Ontology-Based Query Answering: The Basics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Outline

Ontology-based query answering: The basics Ontology-based data access Ontology-based query answering Query answering via consequences materialization Query answering via query rewriting

くぼう くほう くほう

References

- Meghyn Bienvenu, Magdalena Ortiz: Ontology-Mediated Query Answering with Data-Tractable Description Logics. Reasoning Web 2015: 218-307
- Marie-Laure Mugnier, Michaël Thomazo: An Introduction to Ontology-Based Query Answering with Existential Rules. Reasoning Web 2014: 245-278
- Andreas Pieris, Michaël Thomazo: Ontological Conjunctive Query Answering via Existential Rules. ESSLI 2015 Not available online, but some slides come from this tutorial.
- Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, Eric Salvat: On rules with existential variables: Walking the decidability line. Artif. Intell. 175(9-10): 1620-1654 (2011)
- Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide Lanti, Martin Rezk, Mariano Rodriguez-Muro, Guohui Xiao: Ontop: Answering SPARQL queries over relational databases. Semantic Web 8(3): 471-487 (2017)

C. Bourgaux, M. Thomazo

"Data is stored in various heterogeneous formats over many differently structured databases. As a result, the gathering of only relevant data spread over disparate sources becomes a very time consuming task."

Jim Crompton, W3C Workshop on Semantic Web in Oil & Gas Industry, 2008

< 同 > < 三 > < 三 >

The Challenge of Accessing Big Data

The Statoil Example

Experts in geology and geophysics develop stratigraphic models of unexplored areas on the basis of data acquired from previous operations at nearby geographical locations. Eact:

- 1000TB of relational data
- Using diverse schemata
- spread over 2000 tables, over mutiple individual databases

Data Access for Exploration::

- 900 experts in Statoil Exploration
- Up to 4 days for new data access queries assistance by IT experts

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

30 - 70 % of time spent on data gathering

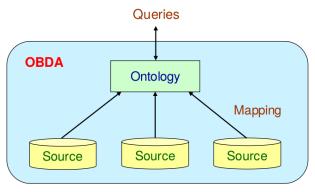
Ontology-Based Data Access (OBDA)

- achieve transparency in accessing data using logic
- manage data by exploiting knowledge representation techniques

Key principles underlying OBDA:

- conceptual, high level representation of the domain of interest in terms of an *ontology*
- map the data sources to the ontology do not migrate the data
- specify all information requests to the data in terms of the ontology

Ontology-Based Data Access: Architecture



Ontology: provides a unified conceptual view of the data

- Data Sources: external and independent (possibly multiple and heterogeneous)
- Mappings: semantically link data at the sources with the ontology

3

C. Bourgaux, M. Thomazo

Ontology - logical representation of the domain of interest

 $\begin{aligned} \forall X (\text{Researcher}(X) \to \exists Y (\text{worksFor}(X, Y) \land \text{Project}(Y))) \\ \forall X (\text{Project}(X) \to \exists Y (\text{worksFor}(Y, X) \land \text{Researcher}(Y))) \\ \forall X, Y (\text{worksFor}(X, Y) \to \text{Researcher}(X) \land \text{Project}(Y)) \\ \forall X (\text{Project}(X) \to \exists Y (\text{PrName}(X, Y))) \end{aligned}$

イロト 不同 トイヨト イヨト

= nav

Relational Database D – a single database that represents the sources

worksIn

SSN	Name
100	AAA
200	BBB
300	CCC

ヘロト ヘロト ヘビト ヘビト

= nar

Intuitively, represents "The researcher with SSN 100 works for project AAA".

C. Bourgaux, M. Thomazo

Mappings M – semantically link data at the sources with the ontology

 SELECT SSN, Name
 →
 Researcher(person(SSN)) ∧

 FROM worksIn
 →
 Project(proj(Name)) ∧

 PrName(proj(Name),Name)
 PrName(proj(Name),Name)

person and proj are constructors to create objects of the ontology from tuple of values from the database

they are Skolem functions

Mappings could have varying expressivity, including negation, inequality,...

	SSN	Name			
worksIn	100	AAA	SELECT SSN, Name FROM worksIn	$\sim \rightarrow$	Researcher(person(SSN)) Project(proj(Name)) ~ worksFor(person(SSN), proj(Name)) PrName(proj(Name), Name)
	200	BBB			
	300	CCC			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

C. Bourgaux, M. Thomazo

	SSN	Name		
worksIn	100	AAA	SELECT SSN, Name	Researcher(person(SSN))∧ Project(proj(Name)) ∧ worksFor(person(SSN), proj(Name))∧ PrName(proj(Name).Name)
	200	BBB	FROM worksIn	
	300	CCC		1 fivanie(proj(ivanie),ivanie)

 $\begin{aligned} & \operatorname{Researcher}(\operatorname{person}(100)) \wedge \operatorname{Project}(\operatorname{proj}(AAA)) \wedge \\ & \operatorname{worksFor}(\operatorname{person}(100), \operatorname{proj}(AAA)) \wedge \operatorname{PrName}(\operatorname{proj}(AAA), AAA) \end{aligned}$

イロト イヨト イヨト イヨト

I nar

C. Bourgaux, M. Thomazo

	SSN	Name	_	
worksIn	100	AAA		Researcher(person(SSN))∧ ~ Project(proj(Name)) ∧ worksFor(person(SSN), proj(Name))∧ PrName(proj(Name),Name)
	200	BBB		
	300	CCC	11144	

 $\begin{aligned} & \operatorname{Researcher}(\operatorname{person}(100)) \wedge \operatorname{Project}(\operatorname{proj}(AAA)) \wedge \\ & \operatorname{worksFor}(\operatorname{person}(100), \operatorname{proj}(AAA)) \wedge \operatorname{PrName}(\operatorname{proj}(AAA), AAA) \end{aligned}$

 $\begin{aligned} & \operatorname{Researcher}(\operatorname{person}(200)) \wedge \operatorname{Project}(\operatorname{proj}(BBB)) \wedge \\ & \operatorname{worksFor}(\operatorname{person}(200), \operatorname{proj}(BBB)) \wedge \operatorname{PrName}(\operatorname{proj}(BBB), BBB) \end{aligned}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

	SSN	Name	
worksIn	100	AAA	$\begin{array}{rllllllllllllllllllllllllllllllllllll$
	200	BBB	FROM worksIn worksFor(person(SSN), proj(Name))∧ PrName(proj(Name),Name)
	300	CCC	r manoprojnane), amej

 $\begin{aligned} & \operatorname{Researcher}(\operatorname{person}(100)) \wedge \operatorname{Project}(\operatorname{proj}(AAA)) \wedge \\ & \operatorname{worksFor}(\operatorname{person}(100), \operatorname{proj}(AAA)) \wedge \operatorname{PrName}(\operatorname{proj}(AAA), AAA) \end{aligned}$

 $\begin{aligned} & \operatorname{Researcher}(\operatorname{person}(200)) \wedge \operatorname{Project}(\operatorname{proj}(BBB)) \wedge \\ & \operatorname{worksFor}(\operatorname{person}(200), \operatorname{proj}(BBB)) \wedge \operatorname{PrName}(\operatorname{proj}(BBB), BBB) \end{aligned}$

 $\begin{aligned} &\operatorname{Researcher}(\operatorname{person}(300)) \wedge \operatorname{Project}(\operatorname{proj}(\mathcal{CCC})) \wedge \\ &\operatorname{worksFor}(\operatorname{person}(300), \operatorname{proj}(\mathcal{CCC})) \wedge \operatorname{PrName}(\operatorname{proj}(\mathcal{CCC}), \mathcal{CCC}) \end{aligned}$

 $\begin{aligned} \forall X (\text{Researcher}(X) \to \exists Y (\text{worksFor}(X, Y) \land \text{Project}(Y))) \\ \forall X (\text{Project}(X) \to \exists Y (\text{worksFor}(Y, X) \land \text{Researcher}(Y))) \\ \forall X, Y (\text{worksFor}(X, Y) \to \text{Researcher}(X) \land \text{Project}(Y) \\ \forall X (\text{Project}(X) \to \exists Y (\text{PrName}(X, Y))) \end{aligned}$

 $\begin{aligned} & \operatorname{Researcher}(\operatorname{person}(100)) \wedge \operatorname{Project}(\operatorname{proj}(AAA)) \wedge \\ & \operatorname{worksFor}(\operatorname{person}(100), \operatorname{proj}(AAA)) \wedge \operatorname{PrName}(\operatorname{proj}(AAA), AAA) \\ & \operatorname{Researcher}(\operatorname{person}(200)) \wedge \operatorname{Project}(\operatorname{proj}(BBB)) \wedge \\ & \operatorname{worksFor}(\operatorname{person}(200), \operatorname{proj}(BBB)) \wedge \operatorname{PrName}(\operatorname{proj}(BBB), BBB) \\ & \operatorname{Researcher}(\operatorname{person}(300)) \wedge \operatorname{Project}(\operatorname{proj}(CCC)) \wedge \\ & \operatorname{worksFor}(\operatorname{person}(300), \operatorname{proj}(CCC)) \wedge \operatorname{PrName}(\operatorname{proj}(CCC), CCC) \end{aligned}$

Ontology-Based Query Answering

- we assume a unique database source
- whose vocabulary coincide with the vocabulary of the ontology No more mappings! We focus on the core problem of query answering while taking an ontology into account. The problem boils down to decide, given a database D, an ontology Σ and a query q whether:

 $D,\Sigma \models q$

イロト 不得 トイヨト イヨト

= nav

C. Bourgaux, M. Thomazo

Influence of Ontology and Query Languages

What is the/a right ontology language?

