6= 6
t(x) = (x− r5)(x− r6)

Figure 3.6: Arithmetic Circuit and Equivalent QAP. The polynomials V = {vi(x)},W =
{wi(x)},Y = {yi(x)} and the target polynomial t(x) in the QAP are defined
in terms of their evaluations at the two roots, one for each multiplicaive gate,
r5, r6 ∈ F.

In other words, there must exist some polynomial h(x) such that h(x)t(x) = p(x). We say
that the QAP Q computes F . The size of Q is m, and the degree d is the degree of t(x).

In [PHGR13], the authors show that for any arithmetic circuit with d multiplication gates
and N I/O elements, one can construct an equivalent QAP with degree (the number of roots)
d and size (number of polynomials in each set) m = d+N . Note that addition gates and
multiplication-by-constant gates do not contribute to the size or degree of the QAP. Thus,
these gates are essentially ”free” in QAP-based SNARKs.

Building a QAP Q for a general arithmetic circuit C is fairly straightforward:
We pick an arbitrary root rg ∈ F for each multiplication gate g in C and define the target

polynomial to be t(x) = ∏
g(x− rg).

We associate an index i ∈ [m] to each input of the circuit and to each output from a
multiplication gate.
Finally, we define the polynomials in V,W and Y by letting the polynomials in V,W

encode the left/right input into each gate, and Y encode the outputs of the gates: vi(rg) = 1
if the i-th wire is a left input to gate g, and vi(rg) = 0 otherwise. Similarly, we define the
values of polynomials wi(rg) and yi(rg).

Thus, if we consider a particular gate g and its root rg, Equation (3.1) and the constraint
p(rg) = t(rg)h(rg) = 0 just says that the output value of the gate is equal to the product of
its inputs, the very definition of a multiplication gate.
For example, in the QAP for the circuit in Figure 3.6, if we evaluate p(x) at r5, we get

c3c4 = c5, which directly encodes the first multiplication gate, and similarly, at r6, p(x)
simplifies to (c1 + c2)c5 = c6, that is, an encoding of the second multiplication gate.

In short, the divisibility check that t(x) divides p(x) decomposes into d = deg(t(x)) separate
checks, one for each gate g and root rg of t(x), that p(rg) = 0.
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Span Square Programs (SSPs). Danezis et al. [DFGK14] found a way to linearize all logic
gates with fan-in 2 in a boolean circuit. This starts from the observation that any 2-input
binary gate g(a, b) = c with input wires a, b and output c can be specified using an affine
combination L = αa+ βb+ γc+ δ of the gate’s input and output wires that take exactly two
values, L = 0 or L = 2, when the wires meet the gate’s logical specification. This leads to an
equivalent single ”square” constraint (L− 1)2 = 1. We refer to Figure 3.7 for the truth table
and simple linearization of some gates in a toy example.

Composing such constraints, a satisfying assignment for any binary circuit can be specified
first as a set of affine map constraints, then as a constraint on the span of a set of polynomials,
defining the square span program for this circuit.

Due to their conceptual simplicity, SSPs offer several advantages over previous constructions
for binary circuits. Their reduced number of constraints lead to smaller programs, and to
lower sizes and degrees for the polynomials required to represent them, which in turn reduce
the computation complexity required in proving or verifying SNARKs.
Let C be a boolean circuit with m wires and n fan-in 2 gates. We formally define SSPs

(See [DFGK14]):

Definition 3.4.3 (SSP). A Square Span Program (SSP) S over the field F is a tuple consisting of
m+1 polynomials v0(x), . . . , vm(x) ∈ F[x] and a target polynomial t(x) such that deg(vi(x)) 6
deg(t(x)) for all i = 0, . . . ,m. We say that the square span program SSP has size m and
degree d = deg(t(x)). We say that SSP accepts an input c1, . . . , cN ∈ {0, 1} if and only if
there exist cN+1, . . . , cm ∈ {0, 1} such that t(x) divides p(x), where:

p(x) :=
(
v0(x) +

m∑
i=1

civi(x)
)2

− 1.

We say that SSP S verifies a boolean circuit C : {0, 1}N → {0, 1} if it accepts exactly those
inputs (c1, . . . , cN ) ∈ {0, 1}N , satisfying C(c1, . . . cN ) = 1.

Theorem 3.4.4 ([DFGK14, Theorem 2]). For any boolean circuit C of m wires and n fan-in 2
gates and for any prime p ≥ max(n, 8), there exist polynomials v0(x), . . . , vm(x) such that,
for any distinct roots r1, . . . , rd ∈ F, C is satisfiable if and only if:

d∏
i=1

(x− ri) divides p(x) :=
(
v0(x) +

m∑
i=1

civi(x)
)2

− 1,

where c1, . . . , cm ∈ {0, 1} correspond to the values on the wires in a satisfying assignment for
the circuit.

Define t(x) := ∏d
i=1(x− ri), then for any circuit C of m wires and n gates, there exists a

degree d = m+ n square span program S = (v0(x), . . . , vm(x), t(x)) over a field F of order p
that verifies C.

Building a SSP S for a general boolean circuit C : {0, 1}N → {0, 1} with m wires and n
fan-in 2 gates follows some simple steps (See Figure 3.7 for a toy example).

First, we represent an assignment to the wires of C as a vector c ∈ {0, 1}m. The assignment
is a satisfying witness for the circuit if and only if the inputs belong to {0, 1}, the inputs respect
all gates, and the output wire is 1. It is easy to impose the condition ci ∈ {0, 1}, ∀i ∈ [m]
by requiring 2ci ∈ {0, 2}. Scaling some of the gate equations from Figure 3.7 by a factor 2,
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output

c9

c8

c6

c1 c2

c7

c3 c4

c5

Linearization of logic gates
OR (c1 ∨ c2 = c6) AND (c3 ∨ c4 = c7)

c1 c2 c6 c3 c4 c7
0 0 0 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
1 1 1 1 1 1

−c1 − c2 + 2c6 ∈ {0, 1} c3 + c4 − 2c7 ∈ {0, 1}

XOR gate, input and output bits
XOR (c6 ⊕ c7 = c8) IN ({ci}8

i=1) OUT (c9)
c6 c7 c8 ci c9
0 0 0
0 1 1 ∈ {0, 1} 1
1 0 1
1 1 0

c6 + c7 + c8 ∈ {0, 2} 2ci ∈ {0, 2} 3− 3c9 ∈ {0, 2}

Figure 3.7: Boolean circuit and the linearization of its logic gates.

we can write all gate equations in the form L = αci + βcj + γck + δ ∈ {0, 2}. We want the
circuit output wire cout to have value 1. We do that by adding the condition 3− 3cout to the
linearization of the output gate.

We further define a matrix V ∈ Zm×d and b ∈ Zd such that cV + b ∈ {0, 2}d corresponds
to the linearization of the gates and of inputs/outputs as described above. The existence of c
such that cV + b ∈ {0, 2}d is equivalent to a satisfying assignment to the wires in the circuit.
We can rewrite this condition as

(cV + b) ◦ (cV + b− 2) = 0 ⇐⇒ (cV + b− 1) ◦ (cV + b− 1) = 1, (3.2)

where ◦ denotes the Hadamard product (entry-wise multiplication).
Next step consists in defining the polynomials {vi(x)}mi=0. Let r1, . . . rd be d distinct

elements of a field F of order p for a prime p ≥ max(d, 8). Define v0(x), v1(x), . . . vm(x) as
the degree d− 1 polynomials satisfying v0(rj) = bj − 1 and vi(rj) = Vi,j .

We can now reformulate condition 3.2 again: The circuit C is satisfiable if and only if there

exists c ∈ Fm such that for all rj :
(
v0(rj) +

m∑
i=1

civi(rj)
)2 = 1.

Since the evaluations in r1, . . . rd uniquely determine the polynomial vc(x) = v0(x) +∑m
i=1 civi(x) we can rewrite the condition 3.2:

d−1∏
i=1

(x− ri) divides
(
v0(x) +

m∑
i=1

civi(x)
)2

− 1.
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Proving on Top of Quadratic and Square Programs. Once we have stated the corresponding
quadratic/square span program associated to the (boolean or arithmetic) circuit, the steps in
building a proof protocol from this polynomial problem are the following:

Prover. The prover has to solve a SSP (or a QAP) that consists of a set of polynomials
{vi(x)} (or respectively {vi(x)}, {wi(x)}, {yi(x)}). In both cases, the task is to find
a linear combination {ci} of its input polynomials – vc(x) = v0(x) +∑

i civi(x) (and
wc(x), yc(x) for QAP) – in such a way that the polynomial p(x) defined by the program
is a multiple of another given polynomial t(x).
For a given input, the worker evaluates the circuit C directly to obtain the output and
the values of the internal circuit wires. These values correspond to the coefficients
{ci}mi=1 of the quadratic/square program.

Verifier. From the other side, the verification task consists of checking whether one poly-
nomial divides another polynomial. This can be facilitated by the prover if it sends
the quotient polynomial h(x) such that t(x)h(x) = p(x), which turns the task of the
verifier into checking a polynomial identity t(x)h(x) = p(x). Put differently, verification
consists into checking that t(x)h(x)− p(x) = 0, i.e., checking that a certain polynomial
is the zero polynomial.

Efficiency. Since the size of these polynomials is very large, the verifier will need a more
efficient way to check the validity of the proof, than to multiply such big polynomials.
Also, from the point of view of succinctness, sending the polynomials h(x), vc(x) (and
wc(x), yc(x) for QAP), each of degrees proportional with the number of gates in the
original circuit, is not optimal for our purposes.

Evaluation in a Random Point. So, instead of actually computing polynomial products,
the verifier chooses a secret random point s and ask the prover to send the evaluations
h(s), vc(s) (and wc(s), yc(s) for QAP) instead of the full polynomials and only checks
that t(s)h(s) = p(s). So the polynomial operations are simplified to field multiplications
and additions independent of the degree of those polynomials.

Soundness. Checking a polynomial identity only at a single point instead of at all points
reduces the security, but according to Schwartz–Zippel lemma any two distinct polyno-
mials of degree d over a field F can agree on at most a d/ |F| fraction of the points in F.
So, if we choose the field F carefully, s←$F is assumed to be picked at random and
since t(x)h(x), p(x) are non-zero polynomials, the possibility of a false proof to verify is
bounded by a negligible fraction (where the evaluations h(s), p(s) are part of, or can
be computed from the proof elements). Of course, the point s should be not known
in advance by the prover when it generates its polynomials. This is essential to avoid
cheating strategies that lead to proofs of false statements.

Encoding the Random Point. We have concluded that the key factor for the soundness
to hold is the secrecy of the evaluation point s. The prover should not know in
advance this value when computing the solution to SSP vc(x), h(s) (respectevelly
vc(x), wc(x), yc(x), h(s) for QAP). Nevertheless, the prover should be allowed to com-
pute the evaluation of its polynomials in s. Finding a method of hiding s that, at the
same time, allows the prover to perform homomorphic operations over this hidden value
and the verifier to check the proof, is the key trick in order to build a SNARK.
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3.4.2 Encoding Schemes
The main ingredient for an efficient preprocessing SNARK is an encoding scheme Enc over a
field F that hides the evaluation point s and has important properties that allow proving and
verifying on top of encoded values.

A formalisation of these encoding schemes for SNARKs was initially introduced in
[GGPR13]:
Definition 3.4.5 (Encoding Scheme). An encoding scheme Enc over a field F is composed of
the following algorithms:

K(1λ)→ (pk, sk) a key generation algorithm that takes as input some security parameter
and outputs some secret state sk together with some public information pk.

Enc(s)→ z an encoding algorithm mapping a field element s to some encoding value. De-
pending on the encoding algorithm, Enc will require either the public information pk
generated from K, or the secret state sk. To ease notation, we will omit this additional
argument.

The above algorithms must satisfy the following properties:
• additively homomorphic: Intuitively, we want the encoding scheme to behave well when

applying linear operations Enc (x+ y) = Enc(x) + Enc(y).
• quadratic root detection: There exists an efficient algorithm that, given Enc(a0), . . . ,

Enc(at), and the quadratic polynomial pp ∈ F[x0, . . . , xt], can distinguish if pp(a1, . . . , at) =
0. We will use an informal notation for this check

pp(Enc(a0), . . . ,Enc(at))
?= 0.

• image verification: There exists an efficiently computable algorithm ImVer that can
distinguish if an element c is a correct encoding of a field element (ImVer(c)→ 0/1).

Publicly vs Designated-Verifier Encoding. In some instantiations, the encoding algorithm
will need a secret state sk to perform the quadratic root detection.

If such a secret state is not needed, we will consider sk =⊥ and call it ”one-way” or
publicly-verifiable encoding.

At present, the only candidates for such a ”one-way” encoding scheme that we know of are
based on bilinear groups, where the the bilinear maps support efficient testing of quadratic
degrees without any additional secret information.
Example 3.4.6 (Pairing-based encoding scheme). Consider a symetric bilinear group of prime
order q described by gk := (q,G,GT , e), where e : G×G→ GT is a biliniar map as defined
in Chapter 2. Let g be a generator of G. We can implement an encoding scheme with the
previous properties as:

Enc(a) = ga.

• additively homomorphic: To compute en encoding of a sum g(a1+a2), we just multiply
the respective group elements ga1ga2 = ga1+a2 .
For a polynomial h(x), this property can be used to compute an encoding of an
evaluation h(s) = ∑d

i=0 his
i in some point s, given {gsi}di=1 as a linear combination

d∏
i=0

ghigs
i = g

∑d

i=0 his
i = gh(s)
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QAP
{vi(x)}i
{wi(x)}i
{yi(x)}i

t(x) ∈ F[x]

s←$F

Setup → (crs, vrs)
Encode d powers of s
si and αsi for α←$F
to enable polynomial
evaluation for a QAP
solution vc, wc, yc, h

Encode terms βvi(s),
βwi(s), βyi(s) (β←$F)
to enforce solution
in the proper span
vc ∈ Span(vi),
wc ∈ Span(wi),
yc ∈ Span(yi)

(Encode randomness
for zero-knowledge)

Prove
Find solution:
vc, wc, yc, h
Evaluate in s,
Compute extra
terms to prove
– knowledge: α-terms
– good span: β-terms

Verify
Check extraction
Check divison in s
Check linear span

crs

crs
vrs

π

Figure 3.8: Simplified roadmap from QAP to a SNARK protocol.

• quadratic root detection: Given for example the following quadratic polynomial pp0 =
x1x2 + x2

3 and some encodings (ga1 , ga2 , ga3) use the bilinear map to check the equality:

e(g, g)pp0(a1,a2,a3) = e(g, g)a1a2+a2
3 = e(ga1 , ga2) · e(ga3 , ga3) ?= e(g, g)0.

• image verification: Typically, it is straightforward to determine whether an element is
in the group G, and all elements of G are valid encodings.

Remark 3.4.7. Remark that none of the three properties requires any secret state, this leads
to a publicly-verifiable SNARK, to perform the checks; the verification algorithm does not
need anything else than the pairing function e that is public. Note also that this encoding
scheme is deterministic.

For instance, the family of elliptic curves G := E(Fq). described in [BF01] satisfies the
above description.

SNARKs from QAP. In what follows, we will present the celebrated SNARK construction of
Parno et al. [PHGR13].

Equipped with the encoding tool we have defined above, we are ready to construct a QAP-
based SNARK scheme. A very high-level overview of the SNARK from QAP construction
is provided in Figure 3.8. This diagram gives some intuition, but hides a lot of important
details of the scheme.
For the sake of the presentation, the description of the protocol is given for a general

encoding scheme Enc. In Figure 3.9 there is a SNARK construction for an instantiation based
on bilinear group encodings (see Example 3.4.6).
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Gen(1λ, C)

gk := (q,G,GT , e)
s, α, βv, βw, βy ←$Zq
Q :=

(
{vi, wi, yi}i∈[m], t

)
Imid = {N + 1, . . .m}

crs :=
(
Q, gk,

{gs
i

, gαs
i

}di=1

gβv , {gβvvi(s)}i∈Imid

gβw , {gβwwi(s)}i∈[m]

gβy , {gβyyi(s)}i∈[m]

)
return crs

Prove(crs, u, w)

u := (c1, . . . , cN )
w := ({ci}i∈Imid)

vmid :=
∑
i∈Imid

civi(x)

H := gh(s), Ĥ := gαh(s)

Vmid := gvmid(s), V̂mid := gαvmid(s)

W := gwc(s), Ŵ := gαwc(s)

Y := gyc(s), Ŷ := gαyc(s)

B := gβvvc(s)+βwwc(s)+βyyc(s)

π := (H, Ĥ, Vmid , V̂mid ,

W, Ŵ , Y, Ŷ , B)

Ver(crs, u, π)

Extractability check:

e(H, gα) = e(g, gĤ)

e(Vmid, g
α) = e(g, gV̂mid)

e(W, gα) = e(g, gŴ )

e(Y, gα) = e(g, gŶ )
Divisibility check:
e(H, gt(s)) = e(V,W )/e(Y, g)
Linear span check:
e(B, g) = e(V, gβv ) · e(W, gβw )

· e(Y, gβy )

Figure 3.9: SNARK from QAP. A solution to QAP Q of size m and degree d is vc(x) =∑
i civi(x), wc(x) = ∑

i ciwi(x), yc(x) = ∑
i ciyi(x), h(x) := vc(x)wc(x)−yc(x)

t(x) .

Generation Algorithm Gen(1λ, C)→ (crs, vrs)
The setup algorithm Gen takes as input 1λ and the circuit C with N input/output values.

It generates a QAP Q of size m and degree d over a field F, that verifies C. It defines
Imid = {N + 1, . . .m}. Then, it runs the setup for an encoding scheme Enc (with secret
state sk, or without, sk =⊥). Finally, it samples α, βv, βw, βy, s← F such that t(s) 6= 0, and
returns (vrs = sk, crs) where crs is:

crs :=
(
Q,Enc(1),Enc(s), . . . ,Enc(sd),

Enc(α),Enc(αs), . . . ,Enc(αsd),
(Enc(αvi(s)))i∈Imid

, (Enc(αwi(s)))i∈[m] , (Enc(αyi(s)))i∈[m]

(Enc(βvvi(s)))i∈Imid
, (Enc(βwwi(s)))i∈[m] , (Enc(βyyi(s)))i∈[m]

) (3.3)

Prover Prove(crs, u, w)→ π
The prover algorithm Prove, on input some statement u := (c1, . . . , cN ), computes a

witness w := (cN+1 . . . cm) and vmid(x) = ∑
i∈Imid

civi(x), vc(x) = ∑
i∈[m] civi(x), wc(x) =∑

i∈[m] ciwi(x), yc(x) = ∑
i∈[m] ciyi(x) such that :

t(x) divides p(x) = vc(x)wc(x)− yc(x).

Then, it computes the quotient polynomial h(x) :

h(x) := p(x)
t(x) . (3.4)
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By using the additively homomorphic property of the encoding scheme Enc and the values in
the crs, the prover computes encodings of the following polynomial evaluations in s:

H := Enc(h(s)), Ĥ := Enc(αh(s)),
Vmid := Enc(vmid(s)), V̂mid := Enc (αvmid(s)) ,
W := Enc(wc(s)), Ŵ := Enc (αwc(s)) ,
Y := Enc(yc(s)), Ŷ := Enc (αyc(s)) ,
B := Enc (βvvc(s) + βwwc(s) + βyyc(s)) .

(3.5)

Where the polynomial vmid(x) := ∑
i∈Imid

civi(x). Since the values of ci, where i ∈ [N ]
correspond to the input u (which is also known to the verifier), the verifier can compute the
missing part of the full linear combination vc(x) for {vi(x)} and encode it by itself

V := Enc(vc(s)).

The proof π consists of elements (H, Ĥ, Vmid, V̂mid,W, Ŵ , Y, Ŷ , B).

Verifier Ver(vrs, u, π)→ 0/1
Upon receiving a proof π and a statement u, the verifier, uses the quadratic root detection

algorithm of the encoding scheme Enc to verify that the proof satisfies:

Extractability terms. Ĥ ?= αH, V̂mid
?= αVmid, Ŵ

?= αW, Ŷ
?= αY .

The above terms are engineered to allow extractability using a knowledge assumption.

Divisibility check. H · T ?= V ·W − Y where T = Enc(t(s)), V := Enc(vc(s)) and can be
computed using crs. This corresponds to the polynomial division constraint.

Linear span check. B ?= βvV + βwW + βyY . This check makes sure that the polynomi-
als vc(x), wc(x) and yc(x) are indeed linear combinations of the initial set of polynomials
{vi}i, {wi}i, {yi}i.

Adding Zero-Knowledge. The construction we just described is not zero-knowledge, since
the proof terms are not uniformly distributed and may reveal information about the witness,
i.e., about the polynomials vc(x) = ∑

i civi(x), wc(x), yc(x), h(x). To make this proof
statistically zero-knowledge, we will randomize the polynomials vc(x), wc(x), yc(x), h(x) by
adding a uniformly sampled value, while keeping the divisibility relation between them. The
idea is that the prover just uses some random values δv, δw, δy ∈ F and performs the following
replacements in the proof to randomize its original polynomials from above:

• v′mid(x) := vmid(x) + δvt(x),
• w′c(x) := wc(x) + δwt(x),
• y′c(x) := yc(x) + δyt(x),
• h′(x) = h(x) + δvwc(x) + δwvc(x) + δvδwt

2(x)− δyt(x).

By these replacements, the values Vmid,W and Y , which contain an encoding of the
witness factors, basically become indistinguishable from randomness and thus intuitively
they are zero-knowledge. For this modification to be possible, additional terms containing
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the randomness δv, δw, δy should be added to the crs to enable the prover to mask its proof
and the verifier to check it. For a formal proof and other details, we refer the reader to the
original work [PHGR13].
Knowledge Soundness. The intuition is that it is hard for the prover, who knows the CRS
but not α, to output any pair (H, Ĥ) where H encodes some value h and Ĥ = Enc(αh) unless
the prover knows a representation h = ∑

i∈[d] his
i and applies the same linear combination to

obtain Ĥ. Knowledge of exponent assumptions (PKE) introduced in Section 2.3.4 formalize
this intuition; it says that for any algorithm that outputs a pair of encoded elements with
ratio α, there is an extractor that ”watches” the algorithm’s computation and outputs the
corresponding representation (the coefficients of a linear combination).

We will give an overview of the proof in tree steps, one for each of the three checks in the
verification algorithm:

Extractability terms. From the pairs of encodings (H, Ĥ), (Vmid, V̂mid), (W, Ŵ ), (Y, Ŷ ), based
on the q-PKE assumption we can extract out coefficients for polynomials vmid(x), wc(x), yc(x),
h(x).
Divisibility check. If the check H · T ?= V ·W − Y where T = Enc(t(s)) verifies, then

h(s)t(s) = vc(s)wc(s)− yc(s). If indeed h(x)t(x) = vc(x)wd(x)− yc(x) as polynomials, the
soundness of our QAP implies that we have extracted a true proof. Otherwise, h(x)t(x)−
vc(x)wd(x)− yc(x) is a nonzero polynomial having s as a root, which allows us to solve a
q-type assumption instance (see Section 2.3.2).
Linear span check. In the scheme, the α-terms V̂mid = Enc(αvmid), Ŵ = Enc(αwc) and

Ŷ = Enc(αyc) are used only to extract representations of the encoded terms with respect to the
power basis, and not as a linear combination in the set of polynomials {vi, wi, yi}i∈[m]. This
extraction does not guarantee that the polynomials vmid(x), wc(x), yc(x) lie in the appropriate
spans. Therefore, the final proof term B is needed to enforce this. B can only be computed
by the prover from the crs by representing vc, wc, yc as a linear combination of corresponding
{vi, wi, yi}i∈[m]. This is then checked in the verification algorithm B

?= βvV + βwW + βyY .
If this final check passes, but polynomials vc, wc, yc lie outside their proper span, then the
one can solve d-power Diffie-Hellman problem (see Section 2.3.2).
SNARKs from SSP. Another notable SNARK that achieves reduced computation complexity
for proving evaluation of boolean circuits represented as SSPs is the construction of Danezis
et al. [DFGK14]. In this short survey, we will restrict ourself to a sketched description of
their scheme prioritizing intuition to rigurosity. We refer the reader to Chapter 4 for a more
technical presentation of SNARKs from a similar, but improved framework for SSP.
The key element of Danezis’ et al. SNARK is the use of SSP language. The square span

program require only a single polynomial vc(x) to be evaluated for verification (instead of two
for earlier QSPs, and three for QAPs) leading to a simpler and more compact setup, smaller
keys, and fewer operations required for proof and verification. The resulting, SSP-based
SNARK may be the most compact construction to date. The proof consists of just 4 group
elements; they can be verified in just 6 pairings, plus one multiplication for each (non-zero)
bit of input, irrespective of the size of the circuit C : {0, 1}N → {0, 1}.
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Gen(1λ, C)

gk := (q,G,GT , e)
S := (v0, . . . , vm, t)
Imid := {N + 1, . . .m}
g←$G, s, α, β←$Zq
crs :=

(
S, gk,

{gs
i

, gαs
i

}di=0,

gβ , {gβvi(s)}i∈Imid , g
βt(s))

return crs

Prove(crs, u, w)

u := (c1, . . . , cN ) ∈ {0, 1}N

w := ({ci}i∈Imid)

vmid :=
∑
i∈Imid

civi(x)

H := gh(s), Vmid := gvmid(s)

V̂ := gαvc(s), Bmid := gβvmid(s)

π := (H,Vmid, V̂ , Bmid)

Ver(crs, u, π)

V := g

∑
i∈[N]

civi(s)
Vmid

Extractability check:
e(V, gα) = e(g, V̂ )
Divisibility check:
e(H, gt(s)) = e(V, V̂ )/e(g, g)−1

Linear span check:
e(Bmid, g) = e(Vmid, g

β)

Figure 3.10: SNARK from SSP. A solution to S : vc(x) = ∑
i civi(x), h(x) := vc(x)2−1

t(x) .

3.5 SNARK: Construction from LIP

The QAP approach was generalized in [BCI+13] under the concept of Linear Interactive
Proof (LIP), a form of interactive ZK proofs where security holds under the assumption that
the prover is restricted to compute only linear combinations of its inputs.

These proofs can then be turned into (designated-verifier) SNARKs by using an extractable
linear-only encryption scheme.

3.5.1 Linear-Only Encoding Schemes

An extractable linear-only encoding scheme is an encoding scheme where any adversary can
output a valid new encoding only if this is a linear combination of some previous encodings
that the adversary had as input (intuitively this “limited malleability” of the scheme, will
force the prover into the above restriction). At high-level, a linear-only encoding scheme does
not allow any other form of homomorphism than linear operations.

EXT− LOEnc,M,A,EA

(pk, sk)← K(1λ)
(m1, . . . ,md)← M(1λ)
σ ← (pk,Enc(m1), . . . ,Enc(md))
(ct; a1, . . . , ad, b)← (A‖EA)(σ; z)
where ct = (Enc(m))

return ct 6∈
{

Enc(
∑d
i=1 aimi + b)

}

Figure 3.11: Game for Extractable Linear-Only.
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Definition 3.5.1 (Extractable Linear-Only, [BCI+13]). An encoding scheme Enc satisfies
extractable linear-only property if for all PPT adversaries A there exists an efficient extractor
EA such that, for any sufficiently large λ ∈ N, any ”benign” auxiliarly input z and any
plaintext generation algorithm M the advantage

Advext-lo
Enc,M,A,EA := Pr[EXT− LOEnc,M,A,EA = true ] = negl.

where EXT− LOEnc,M,A,EA is defined as in Figure 3.11.

In order for this definition to be non-trivial, the extractor EA has to be efficient. Otherwise
a naive way of finding such a linear combination (a1, . . . , ad) could be just to run the adversary
A, obtain A’s outputs, decrypt them, and then output a zero linear function and hard-code
the correct values in the constant term.
A stronger notion of linear-only encoding schemes is linear-only encryption schemes that

additionally satisfy semantic security in the sense of Definition 2.14. As examples of linear-
only encryption schemes, [BCI+13] propose variants of Paillier encryption [Pai99] (as also
considered in [GGPR13]) and of ElGamal encryption [ElG85] (in those cases where the
plaintext is guaranteed to belong to a polynomial-size set, so that decryption can be done
efficiently). These variants are “sparsified” versions of their standard counterparts; concretely,
a ciphertext includes not only Enc(x), but also Enc(αx), for a secret element α in the message
space. (This ”sparsification” follows a pattern found in many constructions conjectured to
satisfy ”knowledge-of-exponent” assumptions).
Non-Adaptive SNARK. In [BCI+13], they start from the notion of linear-targeted malleability,
weaker than linear-only property, that is closer to the definition template of Boneh et al.
[BSW12]. In such a notion, the extractor is replaced by an efficient simulator. Relying on
this weaker variant, they are only able to prove the security of their preprocessing SNARKs
against non-adaptive choices of statements (and still prove soundness, though not knowledge
soundness, if the simulator is allowed to be inefficient, i.e., obtain a SNARG instead of
a SNARK). Concretely, the linear-only property rules out any encryption scheme where
ciphertexts can be sampled obliviously; instead, the weaker notion does not, and thus allows
for shorter ciphertexts.

Definition 3.5.2 (Linear-Targeted Malleability, [BCI+13]). An encoding scheme Enc satisfies
linear-targeted malleability property if for all PPT adversaries A and plaintext generation
algorithm M there exists a PPT simulator Sim such that, for any sufficiently large λ ∈ N,
any ”benign” auxiliarly input z the following two distributions D0(λ),D1(λ) in Figure 3.12
are computationally inistinguishable.

Linear Interactive Proof. A linear interactive proof (LIP) is defined similarly to a standard
interactive proof [GMR85], except that each message sent by a prover (either an honest or a
malicious one) must be a linear function of the previous messages sent by the verifier. The
SNARK designed by [BCI+13] only makes use of two-message LIPs in which the verifier’s
message is independent of its input. LIP can be obtained from a Linear PCP, a PCP, for
which it is possible to do the verification in such a way that it is sufficient for an honest
prover to respond with a certain linear function of the verifier’s queries.

Bitansky et al. show first a transformation from any Linear PCP into a two-message LIP
with similar parameters. Unlike in the Linear PCP model, if the verifier simply forwards
to the LIP prover the queries generated by the Linear PCP verifier, there is no guarantee
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(pk,m1, . . .md,Dec(ct))← D0(λ)

(pk, sk)← K(1λ)
(m1, . . . ,md)← M(1λ)
σ ← (pk,Enc(m1), . . . ,Enc(md))
ct← A(σ; z) where ImVer(ct) = 1

(pk,m1, . . .md,m)← D1(λ)

(pk, sk)← K(1λ)
(m1, . . . ,md)← M(1λ)
(a1, · · · ad, b)← Sim(pk; z)
m :=

∑d
i=1 aimi + b

Figure 3.12: Distributions D0 and D1 in Linear Targeted Malleability.

that the LIP prover will apply the same linear function to each of these queries. Thus, the
transformation looses a constant factor in the knowledge error.
SNARK from LIP. Bitansky et al. [BCI+13] construct a publicly-verifiable preprocessing
SNARK from LIPs with low-degree verifiers. Note that, if we aim for public verifiability, we
cannot use semantically-secure encryption to encode the message of the LIP verifier, because
we need to “publicly test” (without decryption) certain properties of the plaintext underlying
the prover’s response. The idea, implicit in previous publicly-verifiable preprocessing SNARK
constructions, is to use linear-only encodings (rather than encryption) that do allow such
public tests, while still providing certain one-wayness properties. When using such encodings
with a LIP, however, it must be the case that the public tests support evaluating the decision
algorithm of the LIP and, moreover, the LIP remains secure despite some “leakage” on the
queries. They show that LIPs with low-degree verifiers (which they call algebraic LIPs),
combined with appropriate one-way encodings, suffice for this purpose. More concretely, they
consider candidate encodings in bilinear groups (Example 3.4.6) under similar knowledge-of-
exponent and computational Diffie-Hellman assumptions. These LIP constructions imply
new constructions of publicly-verifiable preprocessing SNARKs, one of which can be seen as
a simplification of the construction of [Gro10] and the other as a reinterpretation (and slight
simplification) of the construction of [GGPR13].





Chapter 4
Post-Quantum SNARK

L attice-based SNARKs. We have introduced zero-knowledge SNARKs proof systems
and shown some constructions that rely on classical number-theoretic assumption.
To this day, all known SNARK implementations rely on pre-quantum assumptions

and, for this reason, are not expected to withstand cryptanalytic efforts over the next few
decades. In this chapter, we introduce a new zk-SNARK that can be instantiated from
lattice-based assumptions, and which is thus believed to be post-quantum secure. We weaken
the computational assumptions for the SNARK of Danezis et al. [DFGK14] at the cost of
one extra group element in the proof, and we furthermore provide a generalization in the
spirit of Gennaro et al. [GGPR13] to this scheme. This leads to a generic framework for
SNARKs from Square Span Programs (SSPs). We focus on designated-verifier proofs and
propose a protocol in which a proof consists of just 5 LWE encodings. We provide a concrete
choice of parameters, showing that our construction is practically instantiable.
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Alice had a (quantum) dream!
The previous chapter ended with a beautiful solution for Alice. She found out about
the existence of SNARKs and their wonderful functionalities that enable proving
the correctness of results for very complicated computations. However, last night,
Alice made an incredible encounter, she met a curious cat, who introduced himself as
Schrödinger’s cat. The cat seemed to know everything about quantum physics, and he
worried about the unavoidable advent of the quantum computer in our lives.
The cat explained to Alice that he finds himself in a terrible condition, he is both
dead and alive at the same time, being condemned to live in a superposition. In the
beginning, Alice could not understand anything from all the occult language the cat
used, all his speech seemed such nonsense. She asked for more clarifications.
The cat told her the story of his life, how this guy Schrödinger who was a physicist
made him famous throughout a quantum experience imagined in order to explain to
the world the behavior of quantum particles at a larger scale.
Schrödinger intended his thought experiment as a discussion with Einstein about
his EPR article in 1935. The EPR article [EPR35] highlighted the bizarre nature
of quantum superpositions, in which a quantum particle remains in superposition,
a combination of multiple states, until it is observed by the external world. When
this happens, the superposition collapses into one or another of the possible definite
states. Schrödinger described how one could, in principle, create a superposition in
a large-scale system by making it dependent on a quantum particle that was in a
superposition. He proposed a scenario with his cat in a locked steel chamber, wherein
the cat’s life or death depended on the state of a radioactive atom.
An area of related study called “observation theory” dictates that when a quantum
particle is being watched it can act like a wave. Basically, the universe acts one way
when we’re looking, and another way when we aren’t!
Alice was fascinated by all this story, this seemed so mysterious to her, but she still
did not see the point of all that. The cat then mentioned an incredible application of
this theory: the quantum computer!
Quantum computers are devices capable of performing computations using quantum
bits, or qubits. On a classical computer, the processor uses transistors to perform
calculations. Each transistor can be on or off, which correspond to a binary value,
either one or zero.
Quantum computers instead use qubits that can actually be both at the same time
because of this strange phenomenon called superposition. Exactly like the cat, dead
and alive at the same time!
It is possible to create algorithms that run a lot faster on a quantum computer than
on a classical computer, due to the unique property of qubits. Those will break many
popular cryptographic systems used today. Some number theory assumptions based
on factorization are vulnerable to quantum computational power.
Right now, quantum computers aren’t worth the trouble and money they take to
build, but in the near future, they will be real and functional.
The cat explained to Alice that he has a mission, to raise awareness of the people
about the quantum power, the imminence of quantum computer emergence and its
consequences.
He asked Alice to promise him that she will take that into consideration and use
quantum-secure cryptographic tools in the future. Alice, moved by his strong argu-
ments, reassured the cat that she will be cautious and try to use safe protocols.
This means that she has to start over and search for a post-quantum SNARK. That
sounds like a long journey, let us see where it will lead.

Tale two: A Quantum Encounter
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4.1 Introduction

So far all known (zk)-SNARKs rely on “classical” pre-quantum assumptions1 which are
expected not to withstand cryptanalytic efforts over the course of the next 10 years. It is an
interesting research question, as well our duty as cryptographers, to provide protocols that
can guarantee people’s privacy over the next decade. We attempt to make a step forward in
this direction by building a designated-verifier zk-SNARK from lattice-based (knowledge)
assumptions. Our scheme uses as a main building block encodings that rely on the Learning
With Errors (LWE) assumption, initially proposed by Regev in 2005 [Reg05b], and one of the
most widespread post-quantum cryptosystem supported by a theoretical proof of security.

SNARGs Based on Lattices. Recently, in two companion papers [BISW17, BISW18], Boneh
et al. provided the first designated-verifier SNARGs construction based on lattice assumptions.
The first paper has two main results: an improvement on the LPCP construction in

[BCI+13] and a construction of linear-only encryption based on LWE. The second paper
presents a different approach where the information-theoretic LPCP is replaced by a LPCP
with multiple provers, which is then compiled into a SNARG again via linear-only encryption.
The main advantage of this approach is that it reduces the overhead on the prover, achieving
what they call quasi-optimality2. The stronger notion of knowledge soundness (which leads to
SNARKs) can be achieved by replacing the linear-only property with a stronger (extractable)
assumption [BCI+13].

Our Contributions. In this chapter, we frame the construction of Danezis et al. [DFGK14]
for Square Span Programs in the framework of “encodings” introduced by Gennaro et al.
[GGPR13]. We slightly modify the definition of encoding to accommodate for the noisy nature
of LWE schemes. This allows us to have a more fine-grained control over the error growth,
while keeping previous example encodings still valid instantiations. Furthermore, SSPs are
similar to but simpler than Quadratic Span Programs (QSPs) or Quadratic Arithmetic
Programs (QAPs) since they use a single series of polynomials, rather than 2 or 3 and they
do not have the significant overhead of previous gate and wire checkers.

We use SSPs to build simpler and more efficient designated-verifier zero-knowledge SNARKs
for boolean circuit satisfiability (Circ-SAT).
We think our work is complementary to [BISW17, BISW18]. However, there are several

reasons why we believe that our approach is preferable:

• Zero-Knowledge. The LPCP-based protocols in [BISW17, BISW18] do not investigate
the possibility of achieving zero-knowledge. This leaves open the question of whether
zk-SNARKs can be effectively instantiated. Considering the LPCP constructed for a
QSP satisfiability problem, there is a general transformation to obtain ZK property
[BCI+13]. However, in the case of “noisy” encodings, due to possible information

1 We note that the original protocol of Kilian [Kil92] is a zk-SNARK which can be instantiated with a
post-quantum assumption since it requires only a collision-resistant hash function – however (even in the
best optimized version recently proposed in [BSBHR18]) the protocol does not seem to scale well for even
moderately complex computations.

2 This is the first scheme where the prover does not have to compute a cryptographic group operation for
each wire of the circuit, which is instead true e.g., in known pairing-based protocols.
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security level λ n logα log q |π| |crs| ZK

medium
168 1270 −150 608 0.46 MB 7.13 MB

162 1470 −180 736 0.64 MB 8.63 MB 3

high
244 1400 −150 672 0.56 MB 7.88 MB

247 1700 −180 800 0.81 MB 9.37 MB 3

paranoid
357 1450 −150 800 0.69 MB 9.37 MB

347 1900 −180 864 0.98 MB 10.1 MB 3

Table 4.1: Security estimates for different choices of LWE parameters (circuit size fixed to
d = 215), together with the corresponding sizes of the proof π and of the CRS
(when using a seeded PRG for its generation).

leakages in the error term, this transformation cannot be directly applied. Our SNARK
construction, being SSP-based, can be made ZK at essentially no cost for either the
prover or the verifier. Our transformation is different, exploiting special features of
SSPs, and yields a zk-SNARK with almost no overhead. Our construction constitutes
the first (designated-verifier) zk-SNARK on lattices.

• Weaker Assumptions. The linear-only property on encodings introduced in [BCI+13]
implies all the security assumptions needed by a SSP-suitable encoding, but the reverse
is not known to hold. Our proof of security, therefore, relies on weaker assumptions and,
by doing so, “distills” the minimal known assumptions needed to prove security for SSP,
and instantiates them with lattices. We study the relations between our knowledge
assumption and the (extractable) linear-only assumption in Section 4.5.

• Simplicity and Efficiency. While the result in [BISW18] seems asymptotically more
efficient than SSP-based approach, we believe that, for many applications, the simplicity
and efficiency of the SSP construction will still provide a concrete advantage in practice.
We implemented and tested our scheme: we provide some possible concrete parameters
for the instantiation of our zk-SNARKs in Table 4.1, whereas more details on the
implementation, along with benchmark results can be found in our article [GMNO18].

Technical Challenges. Although conceptually similar to the original proof of security for QSP-
based SNARKs, our construction must incorporate some additional modifications in order to
overcome the noise growth of the LWE-based homomorphic operations. These challenges do
not arise in the line of work of Boneh et al. [BISW17, BISW18] due to the more general (and
stronger) assumption of linear-only encoding (see Section 4.5 for details). Additionally, our
construction benefits from the optimizations of SSP-based SNARKs [DFGK14].
Instantiating our encoding scheme with a lattice-based scheme like Regev encryption,

differs from [GGPR13] and introduces some technicalities, first in the verification step of
the protocol, and secondly in the proof of security. Our encoding scheme is additively
homomorphic; however, correctness of the encoding is guaranteed only for a limited number
of linear operations because of the error growth in lattice-based encoding schemes. More



86 Chapter 4 Post-Quantum SNARK

specifically, to compute a linear combination of N encodings, we need to scale some parameters
for correctness to hold. Throughout this chapter, we will consider only encodings where
a bounded number of homomorphic “linear” operations is allowed, and make sure that
this bound is sufficient to perform verification and to guarantee the existence of a security
reduction.

4.2 New Framework for SNARK from SSP

4.2.1 Boolean Circuit Satisfaction Problems

In Section 3.2, we have defined SNARKs for the universal relation. In this section, it will
be more convenient to consider SNARKs for boolean circuit satisfaction problems rather
than for the universal relation. We will briefly sketch the relevant definitions and differences.
We begin by introducing boolean circuit satisfaction problems more formally than already
recalled in Section 3.4.

Definition 4.2.1 (Boolean Circ-SAT). The Boolean Circuit Satisfaction Problem of a boolean
circuit C : {0, 1}`u × {0, 1}`w → {0, 1} is the relation

RC = {(x,w) ∈ {0, 1}`u × {0, 1}`w : C(x,w) = 1}.

Universal Circuit. Universal circuits allow using a single program for all n′ gate circuits
at the cost of n = n′ · 19 logn′ (see [Val76]) and enables constructions of adaptively-sound
SNARKs.

Remark that in the previous definition, we have `u public inputs and `w private inputs for
a circuit C. This makes C compatible with universal circuits CU : {0, 1}`u × {0, 1}`w → {0, 1},
that take as input an `u-bit description of a freely chosen circuit and its public input (C, u)
and an `w-bit value w, and return 1 if and only if C(u,w) = 1.
Along the lines of [DFGK14], we consider the ”public” inputs from the point of view of

the prover. For an outsourced computation, they might include both the inputs sent by the
clients and the outputs returned by the server performing the computation. For Circ-SAT,
they may provide a partial instantiation of the problem or parts of its solution.

