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Motivation: Incomplete Data

DataDataData

q(x) =
hasDisease(x , y) ∧ LungCancer(y)
∧ gotTreatment(x , z) ∧ TargetedTherapy(z)

Query Data

• hasDisease(bob, d1)
• Adenocarcinoma(d1)
• primaryTumor(d1, o1)
• Lung(o1)
• gotTreatment(bob, t1)
• Erlotinib(t1)
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Motivation: Incomplete Data

▶ Complete the data using rules/triggers?
▶ may not be feasible (access right...)
▶ value creation/nulls?
▶ size?
▶ updates?

▶ Use a knowledge graph to model the expert knowledge?
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Reminders: Knowledge Graphs and Semantic Web

▶ Semantic Web: extension of the World Wide Web that aims at
making the web content “understandable” by computers

▶ Annotate websites data with meta-data
▶ Standards set by the World Wide Web Consortium (W3C)

▶ IRI (Internationalized Resource Identifier) to name things
▶ RDF (Resource Description Framework)

▶ standard graph model for data interchange on the Web
▶ RDF graph: set of triples (subject, predicate, object)
▶ graph nodes are entities (vertices labelled with IRIs), data

values (vertices labelled with literals), or blank nodes
▶ SPARQL (SPARQL Protocol and RDF Query Language)

▶ query (and update) language for RDF data
▶ RDFS (RDF Schema)

▶ data-modelling vocabulary for RDF data: allows to define
classes and relations and specify subclasses and domain/range



Using Knowledge Graphs to Answer Complex Questions

d1 Adenocarcinoma

bob

t1 Erlotinib

o1 Lung

Cancer

TargetedTherapy

hasDisease

gotTreatment

rdf:type

rdf:type

rdf:type

primaryTumor

rdfs:subClassOf

rdfs:subClassOf

Data as an RDF graph

Modelling expert knowledge with RDFS. What about “A cancer
whose primary tumor is situated in a lung is a lung cancer” ?
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Using Knowledge Graphs to Answer Complex Questions

d1 Adenocarcinoma

bob

t1 Erlotinib

o1 Lung

Cancer

TargetedTherapy

hasDisease

gotTreatment

rdf:type

rdf:type

rdf:type

primaryTumor

rdfs:subClassOf

rdfs:subClassOf

SELECT DISTINCT ?patient WHERE {
{ ?patient hasDisease ?disease .

?disease rdf:type/rdfs:subClassOf* LungCancer .
?patient gotTreatment rdf:type/rdfs:subClassOf* TargetedTherapy .

}
UNION
{ ?patient hasDisease ?disease .

?disease rdf:type/rdfs:subClassOf* Cancer .
?disease primaryTumor ?organ .
?organ rdf:type Lung .
?patient gotTreatment rdf:type/rdfs:subClassOf* TargetedTherapy .

}
}



Using Knowledge Graphs to Answer Complex Questions

▶ Knowledge graphs and SPARQL queries allow us to get
answers to complex queries

▶ But SPARQL queries may become very (too) complex
▶ Need for a way of formulating simpler queries, closer to the

natural language of the user, and still get all the answers from
the data

▶ Ontologies allow to formalize knowledge and delegate the
reasoning to the machine



Ontology-Mediated Query Answering
▶ Add a semantic layer to abstract from the specific way data is

stored and infer implicit information
▶ “Knowledge” stored in an ontology and used to query the data

blabl
DataDataData

q(x) =
hasDisease(x , y)
∧ LungCancer(y)
∧ gotTreatment(x , z)
∧ TargetedTherapy(z)

Query Ontology

• Adenocarcinoma(x)
→ Cancer(x)

• Cancer(x) ∧ Lung(y)
∧ primaryTumor(x , y)
→ LungCancer(x)

• Erlotinib(x)
→ TargetedTherapy(x)

Data

• hasDisease(bob, d1)
• Adenocarcinoma(d1)
• primaryTumor(d1, o1)
• Lung(o1)
• gotTreatment(bob, t1)
• Erlotinib(t1)



Open-World Assumption

▶ To use an ontology to query the data, we need to change the
data semantics to take into account its incompleteness

▶ Open-world assumption: the absence of a fact does not mean
that it is false (different from closed-world assumption used for
databases)

▶ The data is a partial description of the world



Ontologies
▶ “Originally, the term ontology comes from philosophy - it goes

as far back as Aristotle’s attempt to classify the things in the
world - where it is employed to describe the existence of beings
in the world. [...] An ontology is a formal, explicit specification
of a shared conceptualisation.
▶ A ‘conceptualisation’ refers to an abstract model of some

phenomenon in the world by having identified the relevant
concepts of that phenomenon.