- there is a wide spectrum of languages that differ in expressive power and computational complexity
- an important aspect is the scalability to large amounts of data

What is the/a right query language?

- "core" fragment of traditional database query languages?
- navigational components, such as can be seen in SPARQL?
- counting aspects?

Combined vs. Data Complexity

When considering OBQA, there are two classical ways of measuring complexity:

- combined complexity, where the database, the ontology and the query are considered part of the input;
- data complexity, where only the database is considered part of the input, whereas the ontology and the query are considered to be constant.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Query Languages

Several query languages have been introduced/studied so far, among which:

- conjunctive queries;
- union of conjunctive queries;
- first-order queries;
- (conjunctive) regular path queries;
- Datalog.

We will mostly focus on conjunctive queries in this course.

Conjunctive Queries – Syntax

A conjunctive query (CQ) is an expression of the shape

 $\exists \mathbf{Y} \varphi(\mathbf{X}, \mathbf{Y}),$

where:

- **X** and **Y** are tuples of variables
- φ(X, Y) is a conjunction of atoms whose set of variables is
 X ∪ Y, and possibly containing constants

Forms the SELECT-FROM-WHERE fragment of SQL. Core of numerous query languages.

$$q(x): -\exists y \exists z \ P(x,y) \land S(x,z) \land T(y,z)$$

イロト 不得 トイヨト イヨト

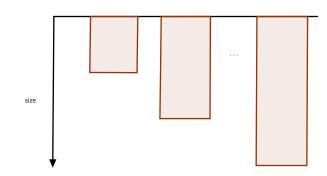
= nav

Conjunctive Queries – Semantics

- a match of a CQ ∃Y φ(X, Y) in a database D is a homomorphism h such that h(φ(X, Y)) ⊆ D − all the atoms of the query are satisfied
- ▶ the answer to $Q = \exists \mathbf{Y} \varphi(\mathbf{X}, \mathbf{Y})$ over *D* is the set of tuples

 $Q(D) = \{h(\mathbf{X}) \mid h \text{ is a match of } Q \text{ in } D\}$

NB: a tuple in Q(D) is commonly called an answer of Q over D.



models of $D\wedge \Sigma$

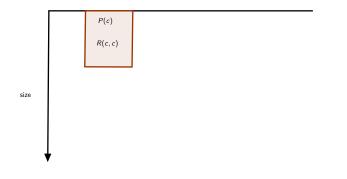
 $D \wedge \Sigma$ admits infinitely many models, and each one may be of of infinite size.

(日) (四) (三) (三)

3

Consider $D = \{P(c)\}$ and $\Sigma = \{\forall X(P(X) \rightarrow \exists Y(R(X, Y) \land P(Y)))\}.$

models of $D\wedge \Sigma$



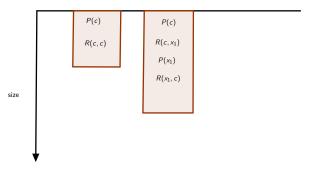
イロト イヨト イヨト イヨト

ъ.

C. Bourgaux, M. Thomazo

Consider $D = \{P(c)\}$ and $\Sigma = \{\forall X(P(X) \rightarrow \exists Y(R(X, Y) \land P(Y)))\}.$

models of $D\wedge \Sigma$

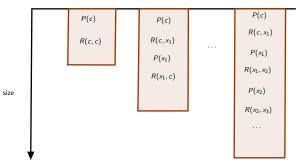


∃ 990

イロト イヨト イヨト イヨト

C. Bourgaux, M. Thomazo

Consider $D = \{P(c)\}$ and $\Sigma = \{\forall X(P(X) \rightarrow \exists Y(R(X, Y) \land P(Y)))\}.$



models of $D\wedge \Sigma$

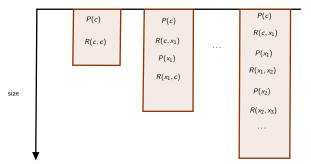
∃ 990

イロト イヨト イヨト イヨト

C. Bourgaux, M. Thomazo

Taming One Dimension of Infinity

Consider $D = \{P(c)\}$ and $\Sigma = \{\forall X(P(X) \rightarrow \exists Y(R(X, Y) \land P(Y)))\}.$



models of $D\wedge \Sigma$

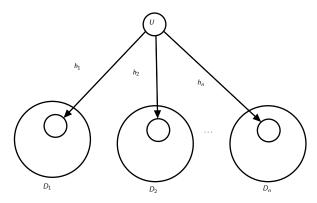
イロト イヨト イヨト イヨト

ъ.

Key Idea: focus on a representative, a model as general as possible.

C. Bourgaux, M. Thomazo

Universal Models (a.k.a. Canonical Models)



A database U is a universal model of $D \wedge \Sigma$ if the following holds:

- *U* is a model of $D \wedge \Sigma$;
- ► for any model D' of $D \land \Sigma$, there exists a homomorphism $h_{D'}$ from U to D'.

< 同 > < 三 > < 三 >

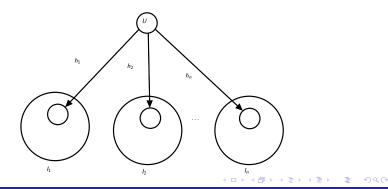
э

Links between Query Answering and Universal Models

Theorem

If U is a universal model of $D \wedge \Sigma$, then, for any homomorphism closed query, it holds that:

 $D \wedge \Sigma \models q$ iff $U \models q$

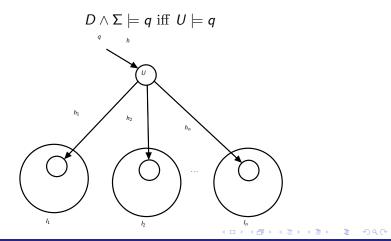


C. Bourgaux, M. Thomazo

Links between Query Answering and Universal Models

Theorem

If U is a universal model of $D \wedge \Sigma$, then, for any homomorphism closed query, it holds that:



C. Bourgaux, M. Thomazo

Choice of the Ontology Language

From now on, we focus on existential rules.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ● ● ○ ○ ○

C. Bourgaux, M. Thomazo

From now on, we focus on existential rules.

The reason for this choice it that it guarantees the existence of a universal model.

Exercise: show that this property does not hold for some ontology languages that we have seen in this course.

回 ト イヨト イヨト

Let us see the *chase* on an example:

- ▶ $D = \{\text{Person}(\text{Alice})\}$
- $\blacktriangleright \Sigma = \{ \forall X (\operatorname{Person}(X) \to \exists Y (\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y))) \}$

C. Bourgaux, M. Thomazo

Let us see the *chase* on an example:

- $\blacktriangleright D = \{ \text{Person}(\text{Alice}) \}$
- $\blacktriangleright \Sigma = \{ \forall X (\operatorname{Person}(X) \to \exists Y (\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y))) \}$

 $\operatorname{chase}(D,\Sigma)=D$

C. Bourgaux, M. Thomazo

Let us see the *chase* on an example:

- $\blacktriangleright D = \{ \text{Person}(\text{Alice}) \}$
- $\blacktriangleright \Sigma = \{ \forall X (\operatorname{Person}(X) \to \exists Y (\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y))) \}$

 $\operatorname{chase}(D, \Sigma) = D \cup \{\operatorname{hasParent}(Alice, x_1), \operatorname{Person}(x_1)\}$

Let us see the *chase* on an example:

- $\blacktriangleright D = \{ \text{Person}(\text{Alice}) \}$
- $\blacktriangleright \Sigma = \{ \forall X (\operatorname{Person}(X) \to \exists Y (\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y))) \}$

$$\begin{split} \mathrm{chase}(D,\Sigma) &= D \,\cup\, \{\mathrm{hasParent}(\mathit{Alice},x_1),\mathrm{Person}(x_1)\} \\ &\cup\, \{\mathrm{hasParent}(x_1,x_2),\mathrm{Person}(x_2)\} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Let us see the *chase* on an example:

- $\blacktriangleright D = \{ \text{Person}(\text{Alice}) \}$
- $\blacktriangleright \Sigma = \{ \forall X (\operatorname{Person}(X) \to \exists Y (\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y))) \}$

 $\begin{aligned} \operatorname{chase}(D,\Sigma) &= D \cup \{\operatorname{hasParent}(Alice,x_1),\operatorname{Person}(x_1)\} \\ &\cup \{\operatorname{hasParent}(x_1,x_2),\operatorname{Person}(x_2)\} \\ &\cup \{\operatorname{hasParent}(x_2,x_3),\operatorname{Person}(x_3)\} \end{aligned}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

The Chase Procedure: an Example

Let us see the *chase* on an example:

- $\blacktriangleright D = \{ \text{Person}(\text{Alice}) \}$
- $\blacktriangleright \Sigma = \{ \forall X (\operatorname{Person}(X) \to \exists Y (\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y))) \}$

 $\begin{aligned} \operatorname{chase}(D,\Sigma) &= D \cup \{\operatorname{hasParent}(Alice,x_1),\operatorname{Person}(x_1)\} \\ &\cup \{\operatorname{hasParent}(x_1,x_2),\operatorname{Person}(x_2)\} \\ &\cup \{\operatorname{hasParent}(x_2,x_3),\operatorname{Person}(x_3)\} \end{aligned}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

In that case, an infinite database is generated.

. . .

Rule Applicability

A rule $\sigma = \forall X \forall Y(\varphi(X, Y) \rightarrow \exists Z(\psi(X, Z)))$ is applicable to a database D if:

- 1. there exists a homomorphism h such that $h(\varphi(\mathbf{X}, \mathbf{Y})) \subseteq D$;
- 2. there is no extension h' of h such that $h'(\psi(\mathbf{X}, \mathbf{Z})) \subseteq D$.

Example

►
$$D = \{R(a), P(a, b)\}$$
 and $\Sigma = \{\forall X(R(X) \rightarrow \exists Y P(X, Y))\}$
► $D = \{R(a), P(b, a)\}$ and $\Sigma = \{\forall X(R(X) \rightarrow \exists Y P(X, Y))\}$

イロト 不得 トイヨト イヨト

= nav

Rule Application

Let σ be a rule applicable to D through a homomorphism π of its body. The result of the application of σ to D is defined as $D \cup \pi^{s}(H)$, where:

• *H* is the head of σ

π^s(x) = π(x) if x appears in the body of σ, and is a fresh null otherwise.

Example:
$$D = \{R(a), P(b, a)\}$$
 and
 $\Sigma = \{\forall X(R(X) \rightarrow \exists Y \ P(X, Y))\}$

 $\{R(a), P(b, a), P(a, \bot_1)\}$

イロト 不同 トイヨト イヨト

I nar

C. Bourgaux, M. Thomazo

Chase Sequence

A chase sequence of D w.r.t. Σ is a potentially infinite sequence $D_0, (\sigma_1, h_1), D_1, \ldots, D_n, \ldots$ such that:

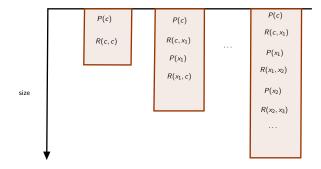
- σ_i is applicable to D_{i-1} through h_i
- ▶ D_i is the result of the application of σ_i to D_{i-1} through h_i
- for any (σ, h) that is applicable to D_j for some j, there exists k > j such that (σ, h) is not applicable to D_k.
 This is called *fairness*.

The result of a chase sequence is either the last database in the sequence, or $\bigcup_{i=1}^{\infty} D_i$ if the sequence is infinite.

Properties of the Chase

For any two chase sequences, their results are homomorphically equivalent, and are a univeral model of D and Σ . We will denote the result by $chase(D, \Sigma)$.

What about the Second Dimension of Infinity?



models of $D\wedge \Sigma$

Intrisic difficulty: OBQA is undecidable.

∃ 990

イロト イヨト イヨト イヨト

C. Bourgaux, M. Thomazo

Gaining Decidability

When faced with an undecidable problem, one may want to *restrict the input* to regain decidability.

By Restricting the database

- the problem is already undecidable for singleton databases;
- not much to do in this direction!

By Restricting the query language

- the problem is already undecidable for atomic queries;
- not much to do in this direction!

By Restricting the ontology language

 we then aim at achieving a good trade-off between expressive power and complexity;

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Iot of research has been done in this direction;
- any idea?

Let us revisit the chase example we have seen before.

- ▶ $D = \{\text{Person}(\text{Alice})\}$
- $\blacktriangleright \Sigma = \{ \forall X (\operatorname{Person}(X) \to \exists Y (\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y))) \}$

C. Bourgaux, M. Thomazo

Let us revisit the chase example we have seen before.

▶
$$D = \{\text{Person}(\text{Alice})\}$$

 $\blacktriangleright \Sigma = \{ \forall X (\operatorname{Person}(X) \to \exists Y (\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y))) \}$

 $\operatorname{chase}(D,\Sigma)=D$

C. Bourgaux, M. Thomazo

Let us revisit the chase example we have seen before.

▶
$$D = \{\text{Person}(\text{Alice})\}$$

 $\blacktriangleright \Sigma = \{ \forall X (\operatorname{Person}(X) \to \exists Y (\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y))) \}$

 $\operatorname{chase}(D,\Sigma) = D \cup \{\operatorname{hasParent}(\textit{Alice}, x_1), \operatorname{Person}(x_1)\}$

C. Bourgaux, M. Thomazo

Let us revisit the chase example we have seen before.

▶
$$D = \{\text{Person}(\text{Alice})\}$$

 $\blacktriangleright \Sigma = \{ \forall X (\operatorname{Person}(X) \to \exists Y (\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y))) \}$

 $\begin{aligned} \mathrm{chase}(D,\Sigma) &= D \cup \{\mathrm{hasParent}(Alice,x_1),\mathrm{Person}(x_1)\} \\ &\cup \{\mathrm{hasParent}(x_1,x_2),\mathrm{Person}(x_2)\} \end{aligned}$

Let us revisit the chase example we have seen before.

- ▶ $D = \{\text{Person}(\text{Alice})\}$
- $\blacktriangleright \Sigma = \{ \forall X (\operatorname{Person}(X) \to \exists Y (\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y))) \}$

$$\begin{aligned} \operatorname{chase}(D,\Sigma) &= D \cup \{\operatorname{hasParent}(Alice,x_1),\operatorname{Person}(x_1)\} \\ &\cup \{\operatorname{hasParent}(x_1,x_2),\operatorname{Person}(x_2)\} \\ &\cup \{\operatorname{hasParent}(x_2,x_3),\operatorname{Person}(x_3)\} \end{aligned}$$

C. Bourgaux, M. Thomazo

Let us revisit the chase example we have seen before.

. . .

- ▶ $D = \{\text{Person}(\text{Alice})\}$
- $\blacktriangleright \Sigma = \{ \forall X (\operatorname{Person}(X) \to \exists Y (\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y))) \}$

$$\begin{aligned} \operatorname{chase}(D,\Sigma) &= D \cup \{\operatorname{hasParent}(Alice,x_1),\operatorname{Person}(x_1)\} \\ &\cup \{\operatorname{hasParent}(x_1,x_2),\operatorname{Person}(x_2)\} \\ &\cup \{\operatorname{hasParent}(x_2,x_3),\operatorname{Person}(x_3)\} \end{aligned}$$

Let us revisit the chase example we have seen before.

- ▶ $D = \{\text{Person}(\text{Alice})\}$
- $\blacktriangleright \Sigma = \{ \forall X (\operatorname{Person}(X) \to \exists Y (\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y))) \}$

$$\begin{aligned} \operatorname{chase}(D,\Sigma) &= D \cup \{\operatorname{hasParent}(Alice,x_1),\operatorname{Person}(x_1)\} \\ &\cup \{\operatorname{hasParent}(x_1,x_2),\operatorname{Person}(x_2)\} \\ &\cup \{\operatorname{hasParent}(x_2,x_3),\operatorname{Person}(x_3)\} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Two ingredients of non-termination:

. . .

- existential quantification;
- recursive definitions.

Syntactic Conditions to Ensure Chase Termination

Drop the existential quantification

we obtain the class of *full* existential rules

Drop (or limit) the recursive definitions:

- plethora of acyclicity conditions defined
- see exercise sheets regarding this.