4.2.2 Square Span Programs

We characterize NP as Square Span Programs (SSPs) over some field F of order p (See
Section 3.4.1). For completeness, we state here the formal definition with notations adapted
for this chapter:

Definition 4.2.2 (SSP). A Square Span Program (SSP) over the field F is a tuple consisting of
m+1 polynomials v0(x), . . . , vm(x) ∈ F[x] and a target polynomial t(x) such that deg(vi(x)) 6
deg(t(x)) ∀i.
A square span program ssp accepts an input a1, . . . , a`u ∈ {0, 1} if and only if there exist

a`u+1, . . . , am ∈ {0, 1} satisfying:

t(x) divides
(
v0(x) +

m∑
i=1

aivi(x)
)2

− 1.
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We say that ssp verifies a boolean circuit C : {0, 1}`u×{0, 1}`w → {0, 1} if it accepts exactly
those inputs (a1, . . . , a`u) ∈ {0, 1}`u , satisfying C(a1, . . . a`u , w) = 1.
A square span program ssp has size m and degree d = deg(t(x)).

SSP Generation. We consider the uniform probabilistic algorithm SSP that, on input a
boolean circuit C of m wires and n gates, chooses a field F, with |F| ≥ max(n, 8), and samples
d = m+n random elements r1, . . . , rd ∈ F to define the target polynomial t(x) = ∏d

i=1(x−ri),
together with the set of polynomials {v0(x), . . . , vm(x)} composing the SSP corresponding to
C: (v0(x), . . . , vm(x), t(x))← SSP(C).

4.2.3 Encoding Schemes
Encoding schemes for SNARKs were initially introduced in [GGPR13]. Here, we present a
variant of their definition (see Section 3.4.2). Our new definition accommodates for encodings
with noise.

Definition 4.2.3 (Encoding Scheme). An encoding scheme Enc over a field F is composed of
the following algorithms:

(pk, sk)← K(1λ) a key generation algorithm that takes as input some security parameter in
unary 1λ and outputs some secret state sk together with some public information pk.
To ease notation, we are going to assume the message space is always part of the public
information and that pk can be derived from sk.

S ← Enc(a) a non-deterministic encoding algorithm mapping a field element a to some
encoding space S, such that {{Enc(a)} : a ∈ F} partitions S, where {Enc(a)} denotes
the set of the possible evaluations of the algorithm Enc on a.
Depending on the encoding algorithm, Enc will require either the public information pk
generated from K or the secret state sk. For our application, it will be the case of sk.
To ease notation, we will omit this additional argument.

The above algorithms must satisfy the following properties:

• d-linearly homomorphic: there exists a poly algorithm Eval that, given as input the
public parameters pk, a vector of encodings (Enc (a1) , . . . ,Enc (ad)), and coefficients
c = (c1, . . . , cd) ∈ Fd, outputs a valid encoding of a · c where a = (a1, . . . ad) with
probability overwhelming in λ.

• quadratic root detection: there exists an efficient algorithm that, given some parameter
δ (either pk or sk), Enc(a0), . . . ,Enc(at), and the quadratic polynomial pp ∈ F[x0, . . . , xt],
can distinguish if pp(a1, . . . , at) = 0. With a slight abuse of notation, we will adopt
the writing pp(ct0, . . . , ctt) = 0 to denote the quadratic root detection algorithm with
inputs δ, ct0, . . . , ctt, and pp.

• image verification: there exists an efficiently computable algorithm ∈ that, given as
input some parameter δ (again, either pk or sk), can distinguish if an element c is a
correct encoding of a field element.

Our specific instantiation of the encoding scheme presents some slight differences with
[GGPR13]. In fact, we can allow only for a limited number of homomorphic operations
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because of the error growth in lattice-based encoding schemes. We note that this modification
does not invalidate previous constructions. Sometimes, in order to ease notation, we will
employ the writing ct := Eval (Enc (ai)i , c) = Enc (t), meaning that ct is a valid encoding of
t = ∑

aici, that is ct ∈ {Enc (t)}. It will be clear from the context (and the use of the symbol
for assignment instead of that for sampling) that the randomized encoding algorithm is not
actually invoked.
Decoding Algorithm. When using a homomorphic encryption scheme in order to instantiate
an encoding scheme, we simply define the decoding algorithm Dec as the decryption procedure
of the scheme. More specifically, since we study encoding schemes derived from encryption
functions, quadratic root detection and image verification for designated-verifiers are trivially
obtained by using the decryption procedure Dec.

Remark that in the bilinear group instantiation, the encodings are one-way, and no such a
decoding function can be defined without breaking the discrete logarithm.

4.2.4 Improved SNARK Framework from SSP
We will use the formal definition introduced in Chapter 3, Definition 3.2.2 for Universal
SNARKs, with the adaptation for Circ-SAT relations (i.e., the generation algorithm takes as
input a circuit C).
Our framework uses the SSP characterisation of NP and an encoding scheme Enc as

described above.
Due to their conceptual simplicity, SSPs offer several advantages over previous constructions

for binary circuits. Their reduced number of constraints lead to smaller programs, and to
lower sizes and degrees for the polynomials required to represent them, which in turn reduce
the computation complexity required in SNARK schemes. Notably, their simpler ”square”
form requires only a single polynomial to be evaluated for verification (instead of two for
earlier QSPs, and three for QAP) leading to a simpler and more compact setup, smaller crs,
and fewer operations required for proof and verification.
Our SNARK framework is also different from the SSP-based construction of Danezis et

al. [DFGK14] in the sense that the soundness of the resulting SNARK scheme relies on
only one hardness assumption (excepting the extractability one) instead of two assumptions
in [DFGK14]. We make a tradeoff between the number of terms in the proof π and the
assumptions we need in the security reduction, obtaining a SNARK consisting of five encodings
instead of four in [DFGK14].

Our proof of security, therefore, relies on fewer assumptions and, by doing so, ”distills” the
minimal known assumptions needed to prove security of SNARKs from SSP, and allows to
latter instantiate them with lattices.
We describe our framework for general encodings in a very simplified way in Figure 4.1.

We remark the difference from the SNARK of [DFGK14] (see Figure 3.10) in the extra proof
term Ĥ and the additional extractability check in the verification corresponding to this term
Ĥ = αH.
In Section 4.4 we will add zero-knowledge and some other technicalities related to our
concrete instantiation based on lattice encodings. The generic framework described here can
also accommodate publicly verifiable SNARKs togheter with designated verifiable SNARKs
depending on the choice of encoding.
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Gen(1λ, C)

α, β, s←$F
ssp := (v0, . . . , vm, t)
(pk, sk)← K(1λ)
crs :=

(
ssp, pk,{

Enc(si),Enc(αsi)
}d
i=0 ,

Enc(β),Enc (βt(s)) ,
(Enc(βvi(s)))mi=`u+1

)
vrs := sk
return (vrs, crs)

Prove(crs, u, w)

u := (a1, . . . , a`u
) ∈ {0, 1}`u

w := (a`u+1, . . . , am), a0 := 1
ν(x) :=

∑m
i=0 aivi(x)

vmid(x) :=
∑
i>`u

aivi(x)
h(x) = (ν(x)2 − 1)/t(x)
H := Enc(h(s))
Ĥ := Enc(αh(s))
V̂ := Enc(αν(s))
Vw := Enc(vmid(s))
Bw := Enc(βvmid(s)))
return π = (H, Ĥ, V̂ , Vw, Bw)

Ver(vrs, u, π)

π := (H, Ĥ, V̂ , Vw, Bw)
vin(s) :=

∑`u

i=0 aivi(s)
V := Enc(vmid(s) + vin(s))
T := Enc(t(s))
Extractability check.

V̂ = αV, Ĥ = αH

Divisibility check.
HT = V 2 − 1
Linear span check.
Bw = βVw

Figure 4.1: Framework for SNARK from SSP

4.3 An Encoding Scheme Based on LWE
In this section, we describe a possible encoding scheme based on learning with errors (LWE)
(see Assumption 2.3.10) that will be used as a building block for our SNARK post-quantum
scheme.

Lattice-Based Encoding Scheme. We propose an encoding scheme Enc that consists of
three algorithms as depicted in Figure 4.2. This is a slight variation of the classical LWE
cryptosystem initially presented by Regev [Reg05b] (see Construction 2.4.4) and later extended
in [BV11a]. The encoding scheme Enc is described by parameters Γ := (p, q, n, α), with
q, n, p ∈ N such that (p, q) = 1, and 0 < α < 1. Our construction is an extension of the one
presented in [BV11a].

We assume the existence of a deterministic algorithm Pgen that, given as input the security
parameter in unary 1λ, outputs an LWE encoding description Γ. The choice of using a
deterministic parameter generation Pgen was already argued by Bellare et al. [BFS16]. The
main advantage of this choice is that every entity can (re)compute the description for a given
security parameter and that no single party needs to be trusted with generating the encoding
parameters. Moreover, it is often the case that real-world encodings have fixed parameters
for some well-known values of λ. For the sake of simplicity, we define our encoding scheme
with a LWE encoding description Γ and assume that the security parameter λ can be derived
from Γ.
Roughly speaking, the public information is constituted by the LWE parameters Γ and

an encoding of m is simply an LWE encryption of m. The LWE secret key constitutes the
secret state of the encoding scheme.

Basic Properties. We say that the encoding scheme is (statistically) correct if all valid
encodings are decoded successfully (with overwhelming probability).
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K(1λ)

Γ := (p, q, n, α) := Pgen(1λ)
s←$Znq
return (Γ, s )

Enc(s,m)

Γ := (p, q, n, α) := Pgen(1λ)
a←$Znq
σ := qα; e← χσ

return (−a, a · s + pe+m)

Dec(s, (c0, c1))

Γ := (p, q, n, α) := Pgen(1λ)
return (c0 · s + c1) (mod p)

Figure 4.2: An encoding scheme based on LWE.

Definition 4.3.1 (Corectness). An encoding scheme Enc is correct if, for any s← K(1λ) and
m ∈ Zp, Pr[Dec(s,Enc(s,m)) 6= m ] = negl.

It is easy to see that the encoding Enc defined in Figure 4.2 satisfies correctness and all
the properties of Definition 4.2.3:
correctness. Let ct = (−a,a · s + pe+m) be an encoding. Then ct is a valid encoding of a
message m ∈ Zp if e < q

2p .

d-linearly homomorphicity. Given a vector of d encodings #”ct ∈ Zd×(n+1)
q and a vector of

coefficients c ∈ Zdp, the homomorphic evaluation algorithm is defined as follows: Eval
( #”ct, c

)
:=

c · #”ct.
quadratic root detection. The algorithm for quadratic root detection is straightforward using
Dec: decrypt the message and evaluate the polynomial, testing if it is equal to 0.
image verification. Using the decryption algorithm Dec, and provided with the secret key
(i.e., δ := s), we can implement image verification (algorithm ∈).
Fresh Encodings. We say that an encoding is fresh if it is generated through the Enc algorithm.
Otherwise, we consider the encoding is stale.

4.3.1 Technical Challenges

Noise growth. During the homomorphic evaluation, the noise grows as a result of the
operations which are performed on the encodings. Consequently, in order to ensure that the
output of Eval is a valid encoding of the expected result, we need to start with a sufficiently
small noise in each of the initial encodings.

In order to bound the size of the noise, we first need a basic theorem on the tail bound of
discrete Gaussian distributions due to Banaszczyk [Ban95]:

Lemma 4.3.2 ([Ban95, Lemma 2.4]). For any σ, T ∈ R+ and a ∈ Rn:

Pr[x← χnσ : |x · a| ≥ Tσ ‖a‖ ] < 2 exp(−πT 2). (4.1)

At this point, this corollary follows:

Corollary 4.3.3. Let s←$Znq be a secret key and m = (m0, . . . ,md−1) ∈ Zdp be a vector of
messages. Let #”ct be a vector of d fresh encodings so that cti ← Enc (s,mi), and c ∈ Zdp be
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a vector of coefficients. If q > 2p2σ
√

κd
π , then Eval

(
c, #”ct

)
outputs a valid encoding of m · c

under the secret key s with probability overwhelming in κ.

Proof. The fact that the message part is m · c is trivially true by simple homomorphic linear
operations on the encodings. Then the final encoding is valid if the error does not grow
too much during these operations. Let e ∈ Zdp be the vector of all the error terms in the d
encodings, and let T =

√
κ/π. Then by Lemma 4.3.2 we have:

Pr
[
e← χdσ : |e · c| ≥

√
κ

π
σ ‖c ‖

]
< 2 exp(−κ).

For correctness, we need the absolute value of the final noise to be less than q/2p (cf.
Section 4.3). Since it holds that ∀c ∈ Zdp, ‖c‖ ≤ p

√
d, we can state that correctness holds if:√

κ

π
σp
√
d <

q

2p

which gives q > 2p2σ

√
κd

π
.

Smudging. When computing a linear combination of encodings, the distribution of the error
term in the final encoding does not result in a correctly distributed fresh encoding. The
resulting error distribution depends on the coefficients used for the linear combination, and
despite correctness of the decryption still holds, the error could reveal more than just the
plaintext. We combine homomorphic evaluation with a technique called smudging [AJL+12],
which “smudges out” any difference in the distribution that is due to the coefficients of the
linear combination, thus hiding any potential information leak. This technique has also been
called “noise flooding” in the past [BPR12].

Lemma 4.3.4 (Noise Smudging, [Gen09]). Let B1 = B1 (κ) and B2 = B2 (κ) be positive
integers. Let x ∈ [−B1, B1] be a fixed integer and y←$ [−B2, B2]. Then the distribution of y
is statistically indistinguishable from that of y + x, as long as B1/B2 = negl[κ].

Proof. Let ∆ denote the statistical distance between the two distributions. By its definition:

∆ = 1
2

B1+B2∑
v=−(B1+B2)

|Pr [y = v]− Pr [y = v − x]| = 1
2

 −B2∑
v=−(B1+B2)

1
B2

+
B1+B2∑
v=B2

1
B2

 = B1
B2
.

The result follows immediately.

In order to preserve the correctness of the encoding scheme while allowing linear evaluations,
we need once again q to be large enough to accommodate for the flooding noise. In particular,
q will have to be at least superpolynomial in the statistical security parameter κ.

Corollary 4.3.5. Let s ∈ Znq be a secret key and m = (m1, . . . ,md) ∈ Zdp be a vector of
messages. Let #”ct be a vector of d encodings so that cti is a valid encoding of mi, and c ∈ Zdp be
a vector of coefficients. Let eEval be the noise in the encoding output by Eval

( #”ct, c
)
and BEval a

bound on its absolute value. Finally, let Bsm = 2κBEval, and esm←$ [−Bsm, Bsm]. Then the
statistical distance between the distribution of esm and that of esm + eEval is 2−κ. Moreover,
if q > 2pBEval (2κ + 1) then the result of Eval

( #”ct, c
)

+
(

#”0 , esm
)
is a valid encoding of m · c

under the secret key s.
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Proof. The claim on the statistical distance follows immediately from Lemma 4.3.4 and the
fact that the message part is m · c is true by simple homomorphic linear operations on the
encodings. In order to ensure that the final result is a valid encoding, we need to make sure
that the error in this output encoding remains smaller than q/2p. The final error is upper
bounded by BEval +Bsm, so we have

BEval +Bsm <
q

2p =⇒ BEval + 2κBEval <
q

2p =⇒ q > 2pBEval (2κ + 1) .

Error Testing. By making non-blackbox use of our LWE encoding scheme, it is possible to
define an implementation of the function Test-error in order to guarantee the existence of a
security reduction from adversarially-generated proofs. In fact, it is not sufficient to show
that a series of homomorphic operations over a forged proof can break one of the assumptions.
We must also guarantee that these manipulations do not alter the correctness of the encoded
value. In the specific case of LWE encodings, it is sufficient to use the secret key, recover the
error, and enforce an upper bound on its norm. A possible implementation of Test-error is
displayed in Figure 4.3.

Other Requirements for Security Reduction. The following lemma will be needed later
during the security proof. It essentially defines the conditions under which we can take an
encoding, add a smudging term to its noise, sum it with the output of an execution of Eval
and finally multiply the result by an element in Zp.

Lemma 4.3.6 (For reduction). Let s, #”ct, c, eEval, BEval be as in Corollary 4.3.5, and let
ct′ = (−a′, s · a′ + pe′ +m′) be a valid encoding of a message m′ ∈ Zp with noise e′ bounded
by Be. Let Bsm = 2κBe and esm←$ [−Bsm, Bsm] be a “smudging noise”. Then, if q >
2p2 ((2κ + 1)Be +BEval), it is possible to add the smudging term esm to ct′, sum the result
with the output of Eval

( #”ct, c
)
, multiply the outcome by a coefficient k bounded by p, and

obtain a valid encoding of k (m · c +m′).

Proof. The correctness of the message part comes immediately from performing homomorphic
linear operations on encodings, and the final output is valid if the noise remains below a
certain threshold. After adding the smudging term and performing the sum, the noise term
is at most Be +Bsm +BEval = (2κ + 1)Be +BEval. After the multiplication by a coefficient
bounded by p, it is at most p ((2κ + 1)Be +BEval). Thus, the encoding is valid if:

p ((2κ + 1)Be +BEval) <
q

2p, (4.2)

which immediately gives the result.

Conditions on the Modulus q. Corollaries 4.3.3 and 4.3.5 and Lemma 4.3.6 give the conditions
that the modulus q has to respect in order to allow for all the necessary computations. In
particular, Corollary 4.3.3 gives the condition to be able to homomorphically evaluate a
linear combination of fresh encodings through the algorithm Eval; Corollary 4.3.5 gives the
condition to be able to add a smudging noise to the result of such an evaluation; Lemma 4.3.6
gives a condition that will have to be satisfied in the security reduction. They are ordered
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Test-error(s, (c0, c1))

Γ := (p, q, n, α) := Pgen(1λ)
e′ := (c0 · s + c1) / p
return (Equation (4.3))

Figure 4.3: The error testing procedure.

from the least stringent to the most stringent, so the condition that must be satisfied in the
end is the one given by Lemma 4.3.6:

q > 2p2 ((2κ + 1)Be +BEval) (4.3)

Practical Considerations. A single encoded value has size (n + 1) log q = Õ(λ). Therefore,
as long as the prover sends a constant number of encodings, the proof is guaranteed to be
(quasi) succinct. As a matter of fact, we can generate the random vector a that composes the
first term of the encoding by extending the output of a seeded PRG. This has been proven
secure in the random oracle model [Gal13].

For a more extensive analysis of the asymptotic complexity, as well as the concrete efficiency
estimates, we direct the reader towards Section 4.7.

Leftover Hash Lemma (LHL). We now recall the definition of min-entropy, and the famous
“leftover hash lemma” introduced by Håstad et al. [HILL99].

Definition 4.3.7 (Min-entropy). The min-entropy of a random variable X is defined as

H∞ (X) = − log
(
max
x

Pr[X = x ]
)

Lemma 4.3.8 (Leftover hash lemma). Assume a family of functions
{
Hx : {0, 1}n → {0, 1}`

}
x∈X

is universal, i.e., ∀a 6= b ∈ {0, 1}n,

Prx∈X [Hx (a) = Hx (b)] = 2−`.

Then, for any random variable Y :

∆ ((X,HX (Y )) , (X,U`)) ≤
1
2
√

2−H∞(Y ) · 2`,

where U`←$ {0, 1}`.

Zero-Knowledge. We now present a version of the LHL that will be useful later in this
chapter, when proving the zero-knowledge property of our construction. In a nutshell, it
says that a random linear combination of the columns of a matrix is statistically close to a
uniformly random vector, for some particular choice of coefficients.
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Lemma 4.3.9 (“Specialized” leftover hash lemma). Let n, p, q, d be non-negative integers. Let
A←$Zn×dq , and #”r ←$Zdp. Then we have

∆ ((A,A #”r ) , (A, #”u )) ≤ 1
2

√
p−d · qn,

where A #”r is computed modulo q, and #”u ←$Znq .

Proof. For the vector #”r , we have that H∞ ( #”r ) = d log p. Then the proof is immediate from
Lemma 4.3.8:

∆ ((A,A #”r ) , (A, #”u )) ≤ 1
2

√
2−d log p · qn = 1

2

√
p−d · qn.

4.4 Post-Quantum Designated-Verifier zk-SNARK
Let Enc be an encoding scheme (Definition 4.2.3). We can, for example, consider the concrete
instantiation presented in Section 3.4.2. Let C be some circuit taking as input a `u-bit string
and outputting 0 or 1. Let ` := `u + `w, where `u is the length of the “public” input, and `w
the length of the private input. The value m corresponds to the number of wires in C and n
to the number of fan-in 2 gates. Let d := m+ n. We construct a zk-SNARK scheme for any
relation RC on pairs (u,w) ∈ {0, 1}`u × {0, 1}`w that can be computed by a polynomial size
circuit C with m wires and n gates.
Designated Verifiability. As previously mentioned in Section 3.2, we distinguish two types of
arguments of knowledge: publicly verifiable ones, where the verification algorithm takes as
input only common reference string crs, and designated-verifier ones, where the verifier Ver
takes as input together with the crs some additional private verification key vrs.
In the case of designated-verifier proofs, the proof can be verified only by the verifier Ver

knowing the secret information vrs. We remark that due to the instantiation of our encodings
with an encryption scheme, the resulting scheme inherits the need of the secret state sk for
the proof verification, and consequently is limited to designated verifiers.

Our protocol is formally depicted in Figure 4.4. Differences from publicly-verifiable pairing-
based construction are highlighted.
CRS Generation. The setup algorithm G takes as input some complexity 1λ in unary form
and the circuit C : {0, 1}`u × {0, 1}`w → {0, 1}. It generates a square span program of degree
d = m+ n over a field F, of size |F| ≥ d that verifies C by running:

ssp := (v0(x), . . . , vm(x), t(x))← SSP(C)

Then, it runs (pk, sk)← K(1λ) for an encoding scheme Enc. Finally, it samples α, β, s← F
such that t(s) 6= 0, and returns the CRS:

crs :=
(

ssp, pk, Enc(1),Enc(s), . . . ,Enc(sd),

Enc(α),Enc(αs), . . . ,Enc(αsd),

Enc(βt(s)), (Enc(βvi(s)))mi=`u+1

) (4.4)

The error for each of these encodings has to be chosen carefully. In a nutshell, we need to
intentionally increase the magnitude of the noise in some encodings, in order to mimic its
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Gen(1λ, C)

α, β, s←$F; (pk, sk)← K(1λ)
(v0, . . . , vm, t)← SSP(C)
// Compute crs as per Eq. 4.4

vrs := (sk, s, α, β)
return (vrs, crs)

Ver(vrs, u, π)

u := (a1, a2, . . . a`u), a0 := 1
ws := Dec(Vw); bs := Dec(Bw)
hs := Dec(H); ĥs := Dec(Ĥ)
v̂s := Dec(V̂ ); ts := t(s)
vs :=

∑`u

i=0 aivi(s) + ws

Make the checks:
eq − pke, eq − div, eq − lin
Test− error(sk,Bw)

Prove(crs, u, w)

(v0(x), . . . , vm(x), t(x))← SSP(C)
u := (a1, . . . , a`u

) ∈ {0, 1}`u

w := (a`u+1, . . . , am)
ν(x) := v0(x) +

∑m
i=1 aivi(x) + γt(x)

vmid(x) :=
∑m
i>`u

aivi(x) + γt(x)
h(x) = (ν(x)2 − 1)/t(x)
// Compute the proof terms as per Equation (4.6)

H := Eval((Enc(si))di , (hi)di ) = Enc(h(s))
Ĥ := Eval((Enc(αsi))di , (hi)di ) = Enc(αh(s))
V̂ := Eval((Enc(αsi)di , (νi)di ) = Enc(αν(s))
Bw := Eval((Enc(βvi(s)))‖(Enc(βt(s))), (ai)‖(γ))
Vw := Eval((Enc(si))di , (vmidi)di ) = Enc(vmid(s))
Apply smudging on H,Ĥ, V̂ ,Bw, Vw

return π = (H, Ĥ, V̂ , Vw, Bw)

Figure 4.4: Our zk-SNARK protocol Π. New specific steps proper to our encodings are
highlighted: designated-verifier in red and lattice-based instantiation in green.

distribution in the simulated CRS provided to the adversary in the security reduction. Failing
to do so results in adversary’s ability to distinguish between a CRS generated by K algorithm
and a simulated one. We defer further analysis on this point to Section 4.7. The verification
string vrs consists of the secret key sk of the encoding scheme, and the secrets s, α, β (we
implicitly include the crs in vrs).
Prover. The prover algorithm, on input some statement u := (a1, . . . , a`u), computes a witness
w := (a`u+1, . . . , am) such that (u‖w) = (a1, . . . , am) is a satisfying assignment for the circuit
C. The (ai)i are such that t(x) divides (v0(x) +∑m

i=1 aivi(x))2 − 1, as per Theorem 3.4.4.
Then, it samples γ←$F and sets ν(x) := v0(x) +∑m

i=1 aivi(x) + γt(x). Let:

h(x) := ν(x)2 − 1
t(x) , (4.5)

whose coefficients can be computed from the polynomials provided in the ssp. By linear
evaluation it is possible to compute

H := Enc(h(s)), Ĥ := Enc(αh(s)), V̂ := Enc (αν(s)) ,

Vw := Enc

 m∑
i=`u+1

aivi(s) + γt(s)

 ,
Bw := Enc

β
 m∑

i=`u+1
aivi(s) + γt(s)

 .
(4.6)
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In fact, H (respectively, Ĥ) can be computed from the encodings of 1, s, . . . , sd (respectively,
α, αs, . . . , αsd ) and the coefficients of Equation (4.5). The element V̂ can be computed
from the encodings of αs, . . . , αsd. Finally, Vw (respectively, Bw) can be computed from the
encodings of s, . . . , sd (respectively, βt(s), βv`u+1(s), . . . , βvm(s)). All these linear evaluations
involve at most d + 1 terms, and the coefficients are bounded by p. By using the above
elements, the prover returns a proof π := (H, Ĥ, V̂ , Vw, Bw).
Verifier. Upon receiving a proof π and a statement u = (a1, . . . , a`u), the verifier, in
possession of the verification key vrs (that implicitly contains the crs), proceeds with the
following verifications. First, it uses the quadratic root detection algorithm of the encoding
scheme Enc to verify that the proof satisfies:

ĥs − αhs = 0 and v̂s − αvs = 0, (eq-pke)
(v2
s − 1)− hsts = 0, (eq-div)

bs − βws = 0. (eq-lin)

where (hs, ĥs, v̂s, ws, bs) are the values encoded in (H, Ĥ, V̂ , Vw, Bw) := π and ts, vs are
computed as ts := t(s) and vs := v0 +∑`u

i=1 aivi(s) + ws.
Then, the verifier checks whether it is still possible to perform some homomorphic operations,

using the Test-error procedure, implemented in Figure 4.3 for the specific case of lattice
encodings. More precisely, the verifier tests whether it is still possible to add another
encoding and multiply the result by an element bounded by p, without compromising the
correctness of the encoded element. This will guarantee the existence of a reduction in the
knowledge soundness proof of Section 4.6.2. If all above checks hold, return ”true”. Otherwise,
return ”false”.

Remark 4.4.1. Instantiating our encoding scheme on top of a “noisy” encryption scheme like
Regev’s introduces multiple technicalities that affect the protocol, the security proof, and the
parameters’ choice. For instance, in order to compute a linear combination of d encodings
via Eval we need to scale down the error parameter and consequently increase the parameters
q and n in order to maintain correctness and security. Similarly, the distributions of the
error terms and the random vectors are affected by the homomorphic evaluation, and we
must guarantee that the resulting terms are still simulatable. All these issues will be formally
addressed in Section 4.6, and then analyzed more pragmatically in Section 4.7.

4.5 Assumptions
Throughout this chapter, we rely on various computational assumptions. All of them are
long-standing assumptions in the frame of DLog-hard groups, and they have been stated in
Section 2.3.2 as standard q-type assumptions over bilinear groups. They have already been
generalized in the scope of “encoding schemes” in [GGPR13]. We recall them here in term of
our encoding scheme (Definition 4.2.3) with the necessary adaptations.

Assumption 4.5.1 (q-PKE). The q-Power Knowledge of Exponent (q-PKE) assumption holds
relative to an encoding scheme Enc and for the class Z of auxiliary input generators if, for
every non-uniform PPT auxiliary input generator Z ∈ Z and non-uniform PPT adversary A,
there exists a non-uniform extractor EA such that:

Advq-pdh
Enc,Z,A,EA := Pr

[
q-PKEEnc,Z,A,EA = true

]
= negl,
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where q-PKEEnc,Z,A,EA is the game depicted in Figure 4.5.

The q-PDH assumption has been a long-standing, standard q-type assumption [Gro10,
BBG05]. It basically states that given

(
Enc(1),Enc (s) , . . . ,Enc (sq) ,Enc

(
sq+2) , . . . ,Enc

(
s2q)),

it is hard to compute an encoding of the missing power Enc(sq+1).

Assumption 4.5.2 (q-PDH). The q-Power Diffie-Hellman (q-PDH) assumption holds for
encoding Enc if for all PPT adversaries A we have:

Advq-pdh
Enc,A := Pr[q-PDHEnc,A = true ] = negl,

where q-PDHEnc,A is defined as in Figure 4.5.

q-PKEEnc,Z,A,EA

(pk, sk)← K(1λ)
α, s←$F∗

σ ← (pk,Enc(1),
Enc(s), . . . ,Enc(sq),Enc(α),
Enc(αs), . . . ,Enc(αsq))
z ← Z(pk, σ)
(ct, ĉt; {ai}qi )← (A‖EA)(σ, z)
return (ĉt− αct = 0) ∧
ct 6∈

{
Enc(

∑q
i ais

i)
}

q-PKEQEnc,A,EA

(pk, sk)← K(1λ)
s←$F
σ ← (pk,Enc(1),
Enc(s), . . . ,Enc(sq),
Enc(sq+2), . . . ,Enc(s2q))
(Enc(c), e; b)← (A‖EA)(σ)
if b = 0 return e ∈ {Enc(c)}
else return e 6∈ {Enc(c)}

q-PDHEnc,A

(pk, sk)← K(1λ)
s←$F
σ ← (pk,Enc(1),
Enc(s), . . . ,Enc(sq),
Enc(sq+2), . . . ,Enc(s2q))
y ← A(σ)
return y ∈

{
Enc(sq+1)

}

Figure 4.5: Games for q-PKE, q-PKEQ, q-PDH assumptions.

Finally, we need another assumption to be able to “compare” adversarially-generated
messages. The q-PKEQ assumption states that for any adversary A that outputs two
ciphertexts, there exists an extractor EA that can tell whether they encode the same value.

Assumption 4.5.3 (q-PKEQ). The q-Power Knowledge of Equality (q-PKEQ) assumption holds
for the encoding scheme Enc if, for every PPT adversary A, there exists an extractor EA such
that:

Advq-pkeq
Enc,A,EA := Pr

[
q-PKEQEnc,A,EA = true

]
= negl,

where q-PKEQEnc,A,EA is the game depicted in Figure 4.5.

This last assumption is needed solely in the case where the attacker has access to a
verification oracle (see Section 4.6). Since the encoding could be non-deterministic, the
simulator in the security reduction of Section 4.6 needs to rely on q-PKEQ to simulate the
verification oracle. Pragmatically, this assumption allows us to test for equality of two
adversarially-produced encodings without having access to the secret key.
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4.5.1 Assumptions Comparison
We study the relations between our knowledge assumption and the (extractable) linear-only
assumption.

At a first glimpse, it might seem unjustified to have brought assumptions often used in the
dLog setting into the lattice domain, where they are highly non-standard. Despite this fact,
in this section, we argue
(i) that the q-PKE and q-PDH assumptions are weaker than the targeted linear-only mal-
leability of [BCI+13, BISW17], and
(ii) what consequence an attack on those assumptions would have.

Throughout the last years, a long line of research in lattice-based cryptography has been
trying to develop fully-homomorphic encryption schemes and bilinear pairing maps. So far, no
bilinear map is known in the context of lattices, and some have argued that its existence would
lead to efficient cryptographic primitives such as multilinear maps and indistinguishability
obfuscation (iO).

However, to prevent any undesired malleability, the LWE encodings used in our construction
are carrefully tailored. These encodings have some pre-added noise, so that their malleability
is limited to a small number of linear operations that are needed for the proof evaluation.
Therefore, breaking our scheme in terms of homomorphism is equivalent to solving the
problem of efficiently removing noise in such LWE encoding schemes (which is known as an
open problem). We see this as a win-win situation.
Moreover, our assumptions are weaker than previously employed assumptions for lattice-

based SNARGs. Indeed, the linear-only assumption of [BCI+13, BISW17] (see Figure 3.11 in
Section 3.5.1) informally states that an adversary can only perform affine operations over the
encodings provided as input.
We note that, despite [BCI+13] presents the above assumption for so-called linear-only

encryption schemes, all such schemes are also encodings satisfying the properties of Defini-
tion 4.2.3.

It is not immediately clear to see what the consequences of this assumption are in the case
of LWE encodings (like the one we presented in section Section 4.3) or the one in [LP11], used
in [BISW17]. Consider for example a set of parameters Γ allowing for d− 1 homomorphic
operations modulo p and the adversary A that, upon receiving as input d ciphertexts,
computes d homomorphic linear operations on them. With non-negligible probability the
error would wrap around the modular representation, leading to a “decryptable” encoding
(any element of Zn+1

q is a valid encoding) but for which the adversary does not know an affine
map. The authors of [BISW17] suggest to use double-encryption in these cases, i.e., present
two different encodings of each value, and ask the adversary to homomorphically evaluate
these terms twice. If the two ciphertexts do not encode the same element, the game is lost.
Obviously, this comes at the cost of doubling the size of each encoding and the computation
time for the prover and the verifier.
We will try in this section to argue that the assumptions we rely on for our SNARK

construction are weaker than the ones in
We say that an encoding scheme is IND-CPA in the same sense as for encryption schemes

(see Figure 2.14) if any PPT adversary has negligible probability of distinguishing the encoding
of any two chosen messages.

Theorem 4.5.4. If Enc is an IND-CPA extractable linear-only encoding scheme, it satisfies
q-PDH.
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Proof. Let us consider an adversary APDH for the q-PDH assumption. We show that there
exists an adversary A able to break IND-CPA.

Consider the PPT machine A that samples uniformly at random two field elements, s0 and
s1, then submits the two distinct chosen plaintexts sq+1

0 , sq+1
1 to the IND-CPA challenger. A

queries the IND-CPA encoding oracle with sk0, sk1 for k = 0, . . . , q, q + 2, . . . , 2q. The oracle
gives back some encodings σ :=

(
Enc(1),Enc(sb), . . . ,Enc(sqb),Enc(sq+2

b ), . . . ,Enc(s2q
b )
)
for

b ∈ {0, 1}. A runs the q-PDH adversary APDH on σ, thus obtaining (with non-negligible
probability) some encoding ct ∈

{
Enc(sq+1

b )
}
. By EXT-LO, there exists an extractor ELO

which, given as input σ and the same random coins of the adversary APDH, returns a
polynomial p such that p(sb) = sq+1

b . Let f(x) := p(x) − xq+1. By q-PDH, f(sb) = 0; by
Schwartz-Zippel lemma, f(s1−b) 6= 0 with probability 1− 2q/|F| = 1− negl. A returns the bit
b∗ such that f(sb∗) = 0, solving the IND-CPA challenge with overwhelming probability.

Theorem 4.5.5. If Enc is an IND-CPA extractable linear-only encoding scheme, it satisfies
q-PKE.

Proof. We will show that Enc satisfies q-PKE, meaning there is no APKE‖EA able to win the
q-PKE game (cf. Figure 4.5).

Suppose, by contradiction, there exists an adversary APKE that is able to produce a valid
output ct, ĉt, i.e., such that αct− ĉt = 0. We show that there is an extractor EA that outputs
the correct linear combination with non negligible probability.

Let M be the plaintext generation algorithm that, upon receiving the computational security
parameter λ and d = 2q+ 2 in unary form, samples s←$F and outputs plaintexts 1, s, . . . , sq.
Let σ ← (Enc(1),Enc(s), . . . ,Enc(sq),Enc(α),Enc(αs), . . . ,Enc(αsq)). The adversary APKE,
when run on this input σ, outputs (with non-negligible probability) ct, ĉt such that αct−ĉt = 0
(via quadratic root detection algorithm).

Let us define the adversaries B0 and B1 for the game EXT-LO that, upon receiving as
input σ, run the same instantiation of APKE and output ct - respectively ĉt. By our claim
of linear-only property, there exist the extractors E0 and E1 for B0 and B1, respectively,
outputting a0, . . . , aq, b0, . . . , bq and a′0, . . . , a′q, b′0, . . . , b′q such that

ct ∈
{

Enc
(∑d

i ais
i +∑d

i biαs
i
)}

, ĉt ∈
{

Enc
(∑d

i a
′
is
i +∑d

i b
′
iαs

i
)}

with non negligible probability.
Knowing that αct− ĉt = 0 implies either that the polynomial

P (X,Y ) = X2∑d
i biY

i +X
∑d
i (ai − b′i)Y i −

∑d
i a
′
iY

i

is the zero polynomial, or that (α, s) are roots of P (X,Y ). The second case is ruled out by
semantic security of the encoding scheme and Schwartz-Zippel lemma, by a reasoning similar
to the proof of Theorem 4.5.4.
The case where P (X,Y ) = 0 gives us bi = a′i = 0, ai = b′i, ∀i = 0, . . . , q. Therefore, we

are able to define an extractor EA for q-PKE that outputs the coefficients ai of the linear
combination with non-negligible probability, showing that any successful adversary against
q-PKE able to output ct, ĉt such that αct− ĉt = 0, has the knowledge of the coefficients ai
such that ct ∈

{
Enc

(∑d
i ais

i
)}

.
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4.6 Proofs of Security
We aim to construct designated-verifier SNARKs, so we will make some further observations
that were not introduced in Chapter 3.
Strong Knowledge Soundness. An important consideration that arises when defining knowl-
edge soundness in the designated-verifier setting is whether the adversary should be granted
access to a verification oracle. Pragmatically, allowing the adversary to query a verification
oracle captures the fact that CRS can be reused poly times.
While this distinction cannot be made in the publicly-verifiable setting, the same is not

true for the designated-verifier setting. In the specific case of our construction, we formulate
and prove our protocol allowing the adversary access to the Π.Ver(vrs, ·, ·) oracle (which has
been named strong soundness in the past [BISW17]), and later discuss which optimizations
can take place when using the weaker notion of soundness, where the adversary cannot access
a verification oracle.

In this section, we prove our main theorem:

Theorem 4.6.1. If the q-PKE, q-PKEQ and q-PDH assumptions hold for the encoding scheme
Enc, the protocol Π on Enc is a zk-SNARK with statistical completeness, statistical zero-
knowledge and computational knowledge soundness.

Proof of statistical completeness. Corollary 4.3.3 states the conditions on Γ for which the ho-
momorphically computed encodings are valid with probability at least 1−negl(κ). Lemma 4.3.6
affirms that correctly generated proofs satisfy Equation (4.2) with probability overwhelming in
κ. Therefore Test-error returns true, and completeness follows trivially by Theorem 3.4.4.

4.6.1 Zero-Knowledge
To obtain a zero-knowledge protocol, we do two things: we add a smudging term to the
noise of the encoding, in order to make the distribution of the final noise independent of the
coefficients ai, and we randomize the target polynomial t(x) to hide the witness. The random
vectors constituting the first element of the ciphertext are guaranteed to be statistically
indistinguishable from uniformly random vectors by leftover hash lemma (cf. Lemma 4.3.9).

Proof of zero-knowledge. The simulator Sim = (SimGen,SimProve) for zero-knowledge is shown
in Figure 4.6. The errors are independently sampled from the same uniform distribution
over the (integer) interval [−2κTσBw , 2κTσBw ], where T is a small constant and σBw :=
pσ
√
d+ 1

√
p2 +m− `u. We will call this the smudging distribution.

Checking that the proof output by SimProve is indeed correct (i.e., that it verifies Equa-
tions (eq-pke) to (eq-lin)) is trivial. We are left with showing that the two proofs, the real
one and the simulated one, are statistically indistinguishable.
Note that once the value of Vw in the proof has been fixed, the verification equations

uniquely determine H, Ĥ, V̂ , and Bw. This means that for any (u,w) such that C(u,w) = 1,
both the real arguments and the simulated arguments are chosen uniformly at random
such that the verification equations will be satisfied. One can prove that values for Vw are
statistically indistinguishable when executing Π.P and SimProve: Vw is the encoding of a
uniformly random variable γw in Sim and the masking of a polynomial evaluation by adding
γt(s), where γ is chosen uniformly at random (note that t(s) 6= 0) in Π.P. What is encoded
in the remaining terms is simply dictated by the verification constraints.
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In both worlds, the proof is a tuple of 5 encodings (H, Ĥ, V̂ , Vw, Bw). Once the vrs is
fixed, each encoding can be written as (−a,a · s + pe + m), for some a ∈ Znq and some
m ∈ Zp satisfying the verification equations. Due to Lemma 4.3.9, the random vectors a are
indistinguishable from uniformly random in both worlds. The error terms are statistically
indistinguishable due to Lemma 4.3.4. (See Section 4.7 for a detailed explanation of these
values.)

The zero-knowledge follows from these claims, since the simulator can use re-randomization
to ensure that its actual encodings (not just what is encoded) are appropriately uniform.

The zero-knowledge property is undoubtedly interesting, but it comes at a cost: smudging
the error terms requires us to scale the ciphertext modulus by κ bits. For those applications
where the zero-knowledge property is not required, we can simplify the protocol by removing
γt(x) from the computation of h(x) and avoiding the smudging procedure on every proof
term.

SimGen(1λ, C)

α, β, s←$F; (pk, sk)← K(1λ)
(v0, . . . , vm(x), t(x))← SSP(C)
Compute crs as per Eq. 4.4
td := (sk, s, α, β)
return (crs, td)

SimProve(td, u)

(sk, s, α, β) := td; (a1, . . . , a`u
) := u

a0 := 1; γw←$F

h :=
(

(
∑`u

i=0 aivi(s) + γw)2 − 1
)
/ t(s)

H ← Enc(h); Ĥ ← Enc(αh)
V̂ ← Enc(

∑`u

i=0 aiαvi(s) + αγw)
Vw ← Enc(γw); Bw ← Enc(βγw)
Apply smudging on H, Ĥ, V̂ , Bw, Vw
return (H, Ĥ, V̂ , Vw, Bw)

Figure 4.6: Simulator for Zero-Knowledge.

4.6.2 Knowledge Soundness

Before diving into the technical details of the proof of soundness, we provide some intuition
in an informal sketch of the security reductions: the CRS for the scheme contains encodings
of Enc(s), . . . ,Enc(sd), as well as encodings of these terms multiplied by some field elements
α, β ∈ F. The scheme requires the prover P to exhibit encodings computed homomorphically
from such CRS.