▶ ‘Explicit’ means that the type of concepts used, and the
constraints on their use are explicitly defined. For example, in
medical domains, the concepts are diseases and symptoms, the
relations between them are causal and a constraint is that a
disease cannot cause itself.

▶ ‘Formal’ refers to the fact that the ontology should be machine
readable, which excludes natural language.

▶ ‘Shared’ reflects the notion that an ontology captures
consensual knowledge, that is, it is not private to some
individual, but accepted by a group.”

(Struder et al. 1998)



Ontologies

▶ An ontology is generally a logical theory that models a domain
of interest

▶ It defines the terminology (vocabulary) of the domain and the
semantics relationships between terms

▶ Example (family domain)
▶ Terms: parent, mother, sister, sibling, ...
▶ Relationships between terms: “mother” is a subclass of

“parent”, “sister” is both in the domain and in the range of “has
sibling”...



Reasons for Using Ontologies

▶ Standardize the terminology of an application domain: make it
easy to share information – well-defined syntax and formal
logic-based semantics (i.e. meaning)
▶ complex industrial systems description, scientific knowledge

(medicine, life science...)

▶ Present an intuitive and unified view of data sources: make it
easy to formulate queries
▶ data integration, semantic web

▶ Support automated reasoning: logical inferences allow us to
take advantage of implicit knowledge to answer queries –
computational aspects can be studied to design ontology
languages and tools that allow for efficient reasoning
▶ expert systems, semantic web, ontology-based data access
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Examples of Ontologies
In industry

From: How Semantic Technologies Can Enhance Data Access at Siemens Energy, Kharlamov et al.,

ISWC 2014

▶ Energy sector: turbines diagnostics



Examples of Ontologies
Medical ontologies

▶ SNOMED CT: general medical ontology ( > 350 000 concepts)
▶ multilingual, mapped to other international standards
▶ used for recording medical information: information sharing,

decision-making assistance systems, gathering data for clinical
research, monitoring population health and clinical practices...

▶ NCI (National Cancer Institute Thesaurus), FMA (Foundational
Model of Anatomy), GO (Gene Ontology) ...



Examples of Ontologies
Ontologies for life sciences

▶ Bioportal repository contains hundreds of ontologies about biology
and chemistry (http://bioportal.bioontology.org/)

http://bioportal.bioontology.org/


The Research Field

▶ Symbolic AI:
▶ uses symbols that represent real-world entities or concepts to

explicitly define human knowledge and reasoning processes
▶ make machine able to reason
▶ allows for explanation of reasoning: every step of reasoning use

human readable representation of the problem and exact
reasoning rules

▶ allows humans to control the set of knowledge used by the
machine (some things cannot or should not be learnt: biases,
laws, policies...)

▶ examples of other subfields of symbolic AI: planning and
scheduling, multi-agents systems, constraints satisfaction and
optimization, search...



The Research Field

▶ Knowledge representation and reasoning (KR):
▶ “Research in the field of knowledge representation and

reasoning is usually focused on methods for providing
high-level descriptions of the world that can be effectively used
to build intelligent applications. In this context, “intelligent”
refers to the ability of a system to find implicit consequences
of its explicitly represented knowledge.”
(Brachman and Nardi, 2003)

▶ “field of AI dedicated to representing information about the
world in a form that a computer system can use to solve
complex tasks [...]. KR incorporates findings from psychology
about how humans solve problems and represent knowledge in
order to design formalisms that will make complex systems
easier to design and build. KR also incorporates findings from
logic to automate various kinds of reasoning, such as the
application of rules or the relations of sets and subsets.”
(Wikipedia, 2022)

▶ Logic-based formalisms, expert systems, semantic networks...