A full existential rule is an existential rule of the shape:

$$\forall \mathbf{X} \forall \mathbf{Y}(\varphi(\mathbf{X},\mathbf{Y}) \rightarrow \psi(\mathbf{X}))$$

We denote by FULL the class of full existential rules. Belonging to FULL is:

a local property: one can check each rule independently;

くぼ ト く ヨ ト く ヨ ト

3

and hence closed under union.

Upper Bound on the Chase under FULL

Consider a database D and a set $\Sigma \in \mathsf{FULL}$.

$$chase(D, \Sigma) \subseteq \{P(c_1, \dots, c_n) \mid (c_1, \dots, c_n) \in terms(D) \\ and P \in sch(\Sigma)\}$$

Hence, the size of $chase(D, \Sigma)$ is upper bounded by:

 $|sch(\Sigma)| \times |terms(D)|^{maxarity(sch(\Sigma))}$

- 4 同 6 4 日 6 4 日 6

= nav

C. Bourgaux, M. Thomazo

Theorem

Boolean Conjuctive Query (BCQ) Answering under FULL is in PTIME in data complexity.

Proof idea:

- 1. compute the chase of D and Σ ;
- 2. check whether there is a homomorphism from q to $chase(D, \Sigma)$.

- 4 同 ト 4 三 ト 4 三 ト

3

Theorem

Boolean Conjuctive Query (BCQ) Answering under FULL is in PTIME in data complexity.

Proof idea:

- 1. compute the chase of D and Σ ;
- 2. check whether there is a homomorphism from q to $chase(D, \Sigma)$.

くぼ ト く ヨ ト く ヨ ト

3

Can we do any better?

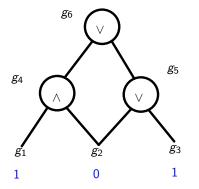
Theorem

Boolean Conjuctive Query (BCQ) Answering under FULL is $\rm PTIME\text{-}hard$ in data complexity.

 Proof idea: by a $\operatorname{LOGSPACE}$ reduction from Monotone Circuit Value problem.

・ 同 ト ・ ヨ ト ・ ヨ ト

3



C. Bourgaux, M. Thomazo

Data Complexity of BCQ Answering under FULL Encoding the circuit as:

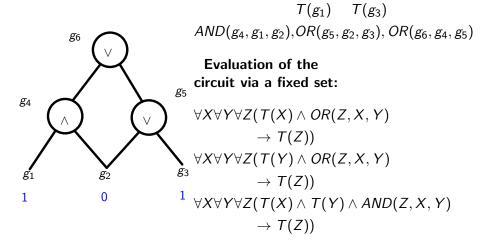
 $T(g_1) \quad T(g_3)$ AND $(g_4, g_1, g_2), OR(g_5, g_2, g_3), OR(g_6, g_4, g_5)$

イロト イポト イヨト イヨト

2

C. Bourgaux, M. Thomazo

Data Complexity of BCQ Answering under FULL Encoding the circuit as:



イロト イポト イヨト イヨト

э

C. Bourgaux, M. Thomazo

We can show that the problem is ExpTIME-complete by simulating an ExpTIME Turing machine. Adaptation of what we have already seen:

not possible anymore to create new tapes using existential

伺 ト イヨト イヨト

- hence we use two counters:
 - one for the cell address
 - one as a time stamp

Alternative Approaches

stop the chase at some arbitrary step, and work with the obtained results:

not very satisfying...

stop the chase for some reason, and get the complete set of results:

what could be a criterion for stopping the chase?

- avoid any chase computation, and rely on a different paradigm:
 - this is the approach that we are going to see during the next course.

イロト 不同 トイヨト イヨト

I nar

The DL-Lite Family and OWL 2 QL

 OWL 2 QL is the OWL 2 profile designed for efficient query answering

イロト イポト イヨト イヨト

2

- Target large datasets: CQ answering is in AC0 in data complexity (below LOGSPACE)
- ▶ Based on the DL-Lite $_{\mathcal{R}}$ language of the DL-Lite family

The DL-Lite Family and OWL 2 QL

DL-Lite_{core} : concept inclusions of the form $B \sqsubseteq C$ where

 $C := B \mid \neg B, \quad B := A \mid \exists S, \quad S := R \mid R^-$

with A an atomic concept and R an atomic role

C. Bourgaux, M. Thomazo

The DL-Lite Family and OWL 2 QL

DL-Lite_{core} : concept inclusions of the form $B \sqsubseteq C$ where

 $C := B \mid \neg B, \quad B := A \mid \exists S, \quad S := R \mid R^-$

with A an atomic concept and R an atomic role

Several extensions of DL-Lite_{core}, among which:

► DL-Lite_{*R*} = DL-Lite_{core} +
role inclusions
$$S \sqsubseteq Q$$
 with $Q := S | \neg S$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DL-Lite_F = DL-Lite_{core} + functionality axioms (func S)

$\forall \vec{X} \forall \vec{Y} (P(\vec{X}, \vec{Y}) \rightarrow \exists \vec{Z} \psi(\vec{X}, \vec{Z}))$

- Linear existential rules have only one atom in the body
- Generalize DL-Lite_R restricted to positive inclusions (of the form B₁ ⊑ B₂ or S₁ ⊑ S₂)

I nar

Relationships between DL-Lite and Linear Rules

DL-Lite
$$\mathcal{R}$$
Linear rule $A_1 \sqsubseteq A_2$ $A_1(x) \rightarrow A_2(x)$ $R_1 \sqsubseteq R_2$ $R_1(x,y) \rightarrow R_2(x,y)$ $R_1 \sqsubseteq R_2^ R_1(x,y) \rightarrow R_2(y,x)$ $A \sqsubseteq \exists R$ $A(x) \rightarrow R(x,y)$ $\exists R \sqsubseteq A$ $R(x,y) \rightarrow A(x)$

Negative inclusions $B_1 \sqsubseteq \neg B_2$ or $S_1 \sqsubseteq \neg S_2$ are not expressible by linear rules: need to add negative constraints of the form

$$\forall \vec{X} \forall \vec{Y} (\phi(\vec{X}, \vec{Y}) \rightarrow \bot)$$

Functionality axioms present in DL-Lite $_{\mathcal{F}}$ are not expressible either: need to add equality rules

$$orall ec{X} orall X_1, X_2(\phi(ec{X}, X_1, X_2)
ightarrow X_1 = X_2)$$

(人間) システン イラン

э.

C. Bourgaux, M. Thomazo

Knowledge Graphs, Description Logics and Reasoning on Data

. . .

Linear rule: $\forall X(\operatorname{Person}(X) \to \exists Y(\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y)))$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

C. Bourgaux, M. Thomazo

Linear rule: $\forall X(\operatorname{Person}(X) \to \exists Y(\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y)))$

In DL syntax: Person $\sqsubseteq \exists hasParent.Person$

Can be expressed in DL-Lite:

 $Person \sqsubseteq \exists hasParentPerson \\ \exists hasParentPerson^{-} \sqsubseteq Person \\ hasParentPerson \sqsubseteq hasParent \\ \end{bmatrix}$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Linear rule: $\forall X (\operatorname{Person}(X) \to \exists Y (\operatorname{hasParent}(X, Y) \land \operatorname{Person}(Y)))$

In DL syntax: Person $\sqsubseteq \exists hasParent.Person$

Can be expressed in DL-Lite:

 $Person \sqsubseteq \exists hasParentPerson \\ \exists hasParentPerson^{-} \sqsubseteq Person \\ hasParentPerson \sqsubseteq hasParent \\ \end{bmatrix}$

We have seen that the chase may not terminate with this rule, however, CQ answering can be done very efficiently in DL-Lite_R!

イロト イポト イヨト イヨト

3

Instead of computing $chase(D, \Sigma)$ and evaluate a query q on it, we compute a query q' such that:

 $\langle \Sigma, D \rangle \models q \Leftrightarrow D \models q'$

- the dataset (ABox, set of facts) is stored as a traditional database
- the input query is rewritten to integrate the relevant information from the ontology
- the new query is evaluated over the database
- allow to exploit the efficiency of relational database systems

A query q_{Σ} is called a sound and complete rewriting of a CQ q w.r.t. an ontology Σ if and only if for every database D, the certain answers of q over $\langle \Sigma, D \rangle$ are the same as the answers of q_{Σ} over D.

くぼ ト く ヨ ト く ヨ ト

3

A query q_{Σ} is called a sound and complete rewriting of a CQ q w.r.t. an ontology Σ if and only if for every database D, the certain answers of q over $\langle \Sigma, D \rangle$ are the same as the answers of q_{Σ} over D.