The reason why we require the prover to duplicate its effort w.r.t. α is so that the simulator
in the security proof can extract representations of V̂ , Ĥ as degree-d polynomials v(x), h(x)
such that v(s) = vs, h(s) = hs, by the q-PKE assumption (for q = d). The assumption also
guarantees that this extraction is efficient. This explains the first quadratic root detection
check Equation (eq-pke) in the verification algorithm.
Suppose an adversary manages to forge a SNARK of a false statement and pass the

verification test. Then, the soundness of the square span program (Theorem 3.4.4) implies
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that, for the extracted polynomials v(x), h(x) and for the new defined polynomial vmid(x) :=
v(x)− v0(x)−∑`u

i aivi(x), one of the following must be true:

i. h(x)t(x) 6= v2(x)− 1, but h(s)t(s) = v2(s)− 1, from Equation (eq-div);

ii. vmid(x) 6∈ Span(v`u+1, . . . , vm), but Bw is a valid encoding of Enc(βvmid(s)), from
Equation (eq-lin).

If the first case holds, then p(x) := (v2(x) − 1) − h(x)t(x) is a nonzero polynomial of
degree some k ≤ 2d that has s as a root, since the verification test implies (v2(s) − 1) −
h(s)t(s) = 0. The simulator can use p(x) to solve q-PDH for q ≥ 2d − 1 using the fact
that Enc

(
sq+1−kp(s)

)
∈ {Enc(0)} and subtracting off encodings of lower powers of s to get

Enc(sq+1).
To handle the second case, i.e., to ensure that vmid(x) is in the linear span of the

vi(x)’s with `u < i ≤ m we use an extra scalar β, supplement the CRS with the terms
{Enc(βvi(s))}i>`u ,Enc(βt(s)), and require the prover to present (encoded) βvmid(s) in its
proof. An adversary against q-PDH will choose a polynomial β(x) convenient to solve the
given instance. More specifically, it sets β(x) with respect to the set of polynomials {vi(x)}i>`u
such that the coefficient for xq+1 in β(x)vmid(x) is zero. Then, to generate the values in the
crs it uses β := β(s) (that can be computed from its input consisting of encodings of powers
of s). All these allow it to run the SNARK adversary and to obtain from its output Bw an
encoding of some polynomial with coefficient sq+1 non-zero and thus solve q-PDH. Also here,
the verification algorithm guarantees that even with all the above homomorphic operations,
the challenger still decrypts the correct value with 1− negl(κ) probability.

Proof of computational knowledge soundness. Let AΠ be the PPT adversary in the game for
knowledge soundness (See Section 3.2, Figure 3.3) able to produce a proof π for which Π.Ver
returned ”true”. We first claim that it is possible to extract the coefficients of the polynomial
v(x) corresponding to the values vs encoded in V . The setup algorithm first generates the
parameters (pk, sk) of an encoding scheme Enc and picks α, β, s ∈ F, which are used to
compute Enc(1),Enc(s), . . . ,Enc(sd),Enc(α),Enc(αs), . . . ,Enc(αsd). Fix some circuit C, and
let ssp be an SSP for C. Let APKE be the d-PKE adversary, that takes as input a set of
encodings:

σ :=
(

pk,Enc(1),Enc(s), . . . ,Enc(sd),Enc(α),Enc(αs), . . . ,Enc(αsd)
)
.

The auxiliary input generator Z is the PPT machine that upon receiving as input σ, samples
β←$Zp, constructs the remaining terms of the CRS (as per Equation (4.4)), and outputs
them in z using ssp. Thus, APKE sets crs := (ssp‖σ‖z) and invokes AΠ(crs). As a result, it
obtains a proof π = (H, Ĥ, V̂ , Vw, Bw). On this proof, it computes:

V := Enc

v0 +
`u∑
i=1

aivi(s) + ws

 = Vw + v0 +
`u∑
i=1

aivi(s). (4.7)

where ws is the element encoded in Vw. Finally, APKE returns (V̂ , V ). If the adversary
A outputs a valid proof, then by verification equation Equation (eq-pke) it holds that the
two encodings (V, V̂ ) encode values vs, v̂s such that v̂s − αvs = 0. Therefore, by q-PKE
assumption, there exists an extractor EPKE that, using the same input (and random coins) of
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APKE, outputs a vector (c0, . . . , cd) ∈ Fd+1 such that V is an encoding of ∑d
i=0 cis

i and V̂ is
an encoding of ∑d

i=0 αcis
i. In the same way, it is possible to recover the coefficients of the

polynomial h(x) used to construct (H, Ĥ), the first two elements of the proof of AΠ (again,
by Equation (eq-pke)).
Our witness-extractor EΠ, given crs, emulates the extractor EPKE above on the same

input σ, using as auxiliary information z the rest of the CRS given as input to EΠ. By
the reasoning discussed above, EΠ can recover (c0, . . . , cd) coefficients extracted from the
encodings (V, V̂ ). Consider now the polynomial v(x) := ∑d

i=0 cix
i. If it is possible to write

the polynomial as v(x) = v0(x)+∑m
i aivi(x)+δt(x) such that (a1, . . . , am) ∈ {0, 1}m satisfies

the assignment for the circuit C with u = (a1, . . . , a`u), then the extractor returns the witness
w = (a`u+1, . . . , am).
With overwhelming probability, the extracted polynomial v(x) := ∑d

i=0 cix
i does indeed

provide a valid witness w. Otherwise, there exists a reduction to q-PDH that uses the SNARK
adversary AΠ. Define the polynomial

vmid(x) := v(x)− v0(x)−
`u∑
i=1

aivi(x)

We know by definition of SSP (Definition 3.4.3) and by Theorem 3.4.4 that C is satisfiable if
and only if

t(x) | v2(x)− 1 ∧ vmid(x) =
d∑
i

cix
i − v0(x)−

`u∑
i

aivi(x) ∈ Span(v`u+1, . . . , vm, t)

Therefore, by contradiction, if the adversary AΠ does not know a witness w ∈ {0, 1}m−`u
for u (such that (u,w) ∈ RC), but still the two verification checks Equation (eq-div) and
Equation (eq-lin) pass, we have that either one of the following two cases must hold:

i. t(x)h(x) 6= v2(x)− 1, but t(s)h(s) = v2(s)− 1; or

ii. vmid(x) 6∈ Span(v`u+1, . . . , vm, t), but Bw is an encoding of βvmid(s).

Let BPDH be an adversary against the q-PDH assumption. Given a q-PDH challenge(
Enc(1),Enc(s), . . . ,Enc(sq),Enc

(
sq+2

)
, . . . ,Enc

(
s2q
))
, for q ∈ {2d− 1, d}

adversary BPDH samples uniformly at random α←$F, and defines some β ∈ F (that we
will formally construct later) and constructs a CRS as per Equation (4.4). There are some
subtleties in how BPDH generates the value β. In fact, β can be generated without knowing
its value explicitly, but rather knowing its representation over the power basis

{
si
}2q
i=0,i 6=q+1

– that is, knowing a polynomial β(x) and its evaluation in s. Some particular choices of β
will allow us to provide a solution for a q-PDH challenge. BPDH invokes the adversary AΠ
as well as the extractor EΠ on the generated CRS, thus obtaining a proof π and the linear
combination used by the prover for the polynomials h(x), v(x) and also extracts a witness for
the statement being proved.

For the strong soundness (see Section 4.6), in order to simulate the verification oracle and
to answer the verification queries of AΠ, BPDH has to compare its encodings (obtained from
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the extracted coefficients and its input) with A’s proof terms, accept if the terms match,
and reject otherwise. Because the encoding scheme is not deterministic, adversary BPDH
invokes the PKEQ extractor and simulates the verification oracle correctly with overwhelming
probability.

The reduction in the two mentioned cases works as follows:

i. The extracted polynomials h(x) and v(x) satisfy t(s)h(s) = v2(s)− 1, but t(x)h(x) 6=
v2(x) − 1. By q-PDH assumption this can happen only with negligible probability.
We define P (x) = v2(x) − 1 − t(x)h(x), that in this case is a non-zero polynomial
of degree k ≤ 2d having s as a root. Let pk be the highest nonzero coefficient of
P (x). Write P̃ (x) = xk − p−1

k · P (x). Since s is a root of xk − P̃ (x), it is a root of
xq+1 − xq+1−kP̃ (x). BPDH solves q-PDH by computing Enc(sq+1) = Enc(sq+1−kP̃ (s))
for q = 2d − 1. Since deg(P̃ ) ≤ k − 1, the latter is a known linear combination of
encodings Enc(1),Enc(s), . . . ,Enc(sq) which are available from the q-PDH challenge.
More precisely, BPDH will compute Eval((Enc(si+q+1−k))i, (p̃i)2d−1

i ) on fresh encodings
Enc(1),Enc(s),Enc(s2), . . . ,Enc(sq) solving the q-PDH challenge for q ≥ 2d− 1.

ii. In the second case, suppose that the polynomial vmid extracted as previously described
cannot be expressed as a linear combination of {v`u+1, . . . , vm, t}. The proof still passes
the verification, so we have a consistent value for Bw ∈ {Enc(βvmid(s))}.
BPDH generates a uniformly random polynomial a(x) of degree q subject to the constraint
that all of the polynomials a(x)t(x) and {a(x)vi(x)}mi=`u+1 have coefficient 0 for xq+1.
We note that for q = d, there are q − (m− `u) > 0 degrees of freedom in choosing a(x).
BPDH defines β to be the evaluation of a(x) in s, i.e., β := a(s). Remark that BPDH
does not know s explicitly, but having access to the encodings of 2q − 1 powers of s,
it is able to generate valid encodings (Enc(βvi(s)))i and Enc(βt(s)) using Eval. Note
that, by the construction of β, this evaluation is of d+ 1 elements in F and that the
(q + 1)-th power of s is never used. Now, since vmid(x) is not in the proper span,
the coefficient of degree q + 1 of xa(x)vmid(x) must be nonzero with overwhelming
probability 1− 1/|F|. The term Bw of the proof must encode a known polynomial in s:∑2q
i=0 bis

i := βvmid(s) = a(s)vmid(s) where the coefficient bq+1 is non-trivial. BPDH can
subtract off encodings of multiples of other powers of s to recover Enc(sq+1) and break
q-PDH. This requires an evaluation on fresh encodings:

Eval
(

(Enc(si))q+di=0
i 6=q+1

, (−bi)q+di=0
i 6=q+1

)
. (4.8)

Adding the above to Bw and multiplying by the inverse of the (q + 1)-th coefficient
(using once again Eval) will provide a solution to the q-PDH problem for q = d.

Since the two cases above are not possible by q-PDH assumption, EΠ extracts a valid witness
if the proof of AΠ is valid.

As previously mentioned in Section 4.6, the proof of knowledge soundness allows oracle
access to the verification procedure. In the context of a weaker notion of soundness where
the adversary does not have access to the Π.Ver(vrs, ·, ·) oracle, the proof is almost identical,
except that there is no need for the BPDH adversary to answer queries and to simulate the
verification, and therefore no need for the q-PKEQ assumption anymore.
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4.7 Efficiency and Concrete Parameters

The prover’s computations are bounded by the security parameter and the size of the circuit,
i.e., P ∈ Õ (λd). As in [GGPR13, DFGK14], the verifier’s computations depend solely on
the security parameter, i.e., Ver ∈ O (λ). The proof consists of a constant number (precisely,
5) of LWE encodings, i.e., |π| = 5 · Õ (λ). Finally, the complexity of the setup procedure is
Õ (λd).
Using the propositions from Section 4.3 and knowing the exact number of homomorphic

operations that need to be performed in order to produce a proof, we can now attempt at
providing some concrete parameters for our encoding scheme.
We fix the statistical security parameter κ := 32, as already done in past works on fully

homomorphic encryption (e.g., [DM15, CGGI16]). We fix the circuit size d := 215, which
is sufficient for some practical applications such as the computation of SHA-256. For some
practical examples of circuits, we direct the reader towards [BCG+14, PHGR13].

For a first attempt at implementing our solution, we assume a weaker notion of soundness,
i.e., that in the KS game the adversary does not have access to a verification oracle (cf.
Figure 3.3). Concretely, this means that the only bound in the size of p is given by the
guessing probability of the witness, and the guessing of a field element. We thus fix p to be a
prime3 of 32 bits for the size of the message space.

The CRS is composed of encodings of different nature: some of them are fresh (Enc(1),Enc(s),
. . . ,Enc(sd)), some happen to be stale in the construction of APKE and the construction
of BPDH Section 4.6.2 (Item i.) (Enc(αs), . . . ,Enc(αsd)), and some are stale from the con-
struction of BPDH Section 4.6.2 (Item ii.) (Enc(βt(s)), (Enc(βvi(s)))i). They are displayed in
Figure 4.7.

Since, as we have seen, BPDH manipulates the q-PDH challenge via homomorphic operations,
we must guarantee that the protocol adversary can perform at least the same number of
homomorphic operations as in the real-world protocol. Therefore, in the real protocol, we
must intentionally increase the magnitude of the noise in the CRS: the terms Enc(αsi) (with
i = 0, . . . , d) are generated by multiplying the respective fresh encoding Enc(si) by a term
bounded by p; the terms Enc(βt(s)),{Enc(βvi(s))}i instead are generated via Eval of d+ 1
elements with coefficients bounded by p. Concretely, when encoding these elements using the
encoding scheme of Section 4.3, the error for Enc(αsi) is sampled from p · χσ; the error for
Enc(βt(s)),Enc(βvi(s))) is sampled from (p

√
d+ 1) · χσ.

The proof π consists of five elements (H, Ĥ, V̂ , Vw, Bw), as per Equation (4.6). H and Vw
are computed using an affine function on d encodings with coefficients modulo p; Ĥ, V̂ are
computed using a linear function on d+ 1 encodings with coefficients modulo p; finally, Bw is
computed using a linear combination of m−`u encodings with coefficients in {0, 1}, except the
last one which is modulo p. Overall, the term that carries the highest load of homomorphic
computations is Bw. The generation of Bw is outlined in Figure 4.7, and to it (as well as to
the other proof terms) we add a smudging term for constructing a zero-knowledge proof π.
In the construction of the adversary BPDH (Item ii.), we need to perform some further

homomorphic operations on the proof element Bw in order to solve the q-PDH challenge,
namely one addition (Equation (4.8)) and one multiplication by a known scalar b bounded
by p.

3In particular, we need p and q to be relatively prime for the correctness of the encoding scheme [BV11a,
footnote 18].
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The result of the first operation is denoted by Enc(b · sq+1) in Figure 4.7; the final result is
the solution to the q-PDH challenge.

βt(s)

Enc(s) Bw π Enc(bsq+1) Enc(sq+1)

βvi(s) Enc(s )

Eval [d+ 1,
p] Eval [1,

p]

Eval [m
− `

u
,

2]Eval [d+ 1, p]

smudging mult p

Eval [2d
, p

]

APKE, BPDH Π.P BPDH

Figure 4.7: Summary of evaluations in the security proof.

We now outline the calculations that we use to choose the relevant parameters for our
encoding scheme. In particular, we will focus on the term Bw since, as already stated, it is
the one that is involved in the largest number of homomorphic operations.

The chain of operations that need to be supported is depicted in Figure 4.7: The leftmost
part of the figure refers to the construction of adversaries for q-PKE and q-PDH; the central
part refers to the protocol itself (i.e., the construction of the proof π); the rightmost part refers
to the construction of the adversary for q-PDH. The syntax Eval [d, p] denotes a homomorphic
evaluation on d encodings with coefficients in Zp. Enc(s) denotes the PDH challenge. We
now analyze them one by one.

The correctness of the other terms follows directly from Corollary 4.3.3.
First of all, the terms (βvi(s))i and βt(s) are produced through the algorithm Eval executed

on d+ 1 fresh encodings with coefficients modulo p. Let σ be the discrete Gaussian parameter
of the noise terms in fresh encodings; then, by Pythagorean additivity, the Gaussian parameter
of encodings output by this homomorphic evaluation is σEval := pσ

√
d+ 1. Then the term

βt(s) is multiplied by a coefficient in Zp, and the result is added to a subset sum of the
terms (βvi(s))i, i.e., a weighted sum with coefficients in {0, 1}. It is trivial to see that, for
the first term, the resulting Gaussian parameter is bounded by pσEval, whereas for the second
term it is bounded by σEval

√
m− `u. The parameter of the sum of these two terms is then

bounded by σBw := σEval
√
p2 +m− `u. Let us then consider a constant factor T for “cutting

the Gaussian tails”, i.e., such that the probability of sampling from the distribution and
obtaining a value with magnitude larger than T times the standard deviation is as small
as desired. We can then write that the absolute value of the error in Bw is bounded by
TσBw . At this point we add a smudging term, which amounts to multiplying the norm of the
noise by (2κ + 1) (cf. Corollary 4.3.5). Finally, the so-obtained encoding has to be summed
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with the output of an Eval invoked on 2d fresh encodings with coefficients modulo p and
multiplied by a constant in Zp. It is easy to calculate that the final noise is then bounded
by TpσBw (2κ + 1) + TpσEval (cf. Lemma 4.3.6). By substituting the values of σEval, σBw ,
remembering that σ := αq and imposing the condition for having a valid encoding, we obtain

Tp2αq
√
d+ 1

(√
p2 +m− `u (2κ + 1) + 1

)
<

q

2p.

The above corresponds to Equation (4.3) with bounds Be := TσBw and BEval := TσEval. By
simplifying q and isolating α, we get:

α <
1

2Tp3
√
d+ 1

(√
p2 +m− `u (2κ + 1) + 1

) .
With our choice of parameters and by taking T = 8, we can select for instance α = 2−180.

Once α and p are chosen, we select the remaining parameters q and n in order to achieve
the desired level of security for the LWE encoding scheme. To do so, we take advantage
of Albrecht’s estimator4 [APS15b] which, as of now, covers the following attacks: meet-in-
the-middle exhaustive search, coded-BKW [GJS15], dual-lattice attack and small/sparse
secret variant [Alb17], lattice reduction with enumeration [LP11], primal attack via uSVP
[AFG14, BG14], Arora-Ge algorithm [AG11] using Gröbner bases [ACFP14].
Finally, based on these parameters, we can concretely compute the size of the CRS5 and

that of the proof π. The CRS is composed of d+ (d+ 1) + (m+ 1) encodings, corresponding
to the encodings of the d powers of s, the encodings of α multiplied by the d + 1 powers
of s, the m encodings of (βvi)i, and the encoding of βt (s). This amounts to (2d+m+ 2)
LWE encodings, each of which has size (n+ 1) log q bits6. For the calculations, we bound
m by d and state that the size of the CRS is that of (3d+ 2) LWE encodings. From an
implementation point of view, we can consider LWE encodings ( #”a , b) ∈ Zn+1

q where the
vector #”a is the output of a seeded PRG. This has been proven secure in the random oracle
model [Gal13]. Therefore, the communication complexity is greatly reduced, as sending an
LWE encoding just amounts to sending the seed for the PRG and the value b ∈ Zq. For
security to hold, we can take the size of the seed to be λ bits, thus obtaining the final size of
the CRS: (3d+ 2) log q + λ bits. The proof π is composed of 5 LWE encodings, therefore it
has size |π| = 5 (n+ 1) log q bits. Note that in this case, we cannot trivially use the same
trick with the PRG, since the encodings are produced through homomorphic evaluations.

4.7.1 Implementation
We implemented our construction in standard C11, using the library GMP [Gt12] for handling
arbitrary precision integers and the library FLINT [HJP13] for handling polynomials. We
chose p to be the pseudo-Mersenne prime 232−5, and q = 2736. This allows for fast arithmetic
operations: reduction modulo q simply consists in a bitmask, modular operations by p can fit
a uint64_t type, and multiplication of a scalar modulo p to a vector in Zn+1

q does not require
4https://bitbucket.org/malb/lwe-estimator
5We take into account only the encodings that are contained in the CRS. The other terms have considerably
smaller impact on its size or can be agreed upon offline (e.g.,, the SSP).

6Note that the magnitude of the noise term, i.e., whether the encoding is fresh or stale, has no impact on
the size of an encoding. This size is a function only of n (the number of elements in the vector) and the
modulus q.

https://bitbucket.org/malb/lwe-estimator
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Figure 4.8: Time measurements for Eval.

any allocation for the carry. The dimension of the lattice was chosen n = 1470, corresponding
to the “medium” security level discussed in [GMNO18].

We performed extensive benchmarks of our protocol on a single thread of an Intel Core i7-
4720HQ CPU @ 2.60GHz, running Arch Linux (kernel version 4.14.39). Our implementation
is publicly available 7.

7See https://www.di.ens.fr/~orru/pq-zk-snarks.

https://www.di.ens.fr/~orru/pq-zk-snarks


Chapter 5
O-SNARKs

O n the (In)security of SNARKs in the Presence of Oracles. In this chap-
ter, we study the feasibility of knowledge extraction for SNARKs in a scenario that
has not been analyzed before. While prior work focuses on the case of adversarial

provers that may receive (statically generated) auxiliary information, here we consider the
scenario where adversarial provers are given access to an oracle. For this setting, we study if
and under what assumptions such provers can admit an extractor. First, we formalize the
question of extraction in the presence of oracles by proposing a suitable knowledge soundness
definition for this setting. We call SNARKs satisfying this definition O-SNARKs. Second,
we study whether O-SNARKs exist, providing both negative and positive results. On the
negative side, we show that, assuming one-way functions, there do not exist O-SNARKs in the
standard model for every signing oracle family (and thus for general oracle families as well).
On the positive side, we show that when considering signature schemes with appropriate
restrictions on the message length O-SNARKs for the corresponding signing oracles exist,
based on classical SNARKs.
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Young Alice is very concerned about her health, and she always wants to be in
good shape and eat healthily. She found an app that can track her activity, that
collects information about her lifestyle, and later it is able to calculate the perfect
diet and a personalized exercise program for her. She wants to try it out, but
of course, relying on the advice of a random service found on the Internet is not
very wise. Alice is cautious and she understands the importance of having the
possibility of testing the correctness of the results, especially when those have an
impact on her health.
Now, that proofs of knowledge are not a secret anymore to her, she thinks of
using SNARKs for securing this system. Piece of cake! She contacts the service
provider and asks if they can implement such a proof as a functionality of their
system.
She has an unexpected answer that makes her doubt about the universality of
SNARK schemes and their applications.
As she already knew, a SNARK is a tool to prove knowledge of a process, of a
computation.
The service provider tells Alice that they cannot prove knowledge of all the pro-
cess, because they do not have this complete knowledge either!
They explain that in order to provide their customers with the personalized
health programs they get some vital part of their advice from external special-
ists.
They are continuously updating with the latest medical studies, but they do not
have control over how these studies have been done, and they instead receive
directly the certified parameters they should apply to their computation.
Alice finds this explanation very plausible; she would not mind the service to ask
for further advice to some medical center that she also trusts. However, in these
conditions, there must be a way to prove that they did their work as expected
using the certified parameters from the medical center.
Alice thinks about this new, unexpected situation, and she wonders if the
SNARKs do not have too many limitations to be used in such complex appli-
cations.
It seems that if one is provided with external knowledge, SNARKs are not of very
much help. The way a SNARK is defined does not allow to use it securely in any
possible application. That is such a pity!
This raises many very intricate questions that Alice would like to answer... Can
we change the way we define SNARKs? How would this new tool look like and
work?
Alice has to solve a new cryptographic puzzle to be able to secure her new app.

Tale three: Just the place for a SNARK!
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5.1 Introduction
5.1.1 Extraction for Proving Knowledge
We have seen so far how the SNARKs schemes work and how we can build secure schemes with
classical security, and even with post-quantum guarantees. The cryptographic community
assigned a lot of effort in constructing efficient such schemes for the sake of various applications.
Notably, their powerful property of knowledge soundness makes them a unique tool in more
complex protocols where we need to guarantee that different parties “know” some information
or some process. We will focus in this chapter in examining some use cases of SNARK
schemes and see the limitations we encounter.
Recall that assuming such a soundness property is formally stated in terms of some

knowledge extraction in the adaptive knowledge soundness definition: more precisely, for any
prover algorithm, there is an efficient extractor such that, whenever the prover returns an
accepting proof,the extractor outputs a valid witness.

Extraction with Auxiliary Input. Unfortunately, stated as above, knowledge soundness is
insufficient for being used in many applications. The problem is that, when using SNARKs
in larger cryptographic protocols, adversarial provers may get additional information which
can contribute to the generation of adversarial proofs. To address this problem, a stronger,
and more useful, definition of knowledge soundness requires that for any adversary A there is
an extractor EA such that, for any honestly generated crs and any polynomial-size auxiliary
input z, whenever A(crs, z) returns an accepting proof, EA(crs, z) outputs a valid witness.

This type of definition is certainly more useful for using SNARKs in larger cryptographic
protocols, but it also introduces other subtleties. As first discussed in [HT98], extraction
in the presence of arbitrary auxiliary input can be problematic, if not implausible. Formal
evidence of this issue has been recently given in [BCPR14, BP15]. Bitansky et al. [BCPR14]
show that, when assuming indistinguishability obfuscation, there do not exist extractable
one-way functions (and thus SNARKs) with respect to arbitrary auxiliary input of unbounded
polynomial length. Boyle and Pass [BP15] generalize this result showing that assuming
collision-resistant hash functions and differing-input obfuscation, there is a fixed auxiliary
input distribution for which extractable one-way functions do not exist.

5.1.2 Extraction in the Presence of Oracles
In this chapter, we continue the study on the feasibility of extraction by looking at a scenario
that, to the best of our knowledge, has not been explicitly analyzed before. We consider the
case in which adversarial provers run in interactive security experiments where they are given
access to an oracle. For this setting, we study if and under what assumptions such provers
can admit an extractor.
Before giving more detail on our results, let us discuss a motivation for analyzing this

scenario. To keep the presentation simple, here we give a motivation via a hypothetical
example; more concrete applications are discussed later.

A case study application. Consider an application where Oscar gets a collection of signatures
generated by Bob, and he has to prove to Alice that he owns a valid signature of Bob on
some message m such that P (m) = 1. Let us say that this application is secure if Oscar,
after asking for signatures on several messages, cannot cheat letting Alice accept for a false
statement (i.e., P (m) = 0, or P (m) = 1 but Oscar did not receive a signature on m). If
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messages are large and one wants to optimize bandwidth, SNARKs can be a perfect candidate
solution for doing such proofs,1 i.e., Oscar can generate a knowledge soundness of (m,σ) such
that “(m,σ) verifies with Bob’s public key and P (m) = 1”.
An attempt of security proof. Intuitively, the security of this protocol should follow easily
from the knowledge soundness of the SNARK and the unforgeability of the signature scheme.
However, somewhat surprisingly, the proof becomes quite subtle. Let us consider a cheating
Oscar that always outputs a proof for a statement in the language.2 If Oscar is still cheating,
then it must be that he is using a signature on a message that he did not query – in other
words a forgery. Then one would like to reduce such a cheating Oscar to a forger for the
signature scheme.

To do this one would proceed as follows. For any Oscar, one defines a forger that, on input
the verification key vk, generates the SNARK crs, gives (crs, vk) to Oscar, and simulates
Oscar’s queries using its own signing oracle. When Oscar comes with the cheating proof, the
forger would need an extractor for Oscar in order to obtain the forgery from him. However,
even if we see Oscar as a SNARK prover with auxiliary input vk, Oscar does not quite fit the
knowledge soundness definition in which adversaries have no oracles. To handle similar cases,
one typically shows that for every interactive Oscar, there is a non-interactive algorithm B
that runs Oscar simulating his oracles (i.e., B signs queries by sampling the signing key) and
returns the same output. The good news is that for such B one can claim the existence of
an extractor EB as it fits the knowledge soundness definition. The issue is though that EB
expects the same input of B, which includes the secret signing key. This means that our
candidate forger (which does not have the secret signing key) cannot run this extractor.
Applications that need extraction with oracles. Besides the above example, this issue can
show up essentially in every application of SNARKs in which adversaries have access to
oracles with a secret state, and one needs to run an extractor during an experiment (e.g., a
reduction) where the secret state of the oracle is not available.

In this chapter, we address this problem by providing both negative and positive results
to the feasibility of extraction in the presence of oracles. On one hand, our negative results
provide an explanation of why the above proofs do not go through so easily. On the other
hand, our positive results eventually provide precise guidelines to formally state and prove the
security of the cryptographic constructions mentioned above (albeit with some restrictions).

5.1.3 An Overview of Our Results
As a first step, we formalize the problem of defining non-black-box extraction in the presence
of oracles by proposing a notion of SNARKs in the presence of oracles (O-SNARKs for short).
In a nutshell, an O-SNARK is like a SNARK except that adaptive knowledge soundness
must hold with respect to adversaries that have access to an oracle O sampled from some
oracle family O.3 Slightly more in detail, we require that for any adversary AO with access
to O there is an extractor EA such that, whenever AO outputs a valid proof, EA outputs a
valid witness, by running on the same input of A, plus the transcript of oracle queries and
answers made by A. The advantage of this new notion is that it lends itself to easy and
intuitive security proofs in all those applications where one needs to execute extractors in

1Further motivation can also be to maintain the privacy of m by relying on zero-knowledge SNARKs.
2The other case of statements not in the language can be easily reduced to the soundness of the SNARK.
3 In fact, the notion is parametrized by the family O, i.e., we say Π is an O-SNARK for O.



114 Chapter 5 O-SNARKs

interactive security games with oracles. In particular, we show that by replacing SNARKs
with O-SNARKs (for appropriate oracle families) we can formally prove the security of the
cryptographic constructions mentioned in the previous section.
Besides its applications, the next (and more intriguing) question is whether O-SNARKs

exist. This is what we study in the second part of this work. Our results are summarized in
the following paragraphs.

O-SNARKs in the random oracle model. As a first positive result, we show that the
construction of CS proofs of Micali [Mic00] yields an O-SNARK for every oracle family, in
the random oracle model. This result follows from the work of Valiant [Val08] which shows
that Micali’s construction already allows for extraction. More precisely, using the power of
the random oracle model, Valiant shows a black-box extractor. This powerful extractor can
then be used to build an O-SNARK extractor that works for any oracle family.

Insecurity of O-SNARKs for every oracle family, in the standard model. Although the above
result gives a candidate O-SNARK, it only works in the random oracle model, and it is
tailored to one construction. It is therefore interesting to understand whether extraction
with oracles is feasible in the standard model. And it would also be interesting to see if this
is possible for classical SNARKs. Besides its theoretical interest, the latter question has also
a practical motivation since there are several efficient SNARK constructions proposed in the
last years that one might like to use in place of CS proofs. Our first result in this direction is
that assuming existence of collision-resistance hash functions (CRHFs) there do not exist
O-SNARKs for NP with respect to every oracle family. More in detail we show the following:

Theorem 5.1.1 (Informal). Assume the existence of CRHFs. Then for any polynomial p(·)
there is a family of oracles Op such that any candidate O-SNARK for NP, that is correct and
succinct with proofs of length bounded by p(·), cannot satisfy adaptive knowledge soundness
with respect to oracles from Op.

A basic intuition behind our result is that oracles provide additional auxiliary input to
adversaries and, as formerly shown in [BCPR14, BP15], this can create issues for extraction.
In fact, to obtain our result, we might also have designed an oracle that simply outputs a
binary string following a distribution with respect to which extraction is impossible due to
[BCPR14, BP15]. However, in this case, the result should additionally assume the existence
of indistinguishability (or differing-input) obfuscation. In contrast, our result shows that
such impossibility holds by only assuming the existence of CRHFs, which is a much weaker
assumption.

Insecurity of O-SNARKs for every family of signing oracles. Motivated by the three appli-
cations mentioned earlier,4 we focus on studying the existence of O-SNARKs with respect
to signing oracles. Along this direction, our first observation is that it is possible to embed
the code of our counterexample oracle inside the signing algorithm of any signature scheme.
This yields a signature scheme which is unforgeable, yet for the corresponding signing oracle
extraction is impossible (unless one can find a hash collision). Basically, this shows that there
do not exist O-SNARKs with respect to every signing oracle.

However, we further study the case of signing oracles, and show that

4We do believe that many more applications along the same line – proving knowledge of valid signatures –
are conceivable.
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Theorem 5.1.2 (Informal). Assume unforgeable signature schemes exist. Then for any poly-
nomial p(·) there is an unforgeable signature scheme Σp such that any candidate O-SNARK,
that is correct and succinct with proofs of length bounded by p(·), cannot satisfy adaptive
knowledge soundness with respect to signing oracles corresponding to Σp.

Although this counterexample is more complex than the previous one based on CRHFs,
this is interesting for at least two reasons. First, it can be based on a weaker assumption
(OWFs vs CRHFs). Second, the (secure) signature scheme we design makes the generic
homomorphic signature construction completely insecure. Namely, when plugging the scheme
Σp in the homomorphic signature construction, there is an adversary which can break its
security. This essentially shows that the proof issue is not just a difficulty in finding a way to
do the proof but that certain oracles can actually lead to insecure constructions.
Finally, let us note that the two negative results mentioned so far also imply that even

SNARKs that are secure in the classical sense, cannot satisfy adaptive knowledge soundness
with respect to every family of oracles.
Existence of O-SNARKs for specific families of signing oracles. We study ways to circumvent
our impossibility result for signing oracles that we mentioned earlier. Indeed, the above result
can be interpreted as saying that there exist (perhaps degenerate) signature schemes such
that there are no O-SNARKs with respect to the corresponding signing oracle family. This
is not ruling out that O-SNARKs may exist for specific signature schemes, or – even better –
for specific classes of signature schemes. We provide the following positive answers to this
question:
1. We show that hash-and-sign signatures, where the hash function is modeled as a random
oracle, yield “safe oracles”, i.e., oracles such that any classical SNARK is an O-SNARK for
that oracle, in the random oracle model. The only restriction of this implication is that the
classical SNARK needs to be secure w.r.t. auxiliary input consisting of random strings plus
signatures on random messages. Note that this result does not guarantee that extraction
is always possible, but it allows to formally reduce extraction in the presence of oracles to
extraction with respect to auxiliary input from a specific distribution.
Unfortunately, this result remains of limited interest in terms of applications. The first

reason is that this yields an O-SNARK in the random oracle model for which a candidate
– Micali’s CS proofs – is already known. The second reason is more subtle and is related
with the fact that hash-and-sign signatures use a random oracle: in all those applications
where the SNARK is used to prove knowledge of valid signatures, the statement to prove can
no longer be defined using an NP machine as the verification algorithm invokes the random
oracle. Hence, except for conjecturing that this still works when replacing the random oracle
with a suitable hash function, one cannot derive a formal proof.
2. We then turn our attention to the standard model setting. We show that any classical
SNARK is an O-SNARK for signing oracles if the message space of the signature scheme
is properly bounded, and O-SNARK adversaries query “almost” the entire message space.
More precisely, we show the following:
Theorem 5.1.3 (Informal). Let Σ be a signature scheme with message spaceM where |M| =
poly(λ) (resp. |M| = λω(1)), and let Q = |M| − c for a constant c ∈ N. Then a classical
SNARK that is polynomially (resp. sub-exponentially) secure is also an O-SNARK for the
family of signing oracles corresponding to Σ, for adversaries that make |M| − c signing
queries.
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Another restriction of the above theorem is that the classical SNARK must allow for
extraction w.r.t. auxiliary input consisting of a verification key and a collection of signatures
on random messages. We also show a similar theorem for a more complex family of multiple
signing oracles, which we use to prove the security of succinct functional signatures.

Interpretation of our results. In line with recent work [BCPR14, BP15] on the feasibility
of extraction in the presence of auxiliary input, our results indicate that additional care
must be taken when considering extraction in the presence of oracles. While for auxiliary
input impossibility of extraction is known under obfuscation-related assumptions, in the case
of oracles we show that extraction becomes impossible even when only assuming collision-
resistance hash functions. Furthermore, our work establishes a framework that eases the
analysis and the use of SNARK extractors in all those security experiments where these
are given access to an oracle. Our results for signing oracles allow to relate the security of
SNARKs in this new scenario to their security in the (better studied) case of extraction with
auxiliary input, thus avoiding to make further (and new) conjectures on the plausibility of
extractability assumptions. Also, we believe that our results for signing oracles are general
enough to be re-used in other applications where SNARKs are employed to prove knowledge
of valid signatures.

Finally, we remark that our counterexamples are of artificial nature and do not give evidence
of extraction’s impossibility in the presence of “natural” oracles. In this sense, they can be
seen of theoretical interest. Yet, given the importance of provable security and considering
the increasing popularity of SNARKs in more practical scenarios, we believe these results
can also be useful to protocol designers.

5.2 SNARKs with Auxiliar Input
We recall here the classical definition of SNARKs and the knowledge soundness property, that
is classically stated for some auxiliary input generated using a ”benign” relation generator.
Through this chapter, we will consider only publicly verifiable SNARKs.

Definition 5.2.1 (SNARK for NP [BCC+14]). A SNARK Π = (Gen,Prove,Ver) is defined by
three algorithms:

Gen(1λ, T )→ crs: on input a security parameter λ ∈ N and a time bound T ∈ N, this
algorithm outputs a common reference string crs;

Prove(crs, u, w)→ π: given a prover reference string crs, a statement u and a witness w s.t.
(u,w) ∈ R, this algorithm produces a proof π;

Ver(crs, u, π)→ b: on input a the crs, an instance u, and a proof π, the verifier algorithm
outputs b = 0 (reject) or b = 1 (accept);

satisfying completeness, succinctness, knowledge-soundness. We recall only the knowledge
soundness property which is central in this chapter. (See Section 3.2 for the complete
definition.)

Knowledge Soundness. For every PPT adversarial prover A of size s(λ) = poly(λ) there
exists a non-uniform extractor EA of size t(λ) = poly(λ) and a negligible function ε(λ) such
that for every auxiliary input z ∈ {0, 1}poly(λ), and every time bound T ∈ N,

Advks
Π,A,EA := Pr

[
KSΠ,A,EA(λ) = true

]
= negl,
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KS(λ, T,A, EA,Z)

crs← Gen(1λ, T )
z← Z(1λ)
(u, π;w)← (A‖EA)(crs, z)
return

(
R(u,w) = 0
∧ Ver(crs, u, π)

)
= 1

Figure 5.1: Game for adaptive knowledge soundness for auxiliary input

where KSΠ,A,EA(λ) is defined in Figure 5.1.
Furthermore, we say that Π satisfies (s, t, ε)-adaptive proof of knowledge if the above

condition holds for concrete values (s, t, ε).

Remark 5.2.2 (About extraction and auxiliary input). First, we stress that in the KS property
the extractor EA takes exactly the same input of A, including its random tape. Second, the KS
definition can also be relaxed to hold with respect to auxiliary inputs from specific distributions
(instead of arbitrary ones). Namely, let Z be a probabilistic algorithm (called the auxiliary
input generator) that outputs a string z, and let compactly denote this process as z ← Z.
Then we say that adaptive knowledge soundness holds for Z if the above definition holds
for auxiliary inputs sampled according to Z, where Z is also a non-uniform polynomial-size
algorithm. More formally, we have the following definition.

Definition 5.2.3 (Z-auxiliary input SNARKs). Π is called a Z-auxiliary input SNARK if
Π is a SNARK as in Definition 5.2.1 except that adaptive knowledge soundness holds for
auxiliary input z← Z.

On the Limits of Auxiliary Input. As discussed in previous work [HT98, BCPR14, BP13],
dealing with auxiliary inputs is a delicate aspect of the SNARK definition (and extractability
assumptions in general). Bitansky et al. [BCPR14] showed that indistinguishability
obfuscation implies that there are potential auxiliary inputs to the adversary that allow
it to create a valid proof in an obfuscated way such that it is impossible to extract the
witness. Boyle and Pass [BP15] show later that assuming the stronger notion of public coin
differing input obfuscation there is even auxiliary inputs that defeat witness extraction for
all candidate SNARKs:

Theorem 5.2.4 (Informal [BP15]). Assume the existence of fully homomorphic encryption
with decryption in NC1. Then there exist efficiently computable distributions Z̄, D̄ such that
one of the following two primitives does not exist:

• SNARKs w.r.t. auxiliary input from Z̄.
• differing-inputs obfuscation for distribution D̄ of NC1 circuits and auxiliary inputs.
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5.3 SNARKs in the Presence of Oracles

In this section we formalize the notion of extraction in the presence of oracles for SNARKs.
We do this by proposing a suitable adaptive knowledge soundness definition, and we call a
SNARK satisfying this definition a SNARK in the presence of oracles (O-SNARK, for short).
As we shall see, the advantage of O-SNARKs is that this notion lends itself to easy and
intuitive security proofs in all those applications where one needs to execute extractors in
interactive security games with oracles (with a secret state). Below we provide the definition
while the existence of O-SNARKs is discussed in Section 5.4.

5.3.1 O-SNARKs

Let O = {O} be a family of oracles. We denote by O ← O the process of sampling an oracle
O from the family O according to some (possibly probabilistic) process. For example, O
can be a random oracle family, i.e., O = {O : {0, 1}` → {0, 1}L} for all possible functions
from `-bits strings to L-bits strings, in which case O ← O consists of choosing a function O
uniformly at random in O. As another example, O might be the signing oracle corresponding
to a signature scheme, in which case the process O ← O consists of sampling a secret key of
the signature scheme according to the key generation algorithm (and possibly a random tape
for signature generation in case the signing algorithm is randomized).

For any oracle family O, we define an O-SNARK Π for O as follows.

Definition 5.3.1 (Z-auxiliary input O-SNARKs for O). We say that Π is a Z-auxiliary input
O-SNARK for the oracle family O if Π satisfies the properties of completeness and succinctness
as in Definition 3.2.2, and the following property of adaptive knowledge soundness for O:

• Adaptive Knowledge Soundness for O. Consider the experiment in Figure 5.2 for
security parameter λ ∈ N, time bound T ∈ N, adversary A, extractor EA, auxiliary
input generator Z and oracle family O, where qt = {qi,O(qi)} is the transcript of all
oracle queries and answers made and received by A during its execution.

O-KS(λ, T,A, EA,Z,O)

z← Z(1λ); O ← O
crs← Gen(1λ, T )
qt = (q1,O(q1), . . . , qQ,O(qQ))
w ← EA(crs, z, qt)
return (Ver(crs, y, π) = 1)

∧ ((y, w) 6∈ R)

Figure 5.2: Game for adaptive knowledge soundness for O.

Π satisfies adaptive knowledge soundness with respect to oracle family O and auxiliary
input from Z if for every non-uniform oracle prover AO of size s(λ) = poly(λ) making
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at most Q(λ) = poly(λ) queries there exists a non-uniform extractor EA of size t(λ) =
poly(λ) and a negligible function ε(λ) such that for every time bound T ,

Pr[O-KS(λ, T,A, EA,Z,O)⇒ 1] ≤ ε(λ)

Furthermore, we say that Π satisfies (s, t,Q, ε)-adaptive knowledge soundness with
respect to oracle family O and auxiliary input from Z if the above condition holds for
concrete values (s, t,Q, ε).