Knowledge Representation and Reasoning

▶ Knowledge representation: define languages for specifying
knowledge
▶ Syntax (what can be written): determines precisely whether an

expression is a well-formed statement
▶ Semantics (meaning): determines what each well-formed

statement means and whether a statement is a consequence of
the knowledge represented

▶ Automated reasoning: provide inference tools (reasoners) to
deduce implicit knowledge (consequences) of the knowledge
explicitly represented
▶ Independent from the specific knowledge and domain
▶ Reasoners may solve different reasoning problems



Description Logics

▶ Description Logics is a family of ontology languages
▶ each description logic describes a language
▶ fragments of first-order logic (FOL)
▶ decidable, often tractable
▶ differ in expressive power and reasoning complexity
▶ very well studied, lots of tools (highly optimized reasoners...)



Description Logics: Syntax
Basic building blocks

▶ Atomic concepts (unary predicates)
▶ represent sets of entities
▶ Parent, Mother, Sister ...

▶ Atomic roles (binary predicates)
▶ represent relations between two entities
▶ hasChild, isMarriedTo ...

▶ Individuals (constants)
▶ represent entities
▶ BarackObama, SashaObama ...

▶ These basic building blocks can be combined using
constructors to describe complex concepts or roles
▶ the set of entities who are mothers who don’t have any male

child who is married is captured by the complex concept:
Mother ⊓ ¬(∃hasChild.(Male ⊓ ∃isMarriedTo.⊤))



Description Logics: Syntax
Most common concept constructors

Let C , D be (potentially complex) concepts, and R be a
(potentially complex) role
▶ Conjunction: C ⊓ D (entities that belong to concepts C and

D, i.e., to the intersection of C and D)
▶ Mother ⊓ Sister: “mothers that are also sisters”

▶ Disjunction: C ⊔ D (entities that belong to concepts C or D,
i.e., to the union of C and D)
▶ Mother ⊔ Father: “mothers or fathers”

▶ Negation: ¬C (entities that do not belong to concept C , i.e.,
that belong to the complement of C )
▶ ¬Parent: “those that are not parents”

▶ Existential restriction: ∃R.C (entities that are related by R to
some entity in C )
▶ ∃hasChild.Male: “those who have a male child”

▶ Universal restriction: ∀R.C (entities that are related by R only
to entities in C )
▶ ∀hasChild.Male: “those who have only male children”



Description Logics: Syntax
More concept constructors...

Let C be a (potentially complex) concept, and R be a (potentially
complex) role, and a be an individual name
▶ Number restriction: ≥ kR.C (entities that are related by R to

at least k entities in C )
▶ ≥ 2hasChild.Male: “those who have at least two male children”

▶ Number restriction: ≤ kR.C (entities that are related by R to
at most k entities in C )
▶ ≤ 2hasChild.Male: “those who have at most two male children”

▶ Nominals: {a} (the set that contains only a)
▶ ∃hasChild.{BarackObama}: “those who have child Barack

Obama”



Description Logics: Syntax
Examples of role constructors

Let R and S be (potentially complex) roles
▶ Inverse: R− (pairs of entities such that the second one is

related by an R to the first one)
▶ hasChild−: “has parent”

▶ Negation: ¬R (complement of R : all pairs of entities not
related by R)
▶ ¬hasChild: “has not child”

▶ Composition: R ◦ S (pairs of entities such that the first one is
related by an R to some entity related by an S to the second
one)
▶ hasChild ◦ hasChild: “has grand-child”



Description Logics: Syntax

DL knowledge base = TBox (ontology) + ABox (data)

TBox (terminological box) specifies knowledge at intensional level
▶ finite set of axioms
▶ describes general knowledge about the domain
▶ defines a set of conceptual elements (concepts, roles) and

states constraints describing the relationships between them

ABox (assertional box) specifies knowledge at extensional level
▶ finite set of assertions
▶ contains facts about specific individuals

Note: the term ontology is sometimes used to refer to the whole
knowledge base rather than to the TBox alone.



