Colle 4 – Théorie des groupes

Exercice 1 Soit $G = GL_2(\mathbb{Z}/5\mathbb{Z})$. Soit $X = (\mathbb{Z}/5\mathbb{Z})^2$. On considère l'action :

$$G \times X \to X$$
$$\left(g, \begin{pmatrix} x \\ y \end{pmatrix}\right) \mapsto g \begin{pmatrix} x \\ y \end{pmatrix}$$

- 1. Montrer que pour cette action X a deux orbites.
- 2. Déterminer le stabilisateur de $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
- 3. En déduire l'ordre de G.
- 4. Montrer que det : $G \to (\mathbb{Z}/5\mathbb{Z})^*$ est surjectif. En déduire l'ordre de $SL_2(\mathbb{Z}/5\mathbb{Z}) := \text{Ker} (\text{det})$.
- 5. Soient $a := -I_2$ et $b := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Trouver les ordres de a et de b. En déduire l'ordre de ab.
- 6. On désigne par S_n le groupe de permutations de $\{1, \ldots, n\}$. Quel est l'ordre du groupe S_5 ? Montrer, en donnant des exemples, que dans S_5 il y a des éléments d'ordre 2, 3, 4, 5, 6. Montrer que S_5 ne contient pas d'éléments d'ordre 8 ou 10.
- 7. En déduire que $SL_2(\mathbb{Z}/5\mathbb{Z}) \ncong S_5$.

Exercice 2 On se propose de montrer que le groupe A_5 est simple. (Rappelons que A_4 est le sous groupe alterné de S_4)

- 1. Montrer que les éléments d'ordre 2 sont conjugués dans A_5 .
- 2. Montrer qu'il existe dans A₅ deux éléments non-conjugués qui sont pourtant conjugués dans S5.
- 3. Déterminer les classes de conjugaison de A_5 .
- 4. Montrer que si un sous-groupe distingué de A_5 contient un 5-cycle, il les contient tous.
- 5. En déduire que A_5 est simple.

Exercice 3 [Groupe diédral] Dans le plan affine euclidien E, soit P un polygone convexe régulier à n côtés $(n \ge 3)$, de sommets A_0, \ldots, A_{n-1} .

$$\mathbb{D}_n = \{ f : E \to E, \ f \text{ affine }, f(P) = P \}$$

- 1. Montrer que \mathbb{D}_n est un sous-groupe fini de Iso(E). On l'appelle le **groupe diédral d'ordre** n.
- 2. Dans \mathbb{D}_n , déterminer le stabilisateur d'un sommet A_i de P. En déduire le cardinal de \mathbb{D}_n .
- 3. Décrire les éléments de \mathbb{D}_n et montrer que $\mathbb{D}_n = \langle r, s \rangle$ avec r, s tels que :

$$r^n = Id_E$$
, $s^2 = Id_E$, $(sr)^2 = Id_E$

Théorie des groupes UPMC - 3M270

Exercice 4 [Isométries de l'espace]

On se propose de déterminer les sous-groupes finis de $Iso^+(E)$, dim (E) = 3. Soit E un espace affine euclidien de dimension 3, $Iso^+(E)$ le groupe des déplacements de E.

Soit G un sous-groupe fini, d'ordre $n \ge 2$, de $Iso^+(E)$. On appelle **groupe spécial orthogonal** SO(E) d'un espace euclidien E l'ensemble des automorphismes orthogonaux de E de déterminant 1.

Dans la suite, on admettra que G est isomorphe à un sous-groupe fini de $SO(\overrightarrow{E})$ où \overrightarrow{E} est la direction de E. On identifiera donc E à \overrightarrow{E} et G sera considéré comme un sous-groupe fini de SO(E), d'ordre $n \ge 2$.

- 1. Soit \mathbb{S}_2 la sphère unité de E. Vérifier que toute rotation $r \in SO(E) \setminus \{Id_E\}$ fixe exactement deux points de \mathbb{S}_2 .
- 2. On appelle **pôle** de G tout point de \mathbb{S}_2 invariant par (au moins) une rotation de $G \setminus \{Id_E\}$. On note \mathcal{P} l'ensemble des pôles de G. Montrer que \mathcal{P} est globalement invariant sous l'action de G.
- 3. Formule de Burnside : Soit H un groupe fini quelconque et X un ensemble (fini) sur lequel agit H. Notons k le nombre d'orbites sous cette action. Montrer la formule de Burnside

$$k = \frac{1}{|H|} \sum_{h \in H} |Fix(h)|$$

où $Fix(h) = \{x \in X \mid h(x) = x\}$ désigne l'ensemble des points fixes par h.

- 4. En déduire le nombre d'orbites pour l'action de G sur \mathcal{P} est 2 ou 3.
- 5. Montrer que si l'action admet 2 orbites, alors G est isomorphe à $\mathbb{Z}/n\mathbb{Z}$
- 6. On suppose que l'action admet 3 orbites : $\{\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3\}$ avec $|\mathcal{P}_1| \ge |\mathcal{P}_2| \ge |\mathcal{P}_3|$. On note pour i = 1, 2, 3 : $n_i = |G_i|$ où G_i désigne le stabilisateur d'un point de \mathcal{P}_i .
 - (a) Montrer que pour tout i = 1..3, on a $|\mathcal{P}_i| = \frac{|G|}{n_i}$.
 - (b) Déterminer tous les triplets possibles (n_1, n_2, n_3) .
 - (c) Montrer que si $n_2 = 2$, alors on a n pair et G est isomorphe au groupe diédral $\mathbb{D}_{\frac{n}{2}}$
 - (d) Montrer que si $n_2 = n_3 = 3$, alors G est isomorphe au groupe alterné \mathcal{A}_4 .
 - (e) Montrer que si $n_2 = 3$ et $n_3 = 4$, alors G est isomorphe au groupe symétrique S_4 .
 - (f) Montrer que si $n_2 = 3$ et $n_3 = 5$, alors G est isomorphe au groupe alterné A_5 .