5.3.2 Non-Adaptive O-SNARKs
In this section we define a relaxation of O-SNARKs in which the adversary is non-adaptive
in making its queries to the oracle. Namely, we consider adversaries that first declare all
their oracle queries q1, . . . , qQ and then run on input the common reference string as well as
the queries’ outputs O(q1), . . . ,O(qQ). More formally,

Definition 5.3.2 (Z-auxiliary input non-adaptive O-SNARKs for O). We say that Π is a
Z-auxiliary input non-adaptive O-SNARK for the oracle family O, if Π satisfies the properties
of completeness and succinctness as in Definition 3.2.2, and the following property of non-
adaptive queries knowledge soundness for O:

• Non-Adaptive Knowledge Soundness for O. Consider the experiment in Figure 5.3 for
security parameter λ ∈ N, time bound T ∈ N, adversary A = (A1,A2), extractor EA,
auxiliary input generator Z and oracle family O where st is simply a state information
shared between A1 and A2.

O-nonAd-KS(λ, T,A, EA,Z,O)

(q1, . . . , qQ, st)← A1(1λ)
z← Z(1λ); O ← O
crs← Gen(1λ, T )
qt = (q1,O(q1), . . . , qQ,O(qQ))
(y, π)← A2(st, crs, z, qt)
w ← EA(crs, z, qt)
return (Ver(crs, y, π) = 1) ∧ ((y, w) 6∈ R)

Figure 5.3: Game for non-adaptive knowledge soundness for O.

Π satisfies non-adaptive knowledge soundness with respect to oracle family O and
auxiliary input from Z if for every non-uniform prover A = (A1,A2) of size s(λ) =
poly(λ) making at most Q(λ) = poly(λ) non-adaptive queries there exists a non-uniform
extractor EA of size t(λ) = poly(λ) and a negligible function ε(λ) such that for every
time bound T ,

Pr[O-nonAd-KS(λ, T,A, EA,Z,O)⇒ 1] ≤ ε(λ)
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Furthermore, we say that Π satisfies (s, t,Q, ε)-non-adaptive proof of knowledge with
respect to oracle family O and auxiliary input from Z if the above condition holds for
concrete values (s, t,Q, ε).

It is also possible to define a stronger variant of the above definition in which A1 is given
(adaptive) oracle access to O, whereas A2 has no access to O, except for the query transcript
obtained by A1. It is not hard to see that the result given in the following paragraph extends
to work under this intermediate definition as well.

5.3.2.1 Existence of Non-Adaptive O-SNARKs from SNARKs.

Below we prove a simple result showing that non-adaptive O-SNARKs follow directly from
classical SNARKs for which the knowledge soundness property holds for arbitrary auxiliary
input distributions.

The idea of the proof is that the second stage adversary A2 of non-adaptive O-SNARKs is
very much like a classical SNARK adversary that makes no queries and receives a certain
auxiliary input which contains the set of oracle queries chosen by A1 with corresponding
answers. The fact that the auxiliary input includes the set of queries chosen by A1, which
is an arbitrary adversary, implies that the SNARK must support arbitrary, not necessarily
benign, auxiliary inputs (i.e., it is not sufficient to fix an auxiliary input distribution that
depends only on the oracle family O).

Theorem 5.3.3. Let O be any oracle family. If Π is a SNARK satisfying (s, t, ε)-adaptive KS
(for any auxiliary input), then Π is a non-adaptive O-SNARK for O satisfying (s, t,Q, ε)-
non-adaptive KS.

Proof. The idea is that the second stage adversary A2 of non-adaptive O-SNARKs is very
much like a classical SNARK adversary that makes no queries and receives a certain auxiliary
input which contains the set of oracle queries chosen by A1 with corresponding answers. In
addition to inputs distributed according to the family O, the SNARK must satisfy knowledge
soundness for The fact that the auxiliary input includes the set of queries chosen by A1, which
is an arbitrary adversary, implies that the SNARK must support arbitrary, not necessarily
benign, auxiliary inputs (i.e., it is not sufficient to fix an auxiliary input distribution that
depends only on the oracle family O).

Given the first stage adversary A1, and the oracle family O we define the following auxiliary
input distribution:

ZA1,O(1λ)
({q1, . . . , qQ}, st)← A1(1λ)
O $← O
return 〈st, {qi,O(qi)}Qi=1〉

Then, for any (A1,A2) we can build the following SNARK adversary B taking z ← ZA1,O:

B(crs, z)
Parse z = 〈st, q1, y1, . . . , qQ, yQ〉
Run A2(st, crs, qt = (q1, y1, . . . , qQ, yQ))→ (y, π)
Return the same (y, π) returned by A2.
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Since Π is by assumption a SNARK, for B there exists an extractor EB such that, for any
auxiliary input (and in particular for auxiliary input from ZA1,O), it holds

Pr[O-nonAd-KS(λ, T,B, EB,ZA1,O)⇒ 1] ≤ ε(λ)

Finally, we simply define EA = EB. Since B’s simulation of A2 is perfect, it is easy to see that
for any A = (A1,A2) this extractor EA is such that

Pr[O-nonAd-KS(λ, T,A, EA,O)⇒ 1] ≤ ε(λ)

5.4 On the Existence of O-SNARKs

In this section, we study whether O-SNARKs exist and under what assumptions. Namely,
we consider the question of whether a SNARK Π is also an O-SNARK for every oracle family,
or for any specific oracle family. In the following sections we give both positive and negative
answers to this question.

We observe that in the positive cases where we prove that a SNARK Π is also an O-SNARK
for a certain oracle family, we actually need to assume that Π is a Z-auxiliary input SNARK
where Z is an auxiliary input distribution that depends on the oracle. On one hand, such
proofs establish a formal connection between the two notions (a connection that – we stress –
is not always possible). On the other hand, one has then to make sure that extraction in the
presence of Z-auxiliary input is plausible.

5.4.1 O-SNARKs in the Random Oracle Model from Micali’s CS Proofs

In this section we briefly discuss how the construction of CS proofs of Micali [Mic00] can be
seen as an O-SNARK for any oracle family, albeit in the random oracle model. To see this,
we rely on the result of Valiant [Val08] who shows that Micali’s construction is a “CS proof
of knowledge” in the random oracle model. The main observation is in fact that Valiant’s
proof works by showing a black-box extractor working for any prover.

Proposition 5.4.1. Let O be any oracle family and RO be a family of random oracles. Let
ΠMic be the CS proof construction from [Mic00]. Then ΠMic is an O-SNARK for (RO,O), in
the random oracle model.

Sketch. Let ERO be Valiant’s black-box extractor5 which takes as input the code of the prover
and outputs a witness w. For any adversary ARO,O we can define its extractor EA as the
one that, on input the query transcript qt of A, executes w ← ERO(A) by simulating all the
random oracle queries of ERO using qt, and finally outputs the same w. The reason why qt
suffices to EA for simulating random oracle queries to ERO is that Valiant’s extractor ERO

makes exactly the same queries of the prover.
5The CS proofs of knowledge definition used by Valiant considers adversaries that are non-adaptive in
choosing the statement. However it easy to see that the construction and the proof work also for the
adaptive case.
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5.4.2 Impossibility of O-SNARKs in the Standard Model
In this section, we show that, in the standard model, there do not exist O-SNARKs with
respect to every family of oracles. We show this under the assumption that universal one-way
hash functions (and thus one-way functions [Rom90]) exist. To show the impossibility, we
describe an oracle family in the presence of which any candidate O-SNARK that is correct
and succinct cannot satisfy adaptive knowledge soundness with respect to that oracle family.
More specifically, we do this by means of a signing oracle family. Namely, we show a secure
signature scheme Σp such that every correct and succinct O-SNARK Π cannot satisfy adaptive
knowledge soundness in the presence of the signing oracle corresponding to Σp. Interestingly,
such a result not only shows that extraction cannot work for general families of oracles, but
also for families of signing oracles, a class which is relevant to several applications.
For every signature scheme Σ = (kg, sign, vfy) we let OΣ be the family of oracles O(m) =

sign(sk,m), where every family member O is described by a secret key sk of the signature
scheme, i.e., the process O ← OΣ corresponds to obtaining sk through a run of (sk, vk) $←
kg(1λ). For the sake of simplicity, we also assume that the oracle allows for a special query,
say O(‘vk′),6 whose answer is the verification key vk.

Theorem 5.4.2. Assume that one-way functions exist. Then for every polynomial p(·) there
exists a UF-CMA-secure signature scheme Σp such that every candidate O-SNARK Π for NP,
that is correct and succinct with proofs of length bounded by p(·), does not satisfy adaptive
knowledge soundness with respect to OΣp.

An Intuition of the Result. Before delving into the details of the proof, we provide the main
intuition of this result. This intuition does not use signature schemes but includes the main
ideas that will be used in the signature counterexample. Given a UOWHF function family H,
consider the NP binary relation R̃H = {((h, x), w) : h ∈ H, h(w) = x}, let Π be a SNARK for
NP and consider p(·) the polynomial for which Π is succinct. The idea is to show an oracle
family Õ and an adversary Ā for which there is no extractor unless H is not a universal
one-way family. For every polynomial p(·), the oracle family contains oracles Op that given a
query q, interpret q as the description of a program P(·, ·), samples a random member of
the hash family h $← H, a random w, computes x = h(w), and outputs (h, x) along with
π ← P((h, x), w). If P(·, ·) = Prove(crs, ·, ·), then the oracle is simply returning a hash image
with a proof of knowledge of its (random) preimage. The adversary ĀOp is the one that on
input crs, simply asks one query q = P(·, ·) = Prove(crs, ·, ·), gets ((h, x), π) ← Op(q) and
outputs ((h, x), π). Now, the crucial point that entails the non-existence of an extractor is
that, provided that the input w is sufficiently longer than π, every valid extractor for such
Ā that outputs a valid w′ immediately implies a collision (w,w′) for h.7 Finally, to prevent
adversarially chosen P from revealing too much information, we require the oracle to check
the length of π, and the latter is returned only if |π| ≤ p(λ).

Proof of Theorem 5.4.2. The proof consists of two main steps. First, we describe the con-
struction of the signature scheme Σp based on any other UF-CMA-secure signature scheme Σ̂
with message spaceM = {0, 1}∗ (that exists assuming OWFs [Lam79, Rom90]), and show

6Here vk is an arbitrary choice; any symbol not inM would do so. Introducing the additional query simplifies
the presentation, otherwise vk should be treated as an auxiliary input from a distribution generated
together with the oracle sampling.

7This relies on the fact that sufficiently many bits of w remain unpredictable, even given π.
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that Σp is UF-CMA-secure. Σp uses also a UOWHF family H. Second, we show that, when
considering the oracle family OΣp corresponding to the signature scheme Σp, a correct Π
with succinctness p(·) cannot be an O-SNARK for OΣp , i.e., we show an efficient O-SNARK
adversary AOp (with access to a Σp signing oracle O(·) = sign(sk, ·)), for which there is no
extractor unless H is not one-way.
The Counterexample Signature Scheme Σp. Let Σ̂ be any UF-CMA-secure scheme with
message space M = {0, 1}∗. Let H = {H}λ be a collection of function families H =
{h : {0, 1}q(λ) → {0, 1}`(λ)} where each H is an universal one-way hash family with q(λ) ≥
p(λ)+`(λ)+λ. LetMH((h, x), w) be the machine that on input ((h, x), w) accepts iff h(w) = x,
and RH be the NP relation consisting of all pairs (y, w) such that, for y = (MH, (h, x), t),
MH((h, x), w) accepts in at most t steps.

The scheme Σp has message spaceM = {0, 1}∗; its algorithms work as follows:

kg(1λ): Run (v̂k, ŝk)← Σ̂.kg(1λ), set vk = v̂k, sk = ŝk.

sign(sk,m): Signing works as follows
• generate σ̂ ← Σ̂.sign(ŝk,m);
• sample h $← H and w $← {0, 1}q(λ);
• compute x = h(w), t = #MH((h, x), w), and set y = (MH, (h, x), t);
• interpret m as the description of program P(·, ·) and thus run π ← P(y, w);
• if |π| ≤ p(λ), set π′ = π, else set π′ = 0;
• output σ = (σ̂, h, x, π′).

vfy(vk,m, σ): Parse σ = (σ̂, h, x, π′) and return the output of Σ̂.vfy(v̂k,m, σ̂).

It is trivial to check that, as long as Σ̂ is a UF-CMA-secure scheme, Σp is also UF-CMA-secure.
Moreover, remark that the scheme Σp does not depend on the specific O-SNARK construction
Π but only on the universal polynomial p(·) bounding its succinctness.
Impossibility of O-SNARKs for OΣp . To show that Π is not an O-SNARK for OΣp (under
the assumption that H is universally one-way), we prove that there is an adversary AOp such
that every candidate extractor E fails in the adaptive knowledge soundness game.

Lemma 5.4.3. If H is universally one-way then every Π for NP that is correct and succinct
with proofs of length p(·) is not an O-SNARK for OΣp.

Proof. Let AOp be the following adversary: on input crs, encode the Prove algorithm of Π with
hardcoded crs as a program P(·, ·) := Prove(crs, ·, ·); let q be P’s description, and make a
single query σ = (σ̂, h, x, π′)← O(q); return (y, π′) where y = (MH, (h, x), t) is appropriately
reconstructed. We show that for every polynomial-size extractor E it holds

Pr[O-KS(λ,Ap, E ,OΣp)⇒ 0] ≤ νH(λ) + 2−λ

where νH(λ) = AdvUOWHF
B,H (λ) is the advantage of any adversary B against H’s universal

one-wayness. This means that there is no extractor unless H is not a universal one-way
family.

We proceed by contradiction assuming the existence of a polynomial-size extractor E such
that the above probability is greater than some non-negligible ε. We show how to build an
adversary B that breaks universal one-wayness of H with non-negligible probability.
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B first chooses an hash input w $← {0, 1}q(λ), and then receives an instance h of H. Next,
B generates crs← Gen(1λ) and (v̂k, ŝk)← Σ̂.kg(1λ), and runs AOp (crs) simulating the oracle
O on the single query q := P(·, ·) = Prove(crs, ·, ·) asked by Ap. In particular, to answer the
query B uses the secret key ŝk to generate σ̂, and computes x = h(w) using the function h
received from its challenger, and the input w chosen earlier. Notice that such a simulation
can be done perfectly in a straightforward way, and that Ap’s output is the pair (y, π) created
by B. Next, B runs the extractor w′ ← E(crs, qt = (P(·, ·), (σ̂, h, x, π)), and outputs w′.

By correctness of Π it holds that the pair (y, π) returned by Ap satisfies Ver(crs, y, π) = 1.
Thus, by our contradiction assumption, with probability ≥ ε(λ), E outputs w′ such that
(y, w′) ∈ RH. Namely, h(w′) = x = h(w). To show that this is a collision, we argue that,
information-theoretically, w′ 6= w with probability ≥ 1 − 1/2λ. This follows from the fact
that w is randomly chosen of length q(λ) ≥ p(λ) + `(λ) +λ and the only information about w
which is leaked to E is through π and x = h(w), an information of length at most p(λ) + `(λ).
Therefore there are at least λ bits of entropy in w, from which Pr[w′ = w] ≤ 2−λ over the
random choice of w. Hence, B can break the universal one-wayness of H with probability
≥ ε(λ)− 2−λ.

5.4.3 O-SNARKs for Signing Oracles from SNARKs

O-SNARKs for Signing Oracles from SNARKs in the ROM. In this section, we show that
it is possible to “immunize” any signature scheme in such a way that any classical SNARK
is also an O-SNARK for the signing oracle corresponding to the transformed scheme. The
first idea is very simple and consists into applying the hash-then-sign approach using a hash
function that will be modeled as a random oracle. A limitation of this result is that, since
the verification algorithm uses a random oracle, in all those applications where the SNARK
is used to prove knowledge of valid signatures, one would need a SNARK for NPO. Hence,
the best one can do is to conjecture that this still works when replacing the random oracle
with a suitable hash function.

Let us now state our result formally. To this end, for any signature scheme Σ and polynomial
Q(·) we define ZQ,Σ as the distribution on tuples 〈vk,m1, σ1, . . . ,mQ, σQ〉 obtained by running
the following probabilistic algorithm:

ZQ,Σ(1λ)
let Q = Q(λ)
(sk, vk)← kg(1λ)
M̃←$ MsgSample(M, Q)
let M̃ = {m1, . . . ,mQ}
for i = 1 to Q do :
σi ← sign(sk,mi)

return 〈vk, {mi, σi}Qi=1〉

Figure 5.4: ZQ,Σ auxiliary input distribution
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where MsgSample(M, Q) is an algorithm that returns Q distinct messages, each randomly
chosen fromM.

Theorem 5.4.4. Let Σ be a UF-CMA-secure signature scheme, and H be a family of hash
functions modeled as a random oracle. Let Un be the uniform distribution over strings of
length n, and ZQ,Σ be the distribution defined above, where Q is any polynomial in the security
parameter. Then there exists a signature scheme ΣH such that every (Z,U ,ZΣ,Q)-auxiliary
input SNARK Π is a Z-auxiliary input O-SNARK for (OH,OΣH) where OH is a random
oracle.

Proof. The proof consists of two steps. First we define the signature scheme ΣH and prove
its security from Σ. Next, we show that Π is an O-SNARK for (OH,OΣH).
The Signature Scheme ΣH. The signature scheme ΣH is essentially an application of the
hash-then-sign paradigm to scheme Σ. The only difference is that, instead of hashing only
messages, we also hash a short random string of λ bits.

Let Σ = (Σ.kg,Σ.sign,Σ.vfy) be a signature scheme with message spaceM = {0, 1}L, and
let H{H : {0, 1}∗ → {0, 1}L} be a family of hash functions modeled as a random oracle. The
signature scheme ΣH = (ΣH.kg,ΣH.sign,ΣH.vfy) works as follows:

ΣH.kg(1λ): Run (sk, vk)← Σ.kg(1λ). Output (sk, vk).

ΣH.sign(sk,m): Sample s $← {0, 1}λ, compute h ← H(s|m), σ̂ ← Σ.sign(sk, h), and output
σ = (s, σ̂).

ΣH.vfy(vk,m, σ): Parse σ = (s, σ̂), compute h ← H(s|m), return the same output of
Σ.vfy(vk, h, σ̂).

Lemma 5.4.5. If Σ is an UF-CMA-secure signature scheme, so is ΣH in the random oracle
model.

The security proof of the lemma is straightforward and is omitted.
Π is an O-SNARK for (OH,OΣH). We are going to prove8 that for every non-uniform
polynomial-size oracle adversary A there exists a non-uniform polynomial-size extractor EA
and a negligible function ε(λ) such that for every time bound T ,

Pr[O-KS(λ, T,A, EA, (OH,OΣH))⇒ 1] ≤ ε(λ)

As a first step, we show that for every non-uniform polynomial-size algorithm A, making q
queries to OH and Q queries to OΣH (where both q,Q = poly(λ)), there is a non-uniform,
polynomial-size, non-interactive algorithm B.
B takes as input (crs, o, z), where o← Uq·L+Q·λ, z ← ZQ,Σ, and these are parsed as follows:

o = 〈r′1, . . . , r′q, s1, . . . , sQ〉 with r′j ∈ {0, 1}L and si ∈ {0, 1}λ, z = 〈vk, r1, σ̂1, . . . , rQ, σ̂Q〉.

B(crs, o, z)
Run AOH,OΣH (crs)→ (y, π) and simulate queries to OH and OΣH as follows:
Query OH(xj), j ∈ {1, . . . , q}:

8For simplicity, we are ignoring the additional auxiliary input distribution Z, as it is easy to see that it
essentially “carries over”.
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Answer with OH(xj) = r′j using r′j from o

Query OΣH(mi), i ∈ {1, . . . , Q}:
If OH(si|mi) has been already answered before, abort.
Else, set OH(si|mi) = ri, and answer OΣH(mi) = (si, σ̂i),
where ri, σ̂i are taken from z and si from o.

Return the same (y, π) returned by A.

The simulation provided by B to A is perfect unless B aborts during a signing query. This
event – let us formally call it Abort – happens if there exist i ∈ [Q] and j ∈ [q] such that
xj = si|mi. However, over the random choice of si $← {0, 1}λ in the i-th query (indeed si was
never used before and is thus hidden to A), we have that

Pr[Abort] ≤
Q∑
i=1

q

2λ ≤
q ·Q
2λ

Hence, if A succeeds in producing an instance-proof pair (y, π), so does B with overwhelming
probability.

Then, by the adaptive knowledge soundness property, we have that for every such B there
is an extractor EB such that for every polynomial n,Q

Pr[O-KS(λ, T,B, EB, (Un,ZQ,Σ))⇒ 1] ≤ ε(λ)

for a negligible ε.
So far, we have that for every A there is an extractor EB. In what follows, we use this EB

to define the extractor EA. The extractor EA takes as input crs and the transcript

qt = 〈x1, r
′
1, . . . , xq, r

′
q, r1, . . . , rQ,m1, s1, σ̂1, . . . ,mQ, sQ, σ̂Q〉

of queries made by A, and proceeds as follows:

EA(crs, qt)
Run w ← EB(crs, o, z)
Return the same w returned by EB

Basically, it rearranges the data in qt to fulfill the format of (o, z) from distributions
UqL+Qλ,ZQ,Σ. It is not hard to see that from the above construction we have

Pr[O-KS(λ, T,A, EA, (OH,OΣH))⇒ 1] ≤ Pr[O-KS(λ, T,B, EB, (Un,ZQ,Σ))⇒ 1] + qQ

2λ

≤ ε(λ) + qQ

2λ

O-SNARKs for Signing Oracles with Restrictions from SNARKs. In the following we study
other ways to obtain O-SNARKs for signing oracles. We give a positive result showing that
any SNARK Π is an O-SNARK for the signing oracle of signature scheme Σ if:
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(i) the message space of Σ is appropriately bounded (to be polynomially or at most
superpolynomially large);

(ii) Π tolerates auxiliary input consisting of the public key of Σ plus a collection of signatures
on randomly chosen messages;

(iii) one considers O-SNARK adversaries that query the signing oracle on almost the entire
message space.
Furthermore, in case of superpolynomially large message spaces, one needs to assume

sub-exponential hardness for Π.
The intuition behind this result is to simulate the O-SNARK adversary by using a (non-

interactive) SNARK adversary that receives the public key and a set of signatures on (suitably
chosen) messages as its auxiliary input. If these messages exactly match9 those queried by the
O-SNARK adversary, the simulation is perfect. However, since the probability of matching
exactly all the Q = poly(λ) queries may decrease exponentially in Q (making the simulation
meaningless), we show how to put proper bounds so that the simulation can succeed with
probability depending only on the message space size.
More formally, our result is stated as follows. Let Σ be a signature scheme with message

space M, and let Q := Q(·) be a function of the security parameter. Let ZQ,Σ be the
following auxiliary input distribution

ZQ,Σ(1λ)
let Q = Q(λ)
(sk, vk)← kg(1λ)
M̃←$ MsgSample(M, Q)
let M̃ = {m1, . . . ,mQ}
for i = 1 to Q do :
σi ← sign(sk,mi)

return 〈vk, {mi, σi}Qi=1〉

Figure 5.5: ZQ,Σ auxiliary input distribution

where MsgSample(M, Q) is a probabilistic algorithm that returns a subset M̃ ⊆ M of
cardinality Q chosen according to some strategy that we discuss later. At this point we
only assume a generic strategy such that δ(|M|, Q) = Pr[MsgSample(M, Q) =M∗] for any
M∗ ⊆M of cardinality Q.

Theorem 5.4.6. Let Σ be a signature scheme with message spaceM, let OΣ be the associated
family of signing oracles, and let ZQ,Σ be as defined above. If Π is a ZQ,Σ-auxiliary input
SNARK satisfying (s, t, ε)-adaptive KS, then Π is an O-SNARK for OΣ satisfying (s′, t′, Q, ε′)-
adaptive KS, where ε′ = ε/δ(|M|, Q), s′ = s−O(Q · log |M|), and t′ = t.

Proof. The basic idea for the proof is to show that for any O-SNARK adversary A against
Π there is a non-interactive SNARK adversary BA against Π that can perfectly simulate

9We note that the proof requires an exact match and it is not sufficient that the O-SNARK adversary’s
queries are a subset of the sampled messages. A more precise explanation of this fact is given at the end of
the proof.
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A, provided that the auxiliary input from ZQ,Σ “matches” the queries made by A. More
precisely, for any adversary AO making Q oracle queries we define the following adversary
BA in Figure 5.6.

BA(crs, z = 〈vk, {m1, σi}Qi=1〉)
Run (y, π)← AO(crs) and simulate every query O(m) as follows:

let M̃ = {m1, . . . ,mQ}
if m = 0 return vk
else if m = mi ∈ M̃ return σi
else return ⊥

return (y, π)

Figure 5.6: Adversary BA

As one can see, the adversary BA fits the syntax of a SNARK adversary in the adaptive
knowledge soundness property, by which (if Π is a SNARK) there exists an extractor EBA
such that for every time bound T and every Q

Pr [AdPoK(λ, T,BA, EBA ,ZQ,Σ)⇒ 1] ≤ ε

For every A we define the extractor EA = EBA , and our goal is to bound

Pr[O-AdPoK(λ, T,A, EA,Osign)⇒ 1] ≤ ε′

To prove this, we proceed by contradiction. Namely, let us assume that there is A (and thus
corresponding EA = EBA) such that:

Pr[O-AdPoK(λ, T,A, EA,Osign)⇒ 1] ≥ ε′

We define G1 to be the following variation of experiment O-AdPoK(λ, T,A, EA,Osign): it
generates z′ ← ZQ,Σ (using the same keypair generated when sampling oracle O ← Osign),
and at the end G1 outputs 1 if qt = z′ holds in addition to Ver(vst, y, π) = 1∧ (y, w) /∈ R. Let
QueryMatch be the event that in G1 it occurs qt = z′. Clearly, Pr[QueryMatch] = δ(Q, |M|),
and thus

Pr[G1⇒ 1] = Pr[QueryMatch] · Pr[O-AdPoK(λ, T,A, EA,Osign)⇒ 1]
≥ δ(Q, |M|) · ε′ = ε

To conclude the proof, and reach the contradiction, we show below that

Pr[AdPoK(λ, T,BA, EBA ,ZQ,Σ)⇒ 1] ≥ Pr[G1⇒ 1]

To see this, consider experiment AdPoK(λ, T,BA, EBA ,ZQ,Σ) and let QueryMatch′ be
the event that, inside the execution of BA, all the messages queried by A coincide with
those in z. Since EA = EBA one can see that experiment G1 is basically identical to
AdPoK(λ, T,BA, EBA ,ZQ,Σ)⇒ 1 ∧ QueryMatch′. Namely,
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Pr[AdPoK(λ, T,BA, EBA ,ZQ,Σ)⇒ 1] ≥ Pr[AdPoK(λ, T,BA, EBA ,ZQ,Σ)⇒ 1 ∧ QueryMatch′]
= Pr[G1⇒ 1] ≥ ε

which concludes the proof.
As a final remark, the reason why we need messages in M̃ to exactly match the queries of

A is that we construct A’s extractor from BA’s extractor – EA = EBA . Hence, in order for
EA to call EBA , it needs to know all its inputs, which is not the case if B has a superset of
the signed messages known to A.

Implications of Theorem 5.4.6. The statement of Theorem 5.4.6 is parametrized by values
|M|, Q and the function δ(|M|, Q), which in turn depends on the query guessing strategy. As
for the MsgSample(M, Q) algorithm, let us consider the one that samples a random subset
M̃ ⊆M of cardinality Q. For this algorithm we have δ(|M|, Q) = 1

(|M|Q ) .

Notice that δ(|M|, Q) is governing the success probability of our reduction, and thus we
would like this function not to become negligible. However, since Q = poly(λ) is a parameter
under the choice of the adversary, it might indeed be the case that δ(|M|, Q) ≈ 2−Q ≈ 2−λ,
which would make our reduction meaningless. To avoid this bad case, we restrict our attention
to adversaries for which Q = |M| − c for some constant c ≥ 1, i.e., adversaries that ask for
signatures on the entire message but a constant number of messages. For this choice of Q we
indeed have that δ(|M|, Q) = 1

|M|c depends only on the cardinality of |M|. This gives us the
following corollary:

Corollary 5.4.7. Let Σ be a signature scheme with message space M where |M| = poly(λ)
(resp. |M| = λω(1)), and let Q = |M| − c for constant c ∈ N. If Π is a polynomially (resp.
sub-exponentially) secure ZQ,Σ-auxiliary input SNARK, then Π is an O-SNARK for OΣ (for
adversaries making Q queries).

5.4.4 O-SNARKs for (Pseudo)random Oracles from SNARKs

In this section, we show a positive result on the existence of O-SNARKs for (pseudo)random
oracles, based on classical SNARKs that are assumed to satisfy knowledge soundness with
respect to randomly-distributed auxiliary input. While we do not have a direct application
of this result, we think that it can be useful and of independent interest.

Let O = {O : {0, 1}` → {0, 1}L} be a random oracle family, i.e., a family where sampling
a member O ← O consists of sampling a suitably long random tape (of size 2` · L). Let us
stress that here, when we refer to a random oracle family, we do not necessarily consider the
random oracle model. We simply consider the case of an interactive game in which A has
oracle access to a random function.

Theorem 5.4.8. Let O be a random oracle family. Let Z be some distribution, Un be the
uniform distribution over strings of length n, and denote by (Z,U) the distribution over
pairs (z, o) such that z← Z and o← U . If Π is a (Zq,U)-auxiliary input SNARK for every
q = poly(λ), then Π is a Z-auxiliary input O-SNARK for O.
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Proof. Completeness and succinctness follow immediately. So, we are left to prove that
(adaptive) knowledge soundness implies the corresponding property in the presence of an
oracle O ← O.

Formally, we have to show that for any efficient oracle prover AO there exists an efficient
extractor algorithm EA such that the joint probability that AO outputs a valid proof but EA
returns a wrong witness is negligible. At a high level, we do this proof by showing that EA’s
existence is equivalent to the existence of a SNARK extractor Ē , which is assured under the
adaptive knowledge soundness whenever AO exists.
First, for any AO we construct another adversary Ā. Precisely, let A be a non-uniform

algorithm that takes as input (crs, z) and (without loss of generality) makes exactly Q queries
to O for some Q = poly(λ). Then, we can define an adversary Ā that on input (crs, z) –
where z = (z, o)← (Z,UQ·L) – works as follows:

Ā(crs, z)
Run AO(crs, z)→ (y, π) simulating O queries as follows:
given the i-th query O(qi), answer with the substring
O(qi) = ai = oL·(i−1)+1| · · · |oL·i

Return the same (y, π) returned by A

The simulation of O provided by Ā to A is clearly perfect. Hence, if AO succeeds in
producing an accepting instance-proof pair (y, π), so does Ā. Therefore, by the adaptive KS
property we have that for every such Ā there is an extractor Ē that takes the same input
of Ā and outputs a value w such that the probability that Ā is successful in outputting an
accepting pair (y, π) and the value w returned by Ē is a wrong witness (i.e., (y, w) /∈ R) is
bounded by a negligible function ε.
Basically, above we showed that for every AO there exists an extractor Ē . As a last step,

we use this Ē to show the existence of the extractor EA.
For simplicity, parse the transcript of queries qt made by AO as a pair ( #”q , #”a ), where #”q are

all the queries and #”a all the corresponding answers, in order. Then we define the extractor
EA in the following way.

EA(crs, z, qt)
Run w ← Ē(crs, z) where z = (z, #”a )
Return the same w returned by Ē

It is easy to see that, except for some syntactic changes, EA is the same as Ē . Combining all
the above arguments, we have that for every A there is an extractor EA such that adaptive
knowledge soundness for O holds with probability ε.

5.4.4.1 The Case of Pseudorandom Functions

As an interesting corollary of Theorem 5.4.8, we show that a similar result holds even for the
case in which adversaries get access to a pseudorandom function as an oracle.

Corollary 5.4.9. Let F : {0, 1}κ × {0, 1}` → {0, 1}L be a family of pseudorandom functions.
Let OF be the family of oracles OF(x) = FK(x), where every family member O is described
by a seed K of the pseudorandom function, and thus the process OF ← OF corresponds
to sampling a random seed K $← {0, 1}κ. Let Z be some distribution, Un be the uniform
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distribution over strings of length n, and denote by (Z,U) the distribution over pairs (z, o)
such that z follows Z and o follows U .

If Π is a (Zq,U)-auxiliary input adaptive SNARK for every q = poly(λ), and F is pseudo-
random, then Π is a Z-auxiliary input O-SNARK for OF.

Proof. The proof of the corollary follows in two steps. The first step relies directly on
Theorem 5.4.8 to see that Π is an O-SNARK for the family O of random oracles. This means
that for every AO there is an extractor EA such that adaptive knowledge soundness for O
holds with probability δ.

The second step consists, informally, in replacing a random oracle with a PRF oracle and
then showing that the success probability cannot change too much, unless the function is not
pseudorandom.

For every ÃOF , we can construct another adversary AO that simply runs ÃOF , simulates all
queries using its oracle, and returns the same output of Ã. By adaptive knowledge soundness
for O there is an extractor EA. We then define the extractor EÃ = EA.
Let us now consider the adaptive KS experiment with ÃOF and EÃ and let δ̃ be the

probability that the final condition holds. It is easy to prove that by the pseudorandomness
of F there is a negligible function ν such that δ̃ ≤ δ + ν.





Chapter 6
Applications of O-SNARK

M alleable Signature Schemes based on O-SNARKs. We have shown in the
previous chapters the necessity of defining SNARK schemes with knowledge sound-
ness in the presence of oracles. Studying such a notion was motivated by the various

applications of SNARKS in larger protocols where the provers are given access to oracles
with a secret state. We have now the appropriate tool to use in these settings, our O-SNARK.
We illustrate in this chapter several useful applications where our O-SNARK is very helpful:
homomorphic signatures, succinct functional signatures, SNARKs on authenticated data and
aggregate signatures. In the case of aggregate signatures, we further examine different ways
to construct such schemes, ones that require O-SNARKs and other weaker versions that
can be instantiated only with classical SNARKs. We develop non-standard proof techniques
for our aggregator scheme in order to bypass the impossibility results we have seen in the
previous chapter.
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After some years, teenager Alice, now in high-school continues to feed her interest
in cryptography, reading a lot on the subject. She seems to be always updated
with all the novelties in cryptography.
Alice has gained notoriety in her high-school for being a crypto ”geek”, she is
known for extensively using crypto in her life to secure all her digital interactions.
Some rumors say that she is a very skilled hacker as well.
One day, she is called for in the principal office. The principal has remarked that
there were problems with the school database. Some students seemed to have
modified their grades... Alice finds this story suspicious, is that an allusion from
the principal? Is she the main suspect of such a violation? Maybe she needs to
explain to the principal that being interested in cryptography does not transform
you into a hacker...
She is a little anxious, but she continues to listen what the principal has to say to
her.
The principal explains that the school tried to avoid this kind of attacks by using
digital signatures, that make tampering with the signed data impossible. Each
professor has now to sign the grades before uploading them. Anybody who down-
loads a student grade obtains the signatures associated and can verify if this is
authentic and the grade was not modified.
However, this solution comes with a drawback. Before, parents and professors
were able to compute statistics or means on the data directly on the database
and immediately retrieve only the result. Now, the signing also limits this utility
of the database: Instead, one has to download all the grades together with their
signatures, check the authenticity of each pair grade-signature and then compute
the average on the (now certified) values.
The parents are complaining that these signatures are too big to download and
store and it requires a lot of time to check them individually before computing
the statistics on the grades.
The principal, having explained the difficulties the school encounters, asks Alice
for an advice. He tells her that she got very respected in the high-school for her
interest in cryptography and that her acquirements are valuable and she can now
make use of her knowledge to help the school cope with this new problem.
Alice is very happy with this outcome of her visit in the principal office.
She immediatelly offers to help with the task. She has heard of malleable signa-
tures, that allow to compute on the signed messages and obtain the signed result
directly. This final signature on the result can attest that the computation was
made on inputs legitimately signed by the teachers.
In order to make this resulting signature succinct and fast to verify, Alice thinks
of using SNARKs as a building block of the malleable signature schemes.
Alice has a new homework that finally she is eager to solve!

Tale four: A crypto reputation
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6.1 Introduction

We showed in the previous chapters the necessity of defining SNARK schemes with knowledge
soundness in the presence of oracles. Studying such a notion was motivated by the various
applications of these schemes where the provers are given access to oracles with a secret state.
In this protocols, one has to run an extractor during the security experiment (e.g., a security
reduction) where the secret state of the oracle is not available. We have now the right tool to
use in these settings, our O-SNARK. We illustrate in this chapter several useful applications
where our O-SNARK is very helpful.

We recognize the need of using O-SNARKs while trying to formally prove the security of a
“folklore” construction of homomorphic signatures based on SNARKs and digital signatures
that is mentioned in several papers (e.g., [BF11a, GW13, CF13, GVW15]).
The same problem of black-box-access appears in a generic construction of SNARKs on

authenticated data in [BBFR15] (also informally discussed in [BCCT12]), where the security
proof uses the existence of an extractor for the oracle-aided prover, but without giving
particular justification.

A similar issue also appears in the construction of succinct functional signatures of [BGI14].
To be precise, in [BGI14] the authors provide a proof but under a stronger definition of
SNARKs where the adversarial prover and the extractor are independent PPT machines
without common auxiliary input: a notion for which we are not aware of standard model
constructions. In contrast, when attempting to prove the succinct functional signatures of
[BGI14] using the classical definition of SNARKs, one incurs in the same issue illustrated
above.

6.2 Homomorphic Signature

In this section, we show three applications of O-SNARKs for building homomorphic signa-
tures [BF11a], succinct functional signatures [BGI14], and SNARKs on authenticated data
[BBFR15].

Generally speaking, our results show constructions of these primitives based on a signature
scheme HomSig and a succinct non-interactive argument Π, and show their security by
assuming that Π is an O-SNARK for signing oracles corresponding to HomSig. Once these
results are established, we can essentially reach the following conclusions about the possible
secure instantiations of these constructions. First, one can instantiate them by using Micali’s
CS proofs as O-SNARK (cf. Section 5.4.1): this solution essentially yields secure instantiations
in the random oracle model that work with a specific proof system (perhaps not the most
efficient one in practice). Second, one can instantiate them with a classical SNARK and
a hash-and-sign signature scheme (cf. Section 5.4.3), and conjecture that replacing the
random oracle with a suitable hash function preserves the overall security. Third, one can
instantiate the constructions using a classical SNARK construction Π and signature scheme
HomSig, and then conjecture that Π is an O-SNARK with respect to the family of signing
oracles corresponding to HomSig. Compared to the first solution, the last two ones have
the advantage that one could use some of the recently proposed efficient SNARK schemes
(e.g., [PHGR13, BCG+13]; on the other hand these solutions have the drawback that the
security of the instantiations would be heavily based on a heuristic argument. Finally, a
fourth option that we provide are security proofs of these primitives which consider only



6.2 Homomorphic Signature 137

non-adaptive adversaries (i.e., adversaries that declare all their queries in advance). In this
case, we can prove security based on non-adaptive O-SNARKs, and thus based on classical
SNARKs (applying our Theorem 5.3.3). The advantage of this fourth option is that one
obtains a security proof for these instantiations based on classical, not new, assumptions,
although the proof holds only for a much weaker security notion.

6.2.1 Homomorphic Signature Scheme Definition

As the first application of O-SNARKs we revisit a "folklore" construction of homomorphic
signatures from SNARKs. This construction has been mentioned several times in the literature
(e.g., [BF11a, GW13, CF13, CFW14, GVW15]) and is considered as the ‘straightforward’
approach for constructing this primitive. In this section, we formalize this construction, and
notice that its security proof is quite subtle as one actually incurs the extraction issues that
we mentioned in Section 5.4.2. Namely, one needs to run an extractor in an interactive
security game in the presence of a signing oracle. Here we solve this issue by giving a simple
proof based on our notion of O-SNARKs (for families of signing oracles).
Definition of Homomorphic Signatures. We begin by recalling the definition of homomorphic
signatures. The definition below can be seen as the public key version of the notion of
homomorphic message authenticators for labeled programs of Gennaro and Wichs [GW13].
Labeled Programs [GW13]. A labeled program consists of a tuple P = (F, τ1, . . . τn) such
that F :Mn →M is a function on n variables (e.g., a circuit), and τi ∈ {0, 1}` is the label
of the i-th variable input of F . Let Fid :M→M be the canonical identity function and
τ ∈ {0, 1}` be a label. We consider Iτ = (Fid, τ) as the identity program for input label τ .
Given t labeled programs P1, . . .Pt and a function G :Mt →M, the composed program P∗
is the one obtained by evaluating G on the outputs of P1, . . .Pt, and is compactly denoted as
P∗ = G(P1, . . .Pt). The labeled inputs of P∗ are all distinct labeled inputs of P1, . . .Pt, i.e.,
all inputs with the same label are grouped together in a single input of the new program.

Definition 6.2.1 (Homomorphic Signatures for Labeled Programs). A homomorphic signature
scheme HomSig is a tuple of probabilistic, polynomial-time algorithms (HomKG,HomSign,
HomVer,HomEval) that work as follows:

HomKG(1λ) takes a security parameter λ and outputs a public key VK and a secret key SK.
The public key VK defines implicitly a message spaceM, the label space L, and a set
F of admissible functions.

HomSign(SK, τ,m) takes a secret key SK, a (unique) label τ ∈ L and a message m ∈M, and
it outputs a signature σ.

HomEval(VK, F, (σ1, . . . σn)) takes a public key VK, a function F ∈ F and a tuple of signatures
(σ1, . . . σn). It outputs a new signature σ.

HomVer(VK,P,m, σ) takes a public key VK, a labeled program P = (F, (τ1 . . . τn)) with
F ∈ F , a message m ∈M, and a signature σ. It outputs either 0 (reject) or 1 (accept).

and satisfy authentication correctness, evaluation correctness, succinctness, and security, as
described below.
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• Authentication Correctness. Informally, we require that signatures generated by
HomSign(SK, τ,m) verify correctly for m as the output of the identity program I =
(Fid, τ). Formally, HomSig has authentication correctness if for all key pairs (SK,VK)←
HomKG(1λ), any label τ ∈ L, messagem ∈M, and any signature σ ← HomSign(SK, τ,m),
HomVer(VK, I = (Fid, τ),m, σ) outputs 1 with all but negligible probability.

• Evaluation Correctness. Intuitively, we require that running the evaluation algorithm
on signatures (σ1, . . . σn), where σi is a signature for mi on label τi, produces a
signature σ which verifies for F (m1, . . .mn). Formally, fix a key pair (SK,VK) ←
HomKG(1λ,L), a function G : Mt →M and any set of program/message/signature
triples {(Pi,mi, σi)}i=1...t such that HomVer(VK,Pi,mi, σi) = 1. If m∗ = G(m1 . . .mt),
P∗ = G(P1, . . .Pt) and σ∗ = HomEval(VK, G, (σ1, . . . , σt)), then HomVer(VK,P∗,m∗, σ∗) =
1 holds with all but negligible probability.