If for every Σ expressed in an ontology language L_{Σ} and CQ q, there exists a sound and complete rewriting which belongs to a query language L_Q , we say that CQ answering under L_{Σ} is L_Q -rewritable.

イロト 不得 トイヨト イヨト

э.

A query q_{Σ} is called a sound and complete rewriting of a CQ q w.r.t. an ontology Σ if and only if for every database D, the certain answers of q over $\langle \Sigma, D \rangle$ are the same as the answers of q_{Σ} over D.

If for every Σ expressed in an ontology language L_{Σ} and CQ q, there exists a sound and complete rewriting which belongs to a query language L_Q , we say that CQ answering under L_{Σ} is L_Q -rewritable.

CQ answering under linear existential rules is UCQ-rewritable.

Example

$$\begin{array}{ll} \mathcal{T} = \{ & \mathsf{Mother} \sqsubseteq \mathsf{Parent}, & \mathsf{Parent} \sqsubseteq \exists \mathsf{hasChild}, \\ & \mathsf{Parent} \sqsubseteq \mathsf{Person}, & \exists \mathsf{isMarriedTo} \sqsubseteq \mathsf{Person} \end{array} \} \\ \mathcal{A} = \{ & \mathsf{Mother}(\mathit{mary}), \mathsf{hasChild}(\mathit{alice}, \mathit{john}), \mathsf{isMarriedTo}(\mathit{alice}, \mathit{bob}) \end{array} \} \\ q(x) = \exists y \mathsf{Person}(x) \land \mathsf{hasChild}(x, y) \end{array}$$

イロン イ団 と イヨン イヨン

Example

$$\begin{aligned} \mathcal{T} &= \{ & \mathsf{Mother} \sqsubseteq \mathsf{Parent}, & \mathsf{Parent} \sqsubseteq \exists \mathsf{hasChild}, \\ & \mathsf{Parent} \sqsubseteq \mathsf{Person}, & \exists \mathsf{isMarriedTo} \sqsubseteq \mathsf{Person} \; \} \\ \mathcal{A} &= \{ \; \mathsf{Mother}(\mathit{mary}), \mathsf{hasChild}(\mathit{alice}, \mathit{john}), \mathsf{isMarriedTo}(\mathit{alice}, \mathit{bob}) \; \} \\ q(x) &= \exists y \mathsf{Person}(x) \land \mathsf{hasChild}(x, y) \\ q'(x) &= \end{aligned}$$

 $(\exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y))$

Example

 $\mathcal{T} = \{ \text{ Mother } \sqsubseteq \text{ Parent}, \text{ Parent } \sqsubseteq \exists \text{hasChild}, \\ \begin{array}{c} \text{Parent } \sqsubseteq \text{Person}, & \exists \text{isMarriedTo } \sqsubseteq \text{Person} \end{array} \} \\ \mathcal{A} = \{ \text{ Mother}(mary), \text{hasChild}(alice, john), \text{isMarriedTo}(alice, bob) \end{array} \} \\ q(x) = \exists y \text{Person}(x) \land \text{hasChild}(x, y) \\ q'(x) = \\ (\exists y \text{ Person}(x) \land \text{hasChild}(x, y)) \lor (\exists y \text{ Parent}(x) \land \text{hasChild}(x, y)) \end{cases}$

Example

 $\mathcal{T} = \{ \begin{array}{ll} \text{Mother} \sqsubseteq \text{Parent}, & \text{Parent} \sqsubseteq \exists \text{hasChild}, \\ & \text{Parent} \sqsubseteq \text{Person}, & \exists \text{isMarriedTo} \sqsubseteq \text{Person} \end{array} \} \\ \mathcal{A} = \{ \begin{array}{ll} \text{Mother}(mary), \text{hasChild}(alice, john), \text{isMarriedTo}(alice, bob) \end{array} \} \\ q(x) = \exists y \text{Person}(x) \land \text{hasChild}(x, y) \\ q'(x) = \\ & (\exists y \text{Person}(x) \land \text{hasChild}(x, y)) \lor (\exists y \text{Parent}(x) \land \text{hasChild}(x, y)) \\ & \lor (\exists y \text{ Mother}(x) \land \text{hasChild}(x, y)) \end{cases}$

C. Bourgaux, M. Thomazo

Example

 $\mathcal{T} = \{ \text{ Mother } \sqsubseteq \text{ Parent}, \text{ Parent } \sqsubseteq \exists \text{hasChild}, \\ \text{Parent } \trianglerighteq \text{ Person}, \exists \text{isMarriedTo } \sqsubseteq \text{ Person} \} \}$ $\mathcal{A} = \{ \text{ Mother}(mary), \text{hasChild}(alice, john), \text{isMarriedTo}(alice, bob) \}$ $q(x) = \exists y \text{Person}(x) \land \text{hasChild}(x, y)$ $q'(x) = \\ (\exists y \text{ Person}(x) \land \text{hasChild}(x, y)) \lor (\exists y \text{ Parent}(x) \land \text{hasChild}(x, y)) \\ \lor (\exists y \text{ Mother}(x) \land \text{hasChild}(x, y)) \lor (\text{Person}(x) \land \text{Parent}(x))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

C. Bourgaux, M. Thomazo

Example

 $\mathcal{T} = \{ Mother \sqsubseteq Parent, Parent \sqsubseteq \exists hasChild, \}$ Parent \Box Person, $\exists isMarriedTo \Box$ Person } $\mathcal{A} = \{ Mother(mary), hasChild(alice, john), isMarriedTo(alice, bob) \}$ $q(x) = \exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y)$ q'(x) = $(\exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y)) \lor (\exists y \operatorname{Parent}(x) \land \operatorname{hasChild}(x, y))$ \lor ($\exists y \;$ Mother(x) \land hasChild(x, y)) \lor (Person(x) \land Parent(x)) \vee Parent(x)

Example

 $\mathcal{T} = \{ Mother \sqsubseteq Parent, Parent \sqsubseteq \exists hasChild, \}$ Parent \Box Person, $\exists isMarriedTo \Box$ Person } $\mathcal{A} = \{ Mother(mary), hasChild(alice, john), isMarriedTo(alice, bob) \}$ $q(x) = \exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y)$ q'(x) = $(\exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y)) \lor (\exists y \operatorname{Parent}(x) \land \operatorname{hasChild}(x, y))$ \lor ($\exists y \;$ Mother(x) \land hasChild(x, y)) \lor (Person(x) \land Parent(x)) \vee Parent(x) \vee (Mother(x) \wedge Parent(x))

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

C. Bourgaux, M. Thomazo

Example

 $\mathcal{T} = \{ Mother \square Parent, \}$ Parent $\Box \exists$ hasChild, Parent \Box Person, $\exists isMarriedTo \Box$ Person } $\mathcal{A} = \{ Mother(mary), hasChild(alice, john), isMarriedTo(alice, bob) \}$ $q(x) = \exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y)$ q'(x) = $(\exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y)) \lor (\exists y \operatorname{Parent}(x) \land \operatorname{hasChild}(x, y))$ \lor ($\exists y \;$ Mother(x) \land hasChild(x, y)) \lor (Person(x) \land Parent(x)) \vee Parent(x) \vee (Mother(x) \wedge Parent(x)) \vee Mother(x)

Example

 $\mathcal{T} = \{ Mother \square Parent, \}$ Parent $\Box \exists hasChild$, Parent \Box Person, $\exists isMarriedTo \Box$ Person } $\mathcal{A} = \{ Mother(mary), hasChild(alice, john), isMarriedTo(alice, bob) \}$ $q(x) = \exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y)$ q'(x) = $(\exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y)) \lor (\exists y \operatorname{Parent}(x) \land \operatorname{hasChild}(x, y))$ \lor ($\exists y \;$ Mother(x) \land hasChild(x, y)) \lor (Person(x) \land Parent(x)) \vee Parent(x) \vee (Mother(x) \wedge Parent(x)) \vee Mother(x) $\vee (\exists yz \text{ isMarriedTo}(x, z) \land \text{hasChild}(x, y))$

Example

 $\mathcal{T} = \{ Mother \square Parent, \}$ Parent \Box \exists hasChild. Parent \Box Person, $\exists isMarriedTo \Box$ Person } $\mathcal{A} = \{ Mother(mary), hasChild(alice, john), isMarriedTo(alice, bob) \}$ $q(x) = \exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y)$ q'(x) = $(\exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y)) \lor (\exists y \operatorname{Parent}(x) \land \operatorname{hasChild}(x, y))$ \lor ($\exists y \;$ Mother(x) \land hasChild(x, y)) \lor (Person(x) \land Parent(x)) \vee Parent(x) \vee (Mother(x) \wedge Parent(x)) \vee Mother(x) \lor ($\exists yz$ isMarriedTo(x, z) \land hasChild(x, y)) $\vee (\exists z \text{ isMarriedTo}(x, z) \land \mathsf{Parent}(x))$