Description Logics: Syntax
TBox axioms

The TBox may contain
▶ (General) concept inclusions: C ⊑ D (every instance of C is

an instance of D)
▶ Mother ⊑ Parent: “all mothers are parents”
▶ Spouse ⊑ ∃isMarriedTo.⊤: “all spouses are married

to someone”
▶ Spouse ⊑ ¬Bachelor: “one cannot be both a spouse and a

bachelor”

▶ Role inclusions: R ⊑ S
▶ hasParent ⊑ hasAncestor: “one’s parents are one’s ancestors”
▶ hasParent ⊑ hasChild−: “one has parents those who have

oneseflf as child”
▶ hasParent ⊑ ¬hasChild: “one cannot has parent one’s child”

▶ Concept (or role) equivalence: X ≡ Y (abbreviation for
X ⊑ Y and Y ⊑ X : X and Y define the same concept/role)
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Description Logics: Syntax
TBox axioms

The TBox may also contain properties about roles
▶ functional: (func R) (if R(x , y) and R(x , z) then y = z)

▶ (func isMarriedTo)
▶ transitive: (trans R) (if R(x , y) and R(y , z) then R(x , z))

▶ (trans hasAncestor)
▶ symmetric: (sym R) (if R(x , y) then R(y , x))

▶ (sym isMarriedTo)

▶ ...



Description Logics: Syntax
ABox assertions

The ABox contains
▶ Concept assertions: C (a) (a is a member of C )

▶ Father(BarackObama): “Barack Obama is a father”
▶ Role assertions: R(a, b) (a is related to b by R)

▶ hasParent(SashaObama,BarackObama): “Sasha Obama has
parent Barack Obama”



Defining a Particular DL

To define a particular DL, we need to specify
▶ which concept and role constructors can be used
▶ what types of statements can appear in the TBox

For example, the ALC DL (“Attributive Concept Language with
Complements”) is defined as follows:
▶ if A is an atomic concept, then A is an ALC concept
▶ if C ,D are ALC concepts and R is an atomic role, then the

following are ALC concepts:
▶ C ⊓ D (conjunction)
▶ C ⊔ D (disjunction)
▶ ¬C (negation)
▶ ∃R.C (existential restriction)
▶ ∀R.C (universal restriction)

▶ an ALC TBox contains only concept inclusions
Note that A ⊓ ¬A can be abbreviated by ⊥ and A ⊔ ¬A by ⊤.



Defining a Particular DL

To define a particular DL, we need to specify
▶ which concept and role constructors can be used
▶ what types of statements can appear in the TBox

For example, the ALC DL (“Attributive Concept Language with
Complements”) is defined as follows:
▶ if A is an atomic concept, then A is an ALC concept
▶ if C ,D are ALC concepts and R is an atomic role, then the

following are ALC concepts:
▶ C ⊓ D (conjunction)
▶ C ⊔ D (disjunction)
▶ ¬C (negation)
▶ ∃R.C (existential restriction)
▶ ∀R.C (universal restriction)

▶ an ALC TBox contains only concept inclusions
Note that A ⊓ ¬A can be abbreviated by ⊥ and A ⊔ ¬A by ⊤.



Description Logics: Semantics
Interpretation I = (∆I , ·I)
▶ ∆I is a non-empty set called domain
▶ ·I is a function which associates

▶ each individual a with an element aI ∈ ∆I

▶ each atomic concept A with a unary relation AI ⊆ ∆I

▶ each atomic role R with a binary relation RI ⊆ ∆I ×∆I

Example:
∆I = {a, b, c , d , e, f , g}
aliceI = a, bobI = b
MotherI = {a, c}
FatherI = {b, e}
ParentI = {a, b, c , e}
SpouseI = {d}
hasParentI = {(b, a), (b, e), (d , c), (d , b)}
hasChildI = {(a, b), (e, b), (c , d), (b, d)}
isMarriedToI = {(d , f )}
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Description Logics: Semantics
The function ·I is extended to complex concepts and roles to
formalize the meaning of the constructors:
▶ ⊤I = ∆I and ⊥I = ∅
▶ (C ⊓ D)I = CI ∩ DI

▶ (C ⊔ D)I = CI ∪ DI

▶ (¬C )I = ∆I\CI

▶ (∃R.C )I = {u | there exists (u, v) ∈ RI such that v ∈ CI}
▶ (∀R.C )I = {u | for every v , if (u, v) ∈ RI then v ∈ CI}
▶ (≥ kR.C )I = {u | there exists at least k v such that (u, v) ∈

RI and v ∈ CI}
▶ {a}I = {aI}
▶ (R−)I = {(u, v) | (v , u) ∈ RI}
▶ (¬R)I = (∆I ×∆I) \ RI

▶ (R ◦ S)I = {(u, v) | (u,w) ∈ RI , (w , v) ∈ SI}
▶ ...