• Succinctness. For every large enough security parameter λ ∈ N, there is a polynomial
p(·) such that for every (SK,VK) ← HomKG(1λ) the output size of HomSign and
HomEval is bounded by p(λ) for any choice of their inputs.

• Security. A homomorphic signature scheme HomSig is secure if for every PPT adversary
A there is a negligible function ε such that Pr[ExpHomSig-UF

A,HomSig (λ) = 1] ≤ ε(λ) where the
experiment ExpHomSig-UF

A,HomSig (λ) is described in the following:

Key generation: Run (VK,SK)← HomKG(1λ) and give VK to A.

Signing queries: A can adaptively submit queries of the form (τ,m), where τ ∈ L and
m ∈M. The challenger initializes an empty list T and proceeds as follows:

– If (τ,m) is the first query with label τ , then the challenger computes σ ←
HomSign(SK, τ,m), returns σ to A and updates the list of queries T ←
T ∪ {(τ,m)}.

– If (τ,m) ∈ T (i.e., the adversary had already queried the tuple (τ,m)), then
the challenger replies with the same signature generated before.

– If T contains a tuple (τ,m0) for some different message m0 6= m, then the
challenger ignores the query.

Note that each label τ can be queried only once.

Forgery: After the adversary is done with the queries of the previous stage, it outputs
a tuple (P∗,m∗, σ∗). Finally, the experiment outputs 1 iff the tuple returned by
the adversary is a forgery (as defined below).

Forgeries are tuples (P∗ = (F ∗, (τ∗1 , . . . τ∗n)),m∗, σ∗) such that HomVer(VK,P∗,
m∗, σ∗) = 1 and they satisfy one the following conditions:

– Type 1 Forgery: There is i ∈ [n] such that (τ∗i , ·) /∈ T (i.e., no message m has
ever been signed w.r.t. label τ∗i during the experiment).

– Type 2 Forgery: All labels τ∗i have been queried—∀i ∈ [n], (τ∗i ,mi) ∈ T—but
m∗ 6= F ∗(m1, . . .mn) (i.e., m∗ is not the correct output of the labeled program
P∗ when executed on the previously signed messages (m1, . . .mn)).
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Context-Hiding. Another property which is useful for homomorphic signatures is context-
hiding. Intuitively, this property says that a signature on the output of a function does not
reveal anything about its inputs, beyond what can be trivially learned by the verifier. Here
we recall a (statistical) version of the definition proposed in [BF11a] (also adapted to our
syntax).

Definition 6.2.2 (Weak Context-Hiding). A homomorphic signature scheme HomSig is weakly
context hiding if there exists a PPT simulator S = (SKG, SEval) such that, for any fixed choice
of function F , tuple of messages m1, . . . ,mn ∈M, set of labels τ1, . . . , τn ∈ L, it holds that
for any distinguisher D and large enough security parameter λ ∈ N:

Pr

 (VK,SK)← HomKG(1λ)
D(VK, SK, {σi}i∈[n], σ̄) = 1 σi ← HomSign(SK, τi,mi)∀i ∈ [n]

σ̄ ← HomEval(VK, F, (σ1, . . . σn))

−

Pr

 (VK, SK)← SKG(1λ)
D(VK,SK, {σi}i∈[n], σ̄) = 1 σi ← HomSign(SK, τi,mi)∀i ∈ [n]

σ̄ ← SEval(P, F (m1, . . . ,mn))

 ≤ negl(λ)

Note that since the definition holds for fixed F, {mi}i, {τi}i, these values can also be given
to D. The notion is called weak context-hiding in contrast to a strong notion where one can
also hide the fact that a homomorphic evaluation took place.

6.2.2 Homomorphic Signatures from O-SNARKs.
To build the homomorphic signature, we use a regular signature scheme Σ (cf. Definition 2.4.7)
and a fully-succinct O-SNARKΠ for NP. The resulting scheme is homomorphic for all
functions F whose running time is upper bounded by some fixed polynomial tF (·), and the
scheme is 1-hop, i.e., it is not possible to apply HomEval on signatures obtained from other
executions of HomEval.1

Defining the Machine MΣ,F . Let Σ be a signature scheme, and F be the description of
a function F : X n → X where X is some appropriate domain (e.g., X = {0, 1}µ). Then
MΣ,F (x,w) is the random-access machine that works as follows. It takes inputs (x,w) where
values x are of the form x = (vk,m, τ1, . . . , τn) where vk is a public key of the scheme Σ,
m ∈ X is a message and τi ∈ {0, 1}` are labels, for 1 ≤ i ≤ n. The values w are instead tuples
w = (m1, σ1, . . . ,mn, σn) where for every i ∈ [n], mi ∈ X is a message and σi is a signature
of the scheme Σ. On input such a pair (x,w), MΣ,F (x,w) accepts iff

m = F (m1, . . . ,mn) ∧ vfy(vk, τi|mi, σi) = 1, ∀i = 1, . . . , n

Associated to such machine there is also a polynomial time bound tΣ,F (k) = keΣ,F , such that
MΣ,F rejects if it does more than tΣ,F (|x|) steps. Finally, we note that given a polynomial
bound tF (k) = keF on the running time of every F supported by the scheme, a polynomial
bound tΣ(k) = keΣ on the running time of Σ’s verification algorithm, and values n, µ, `, one
can efficiently deduce the constant exponent eΣ,F for the time bound tΣ,F (|x|) = |x|eΣ,F .

1Previous work hinted the possibility of achieving multi-hop homomorphic signatures by using SNARKs
with recursive composition. However, given the issues we already notice in using classical SNARKs, it is
unclear to us whether such a multi-hop construction would allow for a proof.



140 Chapter 6 Applications of O-SNARK

We call RΣ the NP binary relation consisting of all pairs (y, w) such that, parsing y =
(MΣ,F , x, t), MΣ,F (x,w) accepts in at most t steps and t ≤ tΣ,F (|x|). To see this observe that
the running time of MΣ is bounded by

tM ≤ tF (n · µ) + n · tΣ(λ+ `+ µ) = (n · µ)eF + n · (λ+ `+ µ)eΣ

≤ (µ)(C+1)eF + µC · (λ+ `+ µ)eΣ

≤ |x|(C+1)eF + |x|C+eΣ

≤ |x|eΣ,F

where the second equation follows from n ≤ µC , the third equation follows by observing
that µ ≤ |x| = λc + |F | + µ + n · `, and finally the last one is given by choosing eΣ,F =
max((C + 1)eF , C + eΣ) + 1.
The Construction. Let Σ = (kg, sign, vfy) be a signature scheme and Π = (Gen,Prove,Ver)
be a fully-succinct O-SNARK for NP. The homomorphic signature scheme HomSig[Σ,Π] is
defined as follows.

HomKG(1λ): Run (sk, vk)← kg(1λ) and crs← Gen(1λ). Define SK = sk and VK = (vk, crs).
Let the message beM = {0, 1}µ and the label space be L = {0, 1}`. Output (SK,VK).

HomSign(SK, τ,m): Run σ ← sign(sk, τ |m). Output σ̄ = (signature, (τ,m, σ)).

HomEval(VK,m, F, (σ̄1, . . . , σ̄n)): Parse every σ̄i = (signature, (τi,mi, σi)), compute m =
F (m1, . . . ,mn), reconstruct an instance y = (MΣ,F , x, t) where x = (vk,m, τ1, . . . , τn)
and t = |x|eΣ,F , and the witness w = (m1, σ1, . . . ,mn, σn). Finally, run π ← Prove(crs, y, w)
and output σ̄ = (proof, π).

HomVer(VK,P = (F, (τ1, . . . τn)),m, σ̄): Parse the signature σ̄ = (flag, ·) and output the bit
b computed as follows:
If σ̄ = (signature, (τ,m, σ)) and P = I = (Fid, τ) run vfy(vk, τ |m,σ)→ b.
If σ̄ = (proof, π) run VereΣ,F (crs, y, π)→ b where y = (MΣ,F , x = (vk,m, τ1, . . . , τn), |x|eΣ,F ).
Recall that in a SNARK for NP, Verc is given a constant c > 0 and only works for
relation Rc.

In what follows we show that the scheme above is a homomorphic signature.
Authentication Correctness. For the present scheme the definition asks that signatures σ̄ =
(signature, (τ,m, σ)) as generated by HomSign(SK, τ,m) verify correctly for m as the output
of the identity program I = (Fid, τ). Observe that for all key pairs (SK,VK)← HomKG(1λ),
any label τ ∈ L and any σ̄ ← HomSign(SK, τ,m), the algorithm HomVer(VK, I = (Fid, τ), σ̄)
performs the verification by running vfy(vk, τ |m,σ). By the correctness of the signature
scheme Σ, for any signature σ ← sign(sk, τ |m), vfy(vk, τ |m,σ) outputs 1 with all but negligible
probability.

Therefore authentication correctness of HomSig(Σ,Π) follows.
Evaluation Correctness. To see evaluation correctness, fix a key pair (SK,VK)← HomKG(1λ),
and a set of triples of the form {(τi,mi, σ̄i)}i=1...n where σ̄i = (signature, (τi,mi, σi)) and
for which HomVer(VK, Ii = (Fid, τi),mi, σ̄i) = 1.
Let σ̄∗ ← HomEval(VK, F ∗, (σ̄1, . . . , σ̄n)), where σ̄∗ = (proof, π) with π a proof gener-
ated by Prove(prs, y, w) by setting y = (MΣ,F , x = (vk,m∗, τ1, . . . , τn), |x|eΣ,F ) and w =
(m1, σ1, . . . ,mn, σn).



6.2 Homomorphic Signature 141

If m∗ = F ∗(m1 . . .mn) (for an F ∗ that is in the class of supported functions) and since
HomVer(VK, Ii,mi, σ̄i) means vfy(vk, τi|mi, σi) = 1, we have that (y, w) ∈ RΣ. Thus
HomVer(VK,P∗,m∗, σ̄∗) = 1 holds with all but negligible probability by the correctness
of the SNARK VereΣ,F (crs, y, π) = 1.
Succinctness. As the output of the HomEval algorithm is a proof π obtained by running the
Prove algorithm, the succinctness of HomSign(Σ,Π) follows from the succinctness of Π.
Security. As in Section 5.4.2, for every signature scheme Σ = (kg, sign, vfy) we denote by OΣ
the family of oracles O(m) = sign(sk,m) (where the verification key is returned as output of
a special query O(‘vk′)). We show the security of the scheme HomSig[Σ,Π] via the following
theorem.

Theorem 6.2.3. Let Σ be a signature scheme, and OΣ be its corresponding signing oracle
family as described above. If Π is an O-SNARK for OΣ, and Σ is UF-CMA-secure, then
HomSig[Σ,Π] is a secure homomorphic signature scheme.

Proof. To prove that this scheme is a secure homomorphic signature, we assume by contradic-
tion the existence of an efficient adversary A that is able to output a forgery of one of the two
types with non-negligible probability δ. Starting from this algorithm A, we further construct
a successful forger B against the UF-CMA-security of Σ, which leads to a contradiction. Along
the way of this reduction, we also rely on the fact that Π is an O-SNARK satisfying adaptive
knowledge soundness for OΣ.
By looking at the definition of the security experiment ExpHomSig-UF

A,HomSig (λ) for the HomSig
scheme, adversary A is almost equivalent to an O-SNARK adversary ÃO for oracle O ←
Osign. Stated more formally, for every adversary A against HomSig that outputs a forgery
P∗ = (F ∗, (τ∗1 , . . . τ∗n)),m∗, σ̄∗ = (proof, π), it is possible to construct another adversary
ÃO(crs) working as follows: it queries vk ← O(‘vk′); it runs AHomSign(SK,·)(VK = (vk, crs))
simulating A’s oracle queries using its own oracle O; finally it returns the value (y, π), where
y = (MΣ,F ∗ , x, |x|eΣ,F ), with x = (vk,m∗, τ∗1 , . . . , τ∗n), is obtained from A’s output. The
adversary Ã perfectly fits the O-SNARK definition by which we know that there exists an
extractor EÃ that, given the same input of ÃO and the transcript of oracle queries/answers
made and received by ÃO, outputs a correct witness w (i.e., such that (y, w) ∈ RΣ) with all
but negligible probability.

Hence, we have that for every successful adversary A against HomSig there exists extractor
EÃ, that takes the very same input of A (plus, the list of oracle answers). Starting from this
adversary A, we construct the forger BO that breaks the UF-CMA security of Σ. We build B
(which gets the public key vk and can make queries to O = sign(sk, ·) oracle) as follows:

BO(vk) :
Initialize qt← (‘vk′, vk)
Generate crs← Gen(1λ) and run A(VK = (crs, vk))
Simulate queries (τ,m) to O as follows:

query σ ← O(τ |m) and add (τ |m,σ) to qt
output σ

When A outputs (P∗ = (F ∗, (τ∗1 , . . . τ∗n)),m∗, σ̄∗) parse σ̄∗ = (proof, π∗)
Run EÃ(crs, qt) and obtain the witness w = (m∗1, σ∗1, . . . ,m∗n, σ∗n)
Check that (y, w) ∈ RΣ, i.e., that MΣ(x,w) = 1 in at most |x|eΣ,F steps
where MΣ(x,w) := (m∗ = F (m∗1, . . . ,m∗n) ∧ vfy(vk, τ∗i |m∗i , σ∗i ) = 1, ∀i ∈ [n])
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[ Fail ] Abort if (y, w) /∈ RΣ.
Else proceed:

[Type 1] If ∃j ∈ [n] such that (τ∗j |·, ·) /∈ qt return (τ∗j |m∗j , σ∗j )
[Type 2] If ∀i ∈ [n] there is a tuple (τ∗i |mi, σi) ∈ qt

and there ∃j ∈ [n] such that m∗j 6= mj return (τ∗j |m∗j , σ∗j )

Let us now show that whenever A succeeds in the simulation described above, B is also
successful in breaking the UF-CMA security of Σ, unless the “Fail” event happens.

First, let us condition on the event that B does not abort, i.e., “Fail” does not occur, that
is the extractor EÃ is correct in returning a valid witness. If A outputs the first type of
forgery, since the witness w is valid— vfy(vk, τ∗i |m∗i , σ∗i ) = 1,∀i = 1, . . . , n— it follows that
the signature forgery (τ∗j |m∗j , σ∗j ) is a valid one.

If the forgery returned byA is of the second type, recall this means thatm∗ 6= F (m1, . . . ,mn)
where all inputs of F are the ones in the transcript qt, i.e., qt contains the tuples (τ∗1 |m1, σ1), . . . (τ∗n|mn, σn).
Combining this with the validity of w we have that F (m∗1, . . . ,m∗n) = m∗ 6= F (m1, . . . ,mn),
and thus (m∗1, . . . ,m∗n) 6= (m1, . . . ,mn). This means that there exists at least one j such that
(τ∗j |mj , σ) ∈ qt butm∗j 6= mj . Moreover, by witness validity it also holds vfy(vk, τ∗j |m∗j , σ∗j ) = 1.
Thus we can conclude that, even in this case, (τ∗j |m∗j , σ∗j ) is a valid forgery for Σ.

So far, we have proved that whenever the adversary A is able to output a valid forgery
and B does not abort, then B is a successful adversary against the UF-CMA security of
Σ. However, whenever A is successful (with non-negligible probability), by the O-SNARK
definition we have that “Fail” occurs with negligible probability at most ε. Therefore, if A
is successful with probability at least δ, then B is successful with non-negligible probability
≥ δ − ε.

Non-adaptive Security. Alternatively, one can modify the previous proof to show that the
scheme has security against homomorphic signature adversaries that make non-adaptive
signing queries, assuming the weaker assumption that Π is a non-adaptive O-SNARK (see
Definition 5.3.2). In particular, combining this change with the result of Theorem 5.3.3 one
obtains the following:

Theorem 6.2.4. If Π is a SNARK, and Σ is a UF-CMA-secure signature scheme, then
HomSig[Σ,Π] is secure against adversaries that make non-adaptive signing queries.

Proof. The proof is very similar to that of Theorem 6.2.3, and thus we only sketch the main
differences from that proof. To work with non-adaptive adversaries, the only main change
is that for every non-adaptive adversary A one can define a corresponding non-adaptive
O-SNARK adversary Ã. Then the only difference is that the non-adaptive queries of A can be
used to define the non-adaptive queries of Ã. The rest of the proof proceeds analogously.

Remark 6.2.5 (On the applicability of Corollary 5.4.7). We note that we cannot combine
the positive result of Corollary 5.4.7 with Theorem 6.2.3 to conclude that the security of
the homomorphic signature scheme holds under classical SNARKs. The inapplicability of
Corollary 5.4.7 is due to its restriction for which adversaries have to query almost the entire
message space. By looking at the HomSig construction (and the definition of homomorphic
signatures too), one can note that an adversary who queries almost the entire message space
of the underlying signature scheme can trivially break the security (for example he could
obtain signatures on two distinct messages under the same label).
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6.2.3 Insecurity of HomSig[Σ∗, Π]

Here we show the existence of a signature scheme Σ∗ for which HomSig[Σ∗,Π] is insecure.
Note that this insecurity result does not contradict our Theorem 6.2.3 as it is indeed possible
to show that Σ∗ is in the class of schemes for which the existence of an O-SNARK is ruled
out. Rather, this counterexample shows that the issue with proving the security of the
homomorphic signature construction is not a mere difficulty in doing the proof, but that
the construction can actually become insecure, if one simply relies on an arbitrary signature
scheme.
Construction of Σ∗. Consider the HomSig construction in which messages are bits (i.e.,
µ = 1) and labels are strings of length ` = poly(λ), such that the Prove(crs, ·, ·) algorithm
of Π is at most (`+ 1)-bits long. Let Σ̂ be any UF-CMA-secure scheme with message space
M = {0, 1}`+1. We construct the signature scheme Σ∗ from Σ̂ as follows:

kg(1λ): Run (v̂k, ŝk) $← Σ̂.kg(1λ), set vk = v̂k, sk = ŝk, and also set δ = p(λ) + λ.

sign(sk,m): Signing works as follows

• sample r $← {0, 1}δ, and compute σ̂ ← Σ̂.sign(ŝk, r|m);

• sample m′ $← {0, 1}`+1, r′ $← {0, 1}δ, compute σ̂′ ← Σ̂.sign(ŝk, r′|m′), and set
σ′ = (r′, σ̂′, 0, 0);

• parse m′ ∈ {0, 1}`+1 bit by bit as (m′1| · · · |m′`+1), set τ = m′1| · · · |m′`, x =
(vk,m′`+1, τ), w = (m′`+1, σ

′), and let I : {0, 1} → {0, 1} be the identity function;
• let t = #MΣ∗,I(x,w), and set y = (MΣ∗,I , x, t);
• Interpret m as the description of program P(·, ·) and thus run π ← P(y, w);
• if |π| > p(λ) set π′ = 0 and y = 0, else π′ = π.
• output σ = (r, σ̂,m′, π′).

vfy(vk,m, σ): Parse σ = (r, σ̂,m′, π′) where r is δ-bits long, and return the output of
Σ̂.vfy(v̂k, r|m, σ̂).

Before proving the security of Σ∗, we provide some intuitions about the rational of the
above construction:

• The signing algorithm consists of two main steps. First, given the message m, we sign
r|m (i.e., we prepend the random string r to m) using Σ̂.sign. Second, we generate
another signature on a randomly chosen message m′ ∈ {0, 1}`+1. This is done following
the same process as for m, i.e., by sampling a random r′

$← {0, 1}δ and signing r′|m′
using Σ̂.sign.

• Then, we construct a theorem (y, w) for the relation RΣ∗ with respect to the identity
function I. In particular, recall the definition of MΣ∗,I(x,w) from Section 6.2.2: this is
the machine that on inputs x = (vk,m, τ), where vk is a public key of the scheme Σ∗,
m is a bit and τ ∈ {0, 1}` and w = (m∗, σ∗) accepts iff

m = I(m∗) ∧ vfy(vk, τ |m,σ∗) = 1
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• Finally, one interprets the input message m as a program P description and runs
π ← P(y, w). Its output, together with m′, is included in the signature as an extra
information. As one can see, if P(·, ·) = Prove(crs, ·, ·) then π is a valid proof. However,
before returning π we make sure that (regardless of its validity) π is short enough and
we set the new value π′.

• The meaning of δ: The reason for adding the random string r to the signature is to
increase the entropy of the signatures generated by Σ∗. This is crucial for the signatures
σ′ that are used to generate π. We basically want to make sure that π cannot leak
enough information about σ′. Since the output of the program is of length p, taking r′
to be sufficiently long – of p(λ) + λ bits – guarantees that some information about σ′ is
inevitably lost.

Proof of UF-CMA-Security for Σ∗. We prove that Σ∗ is secure as long as Σ̂ is secure:

Lemma 6.2.6. If Σ̂ is UF-CMA-secure scheme, then Σ∗ is UF-CMA-secure. More precisely,
for any PPT adversary A that has advantage ε(λ) in breaking the security of Σ∗ by making
Q signing queries, there is a PPT adversary Â that breaks the security of Σ̂ with advantage
> ε(λ)−Q/2λ by making 2Q queries.

Below we mention the steps for the proof of the lemma. The idea of the proof is that Â
runs (m∗, σ∗)← Asign(ŝk,·)(v̂k) and simulates every signing query m by executing sign(sk,m)
except that the executions of Σ̂.sign(ŝk, ·) are replaced by queries to Â’s signing oracle (this
is why every signing query produces two queries on Â’s side). The only tricky part of the
proof is to show that the message m∗ used in the forgery leads to a new message m̂∗ = r∗|m∗
in the game played by Â, i.e., that r∗|m∗ 6= ri|mi for all the ri|mi queried by Â. We argue
that this is the case with overwhelming probability, based on the random choices of all values
r′ in the signing query simulation. In fact, one should note that A never gets to see the
value r′ used to generate σ′; moreover, since r′ is δ-bits long and Ap sees at most p(λ) bits of
information of it, then λ bits of r′ are always lost. Therefore the probability that r∗ = r′ is
bounded by the probability that A predicts correctly r′.

Proof. Assume by contradiction that there exists an adversary A that has non-negligible
advantage ε(λ) against the UF-CMA security of Σp while running in polynomial time and
making Q queries to the sign(sk, ·) oracle. Starting from this adversary A, we construct
a PPT adversary Â that is able to break the UF-CMA security of Σ̂ with non-negligible
advantage and by making at most 2Q queries to its signing oracle Σ̂.sign(ŝk, ·).
We define Â (which gets the public key v̂k and makes queries to Σ̂.sign(ŝk, ·) oracle) as

follows:

ÂΣ̂.sign(ŝk,·)(v̂k)
Run (m∗, σ∗)← Asign(ŝk,·)(v̂k) and simulate queries m to sign(ŝk, ·) as follows:

sample r $← {0, 1}δ, and query σ̂ ← Σ̂.sign(ŝk, r|m);
sample m′ $← {0, 1}`+1, r′

$← {0, 1}δ;
query σ̂′ ← Σ̂.sign(ŝk, r′|m′), and set σ′ = (r′, σ̂′, 0, 0);
parse m′ ∈ {0, 1}`+1 as (m′1| · · · |m′`+1);
set τ = m′1| · · · |m′`, x = (vk,m′`+1, τ), w = (m′`+1, σ

′);
let t = #MΣ∗,I(x,w), and set y = (MΣ∗,I , x, t), where I is the identity;
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interpret m as the description of program P(·, ·) and thus run π ← P(y, w);
if |π| > p(λ) set π′ = 0 and m′ = 0, else π′ = π;
output σ = (r, σ̂,m′, π′).

Parse σ∗ = (r∗, σ̂∗, ·, ·) and return (r∗|m∗, σ̂∗)

Let us now show that whenever A succeeds in the simulation described above, Â succeeds in
breaking the UF-CMA security of the scheme Σ̂, with all but negligible probability. To this
end we have first to show that the simulation provided by Â works correctly, and then show
that Â outputs a valid forgery as long as Ap outputs a forgery.

To ease the analysis, consider the set of all queries (and corresponding responses) made by
A:

Q∗ = {mi, σi = (ri, σ̂i,m′i, πi) i = 1 . . . Q}
Then the set of Â’s queries is Q̂ = Q̂∗ ∪ Q̂′ with

Q̂∗ = {(m̂i = ri|mi, σ̂i) i = 1 . . . Q}

Q̂′ = {(m̂′j = r′j |m′j , σ̂′j) j = 1 . . . Q}

Precisely, the first set Q̂∗ consists of all signing queries asked by Â to its oracle for signing
the messages mi queried by A. The second set Q̂′ instead, comprises the extra queries asked
by Â in the simulation for signing the sampled messages m′j .

It is easy to see that Â provides a perfect simulation to A as Â can correctly answer every
query of A using its own signing oracle.

So the main fact to show is that the message m∗ used in the forgery leads to a new message
m̂∗ in the game played by Â.
Let (m∗, σ∗ = (r∗, σ̂∗, ·, ·)) be a valid forgery for Σ∗ (i.e., m∗ 6= mi, for all mi ∈ Q∗), and

let us consider the following undesired cases:

1. (m̂∗ = r∗|m∗, ·) ∈ Q̂∗: Since m∗ 6= mi ∀mi ∈ Q∗ this case cannot occur even if the
corresponding strings ri and r∗ match.

2. (m̂∗ = r∗|m∗, ·) ∈ Q̂′: It must be that m̂∗ = r∗|m∗ = r′j |m′j = m̂′j for some j ∈
{1, . . . , Q}. In what follows we bound the probability that such equality happens and
show that it is negligible.

Both r∗ and r′j are parsed as strings of the same length δ = p(λ) + λ. Hence, r∗|m∗ = r′j |m′j
immediately implies m∗ = m′j , which may be possible since m∗ is of adversarial choice. To
bound the probability of match we thus only look at the event that r∗ = r′j .
Now, the crucial observation is that the adversary A never sees the strings r′j explicitly,

and thus the probability of the match can be upper bounded by the probability that the
adversary A guesses correctly the string r′j ∈ {0, 1}δ where δ = p(λ) + λ.
Below we argue that this happens with negligible probability ≤ Q

2λ . For j ∈ {1, . . . Q} let
Badj be the event that r∗ = r′j for (m̂′j , σ̂′j) ∈ Q̂′ and let Bad = ∨Q

j=1 Badj . Using the union
bound we have:

Pr[Bad] = Pr

 Q∨
j=1

Badj

 ≤ Q∑
j=1

Pr [Badj ]

Now, we will bound the probability of Badj for any fixed j. The value πj ← P(y, w) the
adversary A gets from the j-th query is the only one that can reveal some information about
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σ′j = (r′j , σ̂′j , 0, 0) and implicitly about r′j . We show that the information gained from πj does
not give any advantage to the adversary.
Let us represent the process of running π ← P(y, (m′λ, σ′j = (R, σ̂′j , 0, 0))) and returning π
only if |π| ≤ p(λ) as a function f(R) such that f : {0, 1}δ → {0, 1}p. Namely, we fix P and
all its inputs but R. Observe that, for randomly chosen inputs, any such f is essentially
performing a lossy data compression of δ − p(λ) = λ bits.
We have that ∀f : {0, 1}δ → {0, 1}p, the probability that any algorithm Ã guesses the random
string r′j on input f(r′j) is less than 2p

2δ = 1
2λ . The same holds for A and f defined as before.

Hence, summing up these probabilities for all j and observing that Q = poly(λ), we obtain:

Pr[Bad] ≤
Q∑
j=1

Pr [Badj ] ≤
Q

2λ

that is negligible.
The proof is concluded by observing that

AdvUF-CMA
Â,Σ̂ (λ) ≥ ε(λ)(1− Pr[Bad]) ≥ ε(λ)− Q

2λ

Proof of Insecurity of HomSig[Σ∗,Π]. Below we show an adversary A∗ that has non-negligible
probability of winning in ExpHomSig-UF

A∗,HomSig[Σ∗,Π](λ). Our adversary wins by producing a Type 1
forgery with respect to an identity function. For ease of exposition, we give the following
security experiment which is a specialization of ExpHomSig-UF to adversaries that only output
Type 1 forgeries for identity functions:

Experiment ExpType-1,Id
A,HomSig[Σ,Π](λ)

(SK,VK) $← HomKG(1λ)
(I∗ = (Fid, τ∗),m∗, σ̄∗)

$← AHomSign(SK,·)(VK)
If HomVer(VK, I∗,m∗, σ̄∗) = 1 and τ∗ is “new”, output 1
Else output 0

Lemma 6.2.7. Let Π be an O-SNARK for OΣ∗ and Σ∗ be the UF-CMA-secure signature
scheme defined above. Then there exists an efficient adversary A∗ such that

Pr[ExpType-1,Id
A∗,HomSig[Σ∗,Π](λ) = 1] = 1− negl(λ)

Proof. Below is the description of our adversary A∗:

Adversary A∗HomSign(SK,·)(VK)
1 Query the signing oracle on (τ,m) := P

where P is the description of Prove(crs, ·, ·)
2 Parse the answer σ = (r, σ̂,m′, π′), and m′ = (m′1| · · · |m′`+1)
3 Set τ∗ = (m′1| · · · |m′`) and m∗ = m′`+1
4 Return (I∗ = (Fid, τ∗),m∗, σ̄∗ = (proof, π′))
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Note that, except with probability 2−`, it holds τ∗ 6= τ . Moreover, by the correctness of Π
(and its succinctness), the answer to A∗’s oracle query contains a valid proof π′ that verifies
for the identity function with message m∗ and label τ∗. In other words the output of A∗
constitutes a Type-1 forgery with probability 1− 2−`.

Context-Hiding of HomSig.

Theorem 6.2.8. If Π is a zero-knowledge O-SNARK then HomSig is weakly context-hiding.

Proof. To show weakly context-hiding for HomSig[Σ,Π] we define a simulator SHide =
(SKG, SEval). For this purpose we use the PPT simulator SΠ = (Scrs, SProve) from the
zero-knowledge of Π.

SKG(1λ) :
Run (vk, sk)← kg(1λ)
Run (prs, vst, tr)← Scrs(1λ, T )
Set SK = (sk, prs) and VK = (vk, vst)
Output (VK,SK)

SEval(P = (F, τ1, . . . τn)),m∗) :
Set y = (MΣ,F , x = (vk,m∗, τ1 . . . τn), |x|eΣ,F )
Run π ← SProve(prs, tr, y)
Output σ̄ = (proof, π)

For any distinguisher DHide against the weakly context-hiding of HomSign[Σ,Π], we can
easily construct a distinguisher DΠ against zero knowledge O-SNARK property:

DΠ(crs) :
Generate a pair (sk, vk)← kg(1λ)
Set SK = (sk, prs) and VK = (vk, vst)
Let F,m1, . . . ,mn, τ1 . . . τn be the fixed tuple:

Run σi ← HomSign(sk, τi,mi) ∀i ∈ [n]
Output (y, w) to its challenger, and get back π
(where y = (MΣ,F , x = (vk,m∗ = F (m1, . . . ,mn), τ1 . . . τn), |x|eΣ,F )
and w = (m1, σ1, . . . ,mn, σn))
run b← DHide(VK,SK, σ1, . . . , σn, σ̃ = (proof, π))

Output b.

Clearly, if DΠ receives π and crs generated using the real algorithms, it simulates the real
game to DHide. Otherwise, if these values are generated through the zero-knowledge simulator,
then the view of DHide is identical to the case where it receives values generated using our
context hiding simulator described above. Therefore, the distinguishing advantage of DΠ in
distinguishing between a real or a simulated proof is the same as that of the algorithm DHide

to distinguish the two distributions in the answers from the context-hiding definition.

6.3 Succinct Functional Signatures
As a second application of O-SNARKs, we revisit the construction of succinct functional
signatures of Boyle, Goldwasser, and Ivan [BGI14]. In [BGI14] this construction is proven
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secure using a notion of SNARKs which significantly differs from the standard one [BCC+14].
To the best of our knowledge, there are no known instantiations of SNARKs under this
definition, in the standard model (and is not clear whether it is possible to find some). On the
other hand, if one wants to prove the security of this construction using the classical SNARK
definition, the security proof incurs the same subtleties related to running an extractor in
the presence of a signing oracle.
In this section, we revisit the construction of [BGI14], and we prove its security using

O-SNARKs. Interestingly, this proof differs a little from the one of homomorphic signature
as here we have to consider O-SNARKs for multiple signing oracles. Similarly to the
homomorphic signature case, we can also show that the scheme is secure against adversaries
that declare all their queries in advance by assuming classical SNARKs.

6.3.1 Definition of Functional Signatures
Informally speaking, functional signatures [BGI14] are digital signature schemes where,
starting from a master signing key (which can be used to sign any message), one can create
a specific key related to some function f that enables one to sign only outputs of f , i.e.,
messages f(m). For security, functional signatures must be unforgeable in the sense that
any PPT adversary who can ask for keys on functions f1, . . . , f` and signatures on messages
m1, . . . ,mQ, can only output signatures on messages m that are in the range of either one of
f1, . . . , f` (or are equal to one of the queried mi).

We recall the formal definition of succinct functional signatures as provided in [BGI14].

Definition 6.3.1 (Functional Signatures [BGI14]). A functional signature scheme FS for a
message space M and function family F = {f : Df → M} is a tuple of probabilistic,
polynomial-time algorithms (FS.Setup,FS.KeyGen,FS.Sign,FS.Ver) that work as follows

FS.Setup(1λ) takes a security parameter λ and outputs a master verification key mvk and a
master secret key msk.

FS.KeyGen(msk, f) takes the master secret key msk and a function f ∈ F (represented as a
circuit) and it outputs a signing key skf for f .

FS.Sign(mvk, f, skf ,m) takes as input a function f ∈ F , a signing key skf , and a message
m ∈ Df , and it outputs (f(m), σ) where σ represents a signature on f(m) .

FS.Ver(mvk,m∗, σ) takes as input the master verification key mvk, a message m∗ ∈M and
a signature σ, and outputs either 1 (accept) or 0 (reject).

and satisfy correctness, unforgeability, and function privacy as described below.

• Correctness. A functional signature scheme is correct if the following holds with
probability 1:

∀f ∈ F , ∀m ∈ Df , (msk,mvk)← FS.Setup(1λ), skf ← FS.KeyGen(msk, f),

(m∗, σ)← FS.Sign(mvk, f, skf ,m),FS.Ver(mvk,m∗, σ) = 1

• Unforgeablity. A functional signature scheme is unforgeable if for every PPT adversary
A there is a negligible function ε such that Pr[ExpFS-UF

A,FS (λ) = 1] ≤ ε(λ) where the
experiment ExpFS-UF

A,FS (λ) is described in the following:
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Key generation: Generate (msk,mvk)← FS.Setup(1λ), and gives mvk to A.
Queries: The adversary is allowed to adaptively query a key generation oracle Okey and a

signing oracle Osign, that share a dictionary D indexed by tuples (f, i) ∈ F × N,
whose entries are signing keys. For answering these queries, the challenger proceeds
as follows:

– Okey (f, i):

∗ If (f, i) ∈ D (i.e., the adversary had already queried the tuple (f, i)), then the
challenger replies with the same key skif generated before.

∗ Otherwise, generate a new skif ← FS.KeyGen(msk, f), add the entry (f, i)→
skif in D, and return skif .

– Osign (f, i,m):
∗ If there is an entry for the key (f, i) in D, then the challenger generates a
signature on f(m) using this key, i.e., σ ← FS.Sign(mvk, f, skif ,m).

∗ Otherwise, generate a new key skif ← FS.KeyGen(msk, f), add an entry
(f, i) → skif to D, and generate a signature on f(m) using this key, i.e.,
σ ← FS.Sign(mvk, f, skif ,m).

Forgery: After the adversary is done with its queries, it outputs a pair (m∗, σ), and the
experiment outputs 1 iff the following conditions hold

∗ FS.Ver(mvk,m∗, σ) = 1.
∗ there does not exist m such that m∗ = f(m) for any f which was sent as a

query to the Okey oracle.
∗ there does not exist a pair (f,m) such that (f,m) was a query to the Osign
oracle and m∗ = f(m).

Function Privacy Definition

Intuitively, function privacy requires that the distribution of signatures on a message m
that are generated via different keys skf should be computationally indistinguishable,
even given the secret keys and master signing key. More formally, a functional signature
scheme has function privacy if for every PPT adversary A there is a negligible function
ν such that Pr[ExpFS-FPri

A,FS (λ) = 1] ≤ ν(λ) where experiment ExpFS-FPri
A,FS (λ) works as

follows:
– The challenger generates a key pair (mvk,msk)← FS.Setup(1λ) and gives (mvk,

msk) to A.
– The adversary chooses a function f0 and receives an (honestly generated) secret
key skf0 ← FS.KeyGen(msk, f0).

– The adversary chooses a second function f1 such that |f0| = |f1| (where padding
can be used if there is a known upper bound) and receives an (honestly generated)
secret key skf1 ← FS.KeyGen(msk, f1).

– The adversary chooses a pair of values (m0,m1) such that |m0| = |m1| and
f0(m0) = f1(m1).
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– The challenger selects a random bit b ← {0, 1} and computes a signature on
the image message m∗ = f0(m0) = f1(m1) using secret key skfb , and gives the
resulting signature σ ← FS.Sign(skfb ,mb) to A.

– The adversary outputs a bit b′, and the experiment outputs 1 iff b′ = b.

Definition 6.3.2 (Succinct Functional Signatures). A functional signature scheme is called
succinct if there exists a polynomial s(·) such that, for every security parameter λ ∈ N,
f ∈ F , m ∈ Df , it holds with probability 1 over (mvk,msk) ← FS.Setup(1λ), skf ←
FS.KeyGen(msk, f), (f(m), σ) ← FS.Sign(skf ,m) that |σ| ≤ s(λ, |f(m)|). In particular,
the size of σ is independent of the function’s size, |f |, and the function’s input size, |m|.

6.3.2 Succinct Functional Signatures from O-SNARKs
In the following we show a construction for message space M and family of functions
F = {f : Df → M} whose running time is bounded by some fixed polynomial tF(|m|).
To build the scheme, we use two UF-CMA-secure signature schemes, Σ0 = (kg0, sign0, vfy0)
for message spaceM0 and Σ′ = (kg′, sign′, vfy′) for message space D, together with a fully
succinct zero-knowledge O-SNARK Π = (Gen,Prove,Ver) for the NP language L defined
below. While in [BGI14] a single signature scheme is used, we prefer to use two different ones
as this allows for a more precise statement since we will need to apply different restrictions
toM0 and D to obtain a precise proof.

We obtain an unforgeable functional signature scheme satisfying succinctness and function
privacy FS = (FS.Setup,FS.KeyGen,FS.Sign,FS.Ver).
Defining the Relation RL. Let ML be a random-access machine as defined below, and
tL(k) = keL be a polynomial. RL is the binary relation consisting of all pairs (y, w) such
that, parsing y = (ML, x, t), ML(x,w) accepts in at most t steps and t ≤ tL(|x|). The values
x are of the form x = (m∗,mvk0) where mvk0 is a public key of the scheme Σ0, and m∗ ∈M
is a message. The values w are instead tuples w = (m, f, vk′, σvk′ , σm) such that m ∈ Df with
Df ⊂ D, and σvk′ , σm are signatures for the schemes Σ0 and Σ′ respectively. On input such a
pair (x,w), ML(x,w) is the random-access machine that accepts iff the following conditions
(1)&(2)&(3) hold:

(1) m∗ = f(m)
(2) vfy′(vk′,m, σm) = 1
(3) vfy0(mvk0, f |vk′, σvk′) = 1

Given polynomial bounds on the running times of verification algorithms vfy′ and vfy0, and a
(fixed) bound tF (·) on the size and running time of every f ∈ F , one can deduce a polynomial
time bound tL(|x|) = |x|eL for the machine ML.

6.3.3 Construction of FS
Using the signature schemes Σ0,Σ′ and a fully-succinct zero-knowledge O-SNARK Π for NP,
we construct the functional signature scheme FS[Σ0,Σ′,Π] = (FS.Setup,FS.KeyGen,FS.Sign,
FS.Ver) as follows:

FS.Setup(1λ) :
Generate a pair of keys for Σ0: (msk0,mvk0)← kg0(1λ).
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Generate a crs for Π: crs← Gen(1λ).
Set the master secret key msk = msk0, and the master verification key mvk = (mvk0, crs).

FS.KeyGen(msk, f) :
Generate a new key pair (sk′, vk′)← kg′(1λ) for the scheme Σ′.
Compute σvk′ ← sign0(msk0, f |vk′), and let the certificate c be c = (f, vk′, σvk′).
Output skf = (sk′, c).

FS.Sign(mvk, f, skf ,m) :
Parse skf as (sk′, c = (f, vk′, σvk′)).
Sign m using sk′ in Σ′: σm ← sign′(sk′,m).
Set y = (ML, x, t) with x = (mvk0, f(m)), t = |x|eL), and w = (m, f, vk′, σvk′ , σm).
Run π ← Prove(crs, y, w) and output (m∗ = f(m), π).
Informally, π is a zero-knowledge proof that (f(m),mvk0) ∈ L, a proof that the signer
knows a key for f (constructed using Σ0) and a valid signature of m in the underlying
signature scheme Σ′.

FS.Ver(mvk,m∗, π) :
Parse mvk = (mvk0, crs) and set y = (ML, x, t) where x = (mvk0,m

∗) and t = |x|eL .
Output the same bit returned by VereL(crs, y, π).

Correctness. It is not hard to see that as long as Σ0,Σ′ and Π are correct, then FS is also
correct.
Succinctness. This property immediately follows from the succinctness of Π.
Unforgeability. We prove the security of FS under the unforgeability of schemes Σ0 and Σ′
and using the notion of O-SNARKs for a specific family of oracles OmΣ,Q that we define
below.

OmΣ,Q is parametrized by the algorithms of the signature schemes Σ0, Σ′ and by a
polynomial Q = Q(λ). Every member O of OmΣ,Q is described by a set of secret keys
msk0, sk′1, . . . , sk′Q (i.e., the process of sampling O ← O consists of running (mvk0,msk0) $←
kg0(1λ) and (vk′i, sk′i)

$← kg′1(1λ),∀i ∈ [Q]). The oracle O works as follows:

O(i, ‘vk′) =
{

mvk0 If i = 0,
vk′i otherwise.

O(i, ‘sk′) =
{
⊥ If i = 0,
sk′i otherwise.

O(i,m) =


(Cnt, sign0(msk0,m|vk′Cnt)),Cnt← Cnt + 1 If i = 0 and Cnt ≤ Q,
⊥ If i = 0 and Cnt > Q,

sign′(sk′i,m) otherwise.

For the sake of simplicity, we compactly denote O0(·) = O(0, ·) and O′i(·) = O(i, ·) for all
i > 0. From the above description, note that oracle O0 is stateful and we assume it starts
with Cnt = 1.

Finally, we point out that for some technical reasons that we mention in Remark 6.3.10 at
the end of this section, it is not possible to use the notion of O-SNARK for a single signing
oracle to prove the security of the functional signature scheme. This is the reason why we
explicitly considered O-SNARKs for this more complex family of multiple signing oracles.
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Theorem 6.3.3. If Π is an O-SNARK for OmΣ,Q for every Q = poly(λ), and Σ0,Σ′ are
UF-CMA-secure, then FS[Σ0,Σ′,Π] is an unforgeable functional signature.