Example

 $\mathcal{T} = \{ Mother \sqsubseteq Parent, \}$ Parent $\Box \exists hasChild$, Parent \Box Person, $\exists isMarriedTo \Box$ Person } $\mathcal{A} = \{ Mother(mary), hasChild(alice, john), isMarriedTo(alice, bob) \}$ $q(x) = \exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y)$ q'(x) = $(\exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y)) \lor (\exists y \operatorname{Parent}(x) \land \operatorname{hasChild}(x, y))$ \lor ($\exists y \;$ Mother(x) \land hasChild(x, y)) \lor (Person(x) \land Parent(x)) \vee Parent(x) \vee (Mother(x) \wedge Parent(x)) \vee Mother(x) $\vee (\exists yz \text{ isMarriedTo}(x, z) \land \text{hasChild}(x, y))$ \lor ($\exists z \text{ isMarriedTo}(x, z) \land \mathsf{Parent}(x)$) $\vee (\exists z \text{ isMarriedTo}(x, z) \land \text{Mother}(x))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Example

 $\mathcal{T} = \{ Mother \square Parent, \}$ Parent $\Box \exists hasChild$, Parent \Box Person, $\exists isMarriedTo \Box$ Person } $\mathcal{A} = \{ Mother(mary), hasChild(alice, john), isMarriedTo(alice, bob) \}$ $q(x) = \exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y)$ q'(x) = $(\exists y \operatorname{Person}(x) \land \operatorname{hasChild}(x, y)) \lor (\exists y \operatorname{Parent}(x) \land \operatorname{hasChild}(x, y))$ \lor ($\exists y \;$ Mother(x) \land hasChild(x, y)) \lor (Person(x) \land Parent(x)) \vee Parent(x) \vee (Mother(x) \wedge Parent(x)) \vee Mother(x) $\vee (\exists yz \text{ isMarriedTo}(x, z) \land \text{hasChild}(x, y))$ $\vee (\exists z \text{ isMarriedTo}(x, z) \land \mathsf{Parent}(x))$ $\vee (\exists z \text{ isMarriedTo}(x, z) \land \text{Mother}(x))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Simplifying Assumption

For now, we consider normalized existential rules, where only one atom appears in the head.

Every existential rule can be transformed into a set of normalized rules equivalent w.r.t. query answering.

$$\begin{array}{c} \phi(\vec{X},\vec{Y}) \to P_1(\vec{X},\vec{Z}) \wedge \cdots \wedge P_n(\vec{X},\vec{Z}) \\ \downarrow \\ \phi(\vec{X},\vec{Y}) \to \operatorname{Aux}(\vec{X},\vec{Z}) \\ \operatorname{Aux}(\vec{X},\vec{Z}) \to P_1(\vec{X},\vec{Z}) \end{array}$$

(人間) シスヨン スヨン

3

$$\operatorname{Aux}(\vec{X}, \vec{Z}) \to P_n(\vec{X}, \vec{Z})$$

•

C. Bourgaux, M. Thomazo

Datalog rewriting (Datalog = FULL = no existential)

$$\Sigma = \{ \text{hasCollaborator}(X, Y, Z) \rightarrow \text{Collaborator}(X) \}$$

$$q = \text{Collaborator}(a) \land \text{worksFor}(a, b)$$

Unify head rule and query atom $\mu = \{X \mapsto a\}$ Replace query atom by $\mu(body(rule))$

$$q_{\Sigma} = \text{Collaborator}(a) \land \text{worksFor}(a, b)$$

 \lor
 $\exists YZ \text{ hasCollaborator}(a, Y, Z) \land \text{worksFor}(a, b)$

イロン イロン イヨン イヨン

∃ 990

C. Bourgaux, M. Thomazo

$$\begin{split} &\Sigma = \{ \operatorname{Project}(X) \wedge \operatorname{inArea}(X, Y) \to \operatorname{hasCollaborator}(Z, Y, X) \} \\ &q = \exists UV \operatorname{hasCollaborator}(U, b, V) \end{split}$$

Unify head rule and query atom $\mu = \{X \mapsto V, Y \mapsto b, Z \mapsto U\}$ Replace query atom by $\mu(body(rule))$

$$q_{\Sigma} = \exists UV \text{ hasCollaborator}(U, b, V)$$

 \lor
 $\exists V \operatorname{Project}(V) \land \operatorname{inArea}(V, b)$

イロト イヨト イヨト --

= nav

C. Bourgaux, M. Thomazo

Existential in the head : unsound rewriting

$$\begin{split} \Sigma = & \{ \operatorname{Project}(X) \land \operatorname{inArea}(X, Y) \to \operatorname{hasCollaborator}(Z, Y, X) \} \\ & q = \exists V \operatorname{hasCollaborator}(a, b, V) \end{split}$$

Unify head rule and query atom $\mu = \{X \mapsto V, Y \mapsto b, Z \mapsto a\}$ Replace query atom by $\mu(body(rule))$

$$q_{\Sigma} = \exists V \text{ hasCollaborator}(a, b, V)$$

 \lor
 $\exists V \text{ Project}(V) \land \text{inArea}(V, b)$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

C. Bourgaux, M. Thomazo

Existential in the head : unsound rewriting

$$\begin{split} \Sigma = & \{ \operatorname{Project}(X) \land \operatorname{inArea}(X, Y) \to \operatorname{hasCollaborator}(Z, Y, X) \} \\ & q = \exists V \operatorname{hasCollaborator}(a, b, V) \end{split}$$

Unify head rule and query atom $\mu = \{X \mapsto V, Y \mapsto b, Z \mapsto a\}$ Replace query atom by $\mu(body(rule))$

$$q_{\Sigma} = \exists V \text{ hasCollaborator}(a, b, V)$$

 \lor
 $\exists V \text{ Project}(V) \land \text{ inArea}(V, b)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Consider $D = \{ \operatorname{Project}(c), \operatorname{inArea}(c, b) \}$ $D \models q_{\Sigma} \text{ but } \langle \Sigma, D \rangle \not\models q : q_{\Sigma} \text{ is not sound } !$

C. Bourgaux, M. Thomazo

Existential in the head : unsound rewriting

$$\begin{split} \Sigma = & \{ \operatorname{Project}(X) \land \operatorname{inArea}(X, Y) \to \operatorname{hasCollaborator}(Z, Y, X) \} \\ & q = \exists V \operatorname{hasCollaborator}(a, b, V) \end{split}$$

Unify head rule and query atom $\mu = \{X \mapsto V, Y \mapsto b, Z \mapsto a\}$ Replace query atom by $\mu(body(rule))$

$$q_{\Sigma} = \exists V \text{ hasCollaborator}(a, b, V)$$

 \lor
 $\exists V \text{ Project}(V) \land \text{inArea}(V, b)$

Consider $D = \{ Project(c), inArea(c, b) \}$

 $D \models q_{\Sigma}$ but $\langle \Sigma, D \rangle \not\models q : q_{\Sigma}$ is not sound !

Problem: constant a has been unified with an existential variable

(本間) (本語) (本語) (二語)

C. Bourgaux, M. Thomazo

Existential in the head : unsound rewriting

$$\begin{split} \Sigma = & \{ \operatorname{Project}(X) \land \operatorname{inArea}(X, Y) \to \operatorname{hasCollaborator}(Z, Y, X) \} \\ & q = \exists V \operatorname{hasCollaborator}(V, b, V) \end{split}$$

Unify head rule and query atom $\mu = \{X \mapsto V, Y \mapsto b, Z \mapsto V\}$ Replace query atom by $\mu(body(rule))$

$$q_{\Sigma} = \exists V \text{ hasCollaborator}(V, b, V)$$

 \lor
 $\exists V \text{ Project}(V) \land \text{inArea}(V, b)$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

C. Bourgaux, M. Thomazo

Existential in the head : unsound rewriting

$$\begin{split} \Sigma = & \{ \operatorname{Project}(X) \land \operatorname{inArea}(X, Y) \to \operatorname{hasCollaborator}(Z, Y, X) \} \\ & q = \exists V \operatorname{hasCollaborator}(V, b, V) \end{split}$$