Description Logics: Semantics
Example

(¬Parent)I = ?

(∃hasParent.⊤)I = ?

(isMarriedTo−)I = ?

(Spouse ⊔ Mother)I = ?

(∀hasChild.Spouse)I = ?

((∀hasChild.Spouse) ⊓ (∃hasChild.⊤))I = ?

(Mother ⊓ (∃hasChild.∃hasChild−.∃hasParent.Father))I = ?



Description Logics: Semantics
Example

(¬Parent)I = {d , f , g}

(∃hasParent.⊤)I = {b, d}

(isMarriedTo−)I = {(f , d)}

(Spouse ⊔ Mother)I = {a, c , d}

(∀hasChild.Spouse)I = {b, c , d , f , g}

((∀hasChild.Spouse) ⊓ (∃hasChild.⊤))I = {b, c}

(Mother ⊓ (∃hasChild.∃hasChild−.∃hasParent.Father))I = {c}



Description Logics: Semantics

Satisfaction of TBox axioms
▶ I satisfies a concept inclusion C ⊑ D, written I |= C ⊑ D,

if CI ⊆ DI

▶ I satisfies a role inclusion R ⊑ S , written I |= R ⊑ S ,
if RI ⊆ SI

▶ I satisfies (func R), written I |= (func R),
if RI is a functional relation

▶ ...

Satisfaction of ABox assertions
▶ I satisfies

▶ a concept assertion C (a), written I |= C (a), if aI ∈ CI ,
▶ a role assertion R(a, b), written I |= R(a, b), if (aI , bI) ∈ RI
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Description Logics: Semantics
Example

Assuming that aliceI = a and
bobI = b:

I |= Mother ⊑ Parent ?

I |= ∃hasChild.⊤ ⊑ ∃hasParent.⊤ ?

I |= Mother ⊑ ¬Father ?

I |= (func hasChild) ?

I |= hasParent(bob, alice) ?

I |= ∃hasChild.(Father ⊓ ∃hasChild.Spouse)(alice) ?

I |= ∀hasChild.(Father ⊓ ∀isMarriedTo.Spouse)(alice) ?



Description Logics: Semantics
Example

Assuming that aliceI = a and
bobI = b:

I |= Mother ⊑ Parent ✓

I |= ∃hasChild.⊤ ⊑ ∃hasParent.⊤ ✗

I |= Mother ⊑ ¬Father ✓

I |= (func hasChild) ✓

I |= hasParent(bob, alice) ✓

I |= ∃hasChild.(Father ⊓ ∃hasChild.Spouse)(alice) ✓

I |= ∀hasChild.(Father ⊓ ∀isMarriedTo.Spouse)(alice) ✓



Description Logics: Semantics
Models
▶ I is a model of a TBox T if it satisfies every axiom in T
▶ I is a model of an ABox A if it satisfies every assertion in A
▶ I is a model of a KB ⟨T ,A⟩ if it is a model of T and A
▶ Two KBs are equivalent if they have the same models

Satisfiability
▶ A KB ⟨T ,A⟩ is satisfiable, or consistent, if it has a model
▶ A concept C is satisfiable if there exists an interpretation I

such that CI ̸= ∅
▶ A concept C is satisfiable w.r.t. a TBox T if there exists a

model I of T such that CI ̸= ∅
Entailment
▶ A TBox T entails an axiom α, written T |= α, if every model

of T satisfies α

▶ A KB ⟨T ,A⟩ entails an assertion α, written ⟨T ,A⟩ |= α, if
every model of ⟨T ,A⟩ satisfies α
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Description Logics: Semantics
Example

T = {Female ⊓ ∃hasChild.⊤ ⊑ Mother,
Father ⊑ Male ⊓ ∃hasChild.⊤,

Parent ≡ ∃hasChild.⊤,

⊤ ⊑ ∃hasChild−.⊤}
A = { hasChild(alice, bob), Female(alice), Father(bob) }

▶ T |= Father ⊑ Parent ?
▶ T |= Mother ⊑ Parent ?
▶ ⟨T ,A⟩ |= Mother(alice) ?
▶ ⟨T ,A⟩ |= Male(bob) ?
▶ ⟨T ,A⟩ |= ∀hasChild.Male(alice) ?
▶ ⟨T ,A⟩ |= ∃hasChild−.∃hasChild−.⊤(alice) ?