Proof. Our proof consists of the following steps:

1. We show that for every successful AFS against the unforgeability of FS there exists an
O-SNARK adversary Ã for an oracle from OmΣ,Q such that Ã outputs a valid proof
with the same (non-negligible) probability of success of AFS. By the adaptive knowledge
soundness for OmΣ,Q we then obtain that for such Ã there exists a suitable extractor
EÃ that outputs a valid witness with all but negligible probability.

2. From the previous point, considering adversary Ã and the corresponding extractor, we
can partition adversary-extractor pairs in two types: (1) those that yield a witness
w containing a pair (f, vk′) that was never signed before, and (2) those that yield w
containing (f, vk′) that was signed before. We show that adversaries of type (1) can be
used to break the security of the signature scheme Σ0, whereas adversaries of type (2)
can be used to break the security of Σ′.

Existence of an Extractor for AFS. Consider any adversary AFS that while running in
ExpFS-UF

AFS,FS it outputs (m∗, π∗) and makes the experiment generate Q secret keys of the scheme
Σ′. For every such AFS, we show there exists another adversary ÃO that, on input crs, and
given oracle O ← OmΣ,Q, outputs a pair (y, π∗). We describe ÃO below. During its execution
it maintains a dictionary D similar to the one in the definition of ExpFS-UF

AFS,FS, except that
instead of storing mappings like (f, i)→ skif , it maps a pair (f, i) to a triple (j, sk′, c) where
j ∈ [Q]. Intuitively, this means that a queried pair (f, i) is associated to oracle O′j .

ÃO(crs) :
Query mvk0 ← O0(‘vk′) and run AOkey,Osign

FS (mvk = (crs,mvk0))
Simulate queries (f, i) to Okey as follows:

if [(f, i)→ (j, sk′, c)] ∈ D: output skif = (sk′, c)
else if [(f, i)→ (j, ·, c)] ∈ D:

ask sk′j ← O′j(‘sk′) and output skif = (sk′j , c)
else:

ask (j, σvk′j )← O0(f), vk′j ← O′j(‘vk′), sk′j ← O′j(‘sk′)
add (f, i)→ (j, sk′j , c) to D with c = (f, vk′j , σvk′j )
output skif = (sk′j , c)

Simulate queries (f, i,m) to Osign as follows:
if (f, i) not assigned in D:
ask (j, σvk′j )← O0(f), vk′j ← O′j(‘vk′)
add (f, i)→ (j, ·, c) to D with c = (f, vk′j , σvk′j )
ask σm ← O′j(m)
set x = (mvk0, f(m)), t = |x|eL , w = (m, f, vk′j , σvk′j , σm)
run π ← Prove(prs, (ML, x, t), w)
output (f(m), π)

if [(f, i)→ (j, ·, c)] ∈ D: parse c = (f, vk′j , σvk′j )
ask σm ← O′j(m)
set x = (mvk0, f(m)), t = |x|eL , w = (m, f, vk′j , σvk′j , σm)
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run π ← Prove(prs, (ML, x, t), w)
output (f(m), π)

When AFS outputs (m∗, π∗)
set y = (ML, x = (mvk0,m

∗), t = |x|eL)
output (y, π∗)

As one can see, given the definition of oracles from OmΣ,Q, the simulation provided by Ã to
AFS is perfect. So, whenever AFS outputs a valid forgery Ã outputs a pair (y, π∗) that verifies
correctly. Moreover, defined in this way, the adversary ÃO fits the definition of adaptive
knowledge soundness for OmΣ,Q by which we know that there exists an extractor EÃ that,
given the same input of ÃO and the transcript of oracle queries/answers made and received
by ÃO, outputs a witness w such that the probability that (y, π∗) verifies and (y, w) /∈ RL is
negligible.

We define the following hybrid games that involve running Ã, EÃ:

G1 is the same experiment as O-KS(λ, Ã, EÃ,OmΣ,Q) except that its outcome is defined
differently. G1 outputs 1 iff Ver(crs, y, π) = 1 and the value m∗ inside y constitutes a
forgery according to the oracle queries made by Ã during the game.
By the construction of Ã from AFS it holds

Pr[ExpFS-UF
AFS,FS(λ) = 1] = Pr[G1⇒ 1] (6.1)

G2 is the same as G1 except that in order to output 1 it additionally checks that (y, w) ∈ RL.
Essentially, the outcome of G2 differs from that of G1 only if in G2 (y, w) /∈ RL. Hence,

Pr[G1⇒ 1]− Pr[G2⇒ 1] ≤ Pr[O-KS(λ, Ã, EÃ,OmΣ,Q)⇒ 1] (6.2)

Moreover, let us define the following two events in game G2.
Let w = (m, f, vk′, σvk′ , σm) be the witness returned by EÃ:

Ev1 occurs if ∀j ∈ [Q] : vk′ 6= vk′j , or ∃j ∈ [Q] : vk′ = vk′j but Ã never made a query O0(f)
that returned (j, ·);

Ev2 occurs if vk′ = vk′j for some j ∈ [Q] and Ã did make a query (j, σ)← O0(f).

Clearly, it holds

Pr[G2⇒ 1] = Pr[G2⇒ 1 ∧ Ev1] + Pr[G2⇒ 1 ∧ Ev2] (6.3)

In the remaining part of the proof, we show that both Pr[G2⇒1∧Ev1] and Pr[G2⇒1∧Ev2]
are negligible under the assumption that, respectively, Σ0 and Σ′ are unforgeable.

Claim 6.3.4. For every efficient adversary AFS, there is an efficient forger F0 such that
Pr[G2⇒ 1 ∧ Ev1] = AdvUF-CMA

F0,Σ0 (λ).

Proof. Let AFS be an adversary that runs in ExpFS-UF
AFS,FS(λ), and let Ã, EÃ be the pair of

algorithms built out of AFS as defined before. Below we show how to build an efficient forger
F0 out of Ã, EÃ so that its probability of forging against Σ0 is at least Pr[G2⇒ 1 ∧ E1]. F0
gets the public key mvk0 and has access to oracle OΣ0 = sign0(msk0, ·).
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FOΣ0
0 (mvk0) :
Initialize qt← ∅, T ← ∅, Cnt← 1
Generate (sk′i, vk′i)

$← kg′(1λ) ∀i ∈ [Q]
Generate crs = (prs, vst)← Gen(1λ) and run ÃO(crs)
Simulate all queries to O′i using sk′i, vk′i and add all queries-answers to qt
Simulate queries O0(m) as follows:

if m = ‘vk′: output mvk0
else:

ask σ ← OΣ0(m|vk′Cnt)
add (m|vk′j , σ) to qt, and add m|vk′j to T
increment Cnt← Cnt + 1
output σ

Let (y, π∗) be Ã’s output
Run w ← EÃ(crs, qt)
Check that (y, w) ∈ RL:

[ Fail ] Abort if this does not hold.
Else parse w = (m, f, vk′, σvk′ , σm) and proceed:

[A] If (f |vk′) /∈ T return (f |vk′, σvk′).
[B] If (f |vk′) ∈ T abort.

Algorithm F0 can perfectly simulate G2 to Ã and EÃ. Furthermore, it is easy to see that
if G2 outputs 1 and Ev1 occurs, then F0’s simulation ends up exactly in case (A), that is F0
returns a signature σvk′ on a new message f |vk′. Since (y, w) ∈ RL one has that σvk′ is valid,
and thus is a forgery.
Finally, it is worth noting that for this simulation the adversary Ã can even ask O′j(‘sk′)

for all j oracles without affecting our reduction.

Claim 6.3.5. For every efficient adversary AFS there is an efficient forger F ′ such that
Pr[G2⇒ 1 ∧ Ev2] ≤ Q · AdvUF-CMA

F ′,Σ′ (λ).

Proof. Let AFS be an adversary that runs in ExpFS-UF
AFS,FS(λ), and let Ã, EÃ be the pair of

algorithms built out of AFS as defined before. Below we show how to build an efficient forger
F ′ out of Ã, EÃ so that its probability of forging against Σ′ is at least Pr[G2⇒ 1 ∧ Ev2]/Q.
F ′ gets a public key vk′ and has access to oracle OΣ′ = sign′(sk′, ·).

F ′O′(vk′) :
Initialize qt← ∅, T ← ∅, Cnt← 0
Generate crs = (prs, vst)← Gen(1λ)
Generate a pair (msk0,mvk0)← kg0(1λ)
Choose a random q

$← {1, . . . Q}
Generate (sk′i, vk′i)

$← kg′(1λ) ∀i ∈ [Q] \ {q}
Run ÃO(crs)
Simulate all queries to O0 using mvk0,msk0:

add all queries-answers to qt and all signed messages m|vk′ to T
Simulate all queries to O′i using vk′i, sk′i for all i ∈ [Q] \ {q}

add all queries-answers to qt
Simulate queries O′q(m) as follows:
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if m = ‘vk′: output vk′ and add (‘vk′, vk′) to qt
else if m = ‘sk′: Abort
else: ask σ ← OΣ′(m) and add (m,σ) to qt

output σ
Let (y, π∗) be Ã’s output
Run w ← EÃ(crs, qt)
Check that (y, w) ∈ RL:

[ Fail ] Abort if this does not hold.
Else parse w = (m, f, vk∗, σvk∗ , σm) and proceed:

[A] If (f |vk∗) /∈ T Abort.
[B] If (f |vk∗) ∈ T and vk∗ 6= vk′ Abort.
[C] If (f |vk∗) ∈ T and vk∗ = vk′ return (m,σm).

As one can see, unless it aborts, algorithm F ′ can perfectly simulate G2 to Ã and EÃ.
Furthermore, it is easy to see that if G2 outputs 1, Ev2 occurs, and there is no abort while
answering queries, then the simulation of F ′ ends up in cases (B) or (C). However, since
(f |vk∗) ∈ T , we have that vk∗ = vk′j for some j ∈ [Q] (where we let vk′q = vk′). So, if there is
no abort at all, we have that vk∗ = vk′ and thus F ′ returns a valid signature σ on a message
m (recall that validity follows from (y, w) ∈ RL). By definition of G2, we also have that if
it outputs 1, then the message m∗ in y constitutes a forgery according to the definition of
ExpFS-UF. In particular, it holds that for the given f |vk′, there was no signing query O′q(m)
such that m∗ = f(m). Therefore, if m is such that m∗ = f(m) (again this follows from
(y, w) ∈ RL), then m cannot have been queried to O′q, i.e., F ′ never queried m to its signing
oracle. From this we have that, as long as G2 outputs 1, Ev2 occurs and there is no abort,
then F ′ outputs a valid forgery. To conclude the proof, we observe that F ′ does not abort
with probability 1/Q which is the probability that the guess of q, for which vk∗ = vk′, is
correct. Therefore, we have that AdvUF-CMA

F ′,Σ′ (λ) = Pr[G2⇒ 1 ∧ Ev2]/Q.
Finally, we note that the above proof works even if the adversary Ã queries O′j(‘sk′) on all

oracles but the q-th one. This observation will be useful when we discuss the existence of
O-SNARKs for this oracle family.

Putting together the bounds in equations Equation (6.1), Equation (6.2) and Equation (6.3),
with the results of Claims 6.3.4 and 6.3.5, eventually we obtain:

Pr[ExpFS-UF
AFS,FS(λ) = 1] ≤ Pr[O-KS(λ, Ã, EÃ,OmΣ,Q)⇒ 1] + AdvUF-CMA

F0,Σ0 (λ) + AdvUF-CMA
F ′,Σ′ (λ)

which shows that any efficient adversary has at most negligible probability of breaking the
security of scheme FS under the assumption that Π is an O-SNARK for OmΣ,Q and the
schemes Σ0,Σ′ are unforgeable.

Non-adaptive Unforgeability. Similarly to the homomorphic signature case, it is possible to
show that the functional signature scheme achieves security against (functional signature)
adversaries that make non-adaptive signing queries (i.e., all queries are declared at the
beginning of the game). This weaker security can be proven assuming that Π is a non-
adaptive O-SNARK (see Definition 5.3.2). Combining this change with the result of Theorem
5.3.3 we obtain the following:
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Theorem 6.3.6. If Π is a SNARK and Σ0,Σ′ are UF-CMA-secure signature schemes, then
FS[Σ0,Σ′,Π] is a functional signature where unforgeability holds against adversaries that
make non-adaptive signing queries.

Proof. The proof of the theorem can be obtained via straightforward modifications to the
proof of Theorem 6.3.3. Having in mind the intuition provided earlier, the main idea is that
to work with non-adaptive adversaries, one can define a non-adaptive O-SNARK adversary
Ã for every non-adaptive functional signature adversary A. In particular, the non-adaptive
queries of A can be used to define the non-adaptive queries of Ã. The rest of the proof
proceeds analogously.

6.3.4 Function Privacy of FS

We show that the functional signature construction satisfies function privacy provided that
the O-SNARK is zero-knowledge.

Theorem 6.3.7. If Π is a zero-knowledge O-SNARK then FS satisfies function privacy.

Proof. We show that for every adversary Apriv against the function privacy experiment
ExpFS-FPri

Apriv,FS(λ), we can construct a distinguisher algorithm D against the zero knowledge
property of Π.

Consider the following two hybrid experiments:

G0 is the same as ExpFS-FPri
Apriv,FS(λ). In particular, the crs for Π is generated honestly us-

ing Gen; and the challenge functional signature σ = (fb(mb)) is generated as σ ←
FS.Sign(skfb ,mb), i.e., by running π ← Prove(prs, (ML, x, t), w) where x = (mvk0, fb(mb)),
t = |x|eL , and w = (mb, fb, vk′, σvk′ , σ).

G1 is the same as G0 except that one uses the zero-knowledge simulator algorithm S in order
to generate both the crs and the proof in the challenge. Namely, (prs, vst, tr)← Scrs(1λ),
and the challenge signature is generated by running π ← SProve(z, prs, (ML, x, t), tr) for
x = (mvk0,m

′), t = |x|eL , where m′ = f0(m0) = f1(m1).

Denote by win0 and win1 the advantage of the adversary Apriv in guessing the bit b in G0,
and G1, respectively. Clearly win1 = 1/2 since the bit b is not used at all, and thus the view
of Apriv is independent of b. To complete the proof we show that under the assumption that
Π is zero-knowledge, the following holds:

Claim 6.3.8. win0 − win1 ≤ negl(λ).

To prove this, we show that for any Apriv such that win0 − win1 = ε is non-negligible there
is a distinguisher D that succeeds against the zero-knowledge property of Π with the same
advantage ε. D is defined as follows:

D(crs) :
Generate a pair (msk0,mvk0)← kg0(1λ)
Run Apriv(mvk = (crs,mvk0))
Apriv adaptively chooses function queries f0, f1 and message pairs m0,m1
such that f0(m0) = f1(m1):
For each fb asked by Apriv, return the secret key skfb ← FS.KeyGen(msk, fb)
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To answer the challenge D proceeds as follows:
pick b $← {0, 1}
set x = (mvk0, fb(mb)), t = |x|eL , and w = (mb, fb, vk′, σvk′ , σ)
output (y, w) (where y = (ML, x, t)) to its challenger, and get back π
return (fb(mb), π) to Apriv

Let b′ be Apriv’s output
If b′ = b output 1, else output 0.

Note that when D receives crs and π that are generated using the real algorithms, then D is
perfectly simulating G0 to Apriv. Otherwise, if D receives crs and π that are generated using
the simulator, then D perfectly simulates G1. Therefore it is easy to see that D’s advantage
is win0 − win1.

Remark 6.3.9 (On the applicability of Corollary 5.4.7). For the same reasons discussed in
Remark 6.2.5, it is not possible to apply the result of Corollary 5.4.7 to conclude the that the
(adaptive) security of the functional signature scheme holds under classical SNARKs.

Remark 6.3.10. [On the use of multiple signing oracles] In order to prove the security of the
functional signature scheme, one might be tempted to use the notion of O-SNARK with a
single signing oracle. Precisely, one might use O-SNARKs for OΣ0 when making a reduction
to Σ0 and O-SNARKs for OΣ′ when making a reduction to Σ′. Unfortunately, this approach
does not work for an intricate technical reason that we explain here. Intuitively, assume that
one wants to build an O-SNARK adversary Ã that has access to a single signing oracle, say
from OΣ0. Then the secret keys needed to simulate all the other oracles have to be given to
Ã as part of its auxiliary input (Ã needs them to simulate AFS). At this point the issue is
that such secret keys in fact give an efficient way to compute a witness for several y in the
relation RL. Therefore, if the extractor gets these secret keys as auxiliary information, we
then have no guarantee that, while doing a reduction to the unforgeability of the signature
scheme, the extractor will output a witness of the form we expect.

6.4 SNARKs on Authenticated Data

As another application of O-SNARKs, we consider the generic construction of SNARKs on
authenticated data that is given in [BBFR15]. Since this construction is very similar to
the homomorphic signature scheme that we present in Section 6.2.1, we only provide an
informal discussion of this application. In [BBFR15] Backes et al. introduce the notion of
SNARKs on authenticated data to capture in an explicit way the possibility of performing
(zero-knowledge) proofs about statements that are authenticated by third parties, i.e., to
prove that (x,w) ∈ R for some x for which there is a valid signature. While the main focus of
that work is on a concrete construction based on quadratic arithmetic programs, the authors
also show a generic construction based on SNARKs and digital signatures. Roughly speaking,
this construction consists in letting the prover use a SNARK to prove a statement of the
form "∃x,w, σ : (x,w) ∈ R ∧ vfy(vk, τ |x, σ) = 1", for some public label τ of the statement.
The formalization of their model is rather similar to that of homomorphic signatures in
this paper (e.g., they also use labels). Noticeable differences are that their construction
uses pre-processing SNARKs for arithmetic circuit satisfiability, and that to handle several
functions they use different SNARK instantiations (one per function).
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In [BBFR15] the security proof of this generic construction is only sketched, and in
particular, they use the existence of an extractor for an adversary that interacts with a
signing oracle without providing a particular justification on its existence. With a more
careful look, it is possible to see that this security proof incurs the same issue of extraction
in the presence of oracles. Using the same techniques that we developed in this paper for
the homomorphic signature scheme,2 it is possible to prove the security of that generic
construction using O-SNARKs for signing oracles (or non-adaptive security based on classical
SNARKs). In conclusion, for this construction one can either conjecture that a specific
SNARK scheme (e.g., [PHGR13]) is secure in the presence of oracles, or, more conservatively,
argue only the non-adaptive security of the primitive under the existence of classical SNARKs.

6.5 Universal Signature Aggregators

In this section, we discuss another application where the combined use of SNARKs and
digital signatures give rise to a natural construction with a difficult proof of security. The
considered application is that of universal signatures aggregators [HKW15]. Informally, this
cryptographic primitive generalizes the well-known notion of aggregate signatures [BGLS02]
to a setting in which the signatures to aggregate are generated under different (already
existing) schemes. This is in contrast to previous work on aggregate signatures in which
solutions were ad-hoc, i.e., one designed a specific scheme with an aggregation capability.

6.5.1 Definition

We recall the definition of universal signature aggregators from [HKW15].
Let `ver, `vk, `msg, `sig be polynomials such that, for a given security parameter λ, `ver(λ) is

a bound on the size of the verification circuit, `vk(λ) is a bound on the size of a verification key,
`msg(λ) is a bound on the size of a message, and `sig(λ) is a bound on the size of signatures.
For compactness, let ` = (`ver, `vk, `msg, `sig) be the tuple of these polynomials in which we
drop λ (when this is clear from the context).
A universal signature aggregator `-UAgg is a tuple of three algorithms (UniversalSetup,

UniversalAgg,UniversalVerify) working as follows.

UniversalSetup(1λ) takes as input the security parameter and outputs public parameters pp.

UniversalAgg(pp, {(vfyi, vki,mi, σi)}ni=1) is an algorithm that takes as input public parameters
pp, and n tuples (vfyi, vki,mi, σi) where vfyi is the verification circuit of a signature
scheme, vki is a public key, mi a message, and σi a signature. Moreover, every
tuple (vfyi, vki,mi, σi) is supposed to be `-length qualified. The algorithm outputs an
aggregate signature σagg, of length polynomial in λ, but independent of n.

UniversalVerify(pp, {(vfyi, vki,mi)}ni=1, σagg) is a (deterministic) algorithm that takes as input
public parameters pp, an aggregate signature σagg, and t tuples (vfyi, vki,mi) where vfyi
is the verification circuit of a signature scheme, vki is a public key, and mi a message.
The algorithm outputs 0 (reject) or 1 (accept).

2The only significant difference is that one has to consider a specification of our definitions to the case of
pre-processing SNARKs.
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Correctness. Let {(vfyi, vki,mi, σi)}ni=1 be a collection of tuples such that vfyi(vki,mi, σi) = 1
for all i = 1 to n. Then, for all λ ∈ N, pp← UniversalSetup(1λ) and σagg ← UniversalAgg(pp, {(vfyi,
vki,mi, σi)}ni=1) it must be UniversalVerify(pp, {(vfyi, vki,mi)}ti=1, σagg) = 1.
Security. Let Σ = (kg, sign, vfy) be an unforgeable signature scheme. The security property
of a universal signature aggregator scheme is defined via the following experiment, denoted
ExpA,Σ,UAgg(λ), between an adversary and a challenger.

Setup The challenger generates (sk, vk) $← kg(1λ) and pp $← UniversalSetup(1λ) and gives
vk, pp to A.

Signing queries The adversary adaptively asks for signatures on messages of its choice, i.e.,
A sends m, and the challenger answers with σ $← sign(sk,m).

Forgery A outputs a tuple {(vfyi, vki,mi)}ni=1 and a signature σagg.

The experiment outputs 1 (i.e., A wins) if UniversalVerify(pp, {(vfyi, vki,mi)}ni=1, σagg) =
1 and there exist an index j ∈ [n] such that vfyj = vfy, vkj = vk, and the message
mj was not queried in the experiment. We let the advantage of A be AdvA,Σ,UAgg(λ) =
Pr[ExpA,Σ,UAgg(λ) = 1].

A universal signature aggregator scheme UAgg is secure if for all PPT adversaries A there
is a negligible function ε such that AdvA,Σ,UAgg(λ) ≤ ε(λ).
Weak Security. In this chapter, we also consider a weaker security notion for universal
signature aggregators in which adversaries make (adaptive) signing queries before receiving
the public parameters of the universal aggregator. We call this notion weak security.

6.5.2 Universal Signatures Aggregators from SNARKs

In this section, we show how to construct universal signatures aggregators by using a SNARK
for NP. This construction is rather simple and can be seen as a natural way to solve the
universal aggregation problem. The idea is to simply prove knowledge of valid signatures
and rely on the SNARK’s succinctness to argue the shortness of the aggregator.
In this work, however, our interest is on proving the security of this construction, and

understanding under what assumptions it can be based. Indeed, despite the simplicity of the
construction, the proof is tricky due to the issues discussed in this work, that is the need to
run the SNARK extractor in an experiment in the presence of a (signing) oracle.

We address this problem by giving three different results on the security of this construction.
Letting Π be the SNARK scheme used in the aggregator construction:
(1) We prove security by assuming that Π is an O-SNARK. Next, we can combine this

fact with our existence results of O-SNARKs for signing oracles (Corollary 5.4.7), and then
conclude security of our aggregator if it is used with signature schemes that have “small”
(i.e., polynomially large) message spaces. Alternatively, security holds for schemes with
superpolynomially large message spaces if one relies on sub-exponential hardness of both Π
and the signature scheme.
(2) We prove the aggregator construction weakly secure by assuming that Π is a non-

adaptive O-SNARK, which can be later reduced to assuming that Π is a SNARK for arbitrary
auxiliary input.
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(3) We prove the (adaptive) security of the aggregator when it is restricted to the use of
unique signature schemes that are unforgeable based on a non-interactive problem. In this
case, we can prove security of our aggregator by only assuming that Π is a SNARK for a
specific (rather benign) auxiliary input. For this last proof, we develop a new technique, that
is also interesting as it bypasses our impossibility results in a non-trivial way.

Below we describe our construction; the security proofs are presented in the following
sections.
Defining the Machine M`,t. Let ` = (`ver, `vk, `msg, `sig) and n be polynomials in λ as
defined before. For any such `, n, we define M`,n(x,w) to be the random-access machine
that works as follows. It takes inputs (x,w) where x ∈ {0, 1}n(`ver+`vk+`msg) is parsed as
x = (vfy1, vk1,m1, . . . , vfyn, vkn,mn), and w ∈ {0, 1}n`sig is parsed as w = (σ1, . . . , σn). Then,
given such a pair (x,w), M`,n accepts iff

n∧
i=1

vfyi(vki,mi, σi) = 1

Associated to such machine there is also a polynomial time bound t`,n(k) = ke`,n , such that
M`,n rejects if it does more than t`,n(|x|) steps. Note that from a given `, n, such constant
e`,n can be derived efficiently from a time upper bound on the evaluation of circuits of given
size. We call R`,n the NP binary relation consisting of all pairs (y, w) such that, parsing
y = (M`,n, x, t), M`,n(x,w) accepts in at most t steps and t ≤ t`,n(|x|).
The Construction. Let Π be a fully-succinct SNARK for NP. We define the universal
signature aggregator scheme UAgg[Π] as follows.

UniversalSetup(1λ) runs crs← Gen(1λ) and outputs pp = crs.

UniversalAgg(pp, {(vfyi, vki,mi, σi)}ni=1) aggregation proceeds as follows:
• build strings x = (vfy1, vk1,m1, . . . , vfyn, vkn,mn) and w = (σ1, . . . , σn);
• run M`,n(x,w) letting t = #M`,n(x,w) be the number steps;
• set y = (M`,n, x, t) and run π ← Prove(crs, x, w);
• output σagg := π.

UniversalVerify(pp, {(vfyi, vki,mi)}ni=1, σagg) to verify the aggregate signature σagg proceed as
follows

• build string x = (vfy1, vk1,m1, . . . , vfyn, vkn,mn);
• reconstruct constant e`,n such that t`,n(|x|) = |x|e`,n ;
• set y = (M`,n, x, |x|e`,n) and run b← Vere`,n(crs, x, π);
• output b.

6.5.3 Security from O-SNARKs
In this section, we show that the construction UAgg described in the previous section is a
secure universal signature aggregator based on the unforgeability of signature schemes and
by assuming that Π is an O-SNARK for the corresponding family of signing oracles.
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Theorem 6.5.1. For all `-length qualified unforgeable signature schemes Σ, if Π is an
O-SNARK for OΣ, then `-UAgg[Π] is a secure universal signature aggregator with respect to
Σ.

Proof. We proceed by contradiction, assuming the existence of an algorithm A that breaks
the security of UAgg with non-negligible advantage ε. Starting from this A, we show how to
build an efficient forger F for Σ. Along the way of the reduction, we rely on that Π is an
O-SNARK for oracles from OΣ.

First of all, for any adversary A that outputs a forgery ({(vfyi, vki,m∗i )}ni=1, σagg) we define
an adversary ÃO(crs), with O $← OΣ working as follows: it queries vk ← O(‘vk′); it runs
Asign(·)(pp := crs, vk) simulating all signing queries using O(·); finally it returns (y, π) where
y = (M`,n, x, |x|e`,n) is reconstructed as in UniversalVerify and π = σagg. The adversary Ã
perfectly fits the O-SNARK definition, by which there exists an extractor EÃ that given
the same input of Ã and the transcript of oracle queries/answers made and received by
ÃO, outputs a w such that (y, π) verifies and (y, w) /∈ R`,n happens only with negligible
probability ν.

Using A and the above extractor, we build a forger FO that breaks that UF-CMA security
of Σ as follows:

FO(vk) :
Initialize qt← (‘vk′, vk)
Generate crs← Gen(1λ) and run A(pp = crs, vk)
Simulate signing queries O(m) as follows:

query σ ← O(m) and add (m,σ) to qt
output σ

Let ({(vfyi, vki,m∗i )}ni=1, σagg) be the tuple returned by A
Reconstruct y as in UniversalVerify
If Ver(crs, y, σagg) = 1 ∧ (∃j ∈ [n] : vfyj = vfy ∧ vkj = vk ∧ (m∗j , ·) /∈ qt):

Take the first j ∈ [n] such that vfyj = vfy and vkj = vk and (m∗j , ·) /∈ qt
Execute w ← EÃ(crs, qt)
If (y, w) /∈ R`,n: output ⊥
Else: parse w = (σ∗1, . . . , σ∗n)

Output (m∗j , σ∗j ).
Else: Output ⊥

Whenever A succeeds, unless F outputs ⊥ because (y, w) /∈ R`,n, one can see that F is
successful in breaking the unforgeability of Σ. By the adaptive knowledge soundness with
respect to OΣ, F fails due to (y, w) /∈ R`,n only with negligible probability ν. Therefore, if
A succeeds with probability ε, F outputs a valid forgery with probability at least ε− ν.

Theorem 6.5.2. For all `-length qualified unforgeable signature schemes Σ, if Π is a SNARK
(for arbitrary auxiliary input), then `-UAgg[Π] is a weakly secure universal signature aggregator
with respect to Σ.

Proof. This proof is very similar to that of the previous theorem. The only difference is
that here we use the adversary A for the weak security of UAgg to define a non-adaptive
O-SNARK adversary Ã. The rest of the proof proceeds analogously.
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6.5.4 Security for Unique Signatures from SNARKs
Here we show that the scheme of Section 6.5.2 can be proven secure by only relying on
the classical knowledge soundness property of the SNARK Π. For this, however, we have
to restrict the use to signature schemes that have unique signatures, and that are proven
unforgeable under a non-interactive hard problem.
Interestingly, we show how to leverage these restrictions to give a proof of security that

bypasses our impossibility results. At the core of this result is a technique which uses the
security reduction of the signature scheme to construct a SNARK adversary that does not
have access to any oracle, and for which the existence of an extractor can thus be argued
using classical definitions.

6.5.4.1 Non-Interactive Computational Problems and Reductions.

We formally define the type of computational problems and reductions that we use in our
proofs.

Definition 6.5.3 (Non-Interactive Computational Problem). A non-interactive computational
problem P = (IG,V) is defined by two algorithms:

Instance Generation IG(1λ): on input the security parameter, it outputs an instance I.

Instance Verification V(I, S): on input an instance I and a value S (a possible solution) it
outputs a decision bit.

We say that an algorithm A (ε, t)-solves P if A runs in time t and

Pr[V(I, S) = 1 | I $← IG(1λ);S ← A(1λ, I)] ≥ ε

A problem P is said hard if there is no A that (ε, t)-solves P with t = poly(λ) and ε =
1/poly(λ).

Next, we formalize the type of reductions considered in our proofs. Intuitively, a black-
box reduction is an algorithm that can solve a certain problem P by interacting with an
adversary which breaks the security of a particular cryptographic scheme. In our work, we
are specifically interested into reductions from the unforgeability of signature schemes to
non-interactive computational problems. Moreover, we consider reductions that invoke the
underlying adversary only once. As in [LW14] we call these simple reductions.

Definition 6.5.4 (Simple Reductions for Signature Schemes). An algorithm R is a simple
(ε, t, q, δ, t′)-reduction from the unforgeability of a signature scheme Σ to a computational
problem P if, given black-box access to any adversary A that (ε, t, q)-breaks the security of Σ,
R (δ, t′)-solves the problem P , after simulating the security experiment once for A.

A simple reduction R from unforgeability of signatures to a non-interactive computational
problem can be modeled as a stateful algorithm such that:

• It is first invoked on input a problem instance I, and it outputs a public key vk and
state st0: (vk, st0)← R(I).

• Later, for i = 1 to Q (for some Q = poly(λ) which depends on A), it is executed on
input its previous state sti−1 and a message mi and outputs a signature σi and the
successive state sti: (σi, sti)← R(mi, sti−1).
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• Finally, at some point of its execution (i.e., for any j ≥ 0), it can be invoked on input a
message-signature pair, and outputs a solution S: S ← R(m∗, σ∗, stj).

Proof of Adaptive Security. We are now ready to give our security proof for the universal
aggregator scheme proposed in Section 6.5.2.

Theorem 6.5.5. For all `-length qualified unique signature schemes Σ that have a simple
security reduction to a non-interactive computational problem P , `-UAgg[Π] is a secure
universal signature aggregator with respect to Σ, if Π is a SNARK for auxiliary input
consisting of an instance of P and a random string.

Proof. Assume by contradiction the existence of a PPT adversary A against the security of
UAgg such that Pr[ExpA,Σ,UAgg(λ) = 1] ≥ ε for some non-negligible ε. Let R be the simple
reduction from the unforgeability of Σ to the hardness of the problem P .
An Ideal Solver. To begin with, we show that by using the adversary A against UAgg and
the reduction R, it is possible to define an algorithm IF that solves P with non-negligible
probability. This algorithm IF is, however, “ideal” in the sense that one of its steps cannot
be executed in polynomial time. Its definition will ease our analysis later.

IF(I; ρR, ρcrs, ρA) :
1 Generate crs← Gen(1λ)
2 Initialize T ← ∅
3 Execute (vk, st)← R(I; ρR) to obtain a public key vk of Σ
4 Run AO(crs, vk; ρA) and simulate every signing query O(m) as follows:
5 Compute (σ, st)← R(m, st), add T ← T ∪ {m}
6 Output σ to A
7 Let ({(vfyi, vki,m∗i )}ni=1, σagg) be the tuple returned by A
8 Reconstruct y as in UniversalVerify
9 If Ver(crs, y, σagg) = 1 ∧ (∃j ∈ [n] : vfyj = vfy ∧ vkj = vk ∧m∗j /∈ T ):
10 Take the first j ∈ [n] such that vfyj = vfy and vkj = vk and m∗j /∈ T
11 Search for σ∗ ∈ {0, 1}`sig such that vfy(vk,m∗j , σ∗j ) = 1
12 Run S ← R(m∗j , σ∗j , st)
13 Output S.
14 Else: Output ⊥

IF takes as input an instance I of the problem P and a set of random coins that we write
explicitly. For ease of analysis, we view the coins as three separate strings ρR, ρcrs, ρA. The
strings ρR and ρA are the set of coins provided to R and A respectively, whereas ρcrs are the
coins used to generate crs on line 1.
Due to line 11, IF is not a polynomial-time algorithm. However, notice that IF is

(internally) breaking the unforgeability of Σ with the same probability ε with which A breaks
UAgg. Since IF interacts with the reduction R as if it was a forger, we have that R succeeds
with probability ≥ δ in solving P , and so does IF , i.e.,

Pr
I

$←IG(1λ)
ρR, ρcrs, ρA

[V(I, S) = 1 |S ← IF(I; ρR, ρcrs, ρA)] ≥ δ (6.4)

Existence of an Extractor. Here we show that from any adversary A against UAgg we can
define a knowledge extractor that outputs the witness corresponding to the statement used
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by A in its forgery. To argue the existence of this extractor, we use the adversary A and the
reduction R to define an algorithm B that takes as input a common reference string crs of Π,
an auxiliary input consisting of an instance I of problem P , two random strings ρR, ρA, and
it proceeds as follows:

B(crs, I, ρR, ρA) :
1 Execute (vk, st)← R(I; ρR) to obtain a public key vk of Σ
2 Run AO(crs, vk; ρA) and simulate every signing query O(m) as follows:
3 Compute (σ, st)← R(m, st),
4 Output σ to A
5 Let ({(vfyi, vki,m∗i )}ni=1, σagg) be the tuple returned by A
6 Reconstruct y as in UniversalVerify
7 Output (y, σagg).

As one can see, B can be seen as an adversary for the adaptive proof of knowledge, taking
an auxiliary input from distribution Z, i.e., consisting of I ∈ IG(λ) and two random strings.
By the adaptive knowledge soundness property of Π we then have that for any such B there
exists an extractor EB that, given the same input of B, outputs a witness w such that the
joint probability that (y, σagg) verifies correctly and (y, w) /∈ R`,n is negligible. That is, for
any B there is EB and a negligible function ν such that

Pr[AdPoK(λ,B, EB,Z)⇒ 1] ≤ ν (6.5)

Building the Efficient Solver. We are now ready to describe the main part of our proof, that
is the description of an algorithm F that, by using the above extractor, the adversary A and
the reduction R, is able to solve P with non-negligible probability. The algorithm F works
as follows.

F(I; ρR, ρcrs, ρA) :
1 Generate crs← Gen(1λ)
2 Initialize T ← ∅
3 Execute (vk, st)← R(I; ρR) to obtain a public key vk of Σ
4 Run AO(crs, vk; ρA) and simulate every signing query O(m) as follows:
5 Compute (σ, st)← R(m, st), and add T ← T ∪ {m}
6 Output σ to A
7 Let ({(vfyi, vki,m∗i )}ni=1, σagg) be the tuple returned by A
8 Reconstruct y as in UniversalVerify
9 If Ver(crs, y, σagg) = 1 ∧ (∃j ∈ [n] : vfyj = vfy ∧ vkj = vk ∧m∗j /∈ T ):
10 Take the first j ∈ [n] such that vfyj = vfy and vkj = vk and m∗j /∈ T
11 Execute w ← EB(crs, I, ρR, ρA)
12 If (y, w) /∈ R`,n: output ⊥
13 Else: parse w = (σ∗1, . . . , σ∗n)
14 Run S ← R(m∗j , σ∗j , st) and output S.
15 Else: Output ⊥

F proceeds almost identically to our ideal solver IF except that the line 11 of IF is
replaced by lines 11–13 in F . Namely, instead of brute forcing the search for the signature
σ∗j , F makes use of the extractor EB.
In what follows we analyze success probability of F .
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Let Bad be the event that F outputs ⊥ in line 12. Then we have:

Pr
I

$←IG(1λ)
ρR, ρcrs, ρA

[V(I, S) = 1 |S ← F(I; ρR, ρcrs, ρA)]

≥ Pr
I

$←IG(1λ)
ρR, ρcrs, ρA

[
V(I, S) = 1 ∧ Bad |S ← F(I; ρR, ρcrs, ρA)

]

≥ Pr
I

$←IG(1λ)
ρR, ρcrs, ρA

[
V(I, S) = 1 |S ← F(I; ρR, ρcrs, ρA) ∧ Bad

]
− Pr[Bad]

By noting that lines 3–8 of F are the same as lines 1–6 of B (except for some bookkeeping
in T ), we can use equation Equation (6.5) to bound Pr[Bad] ≤ ν.

To conclude the proof we claim that

Pr
I

$←IG(1λ)
ρR, ρcrs, ρA

[
V(I, S) = 1 |S ← F(I; ρR, ρcrs, ρA) ∧ Bad

]
= Pr

I
$←IG(1λ)

ρR, ρcrs, ρA

[V(I, S) = 1 |S ← IF(I; ρR, ρcrs, ρA)]

The above equality follows by observing two main facts in the execution of F . First, since
Bad did not occur, we have (y, w) ∈ R`,n which implies vfy(vk,m∗j , σ∗j ) = 1. Second, by the
uniqueness of Σ, given vk and m∗j there is only one string σ∗j which makes the verification
algorithm accept. In particular, this is the very same string that is computed in line 11 of IF .
Essentially, in the view of R its execution interacting with IF is identical to the execution
interacting with F . Hence, the fact that EB gets to see the coins of R (at that point of the
execution) does not give it an additional power to let the reduction fail.
Therefore, by putting together the bounds given above, we have that F solves P with

non-negligible probability

Pr
I

$←IG(1λ)
ρR, ρcrs, ρA

[V(I, S) = 1 |S ← F(I; ρR, ρcrs, ρA)] ≥ δ − ν

which concludes the proof.





Chapter 7
SNARKs with Data Privacy

B oosting Verifiable Computation on Encrypted Data. We have considered
along this thesis the setting in which a user delegates computation to an untrusted
server and then uses SNARKs to check the correctness of the results. In this study, we

never took into account the other downside of this scenario, more precisely, the confidentiality
concern. In this chapter, we aim for solutions where the untrusted server does not learn
information about the data it computes on, while it is still prevented from cheating on the
results.
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Alice is a grown-up now, she had to choose between her passions, and she has
decided to pursue an academic career as a biologist researcher.
In her exciting life as a researcher, she still encounters cryptographic problems.
At this moment, she would like to make an ambitious study on cancer cells.
However, for this study to be relevant, she needs to analyse big databases with
information about such cells.
To obtain such a collection of data on cancer cells, she would need to contact
some hospital and ask them for sharing their records.
Also, another obstacle to her approach is the limitations of her laboratory.
They do not possess the computational means to run very complicated analysis
algorithms on the data. She needs instead to contact a Statistical Center that
provides computational services to researchers.
This threesome Alice-Hospital-Statistical Center makes the things very compli-
cated. First, because the hospital Alice contacted wants to keep its sensitive
data private from the Statistical Center, and even from Alice.
Ideally, the hospital would like the Statistical Center to learn nothing on the
data, and Alice to learn only the global results she is interested in, but not the
precise details about the patients and their medical condition.
Alice has a solution in mind in order to enable this collaboration, in a way that
respects the needs of all parties.
The hospital can encrypt the data using the public key of Alice. There are
encryption schemes that enable specific manipulations on the encrypted data,
meaning that someone can compute functions on the ciphertexts and obtain a
ciphertext of the result.
This allows the Statistical Center to do the necessary analysis on the encypted
data without learning anything. The output from the Center will be just an
encrypted result that will be further transmitted to Alice.
Alice then, having her secret key, can open this encrypted result of the anal-
ysis and obtain the values that she needs for her further interpretations and
researches.
Like that, she would not have any idea of the initial data from patients used to
compute this result.
Alice is also concerned about the validity of these results and she does not
trust the Statistical Center completely. She would like to be able to verify
the correctness of the result even without knowing the initial data used in the
computation. She is not sure that a usual SNARK, like the ones seen before
would do the job...
If she would be able to find such a complex scheme that protects the medical
data of the patients (age, gender, medical history, illnesses, etc.) but at the
same time enables verifiable computation on it, the confidentiality problem of
the hospital would be solved and this would eventually help the advancement
of her crucial study.
Alice’s mission now is to apply cryptography in the service of medical research
advancement.

Tale five: A research problem
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7.1 Introduction
We have seen that SNARKs are a powerful tool to enable integrity of delegated computations.
However, we did not discussed the problem of data confidentiality in the previous chapters.
This can be a big concern when we outsource data and computation. We will discuss in
this chapter some solutions intended to deal with both the problem of data privacy and
computation integrity.
Privacy-Preserving Computation. The problem of data privacy is related to fully homomor-
phic encryption (FHE) [RAD78, Gen09]. While for a long time it was only known how to
construct homomorphic encryption schemes supporting a single operation (e.g., only addition
[Pai99] or multiplication [ElG84]), Gentry’s breakthrough showed the first FHE scheme that
enables computing any function on encrypted data. If Gentry’s first FHE was mostly a
feasibility result, research in this area has progressed significantly giving rise to many new
FHE schemes (e.g., [SV10, BV11b, BGV12, GSW13, DM15, CGGI16, CGGI17]) that are
efficient and see their first practical applications.
Ensuring Correctness of Computation. The second problem is related to verifiable com-
putation (VC) [GGP10] and related notions such as interactive proofs [GMR85], proba-
bilistically checkable proofs [AS92] and succinct arguments [Kil92]. Briefly speaking, these
are protocols that enable a powerful prover to convince a verifier that a statement (e.g.,
the correctness of a computation, y = f(x)) is true in such a way that the verifier can
run with fewer resources, e.g., faster than re-executing the function. Similarly to FHE,
also in this research area, results have been confined to theory for a long time. However,
several recent works have shown a change in this trend, and today we have several VC
protocols that are efficient and have been experimented in practical scenarios, see e.g.,
[GKR08, CMT12, GGPR13, PHGR13, BCG+13, ZGK+17, WJB+17, AHIV17, WTS+18]
and references therein.