Unify head rule and query atom $\mu = \{X \mapsto V, Y \mapsto b, Z \mapsto V\}$ Replace query atom by $\mu(body(rule))$

$$egin{aligned} q_{\Sigma} = \exists V \; ext{hasCollaborator}(V, b, V) \ & ee & \exists V \; ext{Project}(V) \land ext{inArea}(V, b) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Consider $D = \{ \operatorname{Project}(c), \operatorname{inArea}(c, b) \}$ $D \models q_{\Sigma} \text{ but } \langle \Sigma, D \rangle \not\models q : q_{\Sigma} \text{ is not sound } !$

C. Bourgaux, M. Thomazo

Existential in the head : unsound rewriting

$$\begin{split} \Sigma = & \{ \operatorname{Project}(X) \land \operatorname{inArea}(X, Y) \to \operatorname{hasCollaborator}(Z, Y, X) \} \\ & q = \exists V \operatorname{hasCollaborator}(V, b, V) \end{split}$$

Unify head rule and query atom $\mu = \{X \mapsto V, Y \mapsto b, Z \mapsto V\}$ Replace query atom by $\mu(body(rule))$

$$egin{aligned} q_{\Sigma} = &\exists V \; ext{hasCollaborator}(V, b, V) \ ⅇ & \exists V \; ext{Project}(V) \land ext{inArea}(V, b) \end{aligned}$$

Consider $D = \{ Project(c), inArea(c, b) \}$

 $D \models q_{\Sigma}$ but $\langle \Sigma, D \rangle \not\models q : q_{\Sigma}$ is not sound !

Problem: existential variable Z has been unified with X

C. Bourgaux, M. Thomazo

Existential in the head : unsound rewriting

$$\begin{split} \Sigma = & \{ \operatorname{Project}(X) \land \operatorname{inArea}(X, Y) \to \operatorname{hasCollaborator}(Z, Y, X) \} \\ & q = \exists UV \operatorname{hasCollaborator}(U, b, V) \land \operatorname{Manager}(U) \end{split}$$

Unify head rule and query atom $\mu = \{X \mapsto V, Y \mapsto b, Z \mapsto U\}$ Replace query atom by $\mu(body(rule))$

$$\begin{array}{l} q_{\Sigma} = \exists UV \text{ hasCollaborator}(U, b, V) \land \text{Manager}(U) \\ \lor \\ \exists UV \text{ Project}(V) \land \text{inArea}(V, b) \land \text{Manager}(U) \end{array}$$

Existential in the head : unsound rewriting

$$\begin{split} \Sigma = & \{ \operatorname{Project}(X) \land \operatorname{inArea}(X, Y) \to \operatorname{hasCollaborator}(Z, Y, X) \} \\ & q = \exists UV \operatorname{hasCollaborator}(U, b, V) \land \operatorname{Manager}(U) \end{split}$$

Unify head rule and query atom $\mu = \{X \mapsto V, Y \mapsto b, Z \mapsto U\}$ Replace query atom by $\mu(body(rule))$

 $\begin{array}{l} q_{\Sigma} = \exists UV \text{ hasCollaborator}(U, b, V) \land \text{Manager}(U) \\ \lor \\ \exists UV \text{ Project}(V) \land \text{inArea}(V, b) \land \text{Manager}(U) \end{array}$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Consider $D = \{ \text{Project}(c), \text{inArea}(c, b), \text{Manager}(Alice) \}$ $D \models q_{\Sigma} \text{ but } \langle \Sigma, D \rangle \not\models q : q_{\Sigma} \text{ is not sound } !$

Existential in the head : unsound rewriting

$$\begin{split} \Sigma = & \{ \operatorname{Project}(X) \land \operatorname{inArea}(X, Y) \to \operatorname{hasCollaborator}(Z, Y, X) \} \\ & q = \exists UV \operatorname{hasCollaborator}(U, b, V) \land \operatorname{Manager}(U) \end{split}$$

Unify head rule and query atom $\mu = \{X \mapsto V, Y \mapsto b, Z \mapsto U\}$ Replace query atom by $\mu(body(rule))$

 $q_{\Sigma} = \exists UV \text{ hasCollaborator}(U, b, V) \land \text{Manager}(U)$ \lor $\exists UV \text{ Project}(V) \land \text{inArea}(V, b) \land \text{Manager}(U)$

Consider $D = \{ Project(c), inArea(c, b), Manager(Alice) \}$

 $D \models q_{\Sigma}$ but $\langle \Sigma, D \rangle \not\models q : q_{\Sigma}$ is not sound !

C. Bourgaux, M. Thomazo

Applicability conditions

What if we add conditions to apply a rewriting step to a query atom ?

- 1. only universal variables of the rule head can be unified with a constant
- 2. only universal variables of the rule head can be unified with a shared variable of the query
- 3. an existential variable of the rule head cannot be unified with another variable of the rule head

Incomplete rewriting

- $$\begin{split} \Sigma = & \{ \text{hasCollaborator}(X, Y, Z) \rightarrow \text{Collaborator}(X), \\ & \text{Project}(X) \land \text{inArea}(X, Y) \rightarrow \text{hasCollaborator}(Z, Y, X) \} \\ & q = \exists UVW \text{ hasCollaborator}(U, V, W) \land \text{Collaborator}(U) \end{split}$$
- $\begin{array}{l} q_{\Sigma} = \exists UVW \text{ hasCollaborator}(U, V, W) \land \text{Collaborator}(U) \\ \lor \\ \exists UVWYZ \text{ hasCollaborator}(U, V, W) \land \text{hasCollaborator}(U, Y, Z) \end{array}$

Incomplete rewriting

$$\begin{split} \Sigma = & \{ \text{hasCollaborator}(X, Y, Z) \to \text{Collaborator}(X), \\ & \text{Project}(X) \land \text{inArea}(X, Y) \to \text{hasCollaborator}(Z, Y, X) \} \\ & q = \exists UVW \text{ hasCollaborator}(U, V, W) \land \text{Collaborator}(U) \end{split}$$

 $q_{\Sigma} = \exists UVW \text{ hasCollaborator}(U, V, W) \land \text{ Collaborator}(U)$ \lor $\exists UVWYZ \text{ hasCollaborator}(U, V, W) \land \text{ hasCollaborator}(U, Y, Z)$ $\text{Consider } D = \{\text{Project}(a), \text{inArea}(a, b)\}$ $\langle \Sigma, D \rangle \models q \text{ but } D \not\models q_{\Sigma}: q_{\Sigma} \text{ is not complete } !$ Applicability conditions may destroy completeness !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Minimization Step

$$\begin{split} \Sigma = & \{ \text{hasCollaborator}(X, Y, Z) \rightarrow \text{Collaborator}(X) \\ & \text{Project}(X) \land \text{inArea}(X, Y) \rightarrow \text{hasCollaborator}(Z, Y, X) \} \\ & q = \exists UVW \text{ hasCollaborator}(U, V, W) \land \text{Collaborator}(U) \end{split}$$

$q_{\Sigma} = \exists UVW \text{ hasCollaborator}(U, V, W) \land \text{Collaborator}(U)$ \lor $\exists UVWYZ \text{ hasCollaborator}(U, V, W) \land \text{ hasCollaborator}(U, Y, Z)$

C. Bourgaux, M. Thomazo

Minimization Step

$$\begin{split} \Sigma = & \{ \text{hasCollaborator}(X, Y, Z) \rightarrow \text{Collaborator}(X) \\ & \text{Project}(X) \land \text{inArea}(X, Y) \rightarrow \text{hasCollaborator}(Z, Y, X) \} \\ & q = \exists UVW \text{ hasCollaborator}(U, V, W) \land \text{Collaborator}(U) \end{split}$$

$$q_{\Sigma} = \exists UVW \text{ hasCollaborator}(U, V, W) \land \text{Collaborator}(U) \\ \lor \\ \exists UVWYZ \text{ hasCollaborator}(U, V, W) \land \text{hasCollaborator}(U, Y, Z) \\ \lor \\ \exists UVW \text{ hasCollaborator}(U, V, W) \text{ - by minimization} \end{cases}$$

C. Bourgaux, M. Thomazo

Minimization Step

$$\begin{split} \Sigma = & \{ \text{hasCollaborator}(X, Y, Z) \rightarrow \text{Collaborator}(X) \\ & \text{Project}(X) \land \text{inArea}(X, Y) \rightarrow \text{hasCollaborator}(Z, Y, X) \} \\ & q = \exists UVW \text{ hasCollaborator}(U, V, W) \land \text{Collaborator}(U) \end{split}$$

$$\begin{array}{l} q_{\Sigma} = \exists UVW \text{ hasCollaborator}(U, V, W) \land \text{ Collaborator}(U) \\ \lor \\ \exists UVWYZ \text{ hasCollaborator}(U, V, W) \land \text{ hasCollaborator}(U, Y, Z) \\ \lor \\ \exists UVW \text{ hasCollaborator}(U, V, W) \text{ - by minimization} \\ \lor \\ \exists VW \text{ Project}(W) \land \text{ inArea}(W, V) \end{array}$$

The standard algorithm for computing UCQ-rewritings performs an exhaustive application of the following two steps:

- 1. Rewriting
- 2. Minimization

A piece unifier of a query q with an existential rule σ is a triple $\mu = (q', H', P_u)$ such that:

- q' is a non empty subset of q
- H' is a subset of the head H of σ
- P_u is partition on the terms of H' and q' s.t.:
 - no two constants belong to the same class
 - If a class of P_u contains an existential variable of H', then the other terms are non-separating variables of q' (*i.e.*, variables of q' that do not appear in q \ q')

• note: no constants, no other existential variable of H'

► u(H') = u(q'), where u is a substitution being the identity on constants and assigning to two terms the same image if and only if their are in the same class in P_u.