Description Logics: Semantics
Example

T = {Female ⊓ ∃hasChild.⊤ ⊑ Mother,
Father ⊑ Male ⊓ ∃hasChild.⊤,

Parent ≡ ∃hasChild.⊤,

⊤ ⊑ ∃hasChild−.⊤}
A = { hasChild(alice, bob), Female(alice), Father(bob) }

▶ T |= Father ⊑ Parent ✓
▶ T |= Mother ⊑ Parent ✗

▶ ⟨T ,A⟩ |= Mother(alice) ✓
▶ ⟨T ,A⟩ |= Male(bob) ✓
▶ ⟨T ,A⟩ |= ∀hasChild.Male(alice) ✗

▶ ⟨T ,A⟩ |= ∃hasChild−.∃hasChild−.⊤(alice) ✓



Description Logics: Semantics
Example

T = {⊤ ⊑ Male ⊔ Female,
∃friend.(Female ⊓ ∃loves.Male) ⊑ A }

A = { friend(john, susan), friend(john, andrea),
loves(susan, andrea), loves(andrea, bill),
Female(susan), Male(bill) }

⟨T ,A⟩ |= A(john) ?



Description Logics: Semantics
Example

T = {⊤ ⊑ Male ⊔ Female,
∃friend.(Female ⊓ ∃loves.Male) ⊑ A }

A = { friend(john, susan), friend(john, andrea),
loves(susan, andrea), loves(andrea, bill),
Female(susan), Male(bill) }

⟨T ,A⟩ |= A(john)✓



Exercises

Show the following statements:
▶ If T ⊆ T ′, then T |= C ⊑ D implies T ′ |= C ⊑ D.
▶ The following equivalence axioms are valid, i.e., are satisfied by

every interpretation:
▶ ¬⊤ ≡ ⊥
▶ ¬(¬C ) ≡ C
▶ C ⊔ D ≡ ¬(¬C ⊓ ¬D)
▶ ∀R.C ≡ ¬∃R.¬C
▶ ¬(∃R.C ) ≡ ∀R.¬C

▶ If T |= C ⊑ D, then for every role R , T |= ∃R.C ⊑ ∃R.D and
T |= ∀R.C ⊑ ∀R.D.

▶ T |= ∃R−.⊤ ⊑ C if and only if T |= ⊤ ⊑ ∀R.C .



Standard Reasoning Tasks

Especially useful to build and debug an ontology

▶ Concept satisfiability: Given a concept C and a TBox T ,
decide whether C is satisfiable w.r.t. T .

▶ KB satisfiability: Given a KB ⟨T ,A⟩, decide whether ⟨T ,A⟩ is
satisfiable.

▶ Subsumption (or axiom entailment): Given a concept inclusion
α (or in general an axiom α) and a TBox T , decide whether
T |= α.

▶ Classification: Given a TBox T , decide for every pair of
concept names A, B from T , whether T |= A ⊑ B .

▶ Instance checking: Given a KB ⟨T ,A⟩ and a concept C ,
decide for every individual a from A whether ⟨T ,A⟩ |= C (a).



Exercises: Reduction Between Standard Reasoning Tasks

Show the following statements:
▶ T |= C ⊑ D iff C ⊓ ¬D is not satisfiable w.r.t. T .
▶ C is satisfiable w.r.t. T iff T ̸|= C ⊑ ⊥.
▶ C is satisfiable w.r.t. T iff ⟨T ∪ {A ⊑ C}, {A(a)}⟩

is consistent.
▶ ⟨T ,A⟩ |= C (a) iff ⟨T ∪ {C ⊑ ¬A},A ∪ {A(a)}⟩

is inconsistent.