7.1.1 Ensuring Correctness of Privacy-Preserving Computation
Despite the research mentioned above, the problem of ensuring both the correctness and the
privacy of computation performed on untrusted machines has received much less attention in
the literature. There are three main works that considered explicitly this problem.

The first one is the seminal paper of Gennaro et al. [GGP10] who introduced the notion of
non-interactive verifiable computation. In [GGP10] they indeed show how to combine garbled
circuits and FHE in order to build a VC scheme for arbitrary functions that also preserves
the privacy of the computation’s inputs and outputs against the computing machine.

The second work is that of Goldwasser et al. [GKP+13] that shows how to use their succinct
single-key functional encryption scheme in order to build a VC protocol that preserves the
privacy of the inputs (but not of the outputs).

Both these two solutions [GGP10, GKP+13] are however not very satisfactory in terms of
efficiency. The main issue in the construction of [GGP10] is that they need the full power of
FHE to perform homomorphic evaluations of garbled circuits. Some of the efficiency issues
in [GKP+13] include the use of several instances of an attribute-based encryption that must
support an expressive class of predicates (at NC1 circuits), and an inherent design limitation
(due to following the approach of [PRV12]) by which their scheme supports functions with
a single bit of output (which in practical scenarios like computing on large integers would
require multiple instances of their protocol).
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A third work that considered the problem of ensuring correctness of privacy-preserving
computation is the one of Fiore et al. [FGP14] who proposed a solution that combines an
FHE and a VC scheme. The idea of their generic construction is rather simple and consists
into using a VC in order to prove that the homomorphic evaluation on ciphertexts has been
done correctly. As discussed in [FGP14], even this solution may encounter efficiency limits.
This is due to the fact that the VC scheme must be executed on a computation that, due
to the FHE ciphertext expansion, is of much larger representation than the computation
that would be executed on plain text. Motivated by this issue, [FGP14] also proposed an
efficient solution that, for the case of quadratic functions, can avoid this issue. The efficient
construction in [FGP14] overcomes the problem of ciphertext expansion in two ways: (1)
they consider homomorphic encryption schemes working in the Ring-LWE setting in which
ciphertexts are represented by polynomials in a given polynomial ring; (2) they develop, as
the VC building block, an homomorphic MAC scheme especially tailored to handle messages
that are polynomials in which the prover execution can be independent of the degree of such
polynomials. However, for reasons that we will detail later (see Section 7.6), their technique is
inherently bound to computations of multiplicative depth 1. Also, by using an homomorphic
MAC as VC, verification requires a secret key, the same secret key used to encode the inputs.
This limits the applicability of these solutions to scenarios where users and verifiers are either
the same entity or they share a secret key.

7.1.2 Our Results

We propose a new protocol for verifiable computation on encrypted data that improves on the
state-of-the-art solution of Fiore et al. [FGP14] in multiple aspects. Notably, we can support
HE computations of multiplicative depth larger than 1. Second, we achieve public verifiability
whereas [FGP14] is only privately verifiable. Finally, our scheme has an additional property
that guarantees that verifiers may be convinced of outputs correctness without learning
information on the original inputs. This latter property is particularly relevant in the publicly
verifiable setting where the users who encrypt the data and the verifiers are distinct entities.
Technically, we achieve this property because our protocol allows for re-randomizing the
encrypted results, which was not possible in [FGP14] that only considered deterministic HE
evaluations.

Our key tool to obtain this result is a new SNARK that can efficiently handle computations
that are arithmetic circuits f over a quotient polynomial ring Rq := Zq[X]/〈R(X)〉 (exactly
like the popular choice for many Ring-LWE schemes) in which the prover’s costs have a
minimal dependence on the degree d of R(X). Specifically, let f be the circuit over Rq and
f̂ be the corresponding circuit over Zq (i.e., the one that would be computed on plaintexts
where additions and multiplications in Rq are replaced by the corresponding operations in Zq).
Then, whereas a naive application of [FGP14]’s generic solution would incur into prover’s
costs at least O(d · |f̂ |) where |f̂ | is f̂ ’s circuit size, our scheme lets the prover work in time
O(d ·n+ |f̂ |) where n is f̂ ’s input size. To see how this efficiency feature concretely improves,
consider for example an f̂ that is a multivariate polynomial of degree c ≥ 2 by which |f̂ | can
be nc, and consider that for Ring-LWE security the degree d can be a rather large integer
(e.g., d ≈ 8000). Then removing the multiplicative factor d · |f̂ | can significantly speed the
prover’s costs. Let us also notice that the factor d · n is unavoidable as the prover must read
the input.
Our SNARK for arithmetic circuits over polynomial rings is built in a modular way
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using two building blocks: (1) a commit-and-prove SNARK for arithmetic circuits (e.g.,
[CFH+15, Vee17]) and (2) a dedicated (commit-and-prove) SNARK for polynomial evaluations
that we develop in this paper. This scheme is our main technical result and we believe it can
be of independent interest.

7.2 New Bivariate Computational Assumptions
In this section we introduce some assumptions in the same spirit as q-type assumptions
mentioned in Section 2.3.2. They are simple extensions of these well-known assumptions to
bivariate setting and they are assumed to hold in a bilinear group. We refer to Figure 2.3 for
the definition and properties of a bilinear group of prime order.

7.2.0.1 The (d, `)–Bivariate PKE Assumption ((d, `)-BPKE).

We introduce a bivariate power knowledge of exponent assumption that suits our purposes.
This is a simple extension.

The (d, `)–Bivariate Power Knowledge of Exponent Assumption for a bilinear group
(q,G,G,GT , e), noted by (d, `)-BPKE is a hybrid between PKE assumption for d different
powers of s and ` powers of t and KEA assumption for input (h, ĥ := hα) ∈ G2. It takes
the two basis (g, ĝ := gα), (h, ĥ := hα) and all the powers {gsitj , ĝsitj}d,`i,j=0 and claims that
it is infeasible to create c, ĉ such that ĉ = cα without knowing δ, {aij}d,`i,j=0, that satisfy
c = hδ

∏d,`
i,j=0(gsitj )aij . More formally:

Assumption 7.2.1 ((d, `)-BPKE). The (d, `)-BPKE assumption holds relative to a bilinear
group (p,G,G,GT , e) for the class Z of auxiliary input generators if, for every aux ∈ Z
and PPT adversary A, there exists a PPT extractor E such that, on the probability space
gk := (q,G,G,GT , e) ← G(1λ), Σ ← (g, {gsitj}d,`i,j=0, {ĝs

itj}d,`i,j=0; (h, ĥ, hs); (g, ĝ, gs)), aux ←
Z(gk,Σ), g, h←$G, g←$G, α, s, t←$Zq, ĝ := gα, ĥ := hα, and ĝ := gα:

Advq-PKE
A := Pr

[
(c, ĉ; δ, {aij}d,`i,j=0)← (A‖E)(gk,Σ; aux)

e(ĉ, g) = e(c, gα) ∧ c 6= hδ
∏d,`
i,j=0(gsitj )aij

]
= negl(λ).

7.2.0.2 The d–Strong Diffie-Hellman Assumption (d-SDH).

The Strong Diffie-Hellman assumption [BB08] says that given (g, gs, . . . , gsd) it is infeasible
to compute y = g

1
s−r for a chosen r ∈ Zq. In our applications, a few group elements are given

as input to the adversary:

Assumption 7.2.2 (d-SDH). The d–Strong Diffie-Hellman assumption holds relative to a
bilinear group (q,G,G,GT , e) if for all PPT adversaries A we have, on the probability space
gk := (q,G,G,GT , e)← G(1λ), Σ← (gk, (g, gs, . . . gsd); (g, gs)), g←$G, g←$G, and s←$Zq:

Advd-sdh
A := Pr

[
(r, y)← A(gk,Σ) ∧ y = g

1
s−r

]
= negl(λ).

An adaptation of the proof in Boneh and Boyen [BB08] shows that our variant of the
d-SDH assumption holds in the generic bilinear group model.
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7.3 SNARK for Bivariate Polynomial Evaluation

7.3.1 Knowledge Commitment for Bivariate Polynomials

The definition of a knowledge commitment scheme and the Pederson Commitment example
can be find in Section 2.4.5. We briefly recall a commitment scheme functionality: a non-
interactive commitment scheme allows a sender to create a commitment to a secret value
and later open the commitment and reveal the value in a verifiable manner. A commitment
should be hiding and binding in the sense that a commitment does not reveal the secret value
and cannot be opened to two different values.
We now present a variant of the Pedersen commitment scheme introduced by [Gro10], in

order to build a commitment scheme specialized for (bivariate) polynomials P ∈ Zq[X,Y ],
we call Biv.PolyCom, in the crs model: the message space Mck is defined by polynomials in
Zq[X,Y ] of degree in X bounded by a value d and degree in Y bounded by some value `.
Based on an efficient construction of a polynomial commitment scheme proposed by

[KZG10] we further construct a knowledge commitment scheme for bivariate polynomials
that allows us to use it in a Commit-and-Prove SNARK protocol, for polynomial partial
evaluation.

The commitment scheme Biv.PolyCom = (Biv.ComGen,Biv.Com,Biv.ComVer,Biv.OpenVer)
consists in 4 algorithms and it is perfectly hiding and computationally biding. We call
Biv.PolyCom a knowledge commitment, since the prover cannot make a valid commitment
without “knowing” the committed values. We will rely on the (d, `)-BPKE assumption for
extracting the committed values.

Biv.ComGen(1λ, d, `)→ ck: Given some bounds d, ` on the degrees in X and in Y of the
polynomials P ∈ Zq[X,Y ] to be commited, it generates the necessary key for producing
commitments:

• Run gk← G(1λ),
• Sample g, h←$G, g←$G and α, s, t←$Zq,
• Define ĝ := gα, ĥ := hα, ĝ := gα,
• Compute {gsitj}d,`i,j=0, {ĝs

itj}d,`i,j=0,
• For simplicity, use notation gij := gs

itj , ĝij := ĝs
itj ,

• Output a commitment public key:

ck = {gk, (gij)d,`i,j=0, (ĝij)
d,`
i,j=0; (h, ĥ); (g, ĝ)}.

Biv.Com(ck, P )→ (C, ρ): Given a bivariate polynomial P = ∑d,`
i,j=0 aijX

iY j , the committer
picks a randomness ρ←$Zq and computes the commitment C = (c, ĉ) as defined below
and sets the opening value o := ρ

c = hρ
d,∏̀

i=0,j=0
g
aij
ij ĉ = ĥρ

d,∏̀
i=0,j=0

ĝ
aij
ij .

Biv.ComVer(ck, C = (c, ĉ))→ 0/1: Verifies whether ĉ = cα by checking whether e(c, ĝ) =
e(ĉ, g).
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Biv.OpenVer(ck, C, P, ρ)→ P : Parses C := (c, ĉ) and P = ∑d,`
i,j=0 aijX

iY j , and checks
whether both ComVer(ck, C = (c, ĉ)) = 1 and if c = hρ

∏d,`
i,j=0(gij)aij . It outputs

1 if these checks hold. Else it outputs 0.

We can state the following theorem, whose proof can be found in the supplementary material.
Theorem 7.3.1. The commitment scheme Biv.PolyCom is perfectly hiding and computation-
ally binding assuming the q-SDH assumption holds in G. Moreover, assuming (d, `)-BPKE,
the scheme is knowledge binding.

Now that we have built a compact commitment scheme for bivariate polynomials, we show
how to prove certain relations about such polynomials.

7.3.2 Relations for Bivariate Polynomial Partial Evaluation
We want to construct a succinct non-interactive zero-knowledge argument system for some
relation R of partial evaluation of bivariate polynomials:

R := {(u = (P (X,Y ), k);w = Q(Y )) : Q(Y ) = P (k, Y )}.

Following ideas from [Lip16], we define Commit-and-Prove (CaP) argument systems for for
bivariate polynomials partial evaluation. Intuitively, a Commit-and-Prove succinct non-
interactive zero knowledge argument system for R uses a commitment scheme to compactly
commit to some values P ∈ Zq[X,Y ], Q ∈ Zq[Y ] as C,C ′, and then prove that ((P, k);Q) ∈ R
for a value k ∈ Zq. Note that, while Q is a uni-variate polynomial in Y , it can also be seen
as a bivariate polynomial.
Our CaP argument system will exploit our computationally binding commitment scheme

Biv.PolyCom for bivariate polynomials. However, without their openings, commitments
(C,C ′) themselves do not mean anything since they can be a commitment to any value (from
the perfect hiding property). Rather, we define a new (compact) relation indexed by the
commitment public key ck:

Rck := {(u = (C,C ′, k);w = (P,Q, ρ, ρ′)) : (7.1)
(C, ρ) = Biv.Com(P ) ∧ (C ′, ρ′) = Biv.Com(Q) ∧ ((P, k), Q) ∈ R}.

The CaP-P.SNARK we construct uses an (R-independent) bivariate polynomial commitment
scheme Biv.PolyCom, follows the syntax below, and has to satisfy completeness, succinctness,
zero-knowledge and knowledge-soundness, as usual.
P.Gen(1λ,R)→ crs: On input a security parameter λ ∈ N and an NP relation for partial

polynomial evaluation R := {(u = (P (X,Y ), k);w = Q(Y )) : Q(Y ) = P (k, Y )},
the generation algorithm runs ck ← Biv.ComGen(1λ) and defines a new relation Rck
depending on the commitment scheme as in Equation (7.1). a the common reference
string crs that enables proving on Rck.

P.Prove(crs, x = (C,C ′, k), w = (P,Q, ρ, ρ′))→ π: Given the crs, two commitments C,C ′ to
the corresponding polynomials P ∈ Zq[X,Y ] and Q ∈ Zq[Y ], their randomness ρ, ρ′ and
a point k, this algorithm produces a proof π that P (k, Y ) = Q(Y ), (C, ρ) = Biv.Com(P ),
and (C ′, ρ′) = Biv.Com(Q).

P.Ver(crs, u, π)→ b: Parse u = (C,C ′, k). On input crs, and a proof π, the verifier algorithm
outputs b = 0 (reject) or b = 1 (accept).
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7.3.3 SNARK for Bivariate Polynomial (Partial) Evaluation
We aim to build an efficient and compact CaP−P.SNARK dedicated to partial evaluation for
bivariate polynomials P ∈ Zq[X,Y ] in some random point k ∈ Zq.
Our scheme is based on an algebraic property of polynomials. We remark that (X − k)

perfectly divides the polynomial P (X,Y )− P (k, Y ) for k ∈ Zq. Under the bivariate power
knowledge of exponent assumption ((d, `)-BPKE), this CaP− P.SNARK scheme is knowledge-
sound.

P.Gen(1λ,R)→ crs

1: gk← G(1λ), g, h←$G, g←$G, α, s, t←$Zq
2: ĝ := gα, ĥ := hα, ĝ := gα

3: gij := gs
itj , ĝij := ĝs

itj ∀ i < d, j < `
4: g1 := gs, h1 := hs

5: return crs as in Equation (7.2): crs =
{

ck, (h1, g1),RO(·, ·, ·)
}

P.Prove(crs, u, w)

1: (C,C ′, k) := u, (P,Q, ρ, ρ′) := w
2: W :=

(
P −Q

)
/(X − k)

3: (D,ω)← Biv.Com(W )
4: g̃ := h1/h

k, x, y←$Zq
5: U := e(hxg̃y, g)
6: e← RO(u,D,U)
7: σ = x− (ρ′ − ρ)e mod q
8: τ = y − ωe mod q
9: return π := (D, e, σ, τ)

P.Ver(crs, u, π)→ b

1: (C,C ′, k) := u, (D, e, σ, τ) := π
2: (c, ĉ) := C, (c′, ĉ′) := C ′, (d, d̂) := D
3: b1 ← Biv.ComVer(C)
4: b2 ← Biv.ComVer(C ′)
5: b3 ← Biv.ComVer(D)
6: A = e(d, g1/g

k) · e(c/c′, g)−1

7: U := e(hσ g̃τ , g)Ae

8: b4 ← (e = RO(u,D,U))
9: return (b1 ∧ b2 ∧ b3 ∧ b4)

Figure 7.1: Our CaP− P.SNARK for bivariate polynomial partial evaluation

Description of Our CaP− P.SNARK Protocol. Let Biv.PolyCom be a bi-variate polynomial
knowledge commitment scheme. We construct a zero-knowledge SNARK scheme for any
relation R with respect to some bounds d, ` on the degrees in X and in Y of the polynomials
P ∈ Zq[X,Y ] supported by Biv.PolyCom. Our protocol is formally depicted in Figure 7.1.

CRS generation. The setup algorithm P.Gen(1λ,R), given a security parameter λ ∈ N and
an NP relation R including the bound parameters d, `, outputs a crs enabling the proof and
verification of statements for the associated relation Rck defined and explained in Section 7.3.2.

We remark that steps 1 to 3 in the P.Gen algorithm from Figure 7.1 are the same
as the generation of a commitment key ck for the Biv.PolyCom scheme, as by running
ck← Biv.ComGen(1λ, d, `), i.e., ck =

{
gk, (gij)d,`i,j=0, (ĝij)

d,`
i,j=0; (h, ĥ); (g, ĝ)

}
. The algorithm

computes two extra values (step 4) that are not part of ck: g1 := gs, h1 := hs. Starting from
this commitment key ck we can define the Rck from R as discussed before.

Remark 7.3.2. We stress that the generation of the ck cannot be done black-box, because of
the need of generating together the values g1, h1.
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crs :
{

ck =
(

gk, (gij)d,`i,j=0, (ĝij)
d,`
i,j=0, (h, ĥ), (g, ĝ)

)
; (h1, g1); RO(·, ·, ·)

}
(7.2)

Prover. Given crs, the statement u = (C,C ′, k) and the witness w = (P,Q, ρ, ρ′), the prover
proceeds to compute a proof π in two steps:

Step 1. (From 1 to 3 in the P.Prove algorithm from Figure 7.1.) The prover computes a
witness to the correct (partial) evaluation in k ∈ Zq of the polynomial P ∈ Zq[X,Y ]
as P (k, Y ) = Q ∈ Zq[Y ]. The witness of this evaluation is a polynomial W ∈ Zq[X,Y ]
defined as the quotient W := P (X,Y )−Q(Y )

X−k . This is a well-defined polynomial in
Zq[X,Y ] if and only if P (k, Y ) = Q ∈ Zq[Y ]. The element of the proof π that enables
checking this algebraic property over the polynomials P and Q will be a commitment
(D = (d, d̂), ω) to the polynomial W , where ω←$Zq is a fresh randomness.

Remark 7.3.3. To this point, the verifier should be convinced that the polynomial Q is the
good evaluation in k of P , only by checking the corresponding polynomial equation evaluated
in a random hidden point (s, t) : W (s, t)(s− k) = P (k, t)−Q(t), which can be reduced to the
(d, `)-BPKE assumption. This can be translated in terms of commitments (C, ρ)(C ′, ρ′), (D,ω)
to P,Q,W as a pairing check: e(d, g1/g

k) · e(c/c′, g)−1 = e(h(s−t)ω−(ρ−ρ′), g) where C =
(c, ĉ), C ′ = (c′, ĉ′), D = (d, d̂).

Because of the hiding property, the verifier does not have access to the openings of the
commitments, as it does not know the randomness ρ, ρ′, ω.

We therefore need the prover to provide something more together with the commitment D
to the witness W ∈ Zq[X,Y ] of the evaluation. The prover needs to compute an extra proof
of knowledge of the randomnesses ω used to create this comitment and of the correct relation
to satisfy with respect to the randomness ρ, ρ′ of the statement commitments C,C ′ such that
the pairing expression cancels the respective terms h(ρ−ρ′) and h(s−t)ω.

This is easily solved by building a Schnoor proof of knowledge of the exponents ω, (ρ′ − ρ)
that appear in A = e(h(s−k)ω−(ρ−ρ′), g) = e(h(ρ′−ρ)h(s−k)ω, g). If we define g̃ := h1/h

k = hs−k,
then this proof is a classical Schnorr proof for the public value A = e(hρ′−ρg̃ω, g) = e(h, g)ρ′−ρ ·
e(g̃, g)ω in the target group G. But we will show we can make it more efficient.

Step 2. (From 4 to 7 in the P.Prove algorithm from Figure 7.1.) This step consists in this
non-interactive Schnorr proof associated to the value A = e(hρ′−ρg̃ω, g):

• Choose x, y ∈ Zq,

• Define U = e(hxg̃y, g), this corresponds to the first round in the interactive Schnorr
proof protocol, where the prover sends its commitment.

• Sample the challenge to the Schnorr proof by running the random oracle (hash
function) on input the statement to be proven and the commitment U: e ←
RO(u,D,U),

• Compute the answers σ = x− (ρ′ − ρ)e mod q and τ = y − ωe mod q.

The values sent as Schnorr proof are three scalars e, σ, τ , where e is the output of the
hash function RO(u,D,U) and does not depend on the size of U ∈ GT . After the two
described steps, the prover algorithm outputs π := (D, e, σ, τ).
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Verifier. First, the verifier parses the received statement and proof (steps 1 and 2 in the P.Ver
algorithm from Figure 7.1), then it makes sure the commitments C,C ′, D are well-formed
(steps 3 to 5 in the P.Ver algorithm from Figure 7.1) by running the Biv.ComVer algorithm. If
this is not the case, we discard the proof π. To verify the proof π, one needs the polynomial
equation W (X,Y )(X − k) = P (k, Y )−Q(Y ) to hold for some secret evaluation points (s, t).
We can rewrite this equation in terms of pairings applied to the commitments (C,C ′, D):
e(d, g1/g

k) · e(c/c′, g)−1. If the polynomials W,P,Q evaluated in the secret points s, t satisfy
the equation W (s, t)(s− k) = P (k, t)−Q(t), then all the exponents in base g cancel out in
the pairing expression. It is not the case for the exponents in base h which correspond to
the randomness used in the commitments. The important remark is that if D is correct,
the remaining value A = e(d, g1/g

k) · e(c/c′, g)−1 can be written only in terms of the 3
randomness ρ, ρ′, ω used to commit to P,Q,W :

A = e(h(s−k)ωh(ρ′−ρ), g) = e(hρ′−ρg̃ω, g).

This can be checked by the usual verification procedure of the Schnorr proof transmitted in
π, i.e., the values (e, σ, τ): Compute A = e(d, g1/g

k) · e(c/c′, g)−1 and U = e(hσ g̃τ , g) ·Ae

then run the RO function to check whether e = RO(u,D,U).

7.4 Security Analysis of our CaP− P.SNARK
In this section, we prove the main result of this chapter:

Theorem 7.4.1. Assuming both the q-SDH and DLog assumptions hold in the bilinear group
gk, the protocol CaP− P.SNARK is a zero-knowledge Succinct Non-Interactive Argument of
Knowledge in the random oracle model.

In what follows we prove correctness and knowledge soundness. We defer the reader to the
supplementary material for the proof of zero-knowledge.

7.4.1 Correctness
To prove the correctness of our protocol we show that if the commitments C,C ′, D are
honestly generated, the checks the Ver algorithm does all pass through. We consider C =
hρgP (s,t), C ′ = hρ

′
gp, D = hωgW (s), where Q = P (k, Y ) and W (X,Y ) = P (X,Y )−P (k,Y )

(x−k) . We
have that U := e(hxg̃y, g) and the verifier computes U from u and π as follows:

U = e(hσ g̃τ , g) ·Ae = e(hσ g̃τ , g) · e(d, g1/g
k)e · e(c/c′, g)−e

= e(hσ g̃τ , g) · e(hωgW (s), gs−k)e · e(hρ−ρ′gP (s,t)−p, g)−e

= e(hσ g̃τ , g) · e(h, g)e(s−k)ω · e(g, g)e(s−k)W (s) · e(h, g)e(ρ′−ρ) · e(g, g)−e(P (s,t)−p)

= e(hσ g̃τ , g) · e(h, g)e(s−k)ω+e(ρ′−ρ) = e(hσ g̃τ , g) · e(he(ρ′−ρ)g̃eω, g) = e(hxg̃y, g).

7.4.2 Soundness

Before going into the technical details of the proof, we provide some intuition about its
strategy. The polynomial commitment scheme Biv.PolyCom requires the prover Prove to
exhibit two values (c, ĉ), that are the same encoding of coefficients of a polynomial P (X,Y )
in the exponent, but with respect to different bases. The reason that we require the prover
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to duplicate its effort w.r.t. α is so that the simulator in the security proof can extract
representations of (c, ĉ) as a polynomial P (X,Y ), under the q-PKE assumption.

Suppose an adversary A manages to forge a SNARK of a false statement that nonetheless
passes the verification test. The intuition behind the proof is to use the adversary A and the
fact that the commitment scheme Biv.PolyCom is extractable to be able to solve the q-SDH
assumption for d = deg(P ) in X. There is a similar complementary case that allows this
adversary to solve the q-SDH assumption for d = deg(P ) in Y (actually ` in our notations).
We first need two preliminary lemmas.

Lemma 7.4.2 (Global Extractor). Assume that Biv.PolyCom is an extractable commitment
scheme with perfect hiding and computational binding and that BPKE class of assumptions
holds in the bilinear group gk. For any PPT adversary AKS agains the knowledge soundness
of CaP − P.SNARK that has non-negligeable probability of success in breaking the scheme,
there exists an extractor E such that:

Pr


crs← Gen(1λ,R), z ← Z(crs)

C = Biv.Com(P, ρ) ((u, π); wit)← (AKS‖E∗)(crs, z)
∧ C ′ = Biv.Com(Q, ρ′) u := (C,C ′, k), π := (D,U, σ, τ)
∧ D = Biv.Com(W,ω) wit := (P, ρ,Q, ρ′,W, ω)

Ver(crs, u, π) = 1

 = 1− negl(λ).

Proof. We show the existence of an extractor E∗ that will output the polynomials P (X,Y ),
Q(Y ),W ∗(X,Y ) and the randomness ρ, ρ′, ω corresponding to the commitments C,C ′, D,
with overwhelming probability.

LetAKS be an adversary that breaks the KS of the protocol CaP−P.SNARK with overwhelm-
ing probability, meaning it outputs a false proof that passes the verifier checks. Consider now
the adversary BBPKE that takes as input σ ← (g, {gsitj}d,`i,j=0, {ĝs

itj}d,`i,j=0; (h, ĥ, hs); (g, gα, gs))
and runs the adversary AKS against the scheme. BBPKE can provide a valid CRS to AKS by
using its inputs:

crs = {gk, (gij)d,`i,j=0, (ĝij)
d,`
i,j=0; (h, ĥ, h1); (g, gα, g1)}.

The statement u, corresponding to π ← AKS(crs), contains the values C := (c, ĉ), C ′ :=
(c′, ĉ′) that verify e(c, ĝ) = e(ĉ, g) and e(c′, ĝ) = e(ĉ′, g). The same holds for the value D
provided in the proof π = (D, e, σ, τ), i.e. e(d, ĝ) = e(d̂, g).
Provided that for any adversary BBPKE that outputs valid commitment pair (c, ĉ), there

exists an extractor that returns the corresponding witness (the opening). We run the extractor
EB associated to BBPKE for each of the inputs C = (c, ĉ), C ′ = (c′, ĉ′), D = (d, d̂). This returns
the description of polynomials P (X,Y ), Q(Y ),W ∗(X,Y ) and some scalars ρ, ρ′, ω. Note that
the existence and efficacy of EB is guaranteed by the (d, `)-BPKE assumption. We will then
define a general extractor E∗ associated to the adversary AKS by running EB on the same
input. We call this global algorithm composed of the adversary AKS and the general extractor
E∗, machine M := AKS||E∗.

Lemma 7.4.3 (Extended Adversary Machine). Assume that BPKE class of assumptions holds
in the bilinear group gk and that Schnorr proof used in the CaP−P.SNARK protocol is sound.
For any PPT adversary AKS against the knowledge soundness of the scheme CaP−P.SNARK
that outputs u = (C,C ′, k), π = (D, e, σ, τ), where C,C ′, D are well-formed commitments
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under Biv.PolyCom and the proof π verifies, i.e., Ver(crs, u, π), there exists a machine,
extended adversary A∗ that outputs the same as AKS together with an extended witness
wit = (P, ρ,Q, ρ′,W, ω, δ, γ), where P,W ∈ Zq[X,Y ], Q ∈ Zq[Y ] are the openings of the
commitments (C,C ′, D) under randomness ρ, ρ′, ω and δ, γ are such that A = e(d, g1/g

k) ·
e(c/c′, g)−1 = e(hδ g̃γ , g).

Proof. We use the previously defined machine M from Lemma 7.4.2 and the rewinding
technique [PS00] for proving the soundness of the Schnorr’s proof to extract the scalars δ, γ
such that A = e(hδ g̃γ , g): Consider the game between the challenger and the machine M
against the soundness of the Schnorr’s proof. The challenger runs M by fixing the values
(C,C ′, D) and changing the oracle definition to get a fork with e′ ← RO(U,D,U) 6= e. The
forger M will output two distinct forgeries corresponding to the same random oracle query,
but for two distinct answers of the random oracle, e and e′. The Forking Lemma shows that
by rewinding the adversary O(qh/ε) times, where qh is the maximal number of random oracle
queries of the machine M and ε its success probability, then one finds two such forgeries
(σ, τ), (σ′, τ ′) with constant probability, which enables to compute the values δ, γ such that
A = e(hδ g̃γ , g).

Using the the existence of E∗ extractor and of the algorithm that rewinds the machine M
in order to obtain the output δ, γ as described before, we can define an aggregate machine A∗
corresponding to the concatenation of both. This machine A∗ takes the same input as AKS

and outputs the witness corresponding to the commitment openings (P, ρ), (Q, ρ′), (W,ω)
and two scalars δ, γ satisfying A = e(hδ g̃γ , g).

We now have all the tools to prove the soundness:

Proof. This proof is in two steps, with two distinct cases in the second step.

Step 1. First we show that for every PPT adversary AKS against the soundness of the
protocol, there exists an extractor EA that runs on the same input and random coins as AKS

and outputs a witness. Defining the extractor EA is straightforward from the Lemma 7.4.2
by running the E∗ and keeping just the values (P, ρ,Q, ρ′) from its output.
Assuming the existence of an adversary AKS and extractor EA that has a non-negligible

success probability in winning the soundness game against the protocol CaP − P.SNARK,
we now show that we can either solve the discrete logarithm problem, or break the q-SDH
assumption.

Step 2. Suppose the machine A∗ associated to AKS defined in the Lemma 7.4.3 is able
to output a cheating pair statement-proof u = (C,C ′, k), π = (D, e, σ, τ) and a witness
wit = (ρ, ρ′, ω, P,Q∗,W ∗, (δ, γ)) such that it passes verification checks, but the extracted
values P ∈ Zq[X,Y ], Q∗ ∈ Zq[Y ] are not satisfying the expected relation Q∗(Y ) = P (k, Y ).

For simplicity, we will call ∆ = ρ′ − ρ. Assuming that the commitment scheme is binding,
then one of the following scenarios must hold:

1. The polynomials extracted do not satisfy the correct relation not even when evaluated
in s: W ∗(s, t) 6= P (s,t)−Q∗(t)

s−k . This type of forgery can be reduced to the DLog problem
for (g, h) ∈ G, in the case 1 below (see Lemma 7.4.4);

2. The polynomial W ∗ ∈ Zq[X,Y ] committed in D does not satisfy the correct relation
with respect to the other extracted values P,Q∗, but still evaluated in s, t we have that
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W ∗(s, t) = P (s,t)−Q∗(t)
s−k . We reduce the case to the q-SDH assumption, in the case 2

below (see Lemma 7.4.5).

Lemma 7.4.4 (Case 1). Consider the adversarial machine A∗ associated to AKS defined by the
Lemma 7.4.3 that outputs some values u = (k,C,C ′, D, e, σ, τ) and (ρ, P, ρ′, Q∗, ω,W ∗, δ, γ),
such that P (k, Y ) 6= Q∗(Y ), where P,W ∗ ∈ Zq[X,Y ], Q∗ ∈ Zq[Y ] and (P, ρ), (Q∗, ρ′), (W ∗, ω)
are the openings of the commitments (C,C ′, D) and (δ, γ) satisfy A := e(hωgW ∗(s,t), g1/g

k) ·
e(h−∆gP (s,t)−Q∗(t), g)−1 = e(hδ g̃γ , g). Given that the verification check outputs 1 for π, there
is a negligible probability that the values k, P,Q∗,W ∗ are such that W ∗(s, t) 6= P (s,t)−Q∗(t)

(s−k)
under DLog assumption with respect to the group G.

Proof. Let BDLog be an adversary that gets the challenge (g, h) ∈ G and simulates the
crs to A∗ by picking α, s ∈ Zp and computing the missing elements. We define g̃ :=
hs−k, and we denote δ, γ, the two outputs of A∗ such that A = e(hδ g̃γ , g). Assuming the
binding of the commitment scheme, the check in the verification step of the scheme gives us:
e(h(s−k)ωg(s−k)W ∗(s,t), g) · e(hρ−ρ′gP (s,t)−Q∗(t), g)−1 = e(hδ g̃γ). By the non-degeneracy of the
pairing map, it must be that

hδ+(s−k)γ−∆−(s−k)ω = g(s−k)W ∗(s,t)−P (s,t)+Q∗(t).

Since (s − k)W ∗(s, t) − P (s, t) + Q∗(t) 6= 0, we can extract the discrete logarithm of h in
basis g.

Lemma 7.4.5 (Case 2). Consider the adversarial machine A∗ associated to AKS defined by the
Lemma 7.4.3 that outputs some values u = (k,C,C ′, D, e, σ, τ) and (ρ, P, ρ′, Q∗, ω,W ∗, δ, γ),
such that P (k, Y ) 6= Q∗(Y ), where P,W ∗ ∈ Zq[X,Y ], Q∗ ∈ Zq[Y ] and (P, ρ), (Q∗, ρ′), (W ∗, ω)
are the openings of the commitments (C,C ′, D) and (δ, γ) satisfy A := e(hωgW ∗(s,t), g1/g

k) ·
e(h−∆gP (s,t)−Q∗(t), g)−1 = e(hδ g̃γ , g). Given that the verification check outputs 1 for π, there
is a negligible probability that the values k, P,Q∗,W ∗ satisfy W ∗(s, t) = P (s,t)−Q∗(t)

(s−k) under
q-SDH assumption with respect to the bilinear group gk, where d′ = max{d, `}.

Proof. Consider the adversary BSDH against q-SDH assumption, having as auxiliary input z =
(k,∆, ω, δ, γ). Using its challenge (g, gs, . . . , gsd , ĝs, . . . , ĝsd ;h, hs, ĥ; (g, gs)) it picks random
scalars α, t←$Zq and computes gij := gs

itj , gij := gs
itj for i = 0, . . . , d and j = 0, . . . , `, ĝ :=

gα, and computes a commitment key ck =
{

gk, (gij)d,`i,j=0, (ĝij)
d,`
i,j=0; (h, ĥ); (g, ĝ)

}
. It further

sends the following crs corresponding to the relation Rck to A∗: crs =
{

ck, (h1, g1),RO(·, ·, ·)
}
.

Note that h1 and g1 are in the initial challenge.
From the output of the aggregated machineA∗, BSDH gets the values u = (k,C,C ′, D, e, σ, τ)

and (ρ, P, ρ′, Q∗, ω,W ∗, δ, γ). The verification check of the Schnorr proof implies

A = e(d, g1/g
k) · e(c/c′, g)−1 = e(hωgW ∗(s,t), gs−k) · e(h−∆gP (s,t)−Q∗(t), g)−1

= e(h∆h(s−k)ω, g) · e(g−(P (s,t)−Q∗(t))g(s−k)W ∗(s,t), g) = e(h∆g̃ω, g).

The outputs δ, γ from the extended adversary machine are such that A = e(hδ g̃γ , g) (from
the soundness of the Schnorr’s proof). This, together with the previous equation leads to the
conclusion e(hδ g̃γ , g) = e(h∆g̃ω, g) and so e(h∆−δ g̃ω−γ , g) = 1. The adversary BSDH is able
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to produce a solution to the equation (s− k)(ω − γ) + ∆− δ = 0 mod q and though to find
s = k + δ−∆

ω−γ mod q, unless γ = ω and δ = ∆.
In the former case, from the value s, one can easily break any SDH problem. In the

latter case, the two writings for A, and the non-degeneracy of the pairing map lead to
g(s−k)W ∗(s,t)−P (s,t)+Q∗(t) = 1.

Using P ∈ Zq[X,Y ], computeQ(Y ) := P (k, Y ) and define the polyomialW = P (X,Y )−Q(Y )
(X−k) ∈

Zq[X,Y ]. We have also that g(s−k)W (s,t) = gP (s,t)−Q(t), then Bq-SDH computes gQ(t)−Q∗(t) =
g(s−k)(W ∗(s,t)−W (s,t)). Define the polynomial in Zq[X,Y ] : W ′(X,Y ) = (X − Y )(W (X,Y )−
W ∗(X,Y ))−Q(Y ) +Q∗(Y ), we have that gW ′(s,t) = 1. This splits in two cases:

1. If W ′(X, t) = ∑
i(
∑
j w
′
ijt

j)Xi is the zero polynomial in X, meaning that all the
coefficients w̃i = ∑

j w
′
ijt

j are zero ∀i ∈ {0, · · · , d}, then by choosing an index i0 ∈
{0, . . . d} with a non-zero element w′i0j (unless W

′ = 0 which contradicts the hypothesis
of the Lemma) we have that t is a root of the polynomial ∑j w

′
i0jY

j .

2. If there exists at least one index ı̃, such that w̃ı = ∑
j w
′
ı̃jt

j 6= 0, then we have that s is
a root of the polynomial defined by fixing t: W ′(X, t) = ∑

i w̃iX
i.

If the first case happens with non-negligible probability, algorithm BSDH
1 receives an `− SDH

instance in t, and choosing s, can complete the input for the aggregate machine A∗. Knowing
that ∑j w

′
i0jt

j = 0, the adversary BSDH
1 is able to compute g 1

t in the following way: Consider
w′i0j0 the first non-zero coefficient of the polynomial∑j w

′
i0jY

j : gw
′
i0j0

tj0 = gt
j0+1W ′′(t) for some

polynomial W ′′ of lower degree, and so gw
′
i0j0 = gtW

′′(t), or equivalently g1/t = (gW ′′(t))1/w′i0j0 .
BSDH

1 is then able to solve the `− SDH problem, as gW ′′(t) can be computed from the initial
instance.
If the second case happens with non-negligible probability, the algorithm BSDH

2 receives
a d − SDH instance in s, and can complete it as an input for A∗ by choosing t. Doing as
above, with a polynomial that has s as a root, it can compute g1/s. This solves the `− SDH
instance.

7.5 SNARK for Simultaneous Evaluations
From our CaP−SNARK for the evaluation of one bivariate polynomial on a point k, we show
how we can use it for the evaluation of many univariate polynomials on the same point k.
This will be our mail tool for verifiable computation using FHE on Ring-LWE. More precisely,
we show how to use the Biv.PolyCom and our previous SNARK to define a commitment
scheme and a compact proof system dedicated to multi-polynomials evaluation in the same
random point k: given a single compact knowledge commitment C for a set of univariate
polynomials {Pj(X)}j ∈ Zq[X] and a public evaluation point k ∈ Zq, we want to prove that
some values {pj}j committed in C ′ are indeed evaluations of the committed polynomials in
this point k.

7.5.1 Commitment for Multiple Univariate Polynomials
We describe below, Uni.MultiCom, our new knowledge commitment for a set of univariate
polynomials. It is obtained in a straightforward way from Biv.PolyCom. It is defined as
follows, where for simplicity `+ 1 is the number of committed univariate polynoimals:
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Uni.ComGen(1λ, d, `)→ ck: Given some degree bound d and some maximal bound `+ 1 on
the cardinal of the polynomial set to be committed, it runs ck← Biv.ComGen(1λ, d, `),
where d, ` are the bounds on the degrees on X and Y of the bivariate polynomials in
Zq[X,Y ].

ck =
{

gk, (gij)d,`i,j=0, (ĝij)
d,`
i,j=0; (h, ĥ); (g, ĝ)

}
;

Uni.Com(ck, {Pj}0≤j≤`)→ (C, ρ): Given a set of `+1 polynomials in Zq[X], {Pj = ∑d
i=0 pijX

i}0≤j≤`,
we can define the bivariate polynomial P = ∑d,`

i,j=0 pijX
iY j and run (C, ρ)← Biv.Com(ck, P );

Uni.ComVer(ck, C = (c, ĉ))→ 0/1: Runs b← Biv.ComVer(ck, C = (c, ĉ));

Uni.OpenVer(ck, C, {Pj}0≤j≤`, ρ)→ {Pj}j: Runs P ← Biv.OpenVer(ck, C, P, ρ) where P =∑d,`
i,j=0 pijX

iY j . If Pj = ∑d
i=0 pijX

i for all 0 ≤ j ≤ `, then output 1, else reject and
output 0.

We state the following theorem. Its proof simply follows from the way we encode multiple
polynomials into a bivariate one.

Theorem 7.5.1. This commitment scheme Uni.MultiCom is perfectly hiding, computationally
binding, and knowledge binding assuming the scheme Biv.PolyCom also is so.

Proof. Let us show this three properties from the initial Biv.PolyCom commitment.

Perfect hiding: Since C = (c, ĉ) in G2 is generated by Biv.Com algorithm, and Biv.PolyCom
is hiding, we have that Uni.MultiCom is perfectly hiding as well.

Computational binding: Assume that there exists a non-uniform probabilistic time adversary
A that given a commitment C = (c, ĉ) creates two valid openings ({Aj}j , ρ), ({Bj}j , τ), where
all Aj , Bj ∈ Zq[X]. Then we create an adversary B against the binding of Biv.PolyCom
that runs A and outputs the pair of polynomials in Zq[X,Y ] as follows A := ∑`

j=0AjY
j and

B := ∑`
j=0BjY

j . We have that (A, ρ) and (B, ρ) are two valid openings for the commitment
C. This breaks the binding property of Biv.PolyCom.

Knowledge binding: This property follows directly from the knowledge binding of Biv.PolyCom
scheme.

