Knowledge Graphs, Description Logics and Reasoning on Data Exam

19/03/2024

First part : Description Logics

Question 1. Build a description logic TBox that models the following statements, using the following concept and role names.

Concepts : {Pizza, PizzaBase, Vegetable, Cheese, Tomato, Basil, Mozzarella, Gorgonzola, MargheritaPizza, FourCheesePizza, VegetarianPizza} Roles : {hasIngredient, hasTopping}

- (a) Mozzarella and gorgonzola are cheeses.
- (b) Cheeses are not vegetables.
- (c) A four cheese pizza has at least four cheese toppings.
- (d) The only ingredients of a Margherita pizza are the pizza base, tomato, mozzarella and basil.
- (e) A pizza which has only vegetables or cheeses as toppings is a vegetarian pizza.
- (f) The base of a pizza is an ingredient of this pizza.

Question 2. Consider the following TBox :

 $\mathcal{T} = \{ A \sqsubseteq \exists R.(B \sqcup D), \quad B \sqsubseteq \forall R^-.E, \quad A \sqcap B \sqsubseteq \bot, \quad A \sqcap D \sqsubseteq \bot, \quad E \sqcap F \sqsubseteq \bot \}$

1. For each of the following concepts, say whether it is satisfiable w.r.t. \mathcal{T} . Justify your answers.

(a)
$$F \sqcap \exists R.B$$
 (b) $F \sqcap \forall R.B$

- 2. For each of the following axioms α , say whether α is entailed by \mathcal{T} (i.e., whether $\mathcal{T} \models \alpha$). Justify your answers.
 - (a) $A \sqsubseteq \exists R.D$ (b) $A \sqcap F \sqsubseteq \exists R.D$
- 3. For each of the following ABoxes \mathcal{A} , say whether $\langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable. Justify your answers.

(a)
$$\{A(a), A(b), R(a, b)\}$$
 (b) $\{F(a), B(b), R(a, b)\}$

Question 3. Put the following \mathcal{ALC} concepts in negation normal form then use the tableau algorithm to decide whether they are satisfiable.

- (a) $\forall R.(A \sqcup B) \sqcap \neg((\forall R.A) \sqcup (\forall R.B))$
- (b) $\exists R. \exists S. A \sqcap \neg (\exists R. \exists S. (A \sqcap \neg B) \sqcup \exists R. \exists S. B)$

Question 4. Consider the ALC TBox :

$$\mathcal{T} = \{ A \sqsubseteq B \sqcup C, \quad C \sqsubseteq \exists R.(B \sqcup C), \quad \exists R.B \sqsubseteq B \}.$$

Use the tableau algorithm to decide whether $\mathcal{T} \models A \sqsubseteq B$.

Question 5. Let \mathcal{T} be the \mathcal{EL} TBox that contains the following axioms :

$$D \sqsubseteq A \qquad E \sqsubseteq C \qquad E \sqsubseteq \exists R.D \qquad \exists R.B \sqsubseteq A \\ D \sqsubseteq C \qquad A \sqcap C \sqsubseteq B \qquad \exists R.\top \sqsubseteq G$$

Use the saturation algorithm to classify \mathcal{T} (i.e., find all concept inclusions $X \sqsubseteq Y$ between atomic concepts such that $\mathcal{T} \models X \sqsubseteq Y$).

Question 6. Let $\langle \mathcal{T}, \mathcal{A} \rangle$ be the \mathcal{EL} knowledge base such that

$$\mathcal{A} = \{ R(a, b), \ A(a), \ B(b) \}$$

and \mathcal{T} contains the following axioms :

$$\begin{array}{ccc} A \sqcap C \sqsubseteq D & & \exists R. \top \sqsubseteq D & & B \sqsubseteq \exists R.A \\ \exists R. B \sqsubseteq C & & \exists S. \top \sqsubseteq A & & C \sqsubseteq \exists S. \top \end{array}$$

- (a) Construct the compact canonical model of $\langle \mathcal{T}, \mathcal{A} \rangle$.
- (b) Use the compact canonical model to classify \mathcal{T} (i.e., find all concept inclusions $X \sqsubseteq Y$ between atomic concepts such that $\mathcal{T} \models X \sqsubseteq Y$) and to find all assertions entailed by $\langle \mathcal{T}, \mathcal{A} \rangle$.

Second part : OBDA

Question 7. Consider the rule set \mathcal{R} containing the following rules :

$$- \quad \forall x,y,z \ (r(x,y) \wedge r(y,z) \rightarrow r(x,z))$$

$$- \quad \forall x, y \ (r(x, y) \to \exists z \ s(x, y, z))$$

 $- \forall x, y, z, t \ (s(x, y, z) \land q(t) \to \exists u \ s(y, z, u))$

Explain why both chase and query rewriting do not terminate with that rule set. Provide however an algorithm, which, taking a database D and a Boolean conjunctive query q, outputs yes if and only if $D, \mathcal{R} \models q$. Argue about its correction and termination.

A ruleset \mathcal{R} is finitely controllable if for every Boolean conjunctive query q and every database D, $D, \mathcal{R} \models q$ if and only if every finite model of D and \mathcal{R} is a model of q.

Question 8. Provide a ruleset that is not finitely controllable (hint : find a ruleset for which the query $\exists x \ r(x, x)$ is a counter example to finite controllability).

Question 9. We recall that \mathcal{R} is a finite expansion set if it holds that for every database D, chase (D, \mathcal{R}) is finite. Show that if \mathcal{R} is a finite expansion set, then \mathcal{R} is finitely controllable.

Question 10. We recall that \mathcal{R} is a bounded treewidth set if it holds that for every database D, there exists k such that any D' obtained by \mathcal{R} -derivation from D is of treewidth less than k. Is that true that a bounded treewidth set is finitely controllable? If yes, prove it. Otherwise, provide a counter example.