Ontology-Mediated Query Answering

▶ Database-style queries, in particular conjunctive queries:
q(x⃗) = ∃y⃗φ where φ is a conjunction of atoms of the form
R(t, t ′) or A(t) with t, t ′ variables from x⃗ ∪ y⃗ or constants.

▶ A tuple of constants a⃗ is an answer to q(x⃗) in an
interpretation I if I |= q(a⃗) where q(a⃗) is obtained by
replacing answer variables from x⃗ by constants from a⃗.

▶ Ontology-mediated query answering: Find the certain answers
to q(x⃗) over ⟨T ,A⟩, i.e., those that hold in every model
of ⟨T ,A⟩.



Examples of Other Non-Standard Reasoning Tasks

▶ Axiom entailment explanation: Given a TBox T and an axiom
α such that T |= α, find a minimal subset T ′ of T such that
T ′ |= α.

▶ ABox repair: Given a satisfiable TBox T and an ABox A such
that ⟨T ,A⟩ is inconsistent, find a maximal subset A′ of A
such that ⟨T ,A′⟩ is satisfiable.

▶ ABox abduction: Given a KB ⟨T ,A⟩ and an assertion α such
that ⟨T ,A⟩ ̸|= α, find a minimal set of assertions H such that
⟨T ,A ∪ H⟩ is consistent and ⟨T ,A ∪ H⟩ |= α.

▶ Module extraction: Given a signature Σ (set of concept and
role names) and a TBox T , extract a minimal subset (module)
T0 from T such that T0 preserves all logical entailments that
can be expressed in the description logic of T using only terms
in Σ.

▶ ...



Expressivity vs Efficiency

▶ The complexity of the reasoning tasks depends on the
description logic language considered.

▶ A crucial design principle in description logics is to establish a
favorable trade-off between expressive power (what the
language can express) and computational complexity.

▶ For example standard reasoning tasks are
▶ in PTime for the description logic EL: concept inclusions

C ⊑ D where C ,D := ⊤ | A | C ⊓ D | ∃R.C
▶ ExpTime-complete for ELI =EL +inverse roles:

C ,D := ⊤ | A | C ⊓ D | ∃R.C | ∃R−.C
▶ in PTime for DL-Lite: concept inclusions B ⊑ C where

C := B | ¬B, B := A | ∃S , S := R | R−



Relationship with First-Order Logic

DL KBs can be translated into first-order logic (FOL):
▶ atomic concepts and roles are unary and binary predicates
▶ complex concepts are FOL formula with one free variable

▶ Female ⊓ ∃hasChild.⊤ Female(x) ∧ ∃yhasChild(x , y)
▶ TBox and ABox axioms are FOL sentences

▶ ∃hasChild.⊤ ⊑ Parent ∀x(∃yhasChild(x , y) ⇒ Parent(x))



Relationship with First-Order Logic
Example: Translation of an ALC TBox

Concept C is translated into FOL formula with one free variable
πx(C ) inductively defined as follows
▶ πx(A) = A(x) for A atomic concept
▶ πx(C ⊓ D) = πx(C ) ∧ πx(D)

▶ πx(C ⊔ D) = πx(C ) ∨ πx(D)

▶ πx(¬C ) = ¬πx(C )

▶ πx(∃R.C ) = ∃y(R(x , y) ∧ πy (C )), y different from x

▶ πx(∀R.C ) = ∀y(R(x , y) ⇒ πy (C )), y different from x

Concept inclusion C ⊑ D is translated into FOL sentence
π(C ⊑ D) = ∀x(πx(C ) ⇒ πx(D))



Relationship between DLs and OWL

OWL (Web Ontology Language): W3C standard
▶ “language to represent rich and complex knowledge about

things, groups of things, and relations between things”
▶ Ontology language based on Description Logic

There are several variants of OWL
▶ OWL Full: no restrictions on the use of OWL features →

undecidable !
▶ OWL 2 DL (decidable fragment of OWL Full) corresponds to

the DL SROIQ(D)
▶ S stands for ALC extended with transitive roles ((trans R))
▶ R: regular role hierarchies (role inclusions with some suitable

acyclicity conditions) (R1 ⊑ R2)
▶ O: nominals (concept {o} where o is an individual)
▶ I: inverse roles (R−)
▶ Q: qualified number restrictions (≤ nR.C , ≥ nR.C )
▶ (D): data types



Relationship between DLs and OWL

OWL 2 defines three profiles targeted towards a specific uses
▶ “The OWL 2 EL profile is particularly suitable for applications

employing ontologies that define very large numbers of classes
and/or properties, [...] and for which ontology consistency,
class expression subsumption, and instance checking can be
decided in polynomial time.”