7.5.2 Succinct Proof of Simultaneous Evaluations in a Point k

The construction of an efficient and compact M.SNARK dedicated to multiple univariate-
polynomial evaluations in some common point k follows as well from the P.SNARK we built
for partial evaluation. More precisely, for some parameters d, ` and some given knowledge
commitments C,C ′ for polynomials of maximal degree d, {Pj}0≤j≤` ∈ Zq[X] and scalars
{pj}0≤j≤` ∈ Zq and a public evaluation point k ∈ Zq, we want to prove that pj is the
evaluation Pj(k) for any 0 ≤ j ≤ `.

7.5.2.1 Description of the CaP−M.SNARK Protocol.

We now describle our protocol for proving multiple univariate-polynomial evaluations in some
common point k, where the j index is always considered as 0 ≤ j ≤ `, and thus for ` + 1
polynomials:



7.5 SNARK for Simultaneous Evaluations 183

M.Gen(1λ,Rm)→ crs: On input a security parameter λ ∈ N and a NP relation R :=
{(u = ({Pj}j , k);w = {pj}) : Pj(k) = pj}, define the associated relation R := {(u =
(P (X,Y ), k);w = Q(Y )) : Q(Y ) = P (k, Y )} where P (X,Y ) := ∑`

j=0 PjY
j , Q(Y ) :=∑`

j=0 pjY
j . Output the common reference string by running crs← P.Gen(1λ,R);

M.Prove(crs, u = (C,C ′, k), w = ({Pj}j , {pj}j , ρ, ρ′): Given crs, the instance u and the witness
w, the prover defines new bi-variate polynomials P (X,Y ) := ∑`

j=0 PjY
j , Q(y) :=∑`

j=0 pjY
j and compute the proof π for those: π ← P.Prove(crs, u = (C,C ′, k), w =

(P,Q, ρ, ρ′). Output π := (D, e, σ, τ);

M.Ver(crs, u, π)→ b: Same algorithm as for partial-evaluation P.SNARK.

Remark 7.5.2. oof can be seen as a commitment to a set of univariate polynomials {Wj}j using
the Uni.MultiCom as follows: Write Wj = ∑d

i=0wijX
i, then running Uni.Com(ck, {Wj}j)

gives the same output (D,ω) as running Biv.Com(ck,W ).

Theorem 7.5.3. Assuming the P.SNARK is a public coin argument of knowledge of openings
of C and C ′ to some polynomials P ∈ Zq[X,Y ], Q ∈ Zq[Y ] such that P (k, Y ) = Q(Y ),
then M.SNARK is a public coin argument of knowledge of openings of C and C ′ to a set of
polynomials {Pj}j ∈ Zq[X] and a set of scalars {pj}j ∈ Zq such that Pj(k) = pj∀0 ≤ j < `.

Proof. We prove the required properties:

Correctness. Follows from the P.SNARK correctness.

Knowledge Soundness. We first build a knowledge-extractor. This knowledge extractor
directly follows from Lemma 7.4.2 and an extended extractor can be defined as in Lemma 7.4.3.
For any adversary B against P.SNARK, there exists an aggregated machine B∗ that outputs
the same as B together with a extended witness wit = (P, ρ,Q, ρ′,W, ω).

From the output of this extended machine B∗ we can further extract {Pj := ∑d
i=0 pijX

i}j , {pj :=
qj}j ,Wj := ∑d

i=0wijX
i}j just by reading the respective coefficients pij , qj , wij from the bi-

variate polynomials P = ∑d,`
i,j=0 pijX

iY j , Q = ∑`
j=0 qjY

j , and W = ∑d,`
i,j=0wijX

iY j .
Therefore, for any adversary A against the M.SNARK protocol, there exists an ex-

tended machine A∗ that runs the aggregate machine B∗ under its output and further
returns the same statement and proof as A toghether with an extended witness wit =
({Pj}j , ρ, {pj}j , ρ′, {Wj}, ω; δ, γ), where Pj ,Wj ∈ Zq[X], pj ∈ Zq are the openings of the
commitments (C,C ′, D) under randomness ρ, ρ′, ω and δ, γ are such that A = e(d, g1/g

k) ·
e(c/c′, g)−1 = e(hδ g̃γ , g).

Soundness. We reduce the soundness of M.SNARK to the soundness of P.SNARK. Suppose
there exists an adversary A against the soundness of M.SNARK, with the corresponding
associated extended machine A∗ that outputs a cheating proof π∗ that passes the verification
check with non-negligible probability. We then build an efficient adversary B against P.SNARK
that runs the machine A∗ to break the protocol with non-negligible probability.
B runsA∗ that outputs the corresponding tuple proof-statement-witness u = (C,C ′, k), π∗ =

(D, e, σ, τ),wit = ({Pj}j , ρ, {pj}j , ρ′, {Wj}, ω; δ, γ). Then, we can define some corresponding
bivariate polynomials as follows and build an extractor for B: We have the corresponding
polynomials P ∈ Zq[X,Y ] and Q ∈ Zq[Y ] defined from the univariate polynomials extracted
above: P (X,Y ) := ∑`

j=0 Pj(X)Y j , Q(Y ) := ∑`
j=0 pjY

j .
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We know by our assumption that in the output of A∗ there exists at least one j0 ∈ {0, . . . `}
such that Pj0(k) 6= pj0 . Then it follows that the previous defined P and Q do not satisfy the
required statement: P (k, Y ) 6= Q(Y ), wich breaks the soundness of the P.SNARK.

7.6 Proof Systems for Arithmetic Function Evaluation over
Polynomial Rings

In this section we describe our SNARK for arithmetic computations in quotient polynomial
rings.
Let R be the quotient ring Z/〈R(X)〉 for some polynomial R ∈ Z[X] of degree d. For a

prime q � d we define F = Zq a finite field and Rq = R/qR. We want to construct a succinct
non-interactive zero-knowledge argument system for some relation Rf of correct evaluation of
an arithmetic function f(·) : Rqn → Rq taking n ∈ N inputs in the quotient ring Rq = R/qR.
The function f to be evaluated on polynomials {Pj}nj=1 in the quotient ring Rq is considered
to be public.

Our scheme is a Commit-and-Prove (CaP) argument system. Given a compact commitment
(C, ρ) to some polynomials Pj ∈ R ∀j = 1 . . . n, the protocol allows to efficiently prove
that some polynomial P ∈ Rq is the result of the evaluation of the function f on input the
polynomials committed in C, evaluation done in the polynomial ring Rq. The witness is
the tuple ({Pj}nj=1, ρ) where ({Pj}nj=1, ρ) is the opening of C. We define the relation for
which we construct a SNARK depending on the commitment public information ck for the
commitment scheme Uni.MultiCom and on the function f :

Rf := {(u = (C,P );w = ({Pj}nj=1, ρ, )) :
(C, ρ) = Uni.Com({Pj}) ∧ ∃ T ∈ Zq[X] s.t. P = f(Pj)− TR}

The relation Rf implicitly contains two bounds `, ν on the number of inputs of f and the
degree df of f as an arithmetic circuit.
The CaP-SNARK we will construct consists of the following building blocks: an (Rf -

independent) univariate-polynomial commitment scheme Uni.MultiCom = (Uni.Com,Uni.ComVer,
Uni.OpenVer), a non-interactive zero-knowledge argument system M.SNARK = (M.Gen,
M.Prove,M.Ver) for the simultaneous evaluation of n univariate polynomials {Pj}nj=1 in a
point k, and a classical SNARK for arithmetic circuits over Zq, CaP− Π = (Π.Gen,Π,Π.Ver)
that must be compatible with the Uni.MultiCom scheme. One example of such a scheme is
the adaptation of Pinocchio proposed by Veeningen in [Vee17].
High-Level Description of our SNARK. First, the prover computes the function f on
polynomials {Pj}nj=1 and writes the result f((Pj)j) ∈ Zq[X] as f(Pj) = P+TR, for a quotient
polynomial T ∈ Zq[X] in order to compute the required value P ∈ Rq as P = f(Pj)− TR;
Second, the prover builds a commitment CT to this polynomial T ∈ Zq[X] (which may have
degree higher than that of R); In the next steps of the protocol, the prover will build a proof
that P = f((Pj)j) − TR for the committed polynomials {Pj} and T . However, instead of
creating directly this proof, which would have to work for a large arithmetic circuits f , we use
the homomorphic properties of the polynomial ring to “compress the computation”. Namely,
to prove P = f((Pj)j)− TR, we evaluate all the polynomials in a random point k and then
prove the relation on the resulting scalars, using the fact that:

f̂(Pj(k))−R(k)T (k) = (f(Pj)−RT )(k) = P (k).
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where f̂ : Znq → Zq is an arithmetic circuit that is the same as f except that every addition
(resp. multiplication) in Rq is replaced by an addition (resp. multiplication) in Zq.

This idea is similar to the homomorphic hash function defined by Fiore et al. [FGP14].
In [FGP14], they let this idea work by evaluating the polynomials “in the exponent”, i.e.,
they publish a set of group elements gki , and then they compute homomorphically over these
encodings to get gP (k). This technique however hits two problems: first, they cannot deal
with modular reductions, and second, to compute homomorphically a multiplication on these
encodings, they have to “consume” a pairing, and thus only degree-2 computations can be
supported. In our case, we solve these issues by exploiting the power of the commit and prove
paradigm in order to obtain, for every evaluation, a fresh random k. Then, having k ∈ Zq
allows us to support higher-degree computations as well as to deal with modular reductions.
To proceed with the protocol, the prover thus needs to get a random point k, not of its

choice and independent of the values commited in CT and C and of the statement P . This
is possible by using the random oracle RO to obtain a value k on which it evaluates the
polynomials {Pj(k) = pj}nj=1, R(k) = r, P (k) = p and T (k) = t′. Next, the prover compactly
commits to the respective evaluations (C ′, ρ′)← Uni.Com(t′, {pj}nj=1).
At this point the prover will use: (1) the M.SNARK scheme to prove that C ′ is a commit

to a vector of scalars (t, {pj}nj=1) that are the results of evaluating at the point k a vector of
polynomials (T, {Pj}nj=1) that are committed in CT · C1; (2) the CaP− Π scheme to prove
that p = P (k) = f̂((pj)j)− rt′.
More formally, the algorithms of the protocol are described in Figure 7.2. A detailed

intuition of the functionalities of each algorithm follows.
Formal Description of Our SNARK Protocol. Let Uni.MultiCom be a commitment scheme
allowing to commit to multiple univariate polynomials. We construct a zero-knowledge
SNARK scheme for any relation Rf with respect to some bounds `, ν on the cardinal of
{Pj}j and on the degree df of f .
CRS Generation. The setup algorithm Gen(1λ,Rf ), given a security parameter λ ∈ N and
an NP relation Rf including the bound parameters `, ν, outputs a crs enabling the proof and
verification of a function f of degree df < ν over a set of polynomials {Pj}nj=1 of cardinality
n ≤ `.
The crs elements are generated in order to allow the derivation of a commitment key

ck compatible with Uni.MultiCom with some special property (steps 3 and 4 in the Gen
algorithm from Figure 7.2): It supports commitments up to ` different polynomials Pj ∈ Rq
(all of degrees ≤ d) and has the two sets of bases {gsi}νi=0 and {ĝsi}νi=0 that enable higher
degree up to ν to commitment to polynomials T ∈ Zq[X], T = ∑ν

i=0 TiX
i. The generation

of such string is not necessaraly black-box, and can exploit some elements from the one
generated previously to define the two bases: {gk, (gi0)νi=0, (ĝi0)νi=0}.
Then we need a common reference string for the CaP− Π that will be used for proving

computations of f̂ . For this part, we exploit the structure of the commit-and-prove scheme
proposed in [Vee17]. In particular, this scheme works with a commitment key that has the same
structure as (a portion of) ours, i.e., it consists of G1 elements2 ĉk = (gr̂, gα̂r̂, {gx̂i , gα̂x̂i}`i=1).
Thus, we can use our bases and set ĉk = (gk, h, ĥ, {g0j , ĝ0j}`j=0).

1By the homomorphic property of the commitments and a specific organization of the bases in ck, CT · C
results in a commitment to the concatenation (T, {Pj}nj=1), as we will explain in detail.

2In [Vee17] the elements used to make the commitment knowledge-extractable are in G2, but the protocol
can be trivially modified to work with them in G1 as in our case.
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Gen(1λ,Rf )→ crs

1: gk← G(1λ); g, h←$G, g←$G; α, s, t←$Zq
2: ĝ := gα, ĥ := hα, ĝ := gα, g1 := gs, h1 := hs

3: gi0 := gs
i
, ĝi0 := ĝs

i ∀ 0 ≤ i ≤ ν
4: gij := gs

itj , ĝij := ĝs
itj ∀ 0 ≤ i ≤ d, 1 ≤ j ≤ `

5: crsC :=
(
ck, (h1, g1),RO

)
, crs′ ← G(ĉk,Rf̂)

6: return crs as in Equation (7.3)

Prove(crs, x, w)

1: (C,P ) := x, ({Pj}nj=1, ρ) := w

2: T := f(Pj)−P
R

3: (CT , τ)← Uni.Com(ck, T )
4: k ← RO(C,P,CT )
5: p = P (k), r = R(k),
6: t′ = T (k), pj = Pj(k)
7: (C ′, ρ′)← Uni.Com(t′, {pj})
8: uC := (CT × C,C ′, k)
9: πC ← M.Prove(crsC , uC , wC),

10: π′ ← Π(crs′, u′ = (C ′, p, r), w′)
11: returns π = (CT , C ′, πC , π′)

Ver(crs, x = (C,P ), π)

1: π := (CT , C ′, πC , π′)
2: k ← RO(C,P,CT )
3: p := P (k), r := R(k)
4: uC := (CT × C,C ′, k)
5: u′ := (C ′, p, r)
6: bC ← M.Ver(crsC , uC , πC)
7: b′ ← Π.Ver(crs′, u′, π′)
8: return (bC ∧ b′) = 1.

Figure 7.2: A SNARK for evaluations in polynomial rings

Once defined the commitment key ĉk as above, in step 5, we invoke the key generation
algorithm G(ĉk,Rf̂) of the scheme CaP−Π in [Vee17] in order to obtain a crs crs′ corresponding
to the relation R

f̂
.We will call the extra part of the crs′ related to the QAP generation crsQAP.

The rest of crs′ is found in the already generated elements of our global crs.
The resulting crs has then the following expression:

crs : (ck = (gk, (gi0, ĝi0)νi=0, (gij , ĝij)
d,`
i=0,j=1, (h, ĥ), (g, ĝ)); (h1, g1); crsQAP; RO) (7.3)

Prover. Given a reference string crs, a compact commitment (C, ρ) and the corresponding
polynomials {Pj}nj=1 ∈ Rq, the prove algorithm produces a proof π that f(Pj) = P as follows:
After having computed f(Pj) ∈ Zq[X] and written it as f(Pj) = P + TR for a quotient

polynomial T ∈ Zq[X], the prover algorithm has then to commit to T = ∑ν
i=0 TiX

i. This is
possible by using the bases {gsi}νi=0 and {ĝsi}νi=0 in ck for degrees up to ν. The commitment
(CT = (cT , ĉT ), τ) is computed with cT = hτ

∏ν
i=0 g

Ti
i0 , ĉT = ĥτ

∏ν
i=0 ĝ

Ti
i0 .

The prover then runs the RO(C,P,CT ) function to obtain a random value k on which it
evaluates the polynomials {Pj(k) = pj}nj=1, R(k) = r, P (k) = p and T (k) = t (see steps 4 to
6 in Figure 7.2).

The prover carefully commits the respective evaluations (C ′ = (c′, ĉ′, ρ′)← Uni.Com(t′, {pj}nj=1),
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by using the appropriate basis as follows: c′ = hρ
′
gt
′

00 ×
∏`
j=1 g

pj
0j , ĉ

′ = ĥρ
′
ĝt
′

00 ×
∏`
j=1 ĝ

pj
0j .

Then, it computes a unique compact commitment to the polynomials T, {Pj}nj=1 by mul-
tiplying the two commitments CT × C. From the homomorphic property of commitment
scheme, we obtain a new valid commitment with randomness the sum of initial randomnesses
(CT × C, ρ+ τ) := Uni.Com(T, {Pj}nj=1).

The prover runs the algorithm M.Prove(crsC , uC = (CT×C,C ′, k), wC = (T, {Pj}, t′, {pj}, ρ+
τ, ρ′)) and the proving algorithm of the CaP−Π for proving the evaluation of f̂ on scalars
π′ ← Π(crs′, u′ = (C ′, p, r), w′) where w′ is the QAP witness for the computation p = f̂(pj)−rt
and for the opening of C ′. The prover eventually outputs π = (CT , C ′, πC , π′).

Verifier. The algorithm Ver on input a statement u = (C,P ) and a proof π := (CT , C ′, πC , π′)
recomputes the randomness k by running k ← RO(C,P,CT ). Then the Verifier has only to
evaluate the known polynomials P,R in k obtaining p := P (k), r := R(k). Once it has all
the elements to redefine the two statements uC := (CT × C,C ′, k) and u′ := (C ′, p, r) for the
proofs πC and π′ it runs the corresponding verification algorithms of these two SNARKs,
M.Ver and Π.Ver to check the proofs and outputs the conjunction of the two answers.

7.6.1 Relations for the Two SNARKs

We define the intermediate statementsR1,R2 to be proven using the two SNARKs, M.SNARK
and CaP− Π:

St1: Reval. We first define the relation for simultaneous evaluation of multiple polynomials
on a point k, to be used for M.SNARK. The prover has to convince the verifier that for a
given point k (that in our case is random, but part of the statement) and two commitments
CT ×C and C ′, it knows the corresponding opening values (T, {Pj}j , ρ+ τ) and (t′, {pj}j , ρ′)
such that Pj(k) = pj for all j, and T (k) = t′.

More formally, the first proof takes as input a tuple uC = (CT ×C,C ′, k), and proves there
is a witness wC = (T, {Pj}, t′, {pj}, ρ+ τ, ρ′) such that the verifier accepts iff Reval holds for
(uC , wC):

Reval := {(uC , wC) :∀j, pj = Pj(k) ∧ t′ = T (k) ∧ (C ′, ρ′) = Uni.Com(t′, {pj})
∧ (CT × C, ρ+ τ) = Uni.Com(T, {Pj}j)}.

St2: R̂f . We then define the relation for correct computation of f̂ , to be used for CaP−Π. The
prover has to convince the verifier that an equality holds for some scalar values t′, {pj}, p, r ∈
Zq. The inputs p, r are known by the verifier (they are public) and t′, {pj} are given
implicitly in a committed form: (C ′, ρ′) = Uni.Com(t′, {pj}). More formally, for the statement
u′ = (C ′, p, r), there exists a witness w′ for the satisfiability of the circuit verifying whether
the equation p = f̂(pj)− rt′ holds or not:

R̂f := {(u′, w′) : p = f̂(pj) + rt′ ∧ t′ = T (k) ∧ (C ′, ρ′) = Uni.Com(t′, {pj})}.

With these two relations defined, we can consider the two common reference strings crsC , crs′
generated by running M.Gen(1λ,Reval) and Π.Gen(1λ, R̂f ), and run the algorithms of the two
SNARKs using these crs.
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7.6.2 Security Analysis
About the above construction, we can state the following security result.

Theorem 7.6.1. Assuming the CaP − Π and M.SNARK schemes are secure arguments of
knowledge, the new construction CaP − SNARK described before satisfies completeness,
succinctness, zero-knowledge and knowledge-soundness.

Before proceeding to the detailed proof of the theorem, we provide a short intuition.
Correctness is rather straightforward, and zero-knowledge follows from the the zero-knowledge
property of the two SNARKs and the perfect hiding of the commitment scheme. For knowledge
soundness, the proof consists of two main steps. First, we rely on the knowledge-soundness
of the two SNARKs to show that for any adversary creating an accepting proof there is a
knowledge extractor that, with all but negligible probability, returns witnesses that correctly
satisfy the two relations mentioned in the previous section. Second, the only remaining
possibility is that the polynomial V = P ∗ − f(Pj) + TR is nonzero. However, V (k) = 0 and
this holds for a random point k sampled by the random oracle independently of V , which
can happen only with probability deg(V )/q which is negligible.

7.7 Applications to Computing on Encrypted Data
In this section we detail on how we can use our SNARK for computations over polynomial
rings to build a VC scheme that guarantees input and output privacy.

7.7.1 Verifiable Computation
Here we recall the notion of verifiable computation from [GGP10]. We adapt the definitions
to fit the setting (that is in the scope of our construction) where we have public verifiability
and public delegatability [PRV12], as well as privacy of the inputs and outputs. A VC scheme
VC = (KeyGen,ProbGen,Compute,Verify,Decode) consists of the following algorithms:

KeyGen(1λ, f̂)→ (PKf , SKf ): Given the security parameter, the key generation algorithm
outputs a public key and a matching secret key for the function f .

ProbGenPKf (x)→ (σx, τx): The problem generation algorithm uses the public key PKf to
encode the input x into a public value σx, to be given to the computing party, and a
public value τx to be given to the verifier.

ComputePKf (σx) → σy: Given the public key PKf and the encoded input, the compute
algorithm returns an encoded version of the function’s output.

VerifyPKf (τx, σy)→ acc: Given the public key PKf for function f , and the public verifier
information τx, the verification algorithm accepts (output acc = 1) or rejects (output
acc = 0) an output encoding σy.

DecodeSKf (σy)→ y: Given the secret key SKf for function f , and an output encoding σy,
the decoding algorithm outputs a value y.

The correctness of a VC scheme is the obvious property: if one runs Compute on an
honestly generated input encoding of x, then the output must verify and its decoding should
be y = f(x).
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ExpPubV erifA (VC, f, λ)

(PK,SK)← KeyGen(1λ, f)
x← A(PKf )
(σx, τx)← ProbGenPKf

(x)
σ̂y ← A(PKf , σx, τx)
âcc← VerifyPKf

(τx, σ̂y)
ŷ ← DecodeSKf

(σ̂y)
return (âcc = 1) ∧ (ŷ 6= f(x))

ExpPrivA (VC, f, λ)

b←$ {0, 1}
(PKf , SKf )← KeyGen(1λ, f)
(x0,x1)← A(PKf )
(σb, τb)← ProbGenPKf

(xb)
b′ ← A(PKf , σb)
return (b′ = b)

Figure 7.3: Experiments for publicly verifiable and private VC.

For security, intuitively we want to say that an adversary that receives the public parameters
for a function f and an encoding of an input x cannot create an encoding that passes
verification and decodes to y′ 6= f(x). More formally, we say that a publicly verifiable
computation scheme VC is secure for a function f , if for any PPT adversary A, we have that

Pr[ExpPubV erifA [VC, f, λ] = 1] = negl(λ),

where the experiment ExpPubV erif is described in Figure 7.3.
The input privacy notion intuitively says that no information about the inputs is leaked.

This is defined using a typical indistinguishability experiment. Note that input privacy
implies also output privacy. More formally, we say that a publicly verifiable (and publicly
delegatable) VC scheme VC is private for a function f , if for any PPT adversary A, we have
that:

Pr[ExpPrivA [VC, f, λ] = 1] ≤ 1
2 + negl(λ),

where the experiment ExpPrivA is described in Figure 7.3.

7.7.2 Our VC scheme
We describe our VC scheme below. The construction is essentially an instantiation of the
generic solution of Fiore et al. [FGP14] when using an homomorphic encryption scheme
whose homomorphic evaluation algorithm fits our relation Rf . This can be obtained by using
HE schemes in the Ring-LWE setting where the ciphertext space works over the same ring
Rq supported by our SNARK constructions, and where the evaluation algorithm does not
involve modulus switches and rounding operations. An example of such a scheme is the one
of Brakerski and Vaikunthanatan [BV11b].

KeyGen(1λ, f̂)→ (PKf , SKf ):
• Run (pk, sk)← HE.KeyGen(λ) to generate a key pair for HE.
• Run crs ← Gen(Rf , λ) to generate the common reference string of our SNARK

for the relation Rf .
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• Set PKf = (pk, crs, f̂) and SKP = (sk, crs).

ProbGenPKf (x)→ (σx, τx):
• Parse x = {xi}ni=1 and compute ciphertexts Pi ← HE.Enc(pk, xi)
• Compute the commitment (C, ρ) = Uni.Com({Pi}) and define σx = (C, {Pi}, ρ)

and τx = C.

ComputePKf (σx)→ σy:
• Parse σx = (C, {Pi}, ρ);
• Compute the result ciphertext P ← HE.Eval(pk, f̂ , {Pi}) = f({Pi}).
• Run π ← Prove(crs, (C,P ), ({Pi}, ρ)).
• Define σy = (P, π)

VerifyPKf (τx, σy)→ acc: output b← Ver(crs, (C,P ), π).

DecodeSKf (τx, σy)→ y: Decrypt y = HE.Dec(sk, P ).

Following the general result in [FGP14], the scheme satisfies correctness, security and
privacy. In particular, privacy relies on the semantic security of HE, and security on the
soundness of the SNARK.

7.7.3 Preserving Privacy of the Inputs Against the Verifier
The VC scheme described in the previous section works when the homomorphic computation
P ← f({Pi}) on the ciphertexts is deterministic. This can raise the issue that the result
ciphertext P may reveal information on the plaintexts {xi} underlying {Pi} (e.g., in lattice-
based schemes such information may be inferred by looking at the distribution of the noise
recovered as P ’s decryption time).

It would be therefore interesting to capture the setting where one wants to hide information
on the xi’s even from the decryptor. Such a property would turn useful in scenarios where
the data encryptor and decryptor are different entities. As an example, consider the case of
users that store medical data x on a cloud server which computes some query f on behalf of
an analyst, who however is not entitled to learn more than f(x).

In this section, we provide a formal definition of this property, that we call context-hiding,
and then describe how our scheme from the previous section can be extended to achieve this
additional property.
Defining Context-Hiding. Informally, this property says that output encodings σy, as well as
the input verification tokens τx, do not reveal any information on the input x. Notably this
should hold even against the holders of the secret key SKf . We formalize this definition in a
zero-knowledge style, requiring the existence of simulator algorithms that, without knowing
the input, should generate (τx, σy) that look like the real ones. More precisely, a VC scheme
is context-hiding for a function f if there exist simulator algorithms S1, S2 such that:

• the keys (PKf , SKf ) and (PK ′f , SK ′f ) are statistically indistinguishable, where (PKf , SKf )←
KeyGen(1λ, f) and (PKf , SKf , td)← S1(1λ, f);

• for any input x, the following distributions are negligibly close

(PKf , SKf , σx, τx, σy) ≈ (PKf , SKf , σx, τ
′
x, σ
′
y)
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where (PKf , SKf , td)← S1(1λ, f), (σx, τx)← ProbGenPKf (x),
σy ← ComputePKf (σx), and (σ′y, τ ′x)← S2(td, SKf , f(x)).

Our Context-Hiding Secure VC scheme. Before describing the scheme in detail, let us provide
some intuition. The first observation is that for the HE scheme this problem can be solved by
adding to the result P an encryption of 0, P ∗0 , whose noise can statically hide that in P (a so
called noise flooding technique). However if we do this change in our VC scheme we have two
issues: (1) the computation is not deterministic anymore; (2) the prover may create a bogus
encryption of 0, not of the correct distribution, in order to make decryption fail. We can
solve these issues by using the fact that, as underlying tool for verifiability, we are using a
SNARK that can handle deterministic computations. In particular, we can do the following.

For (2) we add to the public key s honestly generated encryptions of 0 {P ∗i }si=1, and then
ask the untrusted party to compute the result as P ′ = P + P ∗0 with P ∗0 = ∑n

i=1 bi · P ∗i , for
uniformly random bits bi. By choosing appropriately the noise parameters in the P ∗i ’s and
by taking s ≈ λ, based on the leftover hash lemma, P ∗0 can statistically hide the noise in
P . Formally, adding such a randomization at the end of computing a function f guarantees
leveled circuit privacy. In a nutshell, a somewhat-FHE HE is leveled circuit private if there
exists a simulator algorithm HE.S such that HE.S(pk, d, f(x)) ≈ HE.Eval(pk, f,HE.Enc(x))
are statistically close. Here the input d taken by the simulator represents information on the
depth of f .

For (1), we simply consider proving a slightly different relation, that is:

R∗f := {(u = (C,P ′, {P ∗i }si=1);w = ({P ∗j }nj=1, ρ, b1, . . . , bs)) :
(C, ρ) = Uni.Com({Pj}) ∧ ∀i ∈ [s]bi ∈ {0, 1} ∧ ∃ T ∈ Zq[X] s.t.

P ′ = f(Pj) +
s∑
i=1

biP
∗
i − TR }

In order to use our SNARK on this relation, we can do the following. Given a function
f̂ : Znq → Zq define the function f̂ ′ that takes n+ 2s inputs such that

f̂ ′(x1, . . . , xn, o1, . . . , os, b1, . . . , bs) = f̂(x1, . . . , xn) +
s∑
i=1

bi · oi.

Then we use our SNARK for the following relation

R′f := {(u = (C ′, P ′);w = ({P ∗j }nj=1, {P ∗i }si=1, {bi}si=1, ρ
′)) :

(C ′, ρ′) = Uni.Com({Pj}, {P ∗i }, {bi}) ∧ ∀i ∈ [s]bi ∈ {0, 1} ∧ ∃ T ∈ Zq[X] s.t.
P ′ = f ′(Pj , {P ∗i }, {bi})− TR }

that can be seen as matching the format Rf ′ , for the function f ′ and a larger set of inputs, of
relations supported by our SNARK. One change however is that the commitment C ′ cannot
be created by ProbGen as it contains elements that depend on a specific computation. We
solve this problem by using the homomorphic properties of our commitment: namely we
assume that at key generation a commitment (C∗, ρ∗) = Uni.Com({P ∗i }) is created and made
public, and that the prover creates a similar commitment (Cb, ρb) = Uni.Com({bi}) to the
random coefficients. Then C ′ can be obtained as C ·C∗ ·Cb and its opening is ρ′ = ρ+ρ∗+ρb.

A more precise description of the protocol is given below.
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KeyGen(1λ, f̂)→ (PKf , SKf ):
• Run (pk, sk)← HE.KeyGen(λ) to generate the key pair for HE.
• Run crs← Gen(Rf ′ , λ) to generate the common reference string of our SNARK

for the relation Rf ′ .
• For i = 1 to s: P ∗i ← HE.Enc(pk, 0) and compute a commitment (C∗, ρ∗) =

Uni.Com({P ∗i }).
• Set PKf = (pk, {P ∗i }si=1, C

∗, ρ∗, crs, f̂) and SKP = (sk, crs).

ProbGenPKf (x)→ (σx, τx): this is the same as in the previous section.

ComputePKf (σx)→ σy: parsing σx = (C, {Pi}, ρ), do the following:
• Sample b1, . . . , bs←$ {0, 1} uniformly at random, and compute a commitment

(Cb, ρb) = Uni.Com({bi}) (thinking of each bi as a degree-0 polynomial).
• Compute the result ciphertext P ′ ← f({Pi}) +∑s

i=1 biP
∗
i .

• Run π ← Prove(crs, (C · C∗ · Cb, P ′), ({Pi}, {P ∗i }, {bi}, ρ+ ρ∗ + ρb)).
• Define σy = (P ′, Cb, π)

VerifyPKf (τx, σy)→ acc: output b← Ver(crs, (C · C∗ · Cb, P ), π).

DecodeSKf (τx, σy)→ y: Decrypt y = HE.Dec(sk, P ′).

Theorem 7.7.1. If HE is semantically secure and circuit private, and Π is knowledge sound
and zero-knowledge, then the VC described above is correct, secure, private and context-hiding.

Sketch. The proof of the result is rather simple. Below we provide a proof sketch. First ,
notice that based on the correctness of our SNARK and that of HE, we obtain correctness of
our protocol.
The security follows from the knowledge soundness of the SNARK. The only detail to

mention is that we also rely on the correctness of the HE scheme in order to make sure that,
for honestly generated ciphertexts {Pi} of {xi}, and {P ∗i } for 0, and for binary coefficients
{bi}, the ciphertext P ′ ← f({Pi}) +∑s

i=1 biP
∗
i decrypts to f̂(x).

Finally, we can prove context-hiding via a simple hybrid argument based on the privacy
property of the HE scheme and the zero-knowledge of our SNARK. We define the VC
simulators as follows. S1 proceeds exactly as KeyGen except that it runs the SNARK simulator
(crs, td) ← Simcrs(Rf ′ , λ) instead of Gen, and set its trapdoor to be td. S2(td, SKf , y) first
sets τ ′x = C where C is created as a commitment to some dummy input. Next, it creates Cb
as another commitment to a dummy value, and computes P ′ as an encryption of y using
HE.S(pk, d, y) (where d is information on the depth of f), and finally it invokes the SNARK
simulator π ← Sim(crs, (C · C∗ · Cb, P ′)). Then S2 outputs τ ′x and σ′y = (P ′, Cb, π).

The indistinguishability of the keys is immediate from the zero-knowledge of the SNARK.
For the second property, we can define an hybrid simulator S′ that, with knowledge of σx, runs
as S2 but creates P ′ as in Compute. It is easy to see that the output of S′ is indistinguishable
from that of S2 by the property of HE.Hide, also by the hiding of the commitment and by
the zero-knowledge of the SNARK we obtain that the values (τ ′x, σ′y) generated by S′ are
indistinguishable from the ones generated using ProbGen and Compute.
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Conclusion

The contributions detailed in this thesis focus on the design and the analysis of SNARK
systems, and target their applications to secure delegated computation. We presented along
this manuscript several results that deal with different aspects of SNARK protocols. First,
we have surveyed the area of SNARKs (cf. Chapter 3), and gave the state of art and some
necessary background for better understanding our results. In Chapter 4, we introduced
a new framework that can accommodate a SNARK construction secure against quantum
attacks. Then, in Chapter 5 we studied in more detail the problematic of extraction in the
security definition of SNARKs. We gave a new formalisation of the knowledge soundness
property in presence of adversaries with Oracle access, called O-SNARK and showed some
positive and negative results for this new notion. In the following chapter, as a follow-up
of the previous, we gave some use cases of our new notion of O-SNARK, in the area of
homomorphic authentication protocols.
Finally, in Chapter 7 we proposed a novel solution to secure computations even over

encrypted data, meaning that in an outsourced computation scenario we further ask for the
privacy of the input.

Our results aimed at improving SNARKs both from a theoretical and a practical point of
view, but there are still questions that remain open. Here we will state some of them.

Open Questions

Post-Quantum SNARK. In our first contribution, the Post-Quantum SNARK construction,
we are dedicated to provididing real-world solutions for post-quantum zk-SNARKs.

Our work combines some known techniques that are further adapted to a ”post-quantum”
setting. We construct a SNARK scheme that relies only on lattice-based assumptions which
are claimed to hold even in the presence of quantum computers. This combination and
adaptation to lattices requires technical and conceptual non-trivial work and allows us to build
the first designated-verifier zk-SNARK on lattices with shorter CRS and weaker assumptions
than all other existing schemes.
Still, publicly-verifiable SNARKs have a wider range of applications, as they are a core

primitive in blockchains, anonymous credentials and verifiable computation in general. There-
fore, we believe that it is a problem of great interest to find out new efficient constructions of
public-verifiable SNARKs, that are secure against quantum adversaries.

This leads to our first open question:

— 193 —
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Question 8.1. Is it possible to instantiate efficient publicly-verifiable zk-SNARKS, from post-
quantum assumptions?

We point out that a publicly-verifiable SNARK construction that is quantum-secure is
already known in the random oracle model (using the Fiat-Shamir heuristic). However, even
the best optimized version recently proposed, called STARK – which can be instantiated
with a post-quantum collision-resistant hash function – does not seem to scale well for even
moderately complex computations.

This suggests an alternative open question, which is more of theoretical interest, as it calls
for a better understanding of the mechanism necessary in our framework to allow for the
verification to be done publicly:

Question 8.2. Is there a lattice equivalent of a bilinear map that enables quadratic root check
in a public way?

It seems difficult to achieve public verifiability without some bilinear pairing map. However,
the discovery of such a map would constitute a major breakthrough in cryptography.

Even if not publicly-verifiable, one of the main contributions of this chapter is the prototype
implementation of a new lattice-based zk-SNARK. Compared with the state of the art, this is
far from being practical, but it is still satisfiable for a first attempt to make SNARKs quantum-
resilient. One natural question would be to improve the efficiency of this implementation to
make it comparable with a pairing-based system.

Question 8.3. Is it possible to get better efficiency for post-quantum SNARK to make them
an alternative in practice?

Our approach to post-quantum zk-SNARKs might require further optimization to come
to daily use. Nevertheless, it is already a significant step to the progress that zk-SNARKs
have made in the past years. Despite its limitations, we believe that this result raises many
interesting questions both in the lattice community as well as for the SNARK’s designers.

O-SNARKs. In Chapter 5 we study the extractability property necessary to define knowledge
soundness of a SNARK scheme.

In line with recent work [BCPR14, BP15] on the feasibility of extraction in the presence of
auxiliary input, our results indicate that additional care must be taken when considering
extraction in the presence of oracles.
We show that extraction in this setting becomes impossible by only assuming collision-

resistance hash functions. We try to give some conditions on the oracles in order to overcome
this impossibility and we study some class of signature schemes and their signing oracles.
Furthermore, our work establishes a framework that eases the analysis and the use of SNARK
extractors in all those security experiments where these are given access to an oracle.

The main question we try to answer is:

Question 8.4. Are there oracle families for which classical SNARKs are O-SNARKs?

Unfortunately, our negative result shows that any classical SNARK is not an O-SNARK
for any oracle. We constructed a counterexample in order to prove this impossibility and
this example can be easily extended to other oracles, so our impossibility will hold for those
oracles too.
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We would like to be able to classify better the oracle families for which our counterexample
cannot be applied.
We have a positive answer in the random oracle model, by the use of hash and sign

techniques. Adaptiveness is definitely a main inconvenient in our black-box scenario (indeed,
without adaptive access we have non-adaptive O-SNARKs from SNARKs) together with the
fact that the oracle has a secret state. The malign information that the oracle can provide to
the adversary can be removed by randomization in the random oracle model, but is harder
to remove in standard model and we don’t know any technique in this sense; this is an open
problem to explore.

On the other side, we remark that our counterexamples are of artificial nature and do not
give evidence of extraction’s impossibility in the presence of “natural” oracles. This leads us
to anther open question:

Question 8.5. Can we find more natural examples to prove the impossibility of extraction in
the standard model?

Indeed a downside of our counterexamples is that they are involved and artificial. Therefore,
we would like to understand under what properties (or restrictions) a ”natural” oracle can be
safely used with a SNARK.

Another open question that follows from our attempt of circumventing the negative example
is:

Question 8.6. Can we characterize the classes of signature schemes for which O-SNARKs
exist?

We show that we can overcome the impossibility by limiting the message space of the
signature or the adaptive power of the adversary, but it would be interesting to find wider
classes of signatures for which the signing oracles behave well for the extraction.
Besides its theoretical interest, the latter question also has a practical motivation since

there are several efficient SNARK constructions proposed in the last years that one might
like to use in larger authentification protocols. This line of work’s goal is improving the
understanding of a technical aspect of SNARKs, cleaning up flaws in prior work and giving a
framework for extraction in the presence of oracles.
Applications of O-SNARK. This chapter is mostly a collection of applications of O-SNARKs
focused on authentification protocols.

As the previous chapter deals with ways to circumvent the impossibility results for the case
of signing oracles, the ultimate goal is obtaining secure instantiations of the homomorphic,
functional and aggregated signatures constructions under well-specified assumptions.
Homomorphic signatures from SNARKs were mentioned as “folklore” in several works.

None of these works ever formalized a proof of this construction. More and more such schemes
are bursting in the literature recently, and hopefully, we now have the adequate building
block to use for their construction.
SNARK with Data Privacy. In this chapter, we also address the other crucial challenge
introduced by delegated computation: data confidentiality. This new dual problem can be
formulated as:

Question 8.7. Can we get practical schemes that achieve both privacy and integrity in delegated
computations?
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We try to answer this question in the last part of the manuscript. We are motivated by the
scenario where we wish to prove computations over encrypted data such that this preserves
the privacy of the inputs and the outputs against the prover.
Moreover, in this scenario, one must be able to efficiently verify the correctness of the

result despite not knowing (anymore) the inputs of the delegated computation.
We propose a new protocol for verifiable computation on encrypted data that improves on

the state-of-the-art solutions in multiple aspects discussed in the chapter.
This novel construction attempts to lower down the prover overhead (including the size of

the proof) by exploiting the properties of FHE schemes based on ring-LWE and by building
tailored SNARKs for polynomial evaluation.
We overpass the previous works from the point of view of simplicity and efficiency, but

there is still room of improvement.
Some of the possible follow-ups of this line of work can be: finding weaker (knowledge)

assumptions to rely on, or further search for assumptions that provide quantum-security,
extend the computation to something more expressive than just arithmetic functions and
explore the possibility of removing the random oracle model requirement, by conserving the
zero-knowledge property.
Overall, we believe that this is a promising starting point in achieving efficient solutions

that address both the problems of data privacy and security of delegated computations.
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ABSTRACT 
 
The contributions detailed in this thesis focus on the design and the analysis 
of Succinct non-interactive arguments of knowledge, known as SNARKs. 
SNARKs enable a party with large computational resources to prove to a weaker 
party that a particular statement is true in an efficient way without further 
interaction and under a minimal communication requirement. 
Our results deal with three different aspects of SNARK protocols: the post-
quantum security of SNARKs, the composability of SNARKs with other cryptographic 
primitives and the confidentiality of the inputs in the computations verified by 
SNARKs. 
First, we propose a new framework that allows the instantiation of a quantum-
resilient SNARK scheme from lattice assumptions. We also study the notion of 
extractability that is part of the soundness definition for SNARKs. We remark 
some limitations of this definition and we address 
this problem, by introducing and studying a new notion, O-SNARKs. 
Finally, to achieve data privacy in delegated computation, we study the 
possibility of constructing SNARKs that enables verification of computations over 
encrypted data. 

  
 

MOTS CLÉS 

SNARK, post-quantique, Cloud, intégrité des calculs 

 

RÉSUMÉ 
 
Cette thèse est consacrée à une exploration des schémas de preuve de connaissance 
succincts, les SNARKs. S’inscrivant dans un contexte marqué par le développement 
du Cloud et des technologies Blockchain, les SNARKs sont des primitives 
cryptographiques permettant la vérification de l’intégrité des calculs. 
Dans un modèle de type client-serveur, où un client à faible puissance de calcul 
délègue une tache à un serveur à forte puissance de calcul, les SNARKs lui 
permettent de verifier efficacement si le serveur a bien exécuté la tache 
demandée. 
Notre attention se porte en particulier sur des sujets comme la sécurité post-
quantique des SNARKs, la propriété d'extractabilité, qui fait du SNARK un outil 
si puissant dans des protocoles cryptographiques, la composition de ces preuves 
avec d'autres primitives cryptographiques et la construction d'un protocole 
cryptographique basé sur des preuves SNARKs qui garantit non seulement 
l'intégrité du résultat, mais aussi la confidentialité des données représentant 
l'entrée du calcul à vérifier. 

KEYWORDS 

SNARK, post-quantum, Cloud, secure verifiable computation 
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