Rewriting step: given a piece unifier $\mu = (q', H', P_u)$, rewrite (q, σ, μ) is the query obtained by replacing q' by $u(body(\sigma))$ in q

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 回 ▶

C. Bourgaux, M. Thomazo

Rewriting step: given a piece unifier $\mu = (q', H', P_u)$, rewrite (q, σ, μ) is the query obtained by replacing q' by $u(body(\sigma))$ in q

Using piece based unification instead of atom unification

- replace minimization step+rewriting step by a single rewriting step that rewrites several axioms together
 - integrate the applicability conditions : sound rewriting
 - may rewrite several axioms that unify together: complete rewriting
- allow us to drop the simplifying assumption that rules contain a single atom in the head

Theorem

 $\langle \Sigma, D
angle \models q$ iff there is a sequence $q_0 = q, q_1, \dots, q_k$ such that

- ► for all *i* with $0 \le i < k$, there is $\sigma_i \in \Sigma$ and a piece unifier μ_i of q_i with σ_i such that $q_{i+1} = rewrite(q_i, \sigma_i, \mu_i)$
- $\blacktriangleright D \models q_k$

Find the Piece Unifiers!

$$\Sigma = \{R(X, Y, Z) \to P(X, Y, T, R)\}$$

$$q_{1} = P(a, a, b, c)$$

$$q_{2} = \exists VW \ P(a, b, V, W)$$

$$q_{3} = \exists UVW \ P(U, U, V, W)$$

$$q_{4} = \exists UVW \ P(U, V, W, W)$$

$$q_{5} = \exists UVW \ P(U, V, V, W)$$

$$q_{6} = \exists UVWH \ P(a, b, U, W) \land P(a, b, V, H)$$

$$q_{7} = \exists UVWH \ P(a, b, U, H) \land P(W, b, V, H)$$

$$q_{8} = \exists UVWHK \ P(U, V, W, H) \land P(U, U, V, K)$$

5 990

メロト メロト メヨト メヨト

C. Bourgaux, M. Thomazo

A Naive Rewriting Algorithm

Algorithm 1 Naive rewriting algorithm

1:	$q_{\Sigma}=\emptyset$, $\mathit{Rew}=\{q\}$
2:	while $Rew \neq q_{\Sigma}$ do
3:	$q_{\Sigma}=Rew$
4:	for $q_i \in Rew$ do
5:	for $\sigma\in\Sigma$ do
6:	for μ piece unifier of q_i with σ do
7:	$m{q}_{m{rew}} = m{rewrite}(m{q}_i,\sigma,\mu)$
8:	if $q_{\mathit{rew}} otin Rew$ modulo variables renaming then
9:	$\textit{Rew} = \textit{Rew} \cup \{q_{\textit{rew}}\}$
10:	Output q_{Σ}

イロン イロン イヨン イヨン

= 990

A Naive Rewriting Algorithm

If the naive rewriting algorithm terminates,

then $\langle \Sigma, D \rangle \models q$ iff $D \models q_{\Sigma}$

- Soundness : every q' ∈ q_Σ is obtained by a sequence of piece based rewriting steps
- Completeness: if the algorithm terminates, then q_Σ contains all queries that can be obtained by a sequence of piece based rewriting steps

= nar

イロト イヨト イヨト --

Proof of Termination for Linear Rules

- The size of q_{Σ} grows at each iteration
- q_Σ does not contain any two queries that are equal modulo variables renaming
- Since $|body(\sigma)| = 1$, then $|rewrite(q_i, \sigma, \mu)| \le |q_i|$
- So |q_Σ| is bounded by (|sch(Σ)| × maxterms^{maxarity})^{|q|} where maxterms = maxarity × |q|

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Improving the Algorithm

- If q_i has been rewritten, it is not useful to consider it again
- If there is an homomorphism from q₁ to q₂ and q_Σ is a sound and complete rewriting of q, then q_Σ \ {q₂} is also a sound and complete rewriting of q
- If there is an homomorphism from q₁ to q₂, then for every rewriting q'₂ of q₂, there exists a rewriting q'₁ of q₁ such that there is an homomorphism from q'₁ to q'₂

イロト イヨト イヨト イヨト

= na0

Rewrite

$$\begin{split} \Sigma &= \{ \operatorname{hasChild}(X,Y) \to \operatorname{hasParent}(Y,X), \\ &\operatorname{hasChild}(X,Y) \to \operatorname{Parent}(X), \\ &\operatorname{Spouse}(X) \to \operatorname{isMarriedTo}(X,Y), \\ &\operatorname{isMarriedTo}(X,Y) \to \operatorname{Spouse}(X), \\ &\operatorname{sisterOf}(X,Y) \to \operatorname{siblingOf}(X,Y), \\ &\operatorname{siblingOf}(X,Y) \to \operatorname{siblingOf}(Y,X), \\ &\operatorname{hasSisterInLaw}(X,Z) \to \operatorname{isMarriedTo}(X,Y) \land \operatorname{sisterOf}(Y,Z), \\ &\operatorname{hasParentInLaw}(X,Z) \to \operatorname{isMarriedTo}(X,Y) \land \operatorname{hasParent}(Y,Z) \} \end{split}$$

 $q_1(x) = \exists yz \text{ isMarriedTo}(x, y) \land \text{siblingOf}(y, z)$ $q_2(x) = \exists y \text{ Parent}(x) \land \text{hasParent}(y, x) \land \text{Spouse}(y)$

イロト 不同 トイヨト イヨト

I na∩

Conjunctive Query Answering in \mathcal{EL}

- \blacktriangleright In \mathcal{EL} , the chase does not terminate
 - ▶ Person $\sqsubseteq \exists$ hasParent.Person

C. Bourgaux, M. Thomazo

Conjunctive Query Answering in \mathcal{EL}

- \blacktriangleright In \mathcal{EL} , the chase does not terminate
 - ▶ Person ⊑ ∃hasParent.Person
- The rewriting algorithm does not terminate either !
 - ▶ \exists hasParent.Person \sqsubseteq Person
- \mathcal{EL} is not UCQ-rewritable

・ 同 ト ・ ヨ ト ・ ヨ ト

= nav

Conjunctive Query Answering in \mathcal{EL}

- In \mathcal{EL} , the chase does not terminate
 - ▶ Person ⊑ ∃hasParent.Person
- The rewriting algorithm does not terminate either !
 - ▶ \exists hasParent.Person \sqsubseteq Person
- \mathcal{EL} is not UCQ-rewritable

- $\mathcal{T} = \{\exists hasParent.Person \sqsubseteq Person\}$
- $\mathcal{A}_k = \{ \mathsf{hasParent}(a, a_1), \mathsf{hasParent}(a_1, a_2), \dots, \}$

 $hasParent(a_{k-1}, a_k), Person(a_k)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

- $q_i = \exists x_1 \dots x_i \text{hasParent}(a, x_1) \land \dots \land \text{hasParent}(x_{i-1}, x_i), \text{Person}(x_i)$
- $\blacktriangleright \ \mathcal{A}_k \models q_k \text{ but } \mathcal{A}_k \not\models q_i \text{ for } i \neq k$
- CQ answering in \mathcal{EL} is still in PTIME
 - *EL* is Datalog-rewritable
 - also possible to combine some kind of chase and some FO-rewriting

Tutorial: Analyzing Rule Sets with Kiabora

- A set of rules is a *finite expansion set* (fes) if its chase is finite.
- A set of rules is a *finite unification set* (fus) if every conjunctive query has a sound and complete UCQ-rewriting w.r.t. this set.

Deciding if a set of rules is a fus or a fes is undecidable in general but some recognizable rule classes are known to be fus or fes.

Kiabora is a tool dedicated to the analysis of a set of existential rules:

https://graphik-team.github.io/graal/downloads/kiabora