▶ “The OWL 2 QL profile is designed so that data (assertions)
that is stored in a standard relational database system can be
queried through an ontology via a simple rewriting mechanism”

▶ “The OWL 2 RL profile [...] is amenable to implementation
using rule-based technologies”

▶ OWL 2 EL is based on the DL EL
▶ OWL 2 QL is based on the DL DL-Lite
▶ OWL 2 RL was inspired by Description Logic Programs

https://www.w3.org/TR/owl2-profiles

https://www.w3.org/TR/owl2-profiles


Relationship between DLs and OWL
OWL adopts different terminology and syntax(es) than DLs
▶ OWL classes are concepts in DLs
▶ OWL (object) properties are roles in DLs
▶ OWL have many syntaxes that serve different purposes

▶ functional syntax
SubClassOf(:Parent ObjectSomeValuesFrom(:hasChild owl:Thing))

▶ Manchester syntax
Class: Parent

SubClassOf:
hasChild some owl:Thing

▶ OWL/XML syntax
<SubClassOf>

<Class IRI="#Parent"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasChild"/>
<Class abbreviatedIRI="owl:Thing"/>

</ObjectSomeValuesFrom>
</SubClassOf>

▶ ...



Relationship between DLs and OWL
OWL expressions (functional syntax) DL counterparts
Thing ⊤
Nothing ⊥
ObjectIntersectionOf(C1 . . . Cn) C1 ⊓ · · · ⊓ Cn

ObjectUnionOf(C1 . . . Cn) C1 ⊔ · · · ⊔ Cn

ObjectComplementOf(C ) ¬C
ObjectSomeValuesFrom(R C ) ∃R.C
ObjectAllValuesFrom(R C ) ∀R.C
ObjectOneOf(a1 . . . an) {a1} ⊔ · · · ⊔ {an}
SubClassOf(C1 C2) C1 ⊑ C2
EquivalentClasses(C1 . . . Cn) C1 ≡ · · · ≡ Cn

DisjointClasses(C1 . . . Cn) Ci ⊑ ¬Cj (1 ≤ i ̸= j ≤ n)
SubObjectPropertyOf(R1 R2) R1 ⊑ R2
InverseObjectPropertyOf(R1 R2) R1 ≡ R−

2
ClassAssertion(C a) C (a)
ObjectPropertyAssertion(R a b) R(a, b)
...



Ontology Engineering
Real-world ontologies
▶ can be huge
▶ often represent knowledge that only domain experts have
▶ are usually developed by many people
▶ need to evolve
=⇒ difficult to build and maintain

Ontology engineering: methodologies for building, maintaining or
debugging an ontology
▶ design patterns
▶ reuse of existing ontologies

▶ modules
▶ ontologies alignment

▶ automated knowledge acquisition
▶ debugging with reasoner and explanations

Mostly out of the scope of this course
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Ontology Editors and Reasoners

A lot of reasoners, tools and libraries for developing ontologies have
been implemented. Reasoners support various ontology languages
and reasoning tasks, and implement various algorithms.
▶ List of DL reasoners:

http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/

▶ List of OWL implementations (reasoners, editors, API...):
http://www.w3.org/2001/sw/wiki/OWL/Implementations

▶ A toolkit for existential rules:
https://graphik-team.github.io/graal/

http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
http://www.w3.org/2001/sw/wiki/OWL/Implementations
https://graphik-team.github.io/graal/


Outline of the Course

▶ Algorithms for basic reasoning tasks in description logics
(ontology building and debugging)
▶ in ALC
▶ in EL

▶ Ontology-mediated query answering
▶ chase (materialization)
▶ query rewriting
▶ bounded treewidth sets of rules

▶ Some current research topics related to OMQA, for example
among the following
▶ finite controllability
▶ aggregation queries
▶ inconsistency-handling
▶ descriptive complexity
▶ . . .
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